

DIMS Developer Guide v 1.0.0

This document (version 1.0.0) covers issues related to development
of DIMS components from a developer’s perspective.

	1. Introduction
	1.1. Overview

	2. Referenced documents

	3. Development and Core Tool Policy
	3.1. General Software Development Philosophy

	3.2. Source Code Control

	3.3. Copyright

	3.4. Python Development and Debugging

	3.5. License

	3.6. Developing on a fork from GitHub

	4. Communication and coordination
	4.1. Daily Scrum

	4.2. Remote Coordination

	5. Source Code Management with Git
	5.1. Foundational Git Resources

	5.2. The need for policy and discipline

	5.3. Global Git Configuration

	5.4. Daily tasks with Git

	5.5. Infrequent tasks with Git

	5.6. Git and Secrets

	6. Documenting DIMS Components
	6.1. Required Background Reading

	6.2. Why Sphinx?

	6.3. Manually Initiating a docs directory with sphinx-quickstart

	6.4. Building Sphinx Documentation

	6.5. Fixing errors

	6.6. Common Tasks

	6.7. Common Problems

	6.8. Advanced Use of Sphinx Features

	7. Continuous Integration
	7.1. Continuous Integration

	7.2. How source changes are propagated

	7.3. Continuous deployment of documentation

	8. Deployment and Configuration
	8.1. Deployment and Configuration

	8.2. Type of Systems

	9. Programming Conventions
	9.1. Use of Makefile helpers

	9.2. Variable Naming Conventions

	10. Ops-trust-db VM Creation

	11. Developing Bash scripts
	11.1. Command line processing using Google’s shFlags

	11.2. Script naming conventions

	11.3. Bash programming references

	12. Developing modules for the DIMS CLI app (dimscli)
	12.1. Bootstrapping the dimscli app for development

	12.2. Command Structure

	12.3. Completing commands in dimscli

	12.4. Adding New Columns to Output

	12.5. Adding New Commands

	12.6. Adding a Module in Another Repo

	13. Service Discovery Using Consul

	14. Docker Datacenter
	14.1. Datacenter Walk-thru

	14.2. Further Information

	15. Debugging and Development
	15.1. Determining File System Affects of Running Programs

	15.2. Testing Code on Branches

	15.3. Debugging Vagrant

	16. Robot Framework
	16.1. Overview

	16.2. Installation

	16.3. Configuring with Pycharm

	16.4. Libraries

	16.5. Other Helpful Hints

	16.6. Basic Project Structure

	16.7. Running Tests

	16.8. Tutorials

	17. Appendices
	17.1. Setting up DNS using dnsmasq

	17.2. Using a Case-Sensitive sparse image on Mac OS X

	17.3. Google Hangouts ‘Original Version’ Screenshare Instructions

Note

This document is written in Restructured Text (reST) [http://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html] using Sphinx [http://sphinx-doc.org/].

For more information, see Documenting DIMS Components.

Contact

Section author: Dave Dittrich (@davedittrich) <dittrich @ u.washington.edu>

License

Copyright © 2014-2017 University of Washington. All rights reserved.

Berkeley Three Clause License
=============================

Copyright (c) 2013-2017 University of Washington. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1. Introduction

This chapter introduces the software development policies,
methodology for source code and configuration file management,
documentation, and use of continuous integration mechanisms
used for deployment and testing of DIMS components.

1.1. Overview

	Section Development and Core Tool Policy discusses the policies that developers should
understand in order to operate in a manner consistent with the rest of the
team.

	All documentation for the DIMS project is written using restructured text
(reST) and Sphinx. Section ref:documentation covers how to use these
tools for producing professional looking and cross-referenced on-line (HTML)
and off-line (PDF) documentation.

	DIMS software is maintained under version control using Git and the HubFlow
methodology and tool set. Section Source Code Management with Git covers how these
tools are used for source code, documentation, and system configuration
files.

	Changes to source code that are pushed to Git repositories trigger build
processes using the Jenkins continuous integration environment. These triggers
build and/or deploy software to specified locations, run tests, and/or
configure service components. In most cases, Ansible is used as part of the
process driven by Jenkins. Section Continuous Integration provides an
overview of how this works and how to use it in development and testing DIMS
components.

	System software installation and configuration of DIMS components are managed
using Ansible playbooks that are in turn maintained in Git repositories. Only
a bare minimum of manual steps are required to bootstrap a DIMS deployment.
After that, configuration changes are made to Git repositories and those
changes trigger continuous integration processes to get these changes into
the running system. Section Deployment and Configuration covers how to use this
framework for adding or managing the open source components that are used
in a DIMS deployment.

	For more information about the Lifecycle of DIMS Machines reference
dimspacker:lifecycle. For more information about software development
in general, reference dittrich:swdev.

2. Referenced documents

	ansibleinventory:ansibleinventory

	dimsdockerfiles:usingdockerindims

	dimspacker:dimspacker

	dimssr:dimssystemrequirements

	dimsad:dimsarchitecturedesign

	dittrich:homepage home page.

3. Development and Core Tool Policy

This section contains policy statements regarding software development that all
developers working on the DIMS project are expected to adhere to.

In order to prevent core tools being used by developers being incompatible,
rendering installation instructions buggy and/or causing random failures in a
complicated build environment, everyone on the DIMS project must use the
same core tools, and use the same workflow processes. This will allow
controlled updates and provide stability in the tools we are using within the
project.

Without some discipline and adherence to documented policies, far too much time
ends up being wasted when one person can do something, but another can’t, or
something runs fine on one system, but fails on another system. In either case,
team members get blocked from making forward progress and the project suffers
as a result. These policies are not being imposed to stifle anyone’s creativity,
but to help everyone on the team be more productive.

Attention

The requirement to adhere to the policies stated here is partly to keep
the project moving forward smoothly, but also to ensure that the sofware
products developed by this project are suitable for public open source
release as required by the contract (see dimssr:opensourcerelease in
dimssr:dimssystemrequirements) and in conformance with University of
Washington policy.

3.1. General Software Development Philosophy

This section covers some very high-level philosophical points
that DIMS software developers should keep in mind.

There are a huge List of software development philosophies [https://en.wikipedia.org/wiki/List_of_software_development_philosophies] on
Wikipedia. One of the most relevant to the DIMS project, based on
a contractual requirement (see dimssr:agileDevelopment)
is the Agile Manifesto [http://www.agilemanifesto.org/principles.html]. This manifesto is based on twelve
principles:

	Customer satisfaction by early and continuous delivery of valuable software

	Welcome changing requirements, even in late development

	Working software is delivered frequently (weeks rather than months)

	Close, daily cooperation between business people and developers

	Projects are built around motivated individuals, who should be trusted

	Face-to-face conversation is the best form of communication (co-location)

	Working software is the principal measure of progress

	Sustainable development, able to maintain a constant pace

	Continuous attention to technical excellence and good design

	Simplicity—the art of maximizing the amount of work not done—is essential

	Self-organizing teams

	Regular adaptation to changing circumstance

3.1.1. DIMS Development Credo

The following are a series of guiding development principles that have
become self-evident over time as the project progressed. It echoes some of the
concepts expressed in the Agile Manifeto above.

	Avoid friction - “Friction” is anything that slows down an otherwise
smoothly running process. Little things that are broken, missing facts,
new programs that were written but don’t yet have any documentation,
all make it harder for someone to get work done because something
causes friction. Everything grinds to a halt until the little roadblock
can be removed and then it takes more time to ramp back up to speed.

	Know your tools - It is tempting to just start using a program without
first reading the fine manual (RTFM!?). While this may seem like a quick
way to get up and running, it can end up costing much more in the long
run. Take the time (a couple hours, perhaps) to read through as much of
a new tool’s documentation to familiarize yourself with the tool’s
capabilities and where to find answers to “how the heck to do I do X?”

Note

The PI has, for decades, maintained an extensive web page [https://staff.washington.edu/dittrich/home/] with
links to resources on tools and how to use them. Check there first,
and feel free to pass along any good resources you find that are not
yet included there.

	Take control - Relying on the default behaviors that are programmed into
an open source product that we use within the DIMS project, without fully
understanding them, can cause problems. When possible, being explicit about
how programs are configured and how they are invoked can make these opaque
default behaviors less of a problem.

	Make it simple - It may take a little effort, but being focused on
finding a simple solution that can be applied uniformly makes it easier
to intergrate a large set of components. The more differences there are
the way a subsystem or service is configured on multiple hosts (like
DNS, for example) means the behavior is random and unpredictable from
one computer system to another, causing friction

	Make it work first, then make it better - Trying to engineer a complete
solution to some need can mean delays in getting something working, which
delays getting that component integrated with other components. Or worrying
about how slow something might be during initial development and trying to
optimize the solution before it is even working and tested by someone
else. Make it work first, doing something simple, then deal with
optimization and a comprehensive feature set later.

	Avoid hard coding!!! - When ever possible, avoid using hard-coded
values in programs, configuration files, or other places where a
simple change of plans or naming conventions results in having to
go find and edit dozens of files. A complete system made up of
multiple services and software components that must be replicated
as a whole cannot possibly be replicated if someone has to hunt
down and change hundreds of values in files spread all over the
place.

	Ansible-ize all the things - All configuration, package installation,
or entity creation on a computer system should be looked at in terms
of how it can be automated with Ansible. Whenever you are tempted to
run a command to change something, or fire up an editor to set a
variable, put it in Ansible and use Ansible to apply it. Manual
processes are not well documented, are not managed under version
control, are not programatically repeatable, and make it harder to
scale or replicate a system of systems because they cause huge
amounts of friction.

	Template and version control all configuration - Adding a new service
(e.g., Nginx, or RabbitMQ) that may have several configuration files is not
just a one-time task. It will be repeated many times, for testing, for
alternate deployments, or when hardware fails or virtual machines get
upgraded. Don’t think that cutting corners to get something up and running
fast by just hand-configuration is the right way to go, because doing it
again will take as much time (or maybe even longer, if someone unfamiliar
with the process has to do it the next time). Take the time when adding a
new service to learn how it is configured, put all of its configuration files
under Ansible control, and use Ansible playbooks or other scripts to do the
configuration at deployment time and at runtime.

	Done means someone else can do it, not just you. A program that
compiles, but nobody else can run, is not done. A bug that was fixed,
but hasn’t been tested by someone other than the person who wrote the
code or fixed the bug, is not done. Something that doesn’t have
documentation, or test steps that explain how to replicate the
results, are not done.

	You can’t grade your own exam Tickets should not be closed until
someone else on the team has been able to validate the results.

	Document early, document often - A program that has no documentation,
or a process someone learns that has no documentation to record that
knowledge and how to use it, doesn’t contribute much to moving the
project forward. We are a team who mostly works independently, across
multiple timezones and on different daily schedules.

3.2. Source Code Control

As pointed out by Jeff Knupp in his blog post Open Sourcing a Python Project
the Right Way [https://www.jeffknupp.com/blog/2013/08/16/open-sourcing-a-python-project-the-right-way/], “git and GitHub have become the de-facto standard for Open
Source projects.” Just as Knupp’s post suggests, the DIMS project has been
following the same git-flow model described by Vincent Driesen in his A
successful Git branching model [http://nvie.com/posts/a-successful-git-branching-model/] blog post, using Sphinx and RST (see the
section Documenting DIMS Components), and using continuous integration via Jenkins
(see Continuous Integration).

3.3. Copyright

All source code should include a copyright statement with the year the
project started (2013) and the current year, as shown here:

#!/usr/bin/env python
#
Copyright (C) 2013-2017 University of Washington. All rights reserved.
#
...

Note

Where possible, include the actual copyright symbol. For example, in Sphinx
documents, follow the instructions in Section Insertion of text using direct substitution.

3.4. Python Development and Debugging

Several component subsystems used in and developed the DIMS project are
written in Python. We have chosen to use the PyCharm [https://www.jetbrains.com/pycharm/download/#section=linux] Community Edition
integrated development environment and debugger.

Note

Updating PyCharm may involve exporting and re-importing settings at the
time the program. This is covered in Section updatingpycharm.

3.5. License

All source code repositories shall include the following license statement
to accompany the Copyright statement in the previous section.

Berkeley Three Clause License
=============================

Copyright (c) 2013-2017 University of Washington. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3.6. Developing on a fork from GitHub

In this section, we will go through the steps for using Hub Flow for
developing on a branch forked from GitHub, publishing the results back
to GitHub for others to share.

For this example, there has already been a fork made on GitHub. Start by
cloning it to your local workstation:

[dittrich@localhost git (master)]$ git clone https://github.com/uw-dims/sphinx-autobuild.git
Cloning into 'sphinx-autobuild'...
remote: Counting objects: 366, done.
remote: Total 366 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (366/366), 62.23 KiB | 0 bytes/s, done.
Resolving deltas: 100% (180/180), done.
Checking connectivity... done.
[dittrich@localhost git (master)]$ cd sphinx-autobuild/
[dittrich@localhost sphinx-autobuild (develop)]$ git branch -a
* develop
 remotes/origin/HEAD -> origin/develop
 remotes/origin/develop
 remotes/origin/feature/1-arbitrary-watch
 remotes/origin/feature/tests
 remotes/origin/master
[dittrich@localhost sphinx-autobuild (develop)]$ git checkout master
Branch master set up to track remote branch master from origin by rebasing.
Switched to a new branch 'master'
[dittrich@localhost sphinx-autobuild (master)]$ git branch -a
 develop
* master
 remotes/origin/HEAD -> origin/develop
 remotes/origin/develop
 remotes/origin/feature/1-arbitrary-watch
 remotes/origin/feature/tests
 remotes/origin/master
[dittrich@localhost sphinx-autobuild (develop)]$ ls
AUTHORS NEWS.rst fabfile.py requirements-testing.txt
CONTRIBUTING.rst README.rst fabtasks requirements.txt
LICENSE docs pytest.ini setup.py
MANIFEST.in entry-points.ini requirements-dev.txt sphinx_autobuild

4. Communication and coordination

This section discusses the communication mechanisms and how to use
them for distributed development and working remotely.

Attention

Also refer to the Development and Core Tool Policy section for the rules of the road
for working with the communication and coordination tools described
in this section.

4.1. Daily Scrum

The project used a daily scrum meeting [http://scrumtrainingseries.com/DailyScrumMeeting/DailyScrumMeeting.htm] to try to keep everyone on
track and moving forward. As much as possible (without an officially
trained “scrum master” to lead every meeting) team members were
encouraged to answer three questions:

	What ticket(s) have you been working on?

	What ticket(s) will you be working on next?

	What is blocking your progress?

The goal is to keep the meeting to 15 minutes, so any longer discussions were
deferred to a “tailgate” session after everyone has made their initial scrum
contribution. The “tailgate” session may last much longer, sometimes running
to over an hour (since some team members on the DIMS project were working
remotely and it wasn’t possible to just “drop into to your office” for side-bar
conversations).

Note

It is really hard to avoid these 7 Mistakes During the Daily Stand-up Meeting [https://www.scrumalliance.org/community/articles/2014/july/7-mistakes-during-the-daily-stand-up-meeting].

4.2. Remote Coordination

This section describes the tools used for coordinating work remotely, such as
team coding, daily scrum, and weekly “standup” meetings.

We initially used Adobe Connect, though that was phased out because it was so
unstable and difficult to use. Various other coordination tools were tested,
with Skype and Google Hangout being the most compatible and useful (though
each has its own issues.)

4.2.1. Using Google Hangout

4.2.1.1. Requirements

	Firefox (at least when running Ubuntu on developer laptops)

	A Gmail address

	Plugin for Google Hangouts and Google Talk

Note

For now, DIMS developers should keep their name and email address
in the file $NAS/users/user-data.txt for this purpose.

4.2.1.2. Plugin Installation

	Go to http://www.google.com/tools/dlpage/hangout/download.html?hl=en

	Choose the “64 bit .deb (For Debian/Ubuntu)” option.

	Click the “Install Plugin” button.

	When the software installation dialog box opens, choose to open the file
with the Ubuntu Software Center.

	Click the “Install” button on the upper right hand side of the next window
that opens.

	You will be prompted for your password.

	The install should finish on its own.

4.2.1.3. When you make or join your first call

	In your Gmail window, all contacts you may chat with will be on the left
hand side, unless you’ve changed your settings.

	Since we all don’t have each other’s addresses for Gmail right now, you
won’t actually have any contacts.

	Whomever starts the Hangouts session can send a link via email to each
member of a meeting.

	If you get an invitation via an email, click the link in the email,
and a new window will open for the Hangout session.

	If whomever starts the Hangout session knows your email and adds you to the
call, a box will pop up in the bottom right hand of your Gmail window. The
top of this box will be highlighted green.

	Click the part that says you’ve been invited to a Hangouts video chat.

	There will be a pop up in the top left hand corner, pointing to a gray box
to the left of the address bar.

	Click the gray box and choose “Allow” or “Allow and Remember” for the plugin
to work during just the current call or for all calls, forever.

[image: Google Hangout Plug-in Settings]
Google Hangout Plug-in Settings

Note

If your sound or microphone settings are sounding funny:

	Check Ubuntu’s sound settings

	Make sure the speakers and microphone settings are using the appropiate
option (i.e., the builtin hardware if you aren’t using headphones and vice
versa).

4.2.1.4. Screensharing in Google Hangouts

These docs have been update to reflect the changes Google has made
to Hangouts. There is an ‘original version’, and sometimes the ‘new version’
is finicky, and we must resort to the ‘original version’. As such,
the instructions for the ‘original version’ will be preserved in the
Google Hangouts ‘Original Version’ Screenshare Instructions

	Everyone can do it, at the same time!

	Hover your cursor in the top right hand corner of your Hangouts window.

	Click the option with the three vertically-aligned dots.

	A menu will drop down, choose Screen Share.

	You can choose to share your whole desktop or individual windows of other
applications you have open on your desktop. It doesn’t appear you can share
all windows of an application, such as Terminal. If you have 5 Terminal
windows open, you can only share 1 of them, unless you share your entire
desktop. You can open multiple tabs, and those will be shared.

	Resizing of windows works just fine when screensharing also.

Caution

If two people are sharing the screen at the same time, and one of
them puts the focus on the other person’s shared screen, you will
put Google Hangout into a feedback loop that will eventually bring
the internet to its knees. Don’t say I didn’t warn you!

[image: The internet melting in an infinite Google Hangout loop...]
The internet melting in an infinite Google Hangout loop...

4.2.2. Ops-Trust email lists

We use an instance of the Ops-Trust portal system for managing
accounts and project email lists. Once an account is active, there are a number
of mailing lists that DIMS project members should join to get various email
communications (some ad-hoc and sent by humans, and some automatically
generated for situational awareness, alerts, testing, etc.)

	List
	Purpose

	dims-datafeeds
	Automated data feeds

	dims-demo
	DIMS demo mailing list

	dims-devops
	Continuous integration and syadmin notifications

	dims-general
	General Discussion

	dims-reports
	Periodic generated reports

	dims-test
	DIMS test mailing list

	dims-testeval
	Testing and Evaluation reports

	dims-vetting
	Vetting and Vouching

5. Source Code Management with Git

Daily development work on DIMS source code is done using a local server
accessed via SSH to git.devops.develop. The public release of DIMS
software will be from github.com/uw-dims [https://github.com/uw-dims] with public
documentation delivered on ReadTheDocs [https://readthedocs.org/]. (DIMS documentation is covered in
Section Documenting DIMS Components.)

Note

At this point github.com/uw-dims [https://github.com/uw-dims] primarily contains forked
repositories of the software described in Section installingtools.

Team members need to have familiarity with a few general task sets,
which are covered in the sections below. These tasks include things like:

	Cloning repositories and initializing them for use of the
hub-flow Git addon scripts.

	On a daily basis, updating repositories, creating feature
or hotfix branches to work on projects, and finishing those branches after
testing is complete to merge them back into the develop branch.

	Creating new repositories, setting triggers for post-commit actions,
and monitoring continuous integration results.

	Keeping up to date with new repositories (or starting fresh with a new
development system by cloning all DIMS repositories a new.)

Attention

Every now and then, you may do something with Git and immediately
think, “Oh, no! I did not want to do that...” :(

There are resources on Dave Dittrich’s home page in the
dittrich:usinggit section. Two good resources for learning how things
work with Git (and how to undo them) are:

	How to undo (almost) anything with Git [https://github.com/blog/2019-how-to-undo-almost-anything-with-git], GitHub blog post by jaw6, June 8, 2015

	Undo Almost Anything with Git webinar [https://youtu.be/oUzbaCRoeFA], YouTube video by Peter Bell and Michael Smith, February 11, 2014

5.1. Foundational Git Resources

	Yan Pritzker’s Git Workflows book [http://documentup.com/skwp/git-workflows-book]

	The Thing About Git [http://tomayko.com/writings/the-thing-about-git]

	Commit Often, Perfect Later, Publish Once: Git Best Practices [http://sethrobertson.github.io/GitBestPractices/]

	Git Tips [http://mislav.uniqpath.com/2010/07/git-tips/]

	git-flow [http://danielkummer.github.io/git-flow-cheatsheet/] utilities to follow Vincent Dreisen branching workflow

	HubFlow [http://datasift.github.io/gitflow/] (GitFlow for GitHub)

5.2. The need for policy and discipline

Git is a great tool for source management, but can be a little tricky to use
when there is a team of programmers all using Git in slightly different ways.
Bad habits are easy to form, like the short-cut of working on the develop
branch in a multi-branch workflow.

Figure Vincent Driessen Git branching model comes from Vincent Driessen’s “A
successful Git branching model [http://nvie.com/posts/a-successful-git-branching-model/]”. The DIMS project is following this model as
best we can to maintain consistency in how we create and use branches. The
general policy is to derive branch names from Jira tickets, in order to keep
information about why the branch exists, who is responsible for working on it,
and what is supposed to be done on the branch, in a system that can track
progress and prioritization of activities within sprints.

[image: Vincent Driessen Git branching model]
Vincent Driessen Git branching model

Because public release of source code will be through GitHub,
the hubflow tool was chosen for use within the project.
Take a moment to read through the following Gist (original source:
bevanhunt/hubflow_workflow [https://gist.github.com/bevanhunt/903740bf7306d806f943]), just to get an overview of hubflow
concepts. This Gist provides an overview of hubflow branch concepts and
some other things about Git that are good to keep in mind, but this is not
the totality of information in this guide about using hubflow (keep reading
further down for more DIMS-specific examples of using hubflow commands).

Git Hubflow Workflow:

Sync Branch:
git hf update - this will update master and develop and sync remote branches withlocal ones (be sure not to put commits into develop or master as it will push these up)
git hf push - this will push your commits in your local branch to the matching remote branch
git hf pull - this will pull the remote commits into your local branch (don't use if the remote branch has been rebased - use git pull origin "your-branch" instead)

Feature Branch:
gif hf feature start "my-feature" - this will create a feature branch on origin and local will be based off the latest develop branch (make sure to git hf update before or you will get an error if local develop and remote develop have divereged)
git hf feature finish "my-feature" - this will delete the local and remote branches (only do this after a PR has been merged)
git hf feature cancel -f "my-feature" - this will delete the local and remote branches (only do this if the feature branch was created in error)
git hf feature checkout "my-feature" - this will checkout the feature branch

Hotfix Branch:
git hf hotfix start "release-version" - this will create a hotfix branch on origin and local will be based off the latest develop branch (make sure to git hf update before or you get an error if local develop and remote devleop have divereged)
git hf hotfix finish "release-version" - this will delete the local and remote branches and merge the commits of the hotfix branch into master and develop branches - it will also create a release tag that matches the release version on master
git hf hotfix cancel -f "release-version" - this will delete the remote and local branch (only do this if the hotfix was created in error)
git checkout hotfix/"release-version" - this will checkout the hotfix branch (make sure to git hf update first)

Release Branch:
git hf release start "release-version" - this will create a release branch on origin and local will be based off the latest develop branch (make sure to git hf update before or you get an error if local develop and remote devleop have divereged)
git hf release finish "release-version" - this will delete the local and remote branches and merge the commits of the release branch both into develop and master - it will also create a release tag that matches the release version on master
git hf release cancel -f "release-version" - this will delete the local and remote branch (only do this if the release was created in error)
git checkout release/"release-version" - this will checkout the release branch (make sure to git hf update first)

Preparing a PR:
- put the Aha! Ticket # in PR title with a description
- assign to the proper reviewer
- don't squash the commits until after reviewed
- after review - squash the commits

Squashing Commits:
- checkout the branch you want to squash
- git merge-base "my-branch" develop (returns merge-base-hash)
- git rebase -i "merge-base-hash"
- change all commit types to "squash" from "pick" in the text file (except first) & save file
- if you get a no-op message in the text file and still have multiple commits then use the command git rebase -i (without the hash)
- fix any merge conflicts
- you should have one commit
- force update your remote branch: git push origin "my-branch" -f

Resolving merge conflicts with the develop branch that are not squashing related (generally on PRs - auto-merge will show as disabled):
- git hf update
- git rebase develop (while in your branch)
- resolve any merge conflicts

Rules to remember:
- don't ever git merge branches together manually (should never run command - git merge)
- squash only after review and before merging PR into develop

Note

There is a large body of references on Git that are constantly being
updated in the Software Development>Git [https://staff.washington.edu/dittrich/home/swdev.html#git] section of Dave Dittrich’s web
page.

Caution

Mac OS X (by default) uses a case insensitive HFS file system.
Unlike Ubuntu and other Linux/Unix distributions using case-sensitive
file systems like ext2, reiserfs, etc., the default OS X file
system does not care if you name a file THISFILE or ThisFile
or thisfile. All of those refer to the same file on a Mac. This can cause
problems when you use Git to share a source repository between computers
running OS X, Windows, and/or Linux, because what Linux thinks are two
files, the Mac only thinks is one (and that really causes problems for Git).

See Git on Mac OS X: Don’t ignore case! [http://tapestryjava.blogspot.com/2010/07/git-on-mac-os-x-dont-ignore-case.html]
and How do I commit case-sensitive only filename changes in Git? [http://stackoverflow.com/questions/17683458/how-do-i-commit-case-sensitive-only-filename-changes-in-git]. A solution
for Mac OS X, posted in Case sensitivity in Git [http://stackoverflow.com/questions/8904327/case-sensitivity-in-git], is documented in
Section Using a Case-Sensitive sparse image on Mac OS X.

5.3. Global Git Configuration

As we learn about best practices, the following set of global configuration
settings will be updated. Refer back to this page, or look in the dims-git
repo, for the latest configuration examples.

The following are user-specific settings that you should alter for your own account and preferences of editor/merge method:

$ git config --global user.name "Dave Dittrich"
$ git config --global user.email "dittrich@u.washington.edu"
$ git config --global merge.tool vimdiff
$ git config --global core.editor vim

Caution

There is a bad side-effect of the way the initial common Git configuration
were managed using Ansible. Whenever the dims-users-create role was
played, a fresh copy of the user’s global Git configuration file
(~/.gitconfig) is created, over-writing whatever the user had created
by issuing the commands above and forcing the user to have to re-issue
those commands every time the play was run. (See the file
$GIT/ansible-playbooks/dims-users-create/templates/gitconfig.j2).
That is a bug in that it is not idempotent [http://docs.ansible.com/ansible/glossary.html#idempotency].

One quick hack that restores these values is to add those commands to
your $HOME/.bash_aliases file, which is run every time a new
interactive Bash shell is started.

A better long-term solution, which we are working towards, is to
have the user.name and user.email configuration settings come
from the Trident portal user attributes table, so they can be
set by the user and stored in one central location, which can then be
retreived from the Trident user database and applied consistently
by Ansible when it sets up user accounts.

The following are general and can be applied to anyone’s configuration
(included here without a prompt so you can cut/paste to a command
line):

git config --global push.default tracking
git config --global core.excludesfile ~/.gitignore_global
git config --global core.autocrlf false
git config --global color.diff auto
git config --global color.status auto
git config --global color.branch auto
git config --global color.interactive auto
git config --global color.ui auto
git config --global branch.autosetuprebase always

The following are convenience aliases that help with certain tasks:

git config --global alias.find 'log --color -p -S'
git config --global alias.stat 'status -s'
git config --global alias.unstage "reset HEAD --"
git config --global alias.uncommit "reset --soft HEAD^"
git config --global alias.gr 'log --full-history --decorate=short --all --color --graph'
git config --global alias.lg 'log --oneline --decorate=short --abbrev-commit --all --color --graph'
git config --global alias.log1 'log --oneline --decorate=short'

5.4. Daily tasks with Git

This section covers regular tasks that are performed to
work with source code using Git. This section assumes you are
using the hub flow tool described in Section installingtools.

Warning

These tools are being installed in the dimsenv Python virtual
environment to make it easier for everyone on the team to access them and to
stay up to date with instructions in this document. If you have any
problems, file a Jira [http://jira.devops.develop/secure/Dashboard.jspa] ticket or talk
to Dave immediately upon encountering a problem. Do not let yourself get
blocked on something and block everyone else as a result!

5.4.1. Updating local repos

The most common task you need to do is keep your local Git repos up to date
with the code that others have pushed to remote repositories for sharing.
With several dozen individual Git repos, keeping your system up to date
with all of these frequently changing repos using git commands alone
is difficult.

To make things easier, helper programs like the hubflow scripts
and mr can be used, but even those programs have their limits.

The preferred method of updating the larger set of DIMS Git repos
is to use dims.git.syncrepos, which in turn calls hubflow via
mr as part of its processing. This convenience script (described in
Section Updating with dims.git.syncrepos) works on many repos at once, saving time and
effort.

You should still learn how hubflow and mr work, since you will
need to use them to update individual Git repos when you are working within
those repos, so we will start with those tools.

5.4.1.1. Updating using hubflow

The following command ensures that a local repo you
are working on is up to date:

Note

The list of actions that are performed is provided at the end of the command
output. This will remind you of what all is happening under the hood of Hub
Flow and is well worth taking a few seconds of your attention.

$ git hf update
Fetching origin
remote: Counting objects: 187, done.
remote: Compressing objects: 100% (143/143), done.
remote: Total 165 (delta 56), reused 1 (delta 0)
Receiving objects: 100% (165/165), 31.78 KiB | 0 bytes/s, done.
Resolving deltas: 100% (56/56), completed with 13 local objects.
From git.devops.develop:/opt/git/ansible-playbooks
 001ba47..0e12ec3 develop -> origin/develop
 * [new branch] feature/dims-334 -> origin/feature/dims-334
Updating 001ba47..0e12ec3
Fast-forward
 docs/source/conf.py | 2 +-
 roles/dims-ci-utils-deploy/tasks/main.yml | 5 +++++
 2 files changed, 6 insertions(+), 1 deletion(-)

Summary of actions:
- Any changes to branches at origin have been downloaded to your local repository
- Any branches that have been deleted at origin have also been deleted from your local repository
- Any changes from origin/master have been merged into branch 'master'
- Any changes from origin/develop have been merged into branch 'develop'
- Any resolved merge conflicts have been pushed back to origin
- You are now on branch 'develop'

If a branch existed on the remote repo (e.g., the feature/eliot branch used
in testing), it would be deleted:

$ git branch -a
* develop
 master
 remotes/origin/develop
 remotes/origin/feature/eliot
 remotes/origin/master
$ git hf update
Fetching origin
From git.devops.develop:/opt/git/dims-asbuilt
 x [deleted] (none) -> origin/feature/eliot

Summary of actions:
- Any changes to branches at origin have been downloaded to your local repository
- Any branches that have been deleted at origin have also been deleted from your local repository
- Any changes from origin/master have been merged into branch 'master'
- Any changes from origin/develop have been merged into branch 'develop'
- Any resolved merge conflicts have been pushed back to origin
- You are now on branch 'develop'
$ git branch -a
* develop
 master
 remotes/origin/develop
 remotes/origin/master

While using git hf update && git hf pull seems like it is simple enough,
the DIMS project has several dozen repos, many of which are inter-related.
Keeping them all up to date is not simple, and because of this developers
often get far out of sync with the rest of the team.

5.4.1.2. Updating using the mr command

A useful tool for managing multiple Git repositories and keeping them in sync
with the master branches is to use the program mr [http://joeyh.name/code/mr/].

mr uses a configuration file that can be added to using mr register
within a repo, or by editing/writing the .mrconfig file directly.

Attention

These instructions assume the reader is not already using mr
on a regular basis. Additionally, all DIMS Git repos are assumed
to be segrated into their own directory tree apart from any other
Git repos that the developer may be using.

This assumption allows for use of a .mrconfig file specifically for
just DIMS source code that can be over-written entirely with DIMS-specific
settings.

Cloning all of the DIMS source repos at once, or getting the contents of
what should be an up-to-date .mrconfig file, is covered in the Section
Cloning multiple repos from git.devops.develop.

After all repos have been cloned, they can be kept up to date on a daily
basis. Start your work session with the following commands:

$ cd $GIT
$ mr update

Caution

If you do not update a repo before attempting to git hf push or
git hf update with commited changes, Git will do a pull
and potentially you will end up with at best a merge, and at
worst a merge conflict that you must resolve before the push can
complete. If you are not comfortable handling a merge conflict, talk
to another team member to get help.

5.4.1.3. Updating with dims.git.syncrepos

A script that combines several of the above steps into one single command
is dims.git.synrepos.

[dimsenv] dittrich@dimsdemo1:~ () $ dims.git.syncrepos --version
dims.git.syncrepos version 1.6.97

In the example here, highlighted lines show
where repos are dirty (Repo[9], Repo[13], and Repo[33]), meaning they have
tracked files that are not committed yet and cannot be updated, clean and
requiring updates from the remote repo (Repo[12]), and new repositories from
the remote server (Repo[28] and Repo[30]) that are being cloned and initialized
for use with hub-flow tools. At the end, dims.git.syncrepos reports
how many repos were updated out of the available repos on the remote
server, how many new repos it added, and/or how many repos could not be
updated because they are dirty. Lastly, it reports how long it took (so
you can be aware of how long you have to go get coffee after
starting a sync.)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

	 [dimsenv] dittrich@dimsdemo1:~ () $ dims.git.syncrepos
 [+++] Found 46 available repos at git@git.devops.develop
 [+++] Repo[1] "/home/dittrich/dims/git/ansible-inventory" clean:
 [+++] Repo[2] "/home/dittrich/dims/git/ansible-playbooks" clean:
 [+++] Repo[3] "/home/dittrich/dims/git/cif-client" clean:
 [+++] Repo[4] "/home/dittrich/dims/git/cif-java" clean:
 [+++] Repo[5] "/home/dittrich/dims/git/configs" clean:
 [+++] Repo[6] "/home/dittrich/dims/git/dims" clean:
 [+++] Repo[7] "/home/dittrich/dims/git/dims-ad" clean:
 [+++] Repo[8] "/home/dittrich/dims/git/dims-asbuilt" clean:
 [---] Repo[9] "/home/dittrich/dims/git/dims-ci-utils" is dirty:
 ?? dims/diffs.1
 ?? dims/manifest.dat
 ?? ubuntu-14.04.2/ubuntu-14.04.3-install.dd.bz2
 4bb5516 (feature/dims-406) Merge branch 'develop' into feature/dims-406

 [+++] Repo[10] "/home/dittrich/dims/git/dims-dashboard" clean:
 [+++] Repo[11] "/home/dittrich/dims/git/dims-db-recovery" clean:
 [+++] Repo[12] "/home/dittrich/dims/git/dims-devguide" clean:
 remote: Counting objects: 29, done.
 remote: Compressing objects: 100% (22/22), done.
 remote: Total 22 (delta 13), reused 0 (delta 0)
 Unpacking objects: 100% (22/22), done.
 From git.devops.develop:/opt/git/dims-devguide
 daffa68..4b2462b develop -> origin/develop
 Updating daffa68..4b2462b
 Fast-forward
 .bumpversion.cfg | 2 +-
 docs/source/conf.py | 4 ++--
 docs/source/deployconfigure.rst | 2 +-
 docs/source/referenceddocs.rst | 13 +++++++++++++
 4 files changed, 17 insertions(+), 4 deletions(-)
 [---] Repo[13] "/home/dittrich/dims/git/dims-dockerfiles" is dirty:
 8a47fca (HEAD -> develop) Bump version: 1.1.11 → 1.1.12

 [+++] Repo[14] "/home/dittrich/dims/git/dims-dsdd" clean:
 [+++] Repo[15] "/home/dittrich/dims/git/dims-jds" clean:
 [+++] Repo[16] "/home/dittrich/dims/git/dims-keys" clean:
 [+++] Repo[17] "/home/dittrich/dims/git/dims-ocd" clean:
 [+++] Repo[18] "/home/dittrich/dims/git/dims-packer" clean:
 [+++] Repo[19] "/home/dittrich/dims/git/dims-sample-data" clean:
 [+++] Repo[20] "/home/dittrich/dims/git/dims-sr" clean:
 [+++] Repo[21] "/home/dittrich/dims/git/dims-supervisor" clean:
 [+++] Repo[22] "/home/dittrich/dims/git/dims-svd" clean:
 [+++] Repo[23] "/home/dittrich/dims/git/dimssysconfig" clean:
 [+++] Repo[24] "/home/dittrich/dims/git/dims-tp" clean:
 [+++] Repo[25] "/home/dittrich/dims/git/dims-tr" clean:
 [+++] Repo[26] "/home/dittrich/dims/git/dims-vagrant" clean:
 [+++] Repo[27] "/home/dittrich/dims/git/ELK" clean:
 [+++] Adding Repo[28] fuse4j to /home/dittrich/dims/.mrconfig and checking it out.
 mr checkout: /home/dittrich/dims/git/fuse4j
 Cloning into 'fuse4j'...
 remote: Counting objects: 523, done.
 remote: Compressing objects: 100% (240/240), done.
 remote: Total 523 (delta 186), reused 523 (delta 186)
 Receiving objects: 100% (523/523), 180.86 KiB | 0 bytes/s, done.
 Resolving deltas: 100% (186/186), done.
 Checking connectivity... done.
 Using default branch names.

 Which branch should be used for tracking production releases?
 - master
 Branch name for production releases: [master]
 Branch name for "next release" development: [develop]

 How to name your supporting branch prefixes?
 Feature branches? [feature/]
 Release branches? [release/]
 Hotfix branches? [hotfix/]
 Support branches? [support/]
 Version tag prefix? []

 mr checkout: finished (1 ok; 43 skipped)
 [+++] Repo[29] "/home/dittrich/dims/git/ipgrep" clean:
 [+++] Adding Repo[30] java-native-loader to /home/dittrich/dims/.mrconfig and checking it out.
 mr checkout: /home/dittrich/dims/git/java-native-loader
 Cloning into 'java-native-loader'...
 remote: Counting objects: 329, done.
 remote: Compressing objects: 100% (143/143), done.
 remote: Total 329 (delta 62), reused 329 (delta 62)
 Receiving objects: 100% (329/329), 178.36 KiB | 0 bytes/s, done.
 Resolving deltas: 100% (62/62), done.
 Checking connectivity... done.
 Using default branch names.

 Which branch should be used for tracking production releases?
 - master
 Branch name for production releases: [master]
 Branch name for "next release" development: [develop]

 How to name your supporting branch prefixes?
 Feature branches? [feature/]
 Release branches? [release/]
 Hotfix branches? [hotfix/]
 Support branches? [support/]
 Version tag prefix? []

 mr checkout: finished (1 ok; 44 skipped)
 [+++] Repo[31] "/home/dittrich/dims/git/java-stix-v1.1.1" clean:
 [+++] Repo[32] "/home/dittrich/dims/git/mal4s" clean:
 [---] Repo[33] "/home/dittrich/dims/git/MozDef" is dirty:
 M docker/Dockerfile
 M docker/Makefile

 [+++] Repo[34] "/home/dittrich/dims/git/ops-trust-openid" clean:
 [+++] Repo[35] "/home/dittrich/dims/git/ops-trust-portal" clean:
 [+++] Repo[36] "/home/dittrich/dims/git/poster-deck-2014-noflow" clean:
 [+++] Repo[37] "/home/dittrich/dims/git/prisem" clean:
 [+++] Repo[38] "/home/dittrich/dims/git/prisem-replacement" clean:
 [+++] Repo[39] "/home/dittrich/dims/git/pygraph" clean:
 [+++] Repo[40] "/home/dittrich/dims/git/rwfind" clean:
 [---] Repo[41] "/home/dittrich/dims/git/sphinx-autobuild" is clean:
 [+++] Repo[42] "/home/dittrich/dims/git/stix-java" clean:
 [+++] Repo[43] "/home/dittrich/dims/git/ticketing-redis" clean:
 [+++] Repo[44] "/home/dittrich/dims/git/tsk4j" clean:
 [+++] Repo[45] "/home/dittrich/dims/git/tupelo" clean:
 [+++] Repo[46] "/home/dittrich/dims/git/umich-botnets" clean:
 [+++] Updated 40 of 46 available repos.
 [+++] Summary of actions for repos that were updated:
 - Any changes to branches at origin have been downloaded to your local repository
 - Any branches that have been deleted at origin have also been deleted from your local repository
 - Any changes from origin/master have been merged into branch 'master'
 - Any changes from origin/develop have been merged into branch 'develop'
 - Any resolved merge conflicts have been pushed back to origin
 [+++] Added 3 new repos: fuse4j java-native-loader tsk4j
 [+++] Could not update 3 repos: dims-ci-utils dims-dockerfiles MozDef
 [+++] Updating repos took 00:04:12

5.4.2. Finding Changes and Changed Files

When working with lots of branches, especially branches that last for a long
time, it becomes difficult to find changes and changed files (and the commits
that contain them), in order to ensure required changes are present on the
branch you are working on.

Git has a command whatchanged that assists with this. (See the
git-whatchanged [https://git-scm.com/docs/git-whatchanged] documentation.)

Say you are on a branch, and running a program that relies on an Ansible
inventory file for obtaining a list of hosts. When the program is run,
it appears to iterate over the group names, not host names as you
expect:

 $ test.vagrant.list --status
 production: not_created
 development: not_created

The reason for this is a missing :children modifier on the
names of a group that has sub-groups. You know this bug was
fixed, but which branch (or which commit) contains the fix?
Use git whatchanged and pass it the name of the file
that has the problem.

 $ git whatchanged -- inventory/deployment/all
 commit 963b006a7aceee21eb35da41546ae5da7596382e
 Author: Dave Dittrich <dittrich@u.washington.edu>
 Date: Wed Dec 14 23:07:37 2016 -0800

 Add missing ":children" modifier

 :100644 100644 d9918d0... 9ce596b... M v2/inventory/deployment/all

 commit 00afbb5bfadc46ef9b5f253a13a6212cb3fca178
 Author: Dave Dittrich <dittrich@u.washington.edu>
 Date: Sun Dec 11 21:31:04 2016 -0800

 Update and normalize inventory 'all' files with children groups

 :100644 100644 99bb8d9... d9918d0... M v2/inventory/deployment/all

 commit 777cce71f944650c0ff5cf47723ee6b9f322c987
 Author: Dave Dittrich <dittrich@u.washington.edu>
 Date: Sat Dec 3 21:33:38 2016 -0800

 Refactor inventory directories to use group vars properly

 :100644 100644 98376da... 99bb8d9... M v2/inventory/deployment/all

 commit 3cdb37d04c9d8bedb5277ad4cfbeafdec55f69b0
 Author: Dave Dittrich <dittrich@u.washington.edu>
 Date: Tue Nov 22 20:00:19 2016 -0800

 Add vagrants to local and deployment groups

 :100644 100644 b199ae1... 98376da... M v2/inventory/deployment/all

 commit 92eec6c03c28824725b9fc0c4560b4fdccfa880e
 Author: Dave Dittrich <dittrich@u.washington.edu>
 Date: Fri Nov 18 16:53:04 2016 -0800

 Add initial inventory for deployment to get dynamic inventory working

 :000000 100644 0000000... b199ae1... A v2/inventory/deployment/all

If you add the --patch option, you also see the changes themselves
and can identify the initial problem file as well as the commit
that contains the fix (output edited for brevity):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

	 $ git whatchanged --patch -- inventory/deployment/all
 commit 963b006a7aceee21eb35da41546ae5da7596382e
 Author: Dave Dittrich <dittrich@u.washington.edu>
 Date: Wed Dec 14 23:07:37 2016 -0800

 Add missing ":children" modifier

 diff --git a/v2/inventory/deployment/all b/v2/inventory/ectf/all
 index d9918d0..9ce596b 100644
 --- a/v2/inventory/deployment/all
 +++ b/v2/inventory/deployment/all
 @@ -27,7 +27,7 @@ red.devops.deployment
 yellow.devops.deployment

 # Hosts are Vagrant virtual machines
 -[vagrants]
 +[vagrants:children]
 production
 development

 commit 00afbb5bfadc46ef9b5f253a13a6212cb3fca178
 Author: Dave Dittrich <dittrich@u.washington.edu>
 Date: Sun Dec 11 21:31:04 2016 -0800

 Update and normalize inventory 'all' files with children groups

 diff --git a/v2/inventory/deployment/all b/v2/inventory/ectf/all
 index 99bb8d9..d9918d0 100644
 --- a/v2/inventory/deployment/all
 +++ b/v2/inventory/deployment/all
 . . .
 [manager]
 core-[01:03].devops.deployment

 +[worker]
 +red.devops.deployment
 +yellow.devops.deployment
 +
 # Hosts are Vagrant virtual machines
 [vagrants]
 +production
 +development
 +
 +[production]
 red.devops.deployment
 core-[01:03].devops.deployment
 yellow.devops.deployment
 -blue16.devops.deployment
 +
 +[development]
 blue14.devops.deployment
 -green.devops.deployment
 . . .

You can now git cherry-pick the commit with the fix
(963b006a7aceee21eb35da41546ae5da7596382e) and move on:

 $ test.vagrant.list --status
 red: saved
 core-01: not_created
 core-02: not_created
 core-03: not_created
 yellow: saved
 blue14: not_created

5.4.3. Managing Version Numbers

The DIMS project uses the Python program bumpversion [https://github.com/peritus/bumpversion] to
update version numbers in Git repositories, following
PEP 440 – Version Identification and Dependency Specification [http://legacy.python.org/dev/peps/pep-0440/].
You can learn how bumpversion [https://github.com/peritus/bumpversion] works from these resources:

	bumpversion screencast [https://asciinema.org/a/3828] showing bumpversion in action

	A Python Versioning Workflow With Bumpversion [http://kylepurdon.com/blog/2015/01/25/a-python-versioning-workflow-with-bumpversion/]

Note

You can find examples of using bumpversion [https://github.com/peritus/bumpversion] (including its configuration file
.bumpversion.cfg and how it is used to manage version numbers in files) in
this document in Section Cherry-picking a commit from one branch to another.

The program bumpversion is included in the Python virtual environment
dimsenv that is created for use in DIMS development.

[dimsenv] dittrich@27b:~/git/homepage (develop*) $ which bumpversion
/Users/dittrich/dims/envs/dimsenv/bin/bumpversion

Caution

Because you must be in the same directory as the .bumpversion.cfg file
when you invoke bumpversion, it is sometimes problematic when using it
to work in a sub-directory one or more levels below the configuration file.
You may see example command lines like (cd ..; bumpversion patch) that
use sub-shells to temporarily change to the right directory, do the
bumpversion patch, then exit leaving you in the same directory where you
are editing files. That is a little more work than is desirable, but
doing a bunch of cd .., bumpersion patch, cd backagain
is even more work.

To make it easier to increment version numbers, a helper
script dims.bumpversion is available as well:

[dimsenv] dittrich@27b:~/git/homepage (develop*) $ which dims.bumpversion
/Users/dittrich/dims/envs/dimsenv/bin/dims.bumpversion
[dimsenv] dittrich@27b:~/git/homepage (develop*) $ dims.bumpversion --help
Usage:
/Users/dittrich/dims/envs/dimsenv/bin/dims.bumpversion [options] [args]

Use "/Users/dittrich/dims/envs/dimsenv/bin/dims.bumpversion --help" to see options.
Use "/Users/dittrich/dims/envs/dimsenv/bin/dims.bumpversion --usage" to see help on "bumpversion" itself.

/Users/dittrich/dims/envs/dimsenv/bin/dims.bumpversion -- [bumpversion_options] [bumpversion_args]

Follow this second usage example and put -- before any bumpversion
options and arguments to pass them on bumpversion (rather than
process them as though they were /Users/dittrich/dims/envs/dimsenv/bin/dims.bumpversion arguments.) After
all, /Users/dittrich/dims/envs/dimsenv/bin/dims.bumpversion is just a shell wrapping bumpversion.

Options:
 -h, --help show this help message and exit
 -d, --debug Enable debugging
 -u, --usage Print usage information.
 -v, --verbose Be verbose (on stdout) about what is happening.

The default when you just invoke dims.bumpversion is to do bumpversion patch,
the most frequent version increment. To use a different increment, just add it as
an argument on the command line (e.g., dims.bumpvesion minor).

Here is an example of how this section edit was done, showing
the version number increment in the workflow:

 [dimsenv] dittrich@localhost:~/dims/git/dims-devguide/docs (develop*) $ git add source/sourcemanagement.rst
 [dimsenv] dittrich@localhost:~/dims/git/dims-devguide/docs (develop*) $ git stat
 M docs/source/sourcemanagement.rst
 [dimsenv] dittrich@localhost:~/dims/git/dims-devguide/docs (develop*) $ git commit -m "Add subsection on version numbers and bumpversion/dims.bumpversion"
 [develop b433bae] Add subsection on version numbers and bumpversion/dims.bumpversion
 1 file changed, 92 insertions(+)
 [dimsenv] dittrich@localhost:~/dims/git/dims-devguide/docs (develop*) $ dims.bumpversion
 [dimsenv] dittrich@localhost:~/dims/git/dims-devguide/docs (develop*) $ git hf push
 Fetching origin
 Already up-to-date.
 Counting objects: 11, done.
 Delta compression using up to 8 threads.
 Compressing objects: 100% (11/11), done.
 Writing objects: 100% (11/11), 2.53 KiB | 0 bytes/s, done.
 Total 11 (delta 7), reused 0 (delta 0)
 remote: Running post-receive hook: Thu Oct 22 22:31:50 PDT 2015
 remote: [+++] post-receive-06jenkinsalldocs started
 remote: [+++] REPONAME=dims-devguide
 remote: [+++] BRANCH=develop
 remote: [+++] newrev=00727d53dbc8130cdbdbe35be80f1f4c2d2ee7fa
 remote: [+++] oldrev=e8e7d4db40dd852a044525fdfbada1fe80d81739
 remote: [+++] Branch was updated.
 remote: [+++] This repo has a documentation directory.
 remote: % Total % Received % Xferd Average Speed Time Time Time Current
 remote: Dload Upload Total Spent Left Speed
 remote: 100 79 0 0 100 79 0 2613 --:--:-- --:--:-- --:--:-- 3761
 remote: % Total % Received % Xferd Average Speed Time Time Time Current
 remote: Dload Upload Total Spent Left Speed
 remote: 100 78 0 0 100 78 0 2524 --:--:-- --:--:-- --:--:-- 3250
 remote: [+++] post-receive-06jenkinsalldocs finished
 To git@git.devops.develop:/opt/git/dims-devguide.git
 e8e7d4d..00727d5 develop -> develop

 Summary of actions:
 - The remote branch 'origin/develop' was updated with your changes

5.4.4. Initializing a repo for hub-flow

Every time you clone a new DIMS repo, it must be initialized with hub-flow
so that hub-flow commands work properly. Initialize your repo this way:

 $ git clone git@git.devops.develop:/opt/git/dims-ad.git
 Cloning into 'dims-ad'...
 remote: Counting objects: 236, done.
 remote: Compressing objects: 100% (155/155), done.
 remote: Total 236 (delta 117), reused 159 (delta 76)
 Receiving objects: 100% (236/236), 26.20 MiB | 5.89 MiB/s, done.
 Resolving deltas: 100% (117/117), done.
 Checking connectivity... done.
 $ cd dims-ad
 $ git hf init
 Using default branch names.

 Which branch should be used for tracking production releases?
 - master
 Branch name for production releases: [master]
 Branch name for "next release" development: [develop]

 How to name your supporting branch prefixes?
 Feature branches? [feature/]
 Release branches? [release/]
 Hotfix branches? [hotfix/]
 Support branches? [support/]
 Version tag prefix? []

After initializing hub-flow, there will be two new sections
in your .git/config file starting with hubflow:

$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
 ignorecase = true
 precomposeunicode = true
[remote "origin"]
 url = git@git.devops.develop:/opt/git/dims-ad.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master
 rebase = true
[hubflow "branch"]
 master = master
 develop = develop
[branch "develop"]
 remote = origin
 merge = refs/heads/develop
 rebase = true
[hubflow "prefix"]
 feature = feature/
 release = release/
 hotfix = hotfix/
 support = support/
 versiontag =

Note

A possible test for inclusion in the dims-ci-utils test suite would be
to check for the existance of the hubflow "branch" and hubflow
"prefix" sections.

These are automatically created when repos are checked out using the
dims.git.syncrepos script and/or methods involving mr described
in the following sections.

5.5. Infrequent tasks with Git

5.5.1. Cloning multiple repos from git.devops.develop

There are several dozen repositories on git.devops.develop
that contain DIMS-generated code, configuration files, and/or documentation,
but also local copies of Git repositories from other sources (some with
DIMS-related customizations).

To get a list of all repositories on git.devops.develop,
use the Git shell command list:

 $ ssh git@git.devops.develop list
 prisem-replacement.git
 ELK.git
 cif-java.git
 cif-client.git
 dims-ad.git
 supervisor.git
 dims-tr.git
 lemonldap-ng.git
 pygraph.git
 parsons-docker.git
 configs.git
 poster-deck-2014-noflow.git
 dims-keys.git
 dims.git
 dims-tp.git
 ops-trust-portal.git
 dimssysconfig.git
 dims-dockerfiles.git
 stix-java.git
 ansible-playbooks.git
 dims-dashboard.git
 mal4s.git
 dims-ocd.git
 sphinx-autobuild.git
 dims-devguide.git
 dims-asbuilt.git
 ticketing-redis.git
 dims-sr.git
 prisem.git
 umich-botnets.git
 dims-dsdd.git
 dims-sample-data.git
 packer.git
 java-stix-v1.1.1.git
 vagrant.git
 dims-jds.git
 ansible-inventory.git
 ops-trust-openid.git
 dims-coreos-vagrant.git
 configstest.git
 poster-deck-2014.git
 rwfind.git
 dims-ci-utils.git
 ipgrep.git
 tupelo.git
 dims-opst-portal.git
 lemonldap-dims.git
 MozDef.git
 tsk4j.git
 dims-svd.git

To clone all of these repositories in a single step, there is
another Git shell command mrconfig that returns the contents
of a .mrconfig file (see man mr for more information).

Caution

To use a .mrconfig file in a an arbitrary directory, you
will need to add the directory path to this file to the ~/.mrtrust
file. In this example, we will clone repos into ~/dims/git by
placing the .mrconfig file in the ~/dims directory.

$ cat ~/.mrtrust
/Users/dittrich/dims/.mrconfig
/Users/dittrich/git/.mrconfig

If you are building a documentation set (i.e., a limited set of documentation-only
repositories that are cross-linked using the intersphinx extension to Sphinx
as described in Section Cross-referencing between documents with the sphinx.ext.intersphinx extension.

 $ cd ~/dims
 $ ssh git@git.devops.develop mrconfig dims-ad dims-sr dims-ocd
 [git/dims-ad]
 checkout = git clone 'git@git.devops.develop:/opt/git/dims-ad.git' 'dims-ad' &&
 (cd dims-ad; git hf init)
 show = git remote show origin
 update = git hf update
 pull = git hf update &&
 git hf pull
 stat = git status -s

 [git/dims-sr]
 checkout = git clone 'git@git.devops.develop:/opt/git/dims-sr.git' 'dims-sr' &&
 (cd dims-sr; git hf init)
 show = git remote show origin
 update = git hf update
 pull = git hf update &&
 git hf pull
 stat = git status -s

 [git/dims-ocd]
 checkout = git clone 'git@git.devops.develop:/opt/git/dims-ocd.git' 'dims-ocd' &&
 (cd dims-ocd; git hf init)
 show = git remote show origin
 update = git hf update
 pull = git hf update &&
 git hf pull
 stat = git status -s
 $ ssh git@git.devops.develop mrconfig dims-ad dims-sr dims-ocd > .mrconfig
 $ mr checkout
 mr checkout: /Users/dittrich/dims/git/dims-ad
 Cloning into 'dims-ad'...
 remote: Counting objects: 518, done.
 remote: Compressing objects: 100% (437/437), done.
 remote: Total 518 (delta 308), reused 155 (delta 76)
 Receiving objects: 100% (518/518), 27.88 MiB | 5.88 MiB/s, done.
 Resolving deltas: 100% (308/308), done.
 Checking connectivity... done.
 Using default branch names.

 Which branch should be used for tracking production releases?
 - master
 Branch name for production releases: [master]
 Branch name for "next release" development: [develop]

 How to name your supporting branch prefixes?
 Feature branches? [feature/]
 Release branches? [release/]
 Hotfix branches? [hotfix/]
 Support branches? [support/]
 Version tag prefix? []

 mr checkout: /Users/dittrich/dims/git/dims-ocd
 Cloning into 'dims-ocd'...
 remote: Counting objects: 474, done.
 remote: Compressing objects: 100% (472/472), done.
 remote: Total 474 (delta 288), reused 0 (delta 0)
 Receiving objects: 100% (474/474), 14.51 MiB | 4.26 MiB/s, done.
 Resolving deltas: 100% (288/288), done.
 Checking connectivity... done.
 Using default branch names.

 Which branch should be used for tracking production releases?
 - master
 Branch name for production releases: [master]
 Branch name for "next release" development: [develop]

 How to name your supporting branch prefixes?
 Feature branches? [feature/]
 Release branches? [release/]
 Hotfix branches? [hotfix/]
 Support branches? [support/]
 Version tag prefix? []

 mr checkout: /Users/dittrich/dims/git/dims-sr
 Cloning into 'dims-sr'...
 remote: Counting objects: 450, done.
 remote: Compressing objects: 100% (445/445), done.
 remote: Total 450 (delta 285), reused 0 (delta 0)
 Receiving objects: 100% (450/450), 498.20 KiB | 0 bytes/s, done.
 Resolving deltas: 100% (285/285), done.
 Checking connectivity... done.
 Using default branch names.

 Which branch should be used for tracking production releases?
 - master
 Branch name for production releases: [master]
 Branch name for "next release" development: [develop]

 How to name your supporting branch prefixes?
 Feature branches? [feature/]
 Release branches? [release/]
 Hotfix branches? [hotfix/]
 Support branches? [support/]
 Version tag prefix? []

 mr checkout: finished (3 ok)
 $ mr stat
 mr stat: /Users/dittrich/tmp/dims/git/dims-ad

 mr stat: /Users/dittrich/tmp/dims/git/dims-ocd

 mr stat: /Users/dittrich/tmp/dims/git/dims-sr

 mr stat: finished (3 ok)

Note

The example just shown uses only three repos. If you do not specify
any repo names on the mrconfig Git shell command, it will return
the settings for all 50+ DIMS repos. You can then clone the entire
set of DIMS repositories with the same mr checkout command,
and update all of them at once with mr update.

5.5.2. Adding a newly-created repository

Until the dims.git.syncrepos script has a new feature added to it
to detect when a new repo exists on git.devops.develop that
does not have a local repo associated with it, you must do this yourself.

When someone uses the newrepo script to create a new repo on
git.devops.develop, you will need to get new .mrconfig
settings for that repo in order for dims.git.syncrepo to synchronize it.
If you have your $GIT environment variable pointing to a directory
that only has DIMS Git repos in it, you just need to create an updated
.mrconfig file.

Note

It is safest to get a new copy of the .mrconfig file contents
and save them to a temporary file that you can compare with the
current file to ensure you are getting just what you expect, and
only then over-writing the .mrconfig file with the new contents.
The steps are shown here:

$ cd $GIT/..
$ ssh git@git.devops.develop mrconfig > .mrconfig.new
$ diff .mrconfig .mrconfig.new
324a325,333
> [git/dims-db-recovery]
> checkout = git clone 'git@git.devops.develop:/opt/git/dims-db-recovery.git' 'dims-db-recovery' &&
> (cd dims-db-recovery; git hf init)
> show = git remote show origin
> update = git hf update
> pull = git hf update &&
> git hf pull
> stat = git status -s
>
$ mv .mrconfig.new .mrconfig
$ mr checkout
mr checkout: /Users/dittrich/dims/git/dims-db-recovery
Cloning into 'dims-db-recovery'...
remote: Counting objects: 351, done.
remote: Compressing objects: 100% (254/254), done.
remote: Total 351 (delta 63), reused 350 (delta 63)
Receiving objects: 100% (351/351), 7.60 MiB | 5.62 MiB/s, done.
Resolving deltas: 100% (63/63), done.
Checking connectivity... done.
Using default branch names.

Which branch should be used for tracking production releases?
 - master
Branch name for production releases: [master]
Branch name for "next release" development: [develop]

How to name your supporting branch prefixes?
Feature branches? [feature/]
Release branches? [release/]
Hotfix branches? [hotfix/]
Support branches? [support/]
Version tag prefix? []

mr checkout: finished (1 ok; 43 skipped)

5.5.3. Creating Git repositories

As discussed in the introduction to this section, DIMS software
will be hosted on both a local server git.devops.develop
and from github.com/uw-dims [https://github.com/uw-dims]. This section covers creation of
new repositories on both systems.

5.5.3.1. Creating repositories on GitHub

5.5.3.2. Setting up remote Git repositories on git.devops.develop

Before a repository can be shared between DIMS team members, a remote
repository must be set up on git.devops.develop for sharing.
The following is an example session creating a new repository named
dims-ocd for operational concept description (a.k.a., Concept of
Operations).

 $ slogin git.devops.develop
 Welcome to Ubuntu 12.04.5 LTS (GNU/Linux 3.13.0-43-generic x86_64)
 [...]
 Last login: Sun Jan 11 12:04:36 2015 from lancaster.devops.develop
 dittrich@jira:~$ sudo su - gituser
 [sudo] password for dittrich:
 git@jira:~$ cd /opt/git
 git@jira:/opt/git$ newrepo dims-ocd.git
 Initialized empty Git repository in /opt/git/dims-ocd.git/
 git@jira:/opt/git$ echo "DIMS Operational Concept Description" > dims-ocd.git/description
 git@jira:/opt/git$ tree dims-ocd.git
 dims-ocd.git
 ├── branches
 ├── config
 ├── description
 ├── HEAD
 ├── hooks
 │ ├── post-receive -> /opt/git/bin/post-receive
 │ ├── post-receive-00logamqp -> /opt/git/bin/post-receive-00logamqp
 │ └── post-receive-01email -> /opt/git/bin/post-receive-01email
 ├── info
 │ └── exclude
 ├── objects
 │ ├── info
 │ └── pack
 └── refs
 ├── heads
 └── tags

 9 directories, 7 files

As can be seen in the output of tree at the end, the steps above
only create post-receive hooks for logging to AMQP and sending
email when a git push is done. To add a Jenkins build hook, do
the following command as well:

 git@jira:/opt/git$ ln -s /opt/git/bin/post-receive-02jenkins dims-ocd.git/hooks/post-receive-02jenkins
 git@jira:/opt/git$ tree dims-ocd.git/hooks/
 dims-ocd.git/hooks/
 ├── post-receive -> /opt/git/bin/post-receive
 ├── post-receive-00logamqp -> /opt/git/bin/post-receive-00logamqp
 ├── post-receive-01email -> /opt/git/bin/post-receive-01email
 └── post-receive-02jenkins -> /opt/git/bin/post-receive-02jenkins

 0 directories, 4 files

5.5.3.3. Setting up a local Git repository before pushing to remote

After setting up the remote repository, you should create the
initial local repository. The basic steps are as follows:

	Create the new local repo directory.

	Populate the directory with the files you want in the repo.

	Add them to the repo.

	Commit the files with a comment

	Create an initial version tag.

	Set remote.origin.url to point to the remote repo.

	Push the new repo to the remote repo.

	Push the tags to the remote repo.

Here is an edited transcript of performing the above tasks.

$ cd $GIT
$ mkdir dims-ocd
$ git init
Initialized empty Git repository in /Users/dittrich/git/.git/
[... prepare files ...]
$ ls
MIL-STD-498-templates.pdf UW-logo.png conf.py newsystem.rst
Makefile _build currentsystem.rst notes.rst
OCD-DID.pdf _static impacts.rst operationalscenarios.rst
OCD.html _templates index.rst referenceddocs.rst
OCD.rst analysis.rst justifications.rst scope.rst
UW-logo-32x32.ico appendices.rst license.txt
$ rm OCD.rst
$ ls
MIL-STD-498-templates.pdf _build currentsystem.rst notes.rst
Makefile _static impacts.rst operationalscenarios.rst
OCD-DID.pdf _templates index.rst referenceddocs.rst
OCD.html analysis.rst justifications.rst scope.rst
UW-logo-32x32.ico appendices.rst license.txt
UW-logo.png conf.py newsystem.rst
$ git add .
$ git commit -m "Initial load of MIL-STD-498 template"
[master (root-commit) 39816fa] Initial load of MIL-STD-498 template
 22 files changed, 1119 insertions(+)
 create mode 100644 dims-ocd/MIL-STD-498-templates.pdf
 create mode 100644 dims-ocd/Makefile
 create mode 100644 dims-ocd/OCD-DID.pdf
 create mode 100755 dims-ocd/OCD.html
 create mode 100644 dims-ocd/UW-logo-32x32.ico
 create mode 100644 dims-ocd/UW-logo.png
 create mode 100644 dims-ocd/_build/.gitignore
 create mode 100644 dims-ocd/_static/.gitignore
 create mode 100644 dims-ocd/_templates/.gitignore
 create mode 100644 dims-ocd/analysis.rst
 create mode 100644 dims-ocd/appendices.rst
 create mode 100644 dims-ocd/conf.py
 create mode 100644 dims-ocd/currentsystem.rst
 create mode 100644 dims-ocd/impacts.rst
 create mode 100644 dims-ocd/index.rst
 create mode 100644 dims-ocd/justifications.rst
 create mode 100644 dims-ocd/license.txt
 create mode 100644 dims-ocd/newsystem.rst
 create mode 100644 dims-ocd/notes.rst
 create mode 100644 dims-ocd/operationalscenarios.rst
 create mode 100644 dims-ocd/referenceddocs.rst
 create mode 100644 dims-ocd/scope.rst
$ git tag -a "2.0.0" -m "Initial template release"
$ git remote add origin git@git.devops.develop:/opt/git/dims-ocd.git
$ git push -u origin master
Counting objects: 24, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (22/22), done.
Writing objects: 100% (24/24), 251.34 KiB | 0 bytes/s, done.
Total 24 (delta 1), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 15 20:46:33 PST 2015
To git@git.devops.develop:/opt/git/dims-ocd.git
 * [new branch] master -> master
Branch master set up to track remote branch master from origin by rebasing.
$ git push origin --tags
Counting objects: 1, done.
Writing objects: 100% (1/1), 173 bytes | 0 bytes/s, done.
Total 1 (delta 0), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 15 20:46:45 PST 2015
To git@git.devops.develop:/opt/git/dims-ocd.git
 * [new tag] 2.0.0 -> 2.0.0

5.5.4. Cherry-picking a commit from one branch to another

There are times when you are working on one branch (e.g., feature/coreos)
and find that there is a bug due to a missing file. This file should be
on the develop branch from which this feature branch was forked, so
the solution is to fix the bug on the develop branch and also get
the fix on the feature branch.

As long as that change (e.g., an added file that does not exist on the branch)
has no chance of a conflict, a simple cherry-pick of the commit will get
things synchronized. Here is an example of the steps:

Let’s say the bug was discovered by noticing this error message shows up when
rendering a Sphinx document using sphinx-autobuild:

+--------- source/index.rst changed ---
/Users/dittrich/git/dims-ci-utils/docs/source/lifecycle.rst:306: WARNING: External Graphviz file u'/Users/dittrich/git/dims-ci-utils/Makefile.dot' not found or reading it failed
+--

The file Makefile.dot is not found. (The reason is that the
lifecycle.rst file was moved from a different place, but the
file it included was not.) We first stash our work (if necessary)
and check out the develop branch. Next, locate the missing file:

$ git checkout develop
Switched to branch 'develop'
Your branch is up-to-date with 'origin/develop'.
$ find ../.. -name 'Makefile.dot'
../../packer/Makefile.dot

We now copy the file to where we believe it should reside, and
to trigger a new sphinx-autobuild, we touch the file that
includes it:

$ cp ../../packer/Makefile.dot ..
$ touch source/lifecycle.rst

Switching to the sphinx-autobuild status window, we see the error
message has gone away.

+--------- source/lifecycle.rst changed ---
+--

[I 150331 16:40:04 handlers:74] Reload 1 waiters: None
[I 150331 16:40:04 web:1825] 200 GET /lifecycle.html (127.0.0.1) 0.87ms
[I 150331 16:40:04 web:1825] 200 GET /_static/css/theme.css (127.0.0.1) 1.87ms
[I 150331 16:40:04 web:1825] 304 GET /livereload.js (127.0.0.1) 0.50ms
[I 150331 16:40:04 web:1825] 200 GET /_static/doctools.js (127.0.0.1) 0.43ms
[I 150331 16:40:04 web:1825] 200 GET /_static/jquery.js (127.0.0.1) 0.67ms
[I 150331 16:40:04 web:1825] 200 GET /_static/underscore.js (127.0.0.1) 0.48ms
[I 150331 16:40:04 web:1825] 200 GET /_static/js/theme.js (127.0.0.1) 0.40ms
[I 150331 16:40:04 web:1825] 200 GET /_images/virtual_machine_lifecycle_v2.jpeg (127.0.0.1) 4.61ms
[I 150331 16:40:04 web:1825] 200 GET /_images/whiteboard-lifecycle.png (127.0.0.1) 2.02ms
[I 150331 16:40:04 web:1825] 200 GET /_images/packer_diagram.png (127.0.0.1) 1.65ms
[I 150331 16:40:04 web:1825] 200 GET /_images/screenshot-lifecycle.png (127.0.0.1) 1.37ms
[I 150331 16:40:04 web:1825] 200 GET /_images/vm_org_chart.png (127.0.0.1) 0.70ms
[I 150331 16:40:04 web:1825] 200 GET /_images/graphviz-f8dca63773d709e39ae45240fc6b7ed94229eb74.png (127.0.0.1) 0.92ms
[I 150331 16:40:04 web:1825] 200 GET /_static/fonts/fontawesome-webfont.woff?v=4.0.3 (127.0.0.1) 0.55ms
[I 150331 16:40:05 handlers:109] Browser Connected: http://127.0.0.1:41013/lifecycle.html

Now we double-check to make sure we have the change
we expect, add, and commit the fix:

$ git stat
?? Makefile.dot
$ git add ../Makefile.dot
$ git commit -m "Add Makefile.dot from packer repo for lifecycle.rst"
[develop d5a948e] Add Makefile.dot from packer repo for lifecycle.rst
 1 file changed, 83 insertions(+)
 create mode 100644 Makefile.dot

Make note of the commit that includes just the new file: commit d5a948e
in this case. Now you could bump the version if necessary before pushing.

$ (cd ..; bumpversion patch)
$ git hf push
Fetching origin
Already up-to-date.
Counting objects: 10, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (10/10), done.
Writing objects: 100% (10/10), 783 bytes | 0 bytes/s, done.
Total 10 (delta 8), reused 0 (delta 0)
remote: Running post-receive hook: Tue Mar 31 17:02:43 PDT 2015
remote: Scheduled polling of dims-ci-utils-deploy-develop
remote: Scheduled polling of dims-ci-utils-deploy-master
remote: Scheduled polling of dims-seed-jobs
remote: No git consumers for URI git@git.devops.develop:/opt/git/dims-ci-utils.git
remote: [+++] post-receive-06jenkinsalldocs started
remote: [+++] REPONAME=dims-ci-utils
remote: [+++] BRANCH=develop
remote: [+++] newrev=a95c9e1356ff7c6aaed5bcdbe7b533ffc74b6cc1
remote: [+++] oldrev=d5a948ebef61da98b7849416ee340e0a4ba45a3a
remote: [+++] Branch was updated.
remote: [+++] This repo has a documentation directory.
remote: [+++] post-receive-06jenkinsalldocs finished
To git@git.devops.develop:/opt/git/dims-ci-utils.git
 d5a948e..a95c9e1 develop -> develop

Summary of actions:
- The remote branch 'origin/develop' was updated with your changes

Now you can go back to the feature branch you were working on,
and cherry-pick the commit with the missing file.

$ git checkout feature/coreos
Switched to branch 'feature/coreos'
Your branch is ahead of 'origin/feature/coreos' by 1 commit.
 (use "git push" to publish your local commits)
$ git cherry-pick d5a948e
[feature/coreos 14dbf59] Add Makefile.dot from packer repo for lifecycle.rst
 Date: Tue Mar 31 16:38:03 2015 -0700
 1 file changed, 83 insertions(+)
 create mode 100644 Makefile.dot
$ git log
commit 14dbf59dff5d6fce51c899b32fef87276dbddef7
Author: Dave Dittrich <dave.dittrich@gmail.com>
Date: Tue Mar 31 16:38:03 2015 -0700

 Add Makefile.dot from packer repo for lifecycle.rst
...

Note

Note that this results in a new commit hash on this branch
(in this case, 14dbf59dff5d6fce51c899b32fef87276dbddef7).

5.5.5. Synchronizing with an upstream repository

Note

The DIMS project is using forks of several source repositories, some
for the sake of local customization, and some for adding features
necessary for DIMS purposes. The MozDef [http://mozdef.readthedocs.org/en/latest/] project is one of these
(see the dimsad:dimsarchitecturedesign document, Section
dimsad:conceptofexecution).

To track another project’s Git repository, syncing
it with a fork that you use locally, it is necessary to
do the following:

	Configuring a remote for a fork [https://help.github.com/articles/configuring-a-remote-for-a-fork/]

	Syncing a fork [https://help.github.com/articles/syncing-a-fork/]

	Make sure that you have defined upstream properly, e.g.,

[dimsenv] ~/dims/git/MozDef (master) $ git remote -v
origin git@git.devops.develop:/opt/git/MozDef.git (fetch)
origin git@git.devops.develop:/opt/git/MozDef.git (push)
upstream git@github.com:jeffbryner/MozDef.git (fetch)
upstream git@github.com:jeffbryner/MozDef.git (push)

	Fetch the contents of the upstream remote repository:

[dimsenv] ~/dims/git/MozDef (master) $ git fetch upstream
remote: Counting objects: 6, done.
remote: Total 6 (delta 2), reused 2 (delta 2), pack-reused 4
Unpacking objects: 100% (6/6), done.
From github.com:jeffbryner/MozDef
 700c1be..4575c0f master -> upstream/master
 * [new tag] v1.12 -> v1.12

	Checkout the branch to sync (e.g., master) and then merge
any changes:

[dimsenv] ~/dims/git/MozDef (master) $ git checkout master
Already on 'master'
Your branch is up-to-date with 'origin/master'.
[dimsenv] ~/dims/git/MozDef (master) $ git merge upstream/master
Merge made by the 'recursive' strategy.
 alerts/unauth_ssh_pyes.conf | 4 ++++
 alerts/unauth_ssh_pyes.py | 78 ++
 2 files changed, 82 insertions(+)
 create mode 100644 alerts/unauth_ssh_pyes.conf
 create mode 100644 alerts/unauth_ssh_pyes.py
[dimsenv] ~/dims/git/MozDef (master) $ git push origin master
Counting objects: 8, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (8/8), done.
Writing objects: 100% (8/8), 2.11 KiB | 0 bytes/s, done.
Total 8 (delta 3), reused 0 (delta 0)
remote: Running post-receive hook: Thu Sep 17 20:52:14 PDT 2015
To git@git.devops.develop:/opt/git/MozDef.git
 180484a..766da56 master -> master

	Now push the updated repository to the “local” remote repository (i.e,
git.devops.develop for the DIMS project):

[dimsenv] ~/dims/git/MozDef (master) $ git push origin master
Counting objects: 8, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (8/8), done.
Writing objects: 100% (8/8), 2.11 KiB | 0 bytes/s, done.
Total 8 (delta 3), reused 0 (delta 0)
remote: Running post-receive hook: Thu Sep 17 20:52:14 PDT 2015
To git@git.devops.develop:/opt/git/MozDef.git
 180484a..766da56 master -> master

	If the remote repository is itself the fork (e.g., if you fork a
repository on GitHub, then want to maintain a “local” remote repository
on-site for your project, you may wish to use a label other than
upstream to connote the fork differently):

[dimsenv] ~/git/ansible (release1.8.4*) $ git remote -v
davedittrich git@github.com:davedittrich/ansible.git (fetch)
davedittrich git@github.com:davedittrich/ansible.git (push)
origin https://github.com/ansible/ansible.git (fetch)
origin https://github.com/ansible/ansible.git (push)

5.5.6. Starting a “release”

By convention, DIMS repositories have at least one file, named VERSION,
that contains the release version number. You can see the current release by
looking at the contents of this file.

$ cat VERSION
1.1.4

Note

There may be other files, such as the Sphinx documentation configuration
file, docs/source/conf.py usually, or other source files for Python
or Java builds. Each of the files that has a version/release number in
it must use the same string and be included in the .bumpversion.cfg
file in order for bumpversion to properly manage release numbers.

Now that you know what the current version number is, you can initiate
a release branch with hub-flow, knowing that the new numbr will be.
In this case, we will create a release branch 1.2.0 to increment
the minor version number component.

$ git hf release start 1.2.0
Fetching origin
Switched to a new branch 'release/1.2.0'
Total 0 (delta 0), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 22 18:33:54 PST 2015
To git@git.devops.develop:/opt/git/ansible-playbooks.git
 * [new branch] release/1.2.0 -> release/1.2.0

Summary of actions:
- A new branch 'release/1.2.0' was created, based on 'dev'
- The branch 'release/1.2.0' has been pushed up to 'origin/release/1.2.0'
- You are now on branch 'release/1.2.0'

Follow-up actions:
- Bump the version number now!
- Start committing last-minute fixes in preparing your release
- When done, run:

 git hf release finish '1.2.0'

You should now be on the new release branch:

$

After making any textual changes, bump the version number
to match the new release number:

$ bumpversion minor

Now the release can be finished. You will be placed in an editor
to create comments for actions like merges and tags.

$ bumpversion minor
$ cat VERSION
1.2.0
$ git hf release finish '1.2.0'
Fetching origin
Fetching origin
Counting objects: 9, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (8/8), done.
Writing objects: 100% (9/9), 690 bytes | 0 bytes/s, done.
Total 9 (delta 7), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 22 18:37:24 PST 2015
To git@git.devops.develop:/opt/git/ansible-playbooks.git
 3ac28a2..5ca145b release/1.2.0 -> release/1.2.0
Switched to branch 'master'
Your branch is up-to-date with 'origin/master'.
Removing roles/tomcat/tasks/main.yml
Removing roles/tomcat/handlers/main.yml
Removing roles/tomcat/defaults/main.yml
Removing roles/postgres/templates/pg_hba.conf.j2
Removing roles/postgres/files/schema.psql
Removing roles/ozone/files/postgresql-9.3-1102.jdbc41.jar
Auto-merging roles/logstash/files/demo.logstash.deleteESDB
Auto-merging roles/logstash/files/demo.logstash.addwebsense
Auto-merging roles/logstash/files/demo.logstash.addufw
Auto-merging roles/logstash/files/demo.logstash.addrpcflow
Auto-merging roles/logstash/files/demo.logstash.addcymru

[...]

~
".git/MERGE_MSG" 7L, 280C written
Merge made by the 'recursive' strategy.
 .bumpversion.cfg | 11 +
 Makefile | 61 +-
 VERSION | 1 +
 configure-all.yml | 5 +-
 dims-all-desktop.yml | 56 +
 dims-all-server.yml | 125 ++
 dims-cifv1-server.yml | 50 +

[...]

Release 1.2.0.
#
Write a message for tag:
1.2.0
Lines starting with '#' will be ignored.

[...]

~
".git/TAG_EDITMSG" 5L, 97C written
Switched to branch 'dev'
Your branch is up-to-date with 'origin/dev'.

Merge tag '1.2.0' into dev for
Merge tag '1.2.0' into dev for
Merge tag '1.2.0' into dev for Release 1.2.0.

Please enter a commit message to explain why this merge is necessary,
especially if it merges an updated upstream into a topic branch.
#
Lines starting with '#' will be ignored, and an empty message aborts
the commit.

[...]

".git/MERGE_MSG" 7L, 273C written
Merge made by the 'recursive' strategy.
 .bumpversion.cfg | 2 +-
 VERSION | 2 +-
 docs/source/conf.py | 4 ++--
 group_vars/all | 2 +-
 4 files changed, 5 insertions(+), 5 deletions(-)
Deleted branch release/1.2.0 (was 5ca145b).
Counting objects: 2, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (2/2), 447 bytes | 0 bytes/s, done.
Total 2 (delta 0), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 22 18:38:17 PST 2015
To git@git.devops.develop:/opt/git/ansible-playbooks.git
 3ac28a2..aec921c dev -> dev
Total 0 (delta 0), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 22 18:38:19 PST 2015
To git@git.devops.develop:/opt/git/ansible-playbooks.git
 2afb58f..2482d07 master -> master
Counting objects: 1, done.
Writing objects: 100% (1/1), 166 bytes | 0 bytes/s, done.
Total 1 (delta 0), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 22 18:38:25 PST 2015
To git@git.devops.develop:/opt/git/ansible-playbooks.git
 * [new tag] 1.2.0 -> 1.2.0
remote: Running post-receive hook: Thu Jan 22 18:38:28 PST 2015
To git@git.devops.develop:/opt/git/ansible-playbooks.git
 - [deleted] release/1.2.0

Summary of actions:
- Latest objects have been fetched from 'origin'
- Release branch has been merged into 'master'
- The release was tagged '1.2.0'
- Tag '1.2.0' has been back-merged into 'dev'
- Branch 'master' has been back-merged into 'dev'
- Release branch 'release/1.2.0' has been deleted
- 'dev', 'master' and tags have been pushed to 'origin'
- Release branch 'release/1.2.0' in 'origin' has been deleted.

Lastly, bump the patch version number in the dev branch to make sure
that when something reports the version in developmental code builds, it
doesn’t look like you are using code from the last tagged master
branch. That completely defeats the purpose of using version numbers for
dependency checks or debugging.

$ bumpversion patch
$ git push
Counting objects: 9, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (8/8), done.
Writing objects: 100% (9/9), 683 bytes | 0 bytes/s, done.
Total 9 (delta 7), reused 0 (delta 0)
remote: Running post-receive hook: Thu Jan 22 18:51:00 PST 2015
To git@git.devops.develop:/opt/git/ansible-playbooks.git
 aec921c..d4fe053 dev -> dev

Figure New 1.2.0 release on master, dev now on 1.2.1. shows what the branches look like with
GitX.app on a Mac:

[image: New 1.2.0 release, dev on 1.2.1]
New 1.2.0 release on master, dev now on 1.2.1.

5.5.7. Branch Renaming

Several of the git repos comprising the DIMS source code management
system are using the name dev for the main development branch. The
(somewhat) accepted name for the development branch is develop, as detailed
in e.g. http://nvie.com/posts/a-successful-git-branching-model/.

We would therefore like to rename any dev branch to develop throughout
our git repo set. This will of course impact team members who use the
central repos to share work. Research online suggests that branch
renaming can be done. The best source found was
https://gist.github.com/lttlrck/9628955, who suggested a three-part
operation

Rename branch locally
git branch -m old_branch new_branch
Delete the old branch
git push origin :old_branch
Push the new branch, set local branch to track the new remote
git push --set-upstream origin new_branch

To test this recipe out without impacting any existing repos and
therefore avoiding any possible loss of real work, we constructed a
test situation with a central repo and two fake ‘users’ who both push
and pull from that repo. A branch rename is then done, following the
recipe above. The impact on each of the two users is noted.

First, we create a bare repo. This will mimic our authoratitive repos
on git.devops.develop. We’ll call this repo dims-328.git, named after the DIMS
Jira ticket created to study the branch rename issue:

$ cd
$ mkdir depot
$ cd depot
$ git init --bare dims-328.git

Next, we clone this repo a first time, which simulates the first
‘user’ (replace /home/stuart/ with your local path):

$ cd
$ mkdir scratch
$ cd scratch
$ git clone file:///home/stuart/depot/dims-328.git

Next, we dd some content in master branch

$ cd dims-328
$ echo content > foo
$ git add foo
$ git commit -m "msg"
$ git push origin master

We now clone the ‘depot’ repo a second time, to simulate the second
user. Both users are then developing using the authoratitive repo as
the avenue to share work. Notice how the second user clones into the
specified directory dims-328-2, so as not to tread on the first user’s
work:

$ cd ~/scratch
$ git clone file:///home/stuart/depot/dims-328.git dims-328-2

user1 (first clone) then creates a dev branch and adds some content to
it:

$ cd ~/scratch/dims-328
$ git branch dev
$ git checkout dev
$ echo content > devbranch
$ git add devbranch
$ git commit -m "added content to dev branch"
$ git push origin dev

This will create a dev branch in the origin repo, i.e the depot.

Next, as the second user, pull the changes, checkout dev and edit:

$ cd ~scratch/dims-328-2
$ git pull
$ git checkout dev
$ echo foo >> devbranch

At this point we have two ‘users’ with local repos, both of which share
a common upstream repo. Both users have got the dev branch checked
out, and may have local changes on that branch.

Now, we wish to rename the branch dev to develop throughout, i.e. at
the depot and in users’ repos.

Using instructions from https://gist.github.com/lttlrck/9628955, and
noting the impacts to each user, we first act as user1, who will be
deemed ‘in charge’ of the renaming process:

$ cd ~scratch/dims-328
$ git branch -m dev develop
$ git push origin :dev
To file:///home/stuart/depot/dims-328.git
 - [deleted] dev
$ git push --set-upstream origin develop
Counting objects: 2, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (2/2), 259 bytes | 0 bytes/s, done.
Total 2 (delta 0), reused 0 (delta 0)
To file:///home/stuart/depot/dims-328.git
 * [new branch] develop -> develop
Branch develop set up to track remote branch develop from origin.

Warning

(This reads like a ..warning block. Is that how it was meant?)

The git push output message implies a deletion of the dev branch in
the depot. If user2 were to interact with origin/dev now, what would
happen??

Here are the contents of user1‘s .git/config after the 3-operation
rename:

$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
[remote "origin"]
 url = file:///home/stuart/depot/dims-328.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master
[branch "develop"]
 remote = origin
 merge = refs/heads/develop

Note how there are references to develop but none to dev. As far as
user1 is concerned, the branch rename appears to have worked and is complete.

Now, what does user2 see? With dev branch checked out, and with a
local mod, we do a pull:

$ cd ~scratch/dims-328-2
$ git pull
From file:///home/stuart/depot/dims-328
 * [new branch] develop -> origin/develop
Your configuration specifies to merge with the ref 'dev'
from the remote, but no such ref was fetched.

This is some form of error message. user2‘s .git/config at this
point is this:

$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
[remote "origin"]
 url = file:///home/stuart/depot/dims-328.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master
[branch "dev"]
 remote = origin
 merge = refs/heads/dev

Perhaps just the branch rename will work for user2? As user2, we do the
first part of the rename recipe:

$ git branch -m dev develop

No errors from this, but user2‘s .git/config still refers to a
dev branch:

$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
[remote "origin"]
 url = file:///home/stuart/depot/dims-328.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master
[branch "develop"]
 remote = origin
 merge = refs/heads/dev

Next, as user2, we issued the third part of the rename recipe (but skipped
the second part):

$ git push --set-upstream origin develop
Branch develop set up to track remote branch develop from origin.
Everything up-to-date.

Note that this is a push, but since user2 had no committed changes
locally, no content was actually pushed.

Now user2‘s .git/config looks better, the token dev has changed to
develop:

$ cat .git/config
[core]
 repositoryformatversion = 0
 filemode = true
 bare = false
 logallrefupdates = true
[remote "origin"]
 url = file:///home/stuart/depot/dims-328.git
 fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]
 remote = origin
 merge = refs/heads/master
[branch "develop"]
 remote = origin
 merge = refs/heads/develop

Next, as user2, commit the local change, and push to depot:

$ git add devbranch
$ git commit -m "msg"
$ git push

So it appears that user2 can issue just the branch rename and upstream
operation, and skip the second component of the 3-part recipe (git push
origin :old_branch), likely since this is an operation on the remote
(depot) itself and was already done by user1.

Finally, we switch back to user1 and pull changes made by user2:

$ cd ~scratch/dims-328
$ git pull

Warning

This has addressed only git changes. The wider implications of a git
branch rename on systems such as Jenkins has yet to be addressed. Since
systems like Jenkins generally just clone or pull from depots, it is
expected that only git URLs need to change from including dev to
develop.

5.5.8. Deleting accidentally created tags

When trying to finish a release, you may accidentally create a tag
named finish. It may even get propagated automatically to
origin, in which case it could propagate to others’ repos:

mr update: /Users/dittrich/dims/git/dims-keys
Fetching origin
From git.devops.develop:/opt/git/dims-keys
 * [new tag] finish -> finish

You can delete them locally and remotely with the
following commands:

 $ git tag -d finish
 Deleted tag 'finish' (was 516d9d2)
 $ git push origin :refs/tags/finish
 remote: Running post-receive hook: Thu Aug 6 16:07:17 PDT 2015
 To git@git.devops.develop:/opt/git/dims-keys.git
 - [deleted] finish

5.5.9. Recovering deleted files

Files that have been deleted in the past, and the deletions commited, can be
recovered by searching the Git history of deletions to identify the commit that
included the deletion. The file can then be checked out using the predecessor
to that commit. See Find and restore a deleted file in a Git repository [http://stackoverflow.com/questions/953481/find-and-restore-a-deleted-file-in-a-git-repository]

5.5.10. Fixing comments in unpublished commits

Note

This section was derived from http://makandracards.com/makandra/868-change-commit-messages-of-past-git-commits

Warning

Only do this if you have not already pushed the changes!!
As noted in the git-commit man page for the --amend option:

You should understand the implications of rewriting history if you
amend a commit that has already been published. (See the "RECOVERING
FROM UPSTREAM REBASE" section in git-rebase(1).)

There may be times when you accidentally make multiple commits,
one at a time, using the same comment (but the changes are
not related to the comment).

Here is an example of three commits all made with git commit -am
using the same message:

 $ git log
 commit 08b888b9dd33f53f0e26d8ff8aab7309765ad0eb
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:35:08 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

 commit 7f3d0d8134c000a787aad83f2690808008ed1d96
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:34:40 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

 commit f6f5d868c8ddd12018ca662a54d1f58c150e6364
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:33:59 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

 commit 96575c967f606e2161033de92dd2dc580ad60a8b
 Merge: 1253ea2 dae5aca
 Author: Linda Parsons <lparsonstech@gmail.com>
 Date: Thu Apr 30 14:00:49 2015 -0400

 Merge remote-tracking branch 'origin/develop' into develop

 commit 1253ea20bc553759c43d3a999b81be009851d195
 Author: Linda Parsons <lparsonstech@gmail.com>
 Date: Thu Apr 30 14:00:19 2015 -0400

 Added information for deploying to infrastructure

Note

Make note that the commit immediately prior to the three
erroneously commented commits is 96575c96. We will use
that commit number in a moment...

Looking at the patch information shows these are clearly not
all correctly commented:

 $ git log --patch
 commit 08b888b9dd33f53f0e26d8ff8aab7309765ad0eb
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:35:08 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

 diff --git a/docs/makedocset b/docs/makedocset
 index dafbedb..9adb954 100644
 --- a/docs/makedocset
 +++ b/docs/makedocset
 @@ -7,7 +7,14 @@
 # This is useful for building a set of documents that employ
 # intersphinx linking, obtaining the links from the co-local
 # repositories instead of specified remote locations.
 +#
 +# To build the docs for a specific server (e.g., when building
 +# using a local docker container running Nginx), set the
 +# environment variable DOCSURL to point to the server:
 +#
 +# $ export DOCSURL=http://192.168.99.100:49153

 +DOCSURL=${DOCSURL:-http://app.devops.develop:8080/docs/devel}

 # Activate dimsenv virtual environment for Sphinx
 . $HOME/dims/envs/dimsenv/bin/activate

 commit 7f3d0d8134c000a787aad83f2690808008ed1d96
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:34:40 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

 diff --git a/docs/source/conf.py b/docs/source/conf.py
 index 9fdc100..b3cd483 100644
 --- a/docs/source/conf.py
 +++ b/docs/source/conf.py
 @@ -351,13 +351,16 @@ epub_exclude_files = ['search.html']
 # If false, no index is generated.
 #epub_use_index = True

 +os.environ['GITBRANCH'] = "develop"
 +
 +if os.environ.get('DOCSURL') is None:
 + #os.environ['DOCSURL'] = "file://{}".format(os.environ.get('GIT'))
 + os.environ['DOCSURL'] = "http://app.devops.develop:8080/docs/{}/html/".format(
 + os.environ['GITBRANCH'])

 intersphinx_cache_limit = -1 # days to keep the cached inventories (0 == forever)
 intersphinx_mapping = {
 - 'dimsocd': ("%s/dims/docs/dims-ocd" % os.environ['HOME'],
 - ('http://app.devops.develop:8080/docs/develop/html/dims-ocd/objects.inv', None)),
 - 'dimsad': ("%s/dims/docs/dims-ad" % os.environ['HOME'],
 - ('http://app.devops.develop:8080/docs/develop/html/dims-ad/objects.inv', None)),
 - 'dimssr': ("%s/dims/docs/dims-sr" % os.environ['HOME'],
 - ('http://app.devops.develop:8080/docs/develop/html/dims-sr/objects.inv', None))
 + 'dimsocd': ("{}/dims-ocd".format(os.environ['DOCSURL']), None),
 + 'dimsad': ("{}/dims-ad".format(os.environ['DOCSURL']), None),
 + 'dimssr': ("{}/dims-sr".format(os.environ['DOCSURL']), None)
 }

 commit f6f5d868c8ddd12018ca662a54d1f58c150e6364
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:33:59 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

 diff --git a/docs/makedocs b/docs/makedocs
 deleted file mode 100644
 index dafbedb..0000000
 --- a/docs/makedocs
 +++ /dev/null
 @@ -1,66 +0,0 @@
 -#!/bin/bash -x
 -#
 -# This script builds multiple Sphinx documents in repos
 -# residing (in their current checkout branch/state) in
 -# the directory specified by the $GIT environment variable.
 -#
 -# This is useful for building a set of documents that employ
 -# intersphinx linking, obtaining the links from the co-local
 -# repositories instead of specified remote locations.
 ...

The last commit is easy to fix. Just use git commit --amend
and edit the message:

$ git commit --amend

Add DOCSURL selection of where docs reside for intersphinx links

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
#
Date: Thu Apr 30 18:35:08 2015 -0700
#
On branch develop
Your branch is ahead of 'origin/develop' by 3 commits.
(use "git push" to publish your local commits)
#
Changes to be committed:
modified: makedocset

Now we can see the message has been changed, but so has the
commit hash!

 $ git log --patch
 commit 654cb34378cb0a4140725a37e3724b6dcee7aebd
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:35:08 2015 -0700

 Add DOCSURL selection of where docs reside for intersphinx links

 diff --git a/docs/makedocset b/docs/makedocset
 index dafbedb..9adb954 100644
 --- a/docs/makedocset
 +++ b/docs/makedocset
 @@ -7,7 +7,14 @@
 # This is useful for building a set of documents that employ
 # intersphinx linking, obtaining the links from the co-local
 # repositories instead of specified remote locations.
 +#
 +# To build the docs for a specific server (e.g., when building
 +# using a local docker container running Nginx), set the
 +# environment variable DOCSURL to point to the server:
 +#
 +# $ export DOCSURL=http://192.168.99.100:49153

 +DOCSURL=${DOCSURL:-http://app.devops.develop:8080/docs/devel}

 # Activate dimsenv virtual environment for Sphinx
 . $HOME/dims/envs/dimsenv/bin/activate

 commit 7f3d0d8134c000a787aad83f2690808008ed1d96
 Author: Dave Dittrich <dave.dittrich@gmail.com>
 Date: Thu Apr 30 18:34:40 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

 diff --git a/docs/source/conf.py b/docs/source/conf.py
 ...

The second commit has the correct comment, but commit f6f5d868c
was simply renaming a file. It got caught up as a commit when
the -a option was given when committing the changed file,
not realizing the renamed file had already been added to the
cache.

To change the message for only commit f6f5d86, start an interactive
rebase at the commit immediately prior to that commit (in this case,
commit 96575c9). Change pick to edit for that commit.

 $ git rebase -i 96575c9

 edit f6f5d86 Fix intersphinx links to use DOCSURL env variable
 pick 7f3d0d8 Fix intersphinx links to use DOCSURL env variable
 pick 654cb34 Add DOCSURL selection of where docs reside for intersphinx links

 # Rebase 96575c9..654cb34 onto 96575c9 (3 TODO item(s))
 #
 # Commands:
 # p, pick = use commit
 # r, reword = use commit, but edit the commit message
 # e, edit = use commit, but stop for amending
 # s, squash = use commit, but meld into previous commit
 # f, fixup = like "squash", but discard this commit's log message
 # x, exec = run command (the rest of the line) using shell
 #
 # These lines can be re-ordered; they are executed from top to bottom.
 #
 # If you remove a line here THAT COMMIT WILL BE LOST.
 #
 # However, if you remove everything, the rebase will be aborted.
 #
 # Note that empty commits are commented out

As soon as you exit the editor, Git will begin the rebase
and tell you what to do next:

Stopped at f6f5d868c8ddd12018ca662a54d1f58c150e6364... Fix intersphinx links to use DOCSURL env variable
You can amend the commit now, with

 git commit --amend

Once you are satisfied with your changes, run

 git rebase --continue

Now use git commit --amend to edit the comment:

$ git commit --amend

Rename makedocs -> makedocset

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
#
Date: Thu Apr 30 18:33:59 2015 -0700
#
rebase in progress; onto 96575c9
You are currently editing a commit while rebasing branch 'develop' on '96575c9'.
#
Changes to be committed:
renamed: makedocs -> makedocset
#

Finish off by continuing the rebase for the remaining commits.

$ git rebase --continue
Successfully rebased and updated refs/heads/develop.

Now git log shows the correct comments, as well as
new commit hashes:

$ git log
commit 89af6d9fda07276d3cb06dfd2977f1392fb03b25
Author: Dave Dittrich <dave.dittrich@gmail.com>
Date: Thu Apr 30 18:35:08 2015 -0700

 Add DOCSURL selection of where docs reside for intersphinx links

commit c2c55ff3dcbf10739c5d86ce8a6192e930ccd265
Author: Dave Dittrich <dave.dittrich@gmail.com>
Date: Thu Apr 30 18:34:40 2015 -0700

 Fix intersphinx links to use DOCSURL env variable

commit 2155936ad7e3ae71ef5775b2036a4b6c21a9a86d
Author: Dave Dittrich <dave.dittrich@gmail.com>
Date: Thu Apr 30 18:33:59 2015 -0700

 Rename makedocs -> makedocset

commit 96575c967f606e2161033de92dd2dc580ad60a8b
Merge: 1253ea2 dae5aca
Author: Linda Parsons <lparsonstech@gmail.com>
Date: Thu Apr 30 14:00:49 2015 -0400

 Merge remote-tracking branch 'origin/develop' into develop

5.5.11. Squashing Commits Before Merging

Working on a feature branch for a long time can mean many changes
are made. The idea of “commit often” to push code so other team
members can review it means that sometimes multiple edits are made
(or reverted commits) while debugging something. Or you may make
a number of changes that are unrelated to the topic of the feature
branch that would be best kept together in a single commit.

It is possible to combine multiple commits into a single commit
using an interactive Git rebase (git rebase -i). The idea is
to interactively select a starting point for the rebase operation,
then using pick and squash to select the proper commits
to keep, and those subsequent commits that should be merged into
the previous commit. If there are dozens of commits, this can
get very complicated, but the idea can be demonstrated with
three simple changes that we wish to turn into just one
merge commit.

Note

This example is being done with a temporary repository that we
will make for this purpose, allowing experimentation in a way
that will not result in harm to an actual repo.

Start by initializing a temporary repo in /tmp/testing.

[dimsenv] dittrich@ren:/tmp/testing () $ git init .
Initialized empty Git repository in /private/tmp/testing/.git/

We now create three files, each with a numeric name and the
corresponding number as the contents of the file, and add
each file to the staging area.

[dimsenv] dittrich@ren:/tmp/testing () $ for i in 1 2 3; do echo $i > $i.txt; git add $i.txt; done
[dimsenv] dittrich@ren:/tmp/testing () $ git stat
A 1.txt
A 2.txt
A 3.txt

We now make our initial commit.

[dimsenv] dittrich@ren:/tmp/testing () $ git commit -m 'Initial commit'
[master (root-commit) 3ee79c4] Initial commit
 3 files changed, 3 insertions(+)
 create mode 100644 1.txt
 create mode 100644 2.txt
 create mode 100644 3.txt

Now we check out a branch were we will make our changes, before merging
them back into master.

[dimsenv] dittrich@ren:/tmp/testing (master) $ git checkout -b foo
Switched to a new branch 'foo'

We now make three changes (“edits” to two files, and one file deletion).

[dimsenv] dittrich@ren:/tmp/testing (foo) $ echo "22222" > 2.txt
[dimsenv] dittrich@ren:/tmp/testing (foo*) $ git add 2.txt
[dimsenv] dittrich@ren:/tmp/testing (foo*) $ git commit -m "First edit"
[foo 71738c7] First edit
 1 file changed, 1 insertion(+), 1 deletion(-)

[dimsenv] dittrich@ren:/tmp/testing (foo) $ echo "1111" > 1.txt
[dimsenv] dittrich@ren:/tmp/testing (foo*) $ git commit -am "Second edit"
[foo 0b0e0a9] Second edit
 1 file changed, 1 insertion(+), 1 deletion(-)

[dimsenv] dittrich@ren:/tmp/testing (foo) $ git rm 3.txt
rm '3.txt'
[dimsenv] dittrich@ren:/tmp/testing (foo*) $ git commit -m "Removed file"
[foo 0a522af] Removed file
 1 file changed, 1 deletion(-)
 delete mode 100644 3.txt

If we now look at the commit history, we see the initial commit
where we branched off, and the three change commits.

[dimsenv] dittrich@ren:/tmp/testing (foo) $ git gr
* commit 0a522af0d8c09d206f37b647014628a89070fe94 (HEAD -> foo)
| Author: Dave Dittrich <dittrich@u.washington.edu>
| Date: Mon Sep 5 17:59:36 2016 -0700
|
| Removed file
|
* commit 0b0e0a986e228b177e8775900198c99af80ef5f2
| Author: Dave Dittrich <dittrich@u.washington.edu>
| Date: Mon Sep 5 17:58:34 2016 -0700
|
| Second edit
|
* commit 71738c7b1d2f504110190eaca3c71461e7090cc6
| Author: Dave Dittrich <dittrich@u.washington.edu>
| Date: Mon Sep 5 17:58:19 2016 -0700
|
| First edit
|
* commit 3ee79c4d4455a5517a93ce7e02db88d3db7934f4 (master)
 Author: Dave Dittrich <dittrich@u.washington.edu>
 Date: Mon Sep 5 17:57:51 2016 -0700

 Initial commit

We now start an interactive rebase, referencing the hash of the
initial commit (the one right before all of the changes on the
branch).

[dimsenv] dittrich@ren:/tmp/testing (foo) $ git rebase -i 3ee79c4

pick 71738c7 First edit
squash 0b0e0a9 Second edit
squash 0a522af Removed file

Rebase 3ee79c4..0a522af onto 3ee79c4 (3 TODO item(s))
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
#
These lines can be re-ordered; they are executed from top to bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be aborted.
#
Note that empty commits are commented out

When you save the file out of the editor, Git will perform the rebase
operation:

[detached HEAD 5f90a71] First edit
 Date: Mon Sep 5 17:58:19 2016 -0700
 3 files changed, 2 insertions(+), 3 deletions(-)
 delete mode 100644 3.txt
Successfully rebased and updated refs/heads/foo.

You can now see the commit history has been changed to reflect only
one commit (with a combined comment indicating all of the actions
from each commit, since we didn’t alter any of the comments while
we did the squashing).

[dimsenv] dittrich@ren:/tmp/testing (foo) $ git gr
* commit 5f90a717f96501ba6526a83c107302e0fbc30f10 (HEAD -> foo)
| Author: Dave Dittrich <dittrich@u.washington.edu>
| Date: Mon Sep 5 17:58:19 2016 -0700
|
| First edit
|
| Second edit
|
| Removed file
|
* commit 3ee79c4d4455a5517a93ce7e02db88d3db7934f4 (master)
 Author: Dave Dittrich <dittrich@u.washington.edu>
 Date: Mon Sep 5 17:57:51 2016 -0700

 Initial commit

We can now merge the single resulting commit back into the master
branch.

[dimsenv] dittrich@ren:/tmp/testing (foo) $ git checkout master
Switched to branch 'master'
[dimsenv] dittrich@ren:/tmp/testing (master) $ git merge foo
Updating 3ee79c4..5f90a71
Fast-forward
 1.txt | 2 +-
 2.txt | 2 +-
 3.txt | 1 -
 3 files changed, 2 insertions(+), 3 deletions(-)
 delete mode 100644 3.txt

Our changes have taken effect:

[dimsenv] dittrich@ren:/tmp/testing (master) $ ls
1.txt 2.txt
[dimsenv] dittrich@ren:/tmp/testing (master) $ cat *
1111
22222

The HEAD has now moved and master and foo are
at the same point. (We can now delete the foo branch.)

[dimsenv] dittrich@ren:/tmp/testing (master) $ git gr
* commit 5f90a717f96501ba6526a83c107302e0fbc30f10 (HEAD -> master, foo)
| Author: Dave Dittrich <dittrich@u.washington.edu>
| Date: Mon Sep 5 17:58:19 2016 -0700
|
| First edit
|
| Second edit
|
| Removed file
|
* commit 3ee79c4d4455a5517a93ce7e02db88d3db7934f4
 Author: Dave Dittrich <dittrich@u.washington.edu>
 Date: Mon Sep 5 17:57:51 2016 -0700

 Initial commit

5.5.12. Merging changes from develop into feature branches to keep up to date

When branches live for a long time, and changes occur to what should be
the stable develop branch, those branches start to drift and can
become “broken” because things like hotfixes and new features are not
present on the feature branch. To avoid this, first try to not have
feature branches live for a long time, and second, merge the develop
branch into the feature branches when needed.

Start by reading these pages:

	Commit Often, Perfect Later, Publish Once: Git Best Practices [http://sethrobertson.github.io/GitBestPractices/]

	Git Tips [http://mislav.uniqpath.com/2010/07/git-tips/]

$ git checkout pyes
Switched to branch 'pyes'
Your branch is up-to-date with 'origin/pyes'.
[dittrich@localhost ansible-playbooks (pyes)]$ git rebase dev
First, rewinding head to replay your work on top of it...
Applying: Add pyes pip install to ELK role
Applying: Add marker to prevent re-loading of existing data and don't add Team Cymru data
Applying: Fix bug in demo.logstash.deleteESDB script
Applying: Add feedback message if data already loaded
Applying: Remove debug flag from data pre-load play
Applying: Add demo.firefox.setup changes
Applying: Make default for Kibana be the UFW dataset
Applying: Add curl to base role
Using index info to reconstruct a base tree...
M roles/base-os/tasks/main.yml
Falling back to patching base and 3-way merge...
Auto-merging roles/base-os/tasks/main.yml
Applying: Add elasticutils Python library to ELK role
Applying: Add play to pin Gnome Terminal to panel
Applying: Fix Ansible syntax error re: Gnome Terminal fix
Applying: Fix typo in Gnome Terminal script setup
Applying: Add dconf-tools package for dconf program
Applying: Run Gnome Terminal pin script with sudo
Applying: Fix for dbus-launch failure
Applying: Fix bug in pin-gnome-terminal script re: dconf write operation
Applying: Fix bug in pin-gnome-terminal script
Applying: Fix bug in pin-gnome-terminal re: empty 'value' variable</verbatim>

This is what the pyes branch looked like before:

[image: Branch ``pyes`` before rebase]
Branch pyes before rebase

This is what the pyes branch looked like after the rebase:

[image: Branch ``pyes`` after rebase]
Branch pyes after rebase

Notice the numbers +23-19 in the after image? We just rebased commits from
the local repo branch develop onto the local repo branch pyes. We
haven’t done anything yet with the remote repo. The numbers mean that after
rebasing to get the missing commits, there are commits that exist on the local
repo that do not exist on the remote repo, and vice-versa.

If we now try to push the pyes branch, Git complains that it can’t because
there are remote changes that are not in the local repo that need to be merged
and checked for possible conflict before the push can proceed.

$ git push
To git@git.devops.develop:/opt/git/ansible-playbooks.git
 ! [rejected] pyes -> pyes (non-fast-forward)
error: failed to push some refs to 'git@git.devops.develop:/opt/git/ansible-playbooks.git'
hint: Updates were rejected because the tip of your current branch is behind
hint: its remote counterpart. Integrate the remote changes (e.g.
hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.</verbatim>

Doing a git pull first, then a git push results in a clean rebase of the remote
commits with the local commits (which are now up to date on the pyes feature
branch in relation to the develop branch.)

$ git pull
First, rewinding head to replay your work on top of it...
Applying: Added schema.psl to populate dims database from ops-trust
Applying: added postgres-dims role and files
Using index info to reconstruct a base tree...
M dims-global-server.yml
<stdin>:94: trailing whitespace.
-- Name: plpgsql; Type: EXTENSION; Schema: -; Owner:
<stdin>:101: trailing whitespace.
-- Name: EXTENSION plpgsql; Type: COMMENT; Schema: -; Owner:
<stdin>:210: trailing whitespace.
-- Name: attestations; Type: TABLE; Schema: public; Owner: postgres; Tablespace:
<stdin>:224: trailing whitespace.
-- Name: audit_history; Type: TABLE; Schema: public; Owner: postgres; Tablespace:
<stdin>:237: trailing whitespace.
-- Name: language_skill; Type: TABLE; Schema: public; Owner: postgres; Tablespace:
warning: squelched 50 whitespace errors
warning: 55 lines add whitespace errors.
Falling back to patching base and 3-way merge...
Auto-merging dims-global-server.yml
Applying: Add curl to all hosts in base-os role
Using index info to reconstruct a base tree...
M roles/base-os/tasks/main.yml
Falling back to patching base and 3-way merge...
Auto-merging roles/base-os/tasks/main.yml
Applying: Add curl to base role
Using index info to reconstruct a base tree...
M roles/base-os/tasks/main.yml
Falling back to patching base and 3-way merge...
No changes -- Patch already applied.
[dittrich@localhost ansible-playbooks (pyes)]$ git push
Counting objects: 15, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (14/14), done.
Writing objects: 100% (15/15), 392.72 KiB | 0 bytes/s, done.
Total 15 (delta 9), reused 3 (delta 0)
remote: Running post-receive hook: Tue Nov 4 18:12:01 PST 2014
To git@git.devops.develop:/opt/git/ansible-playbooks.git
 9b23575..2166e16 pyes -> pyes</verbatim>

5.5.13. Permanently Removing Files from a Git Repo

Before publishing once private repositories on an internal Git repo server to
a public server like GitHub requires making sure that all sensitive
data is premanantly removed from the local repository’s history before
first pushing it to GitHub. Just going a git rm file on a file will remove
it from the working directory, but not from Git’s history. It still exists
in a previous commit in the repo.

A common reason for purging files from the Git history is when someone
commits many large binary archive files (e.g., some source packages,
operating system installation ISOs, etc). Those files exist in their
original distribution servers and mirrors, so there isn’t a need to put
them under revision control. They just make the Git repo larger for
no good reason.

Danger

Realize that if you are trying to permanently remove secrets, such
as passwords or encryption private keys, even doing these steps is
not enough. Read what GitHub has to say in the Danger block at the top of their
Remove sensitive data [https://help.github.com/articles/remove-sensitive-data] page. In short, any time extremely sensitive
data (like a password or private key) is published to GitHub, it
should be considered compromised, reported to the project lead,
and changed as soon as possible.

	How to delete files permanently from your local and remote git repositories [http://www.zyxware.com/articles/4027/how-to-delete-files-permanently-from-your-local-and-remote-git-repositories], by Anoopjohn, February 20, 2014

	GitHub aaronzirbes/shrink-git-repo.sh [https://gist.github.com/aaronzirbes/4570924] (“This script will help you remove large files from your git repo history and shrink the size of your repository.”)

	How to Shrink a Git Repository [http://stevelorek.com/how-to-shrink-a-git-repository.html], by Steve Lorek, May 11, 2012

The page How to Shrink a Git Repository [http://stevelorek.com/how-to-shrink-a-git-repository.html] was used successfully to perform
cleanup of a large number of archives that were committed to the
ansible-playbooks repo. The string filename needed to be substituted
with the paths of the files to delete, which were identified by the script
git-find-largest and edited with vi and awk to strip out just the
paths. The following command was then used on the list:

for f in $(cat largest.txt); do \
 git filter-branch --tag-name-filter cat \
 --index-filter "git rm -r --cached --ignore-unmatch $f" \
 --prune-empty -f -- --all; \
done

After that, the steps to clear the cache, do garbage collection and pruning, etc. were followed.

See also GitHub’s Remove sensitive data [https://help.github.com/articles/remove-sensitive-data] page to use
either git filter-branch or the BFG Repo-Cleaner [http://rtyley.github.io/bfg-repo-cleaner/] to remove
files from a clone of the repo and then push the clean version
to GitHub.

bfg 1.12.15
Usage: bfg [options] [<repo>]

 -b, --strip-blobs-bigger-than <size>
 strip blobs bigger than X (eg '128K', '1M', etc)
 -B, --strip-biggest-blobs NUM
 strip the top NUM biggest blobs
 -bi, --strip-blobs-with-ids <blob-ids-file>
 strip blobs with the specified Git object ids
 -D, --delete-files <glob>
 delete files with the specified names (eg '*.class', '*.{txt,log}' - matches on file name, not path within repo)
 --delete-folders <glob> delete folders with the specified names (eg '.svn', '*-tmp' - matches on folder name, not path within repo)
 --convert-to-git-lfs <value>
 extract files with the specified names (eg '*.zip' or '*.mp4') into Git LFS
 -rt, --replace-text <expressions-file>
 filter content of files, replacing matched text. Match expressions should be listed in the file, one expression per line - by default, each expression is treated as a literal, but 'regex:' & 'glob:' prefixes are supported, with '==>' to specify a replacement string other than the default of '***REMOVED***'.
 -fi, --filter-content-including <glob>
 do file-content filtering on files that match the specified expression (eg '*.{txt,properties}')
 -fe, --filter-content-excluding <glob>
 don't do file-content filtering on files that match the specified expression (eg '*.{xml,pdf}')
 -fs, --filter-content-size-threshold <size>
 only do file-content filtering on files smaller than <size> (default is 1048576 bytes)
 -p, --protect-blobs-from <refs>
 protect blobs that appear in the most recent versions of the specified refs (default is 'HEAD')
 --no-blob-protection allow the BFG to modify even your *latest* commit. Not recommended: you should have already ensured your latest commit is clean.
 --private treat this repo-rewrite as removing private data (for example: omit old commit ids from commit messages)
 --massive-non-file-objects-sized-up-to <size>
 increase memory usage to handle over-size Commits, Tags, and Trees that are up to X in size (eg '10M')
 <repo> file path for Git repository to clean

5.6. Git and Secrets

There are a plethora of ways to deal with secrets in relation to source
code in public Git repos.

Some groups chose to separate out the secrets into repos that are not made
public (i.e., one public repo without secrets, and one private repo with only
the secrets). This adds some complexity and requires multiple Git repository
locations that clearly separate the private and public repos.

Other groups may prefer to keep their repositories small in number and simple,
using a single directory tree with the secrets being encrypted within that
tree. At one extreme of the “secrets in the repo” mechanism require
encrypting the entire repo, while at the other end only a limited number of
specific secrets are encrypted, leaving the majority of the repository in
clear text form.

The DIMS project started out with lots of Git repos that were narrowly focused
on specific system components to try to modularize in a way that facilitated
integrating open source tools written by other groups. The primary repository
that needed secrets was the Ansible playbooks repository.

Attention

Regardless of which mechanism for managing secrets you chose, everyone
with Git commit rights must have discipline when it comes to handling
secrets. It only takes a few mistakes to cause a lot of cleanup headaches,
or for an accidental commit followed by a missed review and unintended push
to result in a password or key exposure crisis.

The DIMS project ran into this problem many times, with accidental commits
including private keys, passwords, and unredacted sample data from
production systems. It wasn’t until the repos were going to be made
public that reviews identified several of these mistakes, causing long
delays while cleanup activities were added to code completion tasks.

There is a cost/benefit tradeoff that must be made between using more than
just one shared “development” repository location (to more closely vet and
control commits to the “official” repository location) vs. the time and
effort required to sanitize accidentally committed secrets and
simultaneously delete all clones at the same time to prevent the secrets
being accidentally pushed back into the repo.

The two mechanisms first tested by the DIMS project were:

	Ansible Vault [http://docs.ansible.com/ansible/playbooks_vault.html]

	git-crypt [https://github.com/AGWA/git-crypt]

5.6.1. Ansible Vault

Ansible Vault is a command-line tool provided by Ansible. It allows for
application of encryption at a very granular level.

Vault is a password-based encryption system. This password can be stored in
a file, but it must be shared to every user who is allowed access to the
secret data files that are encrypted. This means there is still one step of
having to figure out how to share the vault password.

Once the password is known by all parties, the process is pretty simple. To
create a file you want to be encrypted,

$ ansible-vault create --vault-password-file=$PASS_FILE vaultfile.yml

To view the file, without being able to edit it,

$ ansible-vault view --vault-password-file=$PASS_FILE vaultfile.yml

To edit the file,

$ ansible-vault edit --vault-password-file=$PASS_FILE vaultfile.yml

To encrypt a file,

$ ansible-vault encrypt --vault-password-file=$PASS_FILE newvaultfile.yml

To decrypt a file,

$ ansible-vault decrypt --vault-password-file=$PASS_FILE newvaultfile.yml

When you commit a vault-protected file, it will be the encrypted file that is
committed to Git. Thus, if you decrypt a file to view it, you’ll have to
encrypt it again, and the file will change, so you’ll have to commit it
again.

If you need to rekey a file,

$ ansible-vault rekey --new-vault-password-file=$NEW_PASS_FILE rekeyvaultfile.yml

To use Ansible to share secret information, one way is by copying an entire
file of secrets. First, you must load a file with the secret information.
This is generally done by creating a dictionary of information, including the
destination of the secret file, the owner and group and mode of the file, as
well as the actual contents of the file. You then run a task to load the secret
file, which is decrypted with the Vault password and read by Ansible, then the
information from that file is used to create the new file on the target machine.

Warning

One important thing to note is that you must use the no_log module in these
types of tasks to keep Ansible from printing the secret information in the
output of running plays.

- name: Load secret password file
 include_vars: "vault.yml"
 no_log: true
 when: ansible_os_family == "Debian"
 tags: [ansible-server]

- name: Copy secret password file
 copy:
 dest: "{{ item.key }}"
 content: "{{ item.value.content }}"
 owner: "{{ item.value.owner }}"
 group: "{{ item.value.group }}"
 mode: "{{ item.value.mode }}"
 with_dict: "{{ vault_password }}"
 when: ansible_os_family == "Debian"
 no_log: true
 tags: [ansible-server]

The following is an example of the vault.yml file:

File: unencrypted version of vault.yml

password:
 /home/ansible/pass.txt
 owner: "ansible"
 group: "ansible"
 mode: "u=r,go="
 content: |
 Secretsecretsecret

eof

Additionally, you can use vault to keep variables secret that may not be
used to create a whole file, like an SSH key. For example, a username and
password might be needed in a service’s configuration file. All you need
to do is create a Vault-encrypted file with those secrets, include the
secret vars file in a task before needing to use those secret variables
(say, in a template), and then the secret will be populated on the target
machine.

However, unless using the ansible-vault view command, the secret
variables file is encrypted, so it isn’t searchable. A solution to this
problem is to include a secret variable in a “normal” vars file, but
don’t include the actual secret there–set that variable to another
variable.

Let’s say we need a username and password for Service X that is going to
run on several machines in deployment local. In our group_vars file
for this deployment, deployment-local.yml, we’d define the
username and password variables for Service X as follows:

...

serviceXUsername: "{{ vault_serviceXUsername }}"
serviceXPassword: "{{ vault_serviceXPassword }}"

...

We would use the ansible-vault create command to then define the
vault_* variables with their actual secret data, as follows:

File: unencrypted version of deployment-local-vault.yml

vault_serviceXUsername: "secretUsername"
vault_serviceXPassword: "secretPassword"

eof

Now, the secret variables file has to be included before any variable
defined within it is used:

- name: Load deployment secret variables file
 include_vars: "../../../inventory/group_vars/deployment-local-vault.yml"
 no_log: true
 when: ansible_os_family == "Debian"
 tags: [ansible-server]

- name: Use secret variables
 template: "src=test-secret.yml dest=/etc/test-secret.yml owner=root group=root mode={{ mode_0644 }}"
 no_log: true
 sudo: yes
 when: ansible_os_family == "Debian"
 tags: [ansible-server]

Helpful Links:

	http://docs.ansible.com/ansible/playbooks_best_practices.html#variables-and-vaults

	https://www.onwebsecurity.com/devops/safely-storing-ansible-playbook-secrets

	https://dantehranian.wordpress.com/2015/07/24/managing-secrets-with-ansible-vault-the-missing-guide-part-1-of-2/

	https://dantehranian.wordpress.com/2015/07/24/managing-secrets-with-ansible-vault-the-missing-guide-part-2-of-2/

	https://serversforhackers.com/video/ansible-using-vault

5.6.2. git-crypt

Another granular approach we looked at was git-crypt. This integrates
encryption using GPG keys within the git ecosystem. It allows
for encryption by file, rather than repo. In addition, since the encryption
integrated in the git ecosystem, you don’t have to use special
commands to view or edit encrypted files; encrypted files are decrypted
when a repo is checked out and encrypted when committed.

The trouble we have found is a problem many projects will have, especially
open source ones. The files are encrypted with the GPG keys available at
the time of a given file’s encryption. This means that if other project
members join after a file is encrypted, that file will have to be re-encrypted
once the new member’s GPG key has been integrated. All encrypted files
would ahve to be ID’d and then re-encrypted. Additionally, this also
compounds the key revocation problem as whoever has a private key to
decrypt the files will still be able to see the old commits. The files
can’t just be re-encrypted, all the secrets they contain must be changed.

At this time, we have chosen to stick with Vault over git-crypt
for the reasons listed above.

5.6.3. Git and Unix permissions

A final issue that must be known and kept in mind is the limitation in
Git’s ability to properly handle Unix permission masks. Unix permission
masks (or umask) are bit masks that handle multiple permissions
(i.e., read, write, and execute) for multiple groups
(i.e., owner, group, and other), along with some other
permission bits (setgid, setuid, and sticky bits).

Git only pays attention to the execute permissions, and does so
in a limited way. That means a file may have a mode 0755 (write
permission only for user, but universal read and execute permission),
or it may have a mode 0644 (same as above, but no execute permission
for anyone).

To see this problem in action, we will use the keys.host.create script
to generate some SSH key pairs. SSH only allows keys to be used if
they have no read permission for other, so it generates keys
with permission mask 0600 (see highlighted lines):

 $ keys.host.create -d . -p EXAMPLE
 $ ls -l
 total 40
 -rw-rw-r-- 1 dittrich dittrich 358 Mar 13 12:17 key_fingerprints.txt
 -rw-rw-r-- 1 dittrich dittrich 1304 Mar 13 12:17 known_hosts.add
 -rw------- 1 dittrich dittrich 668 Mar 13 12:17 ssh_host_dsa_key
 -rw-r--r-- 1 dittrich dittrich 616 Mar 13 12:17 ssh_host_dsa_key.pub
 -rw------- 1 dittrich dittrich 365 Mar 13 12:17 ssh_host_ecdsa_key
 -rw-r--r-- 1 dittrich dittrich 282 Mar 13 12:17 ssh_host_ecdsa_key.pub
 -rw------- 1 dittrich dittrich 432 Mar 13 12:17 ssh_host_ed25519_key
 -rw-r--r-- 1 dittrich dittrich 112 Mar 13 12:17 ssh_host_ed25519_key.pub
 -rw------- 1 dittrich dittrich 1675 Mar 13 12:17 ssh_host_rsa_key
 -rw-r--r-- 1 dittrich dittrich 408 Mar 13 12:17 ssh_host_rsa_key.pub

Now, add the keys to Git and watch the permissions that Git gives
to those files:

 $ git add .
 $ git commit -m 'Add keys'
 [master (root-commit) 47f872b] Add keys
 10 files changed, 66 insertions(+)
 create mode 100644 keys/key_fingerprints.txt
 create mode 100644 keys/known_hosts.add
 create mode 100644 keys/ssh_host_dsa_key
 create mode 100644 keys/ssh_host_dsa_key.pub
 create mode 100644 keys/ssh_host_ecdsa_key
 create mode 100644 keys/ssh_host_ecdsa_key.pub
 create mode 100644 keys/ssh_host_ed25519_key
 create mode 100644 keys/ssh_host_ed25519_key.pub
 create mode 100644 keys/ssh_host_rsa_key
 create mode 100644 keys/ssh_host_rsa_key.pub

As you can see, all files that did not have the execute bit got a
permissions mask of 100644, so all files that were 0600 will end up
being pulled with a permissions mask of 0644. SSH will not allow a
permission mask of 0644 on private keys, so if these were user keys SSH
would not allow them to be used. To ensure that checking out or pulling these
files will still work requires an extra step to fix these permissions, which is
a little complicated and involves the use of Git hooks.

The simplest method is to use the public/private pairing to identify all files
that end in .pub and change the mode to 0600 on the file with the
.pub extension stripped (i.e., the associated private key). A script to do
this may look something like this:

#!/bin/bash
echo "[+] Verifying private key permissions and correcting if necessary"
find * -type f -name '*.pub' |
 while read pubkey; do
 privkey=$(dirname $pubkey)/$(basename $pubkey .pub)
 if [[-f $privkey]]; then
 mode=$(stat -c %a $privkey)
 if [[$? -ne 0]]; then
 echo "[-] Failed to get mode for $privkey"
 elif [["$mode" != "600"]]; then
 echo "[+] Changing mode $mode to 600 on file $privkey"
 chmod 600 $privkey
 fi
 fi
 done
exit 0

Attention

You cannot add files in the .git/hooks directory, where hooks are
found for execution by Git, to Git tracking. The .git directory
is _not_ part of the Git repository commit structure. You can add
a directory named hooks/ at the top level of the tracked repo
and create links into the .git/hooks directory. This has to
be done at least once per clone of the repo, which is up to the
person doing the clone to perform manually (or to use wrapper
scripts around Git that do this on the initial clone operation).

Here is a Makefile that automates this process:

.PHONY: all
all: install-hooks

.PHONY: install-hooks
install-hooks:
 @(cd hooks; find * -type f -o -type l 2>/dev/null) | \
 while read hook; do \
 echo "[+] Installing .git/hooks/$$hook"; \
 ln -sf ../../hooks/$$hook .git/hooks/$$hook; \
 done

To preserve the actual permission masks in a general way for all files
being committed to Git is much more complicated and goes beyond the needs
of this particular issue. Examples of how to do this are found in
the following references, or search for other options.

	githooks - Hooks used by Git [https://git-scm.com/docs/githooks]

	How To Use Git Hooks To Automate Development and Deployment Tasks [https://www.digitalocean.com/community/tutorials/how-to-use-git-hooks-to-automate-development-and-deployment-tasks]

	Retaining file permissions with Git [http://stackoverflow.com/questions/3207728/retaining-file-permissions-with-git]

6. Documenting DIMS Components

This chapter covers Sphinx [http://sphinx-doc.org] and ReStructured Text (reST) [http://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html],
and how they are used with ReadTheDocs [https://readthedocs.org/] (a hosted documentation
site) and GitHub [https://github.com] (a hosted Git source repository site) to
document open source project repositories. It includes specifics
of how Sphinx is used for documentation within the DIMS project.

6.1. Required Background Reading

Before trying to use Sphinx, it is important to understand how it works and
what basic things you can do with it to produce organized and structured
documentation that includes things like headings, tables, figures, images,
links, cross-references to labelled items, and callout notes.

Start by taking less than five minutes and reading all of the very short
Sphinx Style Guide [http://documentation-style-guide-sphinx.readthedocs.org/en/latest/style-guide.html]. It will give you some insight into high-level concepts
of Sphinx and reST.

Next, spend another 10-15 minutes and read through all of the slightly
longer Documenting Your Project Using Sphinx [https://pythonhosted.org/an_example_pypi_project/sphinx.html] document to see the full range
of markup and directives supported by reST.

A short tutorial that includes an example is IBM’s
Easy and beautiful documentation with Sphinx [http://www.ibm.com/developerworks/library/os-sphinx-documentation/].

A much longer (2+hours when delivered live) Sphinx Tutorial v0.1 [http://brandons-sphinx-tutorial.readthedocs.org/en/v0.1/] by Brandon
Rhodes from PyCon 2013 walks through the full range of tasks necessary to
document a Python code project.

Lastly, read Problems with StructuredText [http://docutils.sourceforge.net/docs/dev/rst/problems.html] to learn about limitations in reST
and some ways to deal with them.

6.2. Why Sphinx?

Just to illustrate how widely Sphinx is used in the open source
community, here is a list of project repos in Dave Dittrich’s $GIT
directory that use Sphinx (by virtue of their containing a Sphinx
configuration file conf.py under a documentation directory):

[dittrich@localhost git]$ find . -name conf.py
./ansible/docsite/conf.py
./celery/docs/conf.py
./crits/documentation/src/conf.py
./cuckoo/docs/book/src/conf.py
./CybOXProject/python-cybox/docs/conf.py
./elasticsearch-dsl-py/docs/conf.py
./MAECProject/python-maec/docs/conf.py
./MozDef/docs/source/conf.py
./pika/docs/conf.py
./pyxb/doc/conf.py
./redis-py/docs/conf.py
./robotframework/doc/api/conf.py
./sphinx_rtd_theme/demo_docs/source/conf.py
./STIXProject/python-stix/docs/conf.py
./TAXIIProject/libtaxii/docs/conf.py
./thug/doc/source/conf.py

Sphinx, since it is a Python project, is effectively programmable
and highly configurable and flexible. You can do parameterized
creation of documents to make them unique to a site using an
open source software product, can exercise tests in code,
can produce HTML and LaTeX-derived PDF, all from the same source
documentation files. That is just the start. Sphinx also
produces search indexes, dynamic tables of contents, forward
and back buttons in HTML pages, and many other helpful
features for documenting a project. Because it effectively
compiles the documentation, things like unit tests, functional
tests, software version descriptions, insertion of Graphviz [https://en.wikipedia.org/wiki/Graphviz]
directed and undirected graphs to illustrate relationships
between system components... The list goes on.

6.3. Manually Initiating a docs directory with sphinx-quickstart

The program sphinx-quickstart can be used to initiate a Sphinx
document directory. It is important to understand the ramifications
of the first three questions in the context of how other Sphinx
tools (e.g., sphinx-autobuild) work. Use of sphinx-autobuild
is covered later. Here are the first two questions you are faced
with after running sphinx-quickstart and what results from
the choice.

[dittrich@localhost tmp]$ sphinx-quickstart
Welcome to the Sphinx 1.2.3 quickstart utility.

Please enter values for the following settings (just press Enter to
accept a default value, if one is given in brackets).

Enter the root path for documentation.
> Root path for the documentation [.]:

You have two options for placing the build directory for Sphinx output.
Either, you use a directory "_build" within the root path, or you separate
"source" and "build" directories within the root path.
> Separate source and build directories (y/n) [n]: y

6.3.1. Separated source and build directories

Answering y to the second question (as shown above) results a having
separate source and build directories, with the following
structure:

.
├── Makefile
├── build
└── source
 ├── _static
 ├── _templates
 ├── conf.py
 └── index.rst

4 directories, 3 files

When you initiate a build with make html, here is what the resulting
directory contents will include:

.
├── Makefile
├── build
│ ├── doctrees
│ │ ├── environment.pickle
│ │ └── index.doctree
│ └── html
│ ├── _sources
│ │ └── index.txt
│ ├── _static
│ │ ├── ajax-loader.gif
│ │ ├── basic.css
│ │ ├── comment-bright.png
│ │ ├── comment-close.png
│ │ ├── comment.png
│ │ ├── default.css
│ │ ├── doctools.js
│ │ ├── down-pressed.png
│ │ ├── down.png
│ │ ├── file.png
│ │ ├── jquery.js
│ │ ├── minus.png
│ │ ├── plus.png
│ │ ├── pygments.css
│ │ ├── searchtools.js
│ │ ├── sidebar.js
│ │ ├── underscore.js
│ │ ├── up-pressed.png
│ │ ├── up.png
│ │ └── websupport.js
│ ├── genindex.html
│ ├── index.html
│ ├── objects.inv
│ ├── search.html
│ └── searchindex.js
└── source
 ├── _static
 ├── _templates
 ├── conf.py
 └── index.rst

8 directories, 31 files

Note

Notice how the build/ directory now contains subdirectories html/
and doctrees/ directories. There were no files created or changed in
source/ directory by the make operation.

Warning

You should answer y to the second question. DIMS project repositories
should have separated source/ and build/ directories.

6.3.2. Mixed source and build

Had the second and third questions above been answered with a n,
this is what the resulting directory structure would look like:

.
|── Makefile
|── _build
|── _static
|── _templates
|── conf.py
+── index.rst

3 directories, 3 files

Notice the conf.py and index.rst files are located in the same
directory root as _build. When you build this document with make html,
the resulting directory structure now looks like this:

.
├── Makefile
├── _build
│ ├── doctrees
│ │ ├── environment.pickle
│ │ └── index.doctree
│ └── html
│ ├── _sources
│ │ └── index.txt
│ ├── _static
│ │ ├── ajax-loader.gif
│ │ ├── basic.css
│ │ ├── comment-bright.png
│ │ ├── comment-close.png
│ │ ├── comment.png
│ │ ├── default.css
│ │ ├── doctools.js
│ │ ├── down-pressed.png
│ │ ├── down.png
│ │ ├── file.png
│ │ ├── jquery.js
│ │ ├── minus.png
│ │ ├── plus.png
│ │ ├── pygments.css
│ │ ├── searchtools.js
│ │ ├── sidebar.js
│ │ ├── underscore.js
│ │ ├── up-pressed.png
│ │ ├── up.png
│ │ └── websupport.js
│ ├── genindex.html
│ ├── index.html
│ ├── objects.inv
│ ├── search.html
│ └── searchindex.js
├── _static
├── _templates
├── conf.py
└── index.rst

7 directories, 31 files

Note

In this second example, the source files index.rst and the conf.py
file are at the same directory level as the _build/ directory
(and all of its contents). Doing a make html or make latexpdf
both cause the source directory . to change, because new files
and directores were created within the . directory.

The sphinx-quickstart program gives you an option of separating the source
directory from other directories. When this option is chosen, the result is
a directory structure that has the Makefile at the top level with
a build and source directory at the same directory level, which
looks like this:

.
|── Makefile
|── build
+── source
 ├── README.rst
 ├── _static
 ├── _templates
 ├── conf.py
 ├── developing.rst
 ├── index.rst
 ├── intro.rst
 ├── license.rst
 └── quickstart.rst

4 directories, 8 files

6.4. Building Sphinx Documentation

You can build HTML manually with the Makefile, build PDF output with the
Makefile, or automatically build HTML whenever files change on disk using
sphinx-autobuild.

When you are ready to try building your documentation, start with
manually building HTML output (which you can test locally with
a browser). Once you understand how building HTML works, and
know what to look for in terms of error messages and warnings,
you will find it is faster and easier to create Sphinx documents
using sphinx-autobuild and a browser in a second window.

6.4.1. Manually Building HTML

The most simple way to render Sphinx documents is to use
the Makefile created by sphinx-quickstart using
make as shown here:

[dittrich@localhost docs (dev)]$ make html
sphinx-build -b html -d build/doctrees source build/html
Making output directory...
Running Sphinx v1.2.3
loading pickled environment... not yet created
loading intersphinx inventory from http://docs.python.org/objects.inv...
building [html]: targets for 8 source files that are out of date
updating environment: 8 added, 0 changed, 0 removed
reading sources... [12%] README
reading sources... [25%] continuousintegration
reading sources... [37%] deployconfigure
reading sources... [50%] developing
reading sources... [62%] documentation
reading sources... [75%] index
reading sources... [87%] introduction
reading sources... [100%] quickstart

looking for now-outdated files... none found
pickling environment... done
checking consistency... /Users/dittrich/git/dims-ci-utils/docs/source/README.rst:: WARNING: document isn't included in any toctree
done
preparing documents... done
writing output... [12%] README
writing output... [25%] continuousintegration
writing output... [37%] deployconfigure
writing output... [50%] developing
writing output... [62%] documentation
writing output... [75%] index
writing output... [87%] introduction
writing output... [100%] quickstart

writing additional files... genindex search
copying images... [100%] images/DD_home_page_small.jpg

copying downloadable files... [100%] /Users/dittrich/git/dims-ci-utils/docs/source/images/DD_home_page.png

copying static files... done
copying extra files... done
dumping search index... done
dumping object inventory... done
build succeeded, 1 warning.

Build finished. The HTML pages are in build/html.

You can now load the page with a browser:

[dittrich@localhost docs (dev)]$ open -a Opera.app build/html/index.html

[image: Rendered HTML in Opera on a Mac]
This documentation, rendered on a Mac using Opera.

6.4.2. Manually Building PDF using LaTeX

Now, render the same document as a PDF file using LaTeX:

[dittrich@localhost docs (dev)]$ make latexpdf
sphinx-build -b latex -d build/doctrees source build/latex
Making output directory...
Running Sphinx v1.2.3
loading pickled environment... done
building [latex]: all documents
updating environment: 0 added, 0 changed, 0 removed
looking for now-outdated files... none found
processing DIMSCIUtilities.tex... index introduction quickstart documentation developing continuousintegration deployconfigure
resolving references...
writing... done
copying images... dims-ci-utils-doc.png DD_home_page_small.jpg
copying TeX support files...
done
build succeeded.
Running LaTeX files through pdflatex...
/Applications/Xcode.app/Contents/Developer/usr/bin/make -C build/latex all-pdf
pdflatex 'DIMSCIUtilities.tex'
This is pdfTeX, Version 3.14159265-2.6-1.40.15 (TeX Live 2014/MacPorts 2014_4) (preloaded format=pdflatex)
 restricted \write18 enabled.
entering extended mode
(./DIMSCIUtilities.tex
LaTeX2e <2014/05/01>
Babel <3.9k> and hyphenation patterns for 43 languages loaded.
(./sphinxmanual.cls
Document Class: sphinxmanual 2009/06/02 Document class (Sphinx manual)
(/opt/local/share/texmf-texlive/tex/latex/base/report.cls
Document Class: report 2007/10/19 v1.4h Standard LaTeX document class
(/opt/local/share/texmf-texlive/tex/latex/base/size10.clo)))
(/opt/local/share/texmf-texlive/tex/latex/base/inputenc.sty

[...pages of output removed...]

[25] [26]
Chapter 6.
[27] [28]
Chapter 7.
[29] [30]
Chapter 8.
(./DIMSCIUtilities.ind) [31] (./DIMSCIUtilities.aux))
(see the transcript file for additional information){/opt/local/share/texmf-tex
live/fonts/enc/dvips/base/8r.enc}</opt/local/share/texmf-texlive/fonts/type1/ur
w/courier/ucrb8a.pfb></opt/local/share/texmf-texlive/fonts/type1/urw/courier/uc
rr8a.pfb></opt/local/share/texmf-texlive/fonts/type1/urw/courier/ucrro8a.pfb></
opt/local/share/texmf-texlive/fonts/type1/urw/helvetic/uhvb8a.pfb></opt/local/s
hare/texmf-texlive/fonts/type1/urw/helvetic/uhvbo8a.pfb></opt/local/share/texmf
-texlive/fonts/type1/urw/times/utmb8a.pfb></opt/local/share/texmf-texlive/fonts
/type1/urw/times/utmr8a.pfb></opt/local/share/texmf-texlive/fonts/type1/urw/tim
es/utmri8a.pfb>
Output written on DIMSCIUtilities.pdf (35 pages, 381656 bytes).
Transcript written on DIMSCIUtilities.log.
pdflatex finished; the PDF files are in build/latex.

Now open the PDF file (this example uses Mac OS X Preview.app, but you can
also use evince on some Linux systems):

[dittrich@localhost docs (dev)]$ open build/latex/DIMSCIUtilities.pdf

[image: Rendered PDF in Preview on a Mac]
This documentation, rendered using LaTeX on a Mac,
viewed with Preview.

6.4.3. Automatically building HTML

Sphinx has a program called sphinx-autobuild that can monitor a directory
for any file changes in that directory and below, re-building the document
immediately upong detecting changes. When used to build HTML content, it makes
the pages available on a local TCP port using a simple HTTP service (just like
if the docs were put up on GitHub, readthedocs, etc.)

Note

You may need to install sphinx-autobuild using pip separately.
Refer to section installingsphinx.

Here is where the importance of splitting the source/ directory
from build/ directory becomes evident.

Invoke sphinx-autobuild from the command line in a separate terminal
window, so you can watch the output for error messages. By default, sphinx-autobuild
listens on 8000/tcp. (This can be changed with the -p flag on the command line).
After starting sphinx-autobuild you then enter the URL that is produced
(in this case, the URL is http://127.0.0.1:8000). Now edit files in
another terminal or editor application window.

[dittrich@localhost docs (dev)]$ sphinx-autobuild --ignore '*.swp' source build/html
Serving on http://127.0.0.1:8000
[I 150105 18:50:45 handlers:109] Browser Connected: http://127.0.0.1:8000/documentation.html
[I 150105 18:50:45 handlers:118] Start watching changes
[I 150105 18:50:48 handlers:74] Reload 1 waiters: None
[I 150105 18:50:48 web:1811] 200 GET /documentation.html (127.0.0.1) 16.57ms
[I 150105 18:50:48 web:1811] 304 GET /livereload.js (127.0.0.1) 1.08ms
[I 150105 18:50:48 web:1811] 200 GET /_static/pygments.css (127.0.0.1) 0.83ms
[I 150105 18:50:48 web:1811] 200 GET /_static/default.css (127.0.0.1) 0.62ms
[I 150105 18:50:48 web:1811] 200 GET /_static/jquery.js (127.0.0.1) 1.24ms
[I 150105 18:50:48 web:1811] 200 GET /_static/underscore.js (127.0.0.1) 1.09ms
[I 150105 18:50:48 web:1811] 200 GET /_static/doctools.js (127.0.0.1) 0.68ms
[I 150105 18:50:48 web:1811] 200 GET /_images/DD_home_page_small.jpg (127.0.0.1) 0.86ms
[I 150105 18:50:48 web:1811] 200 GET /_static/basic.css (127.0.0.1) 0.46ms
[I 150105 18:50:48 web:1811] 200 GET /_images/dims-ci-utils-doc-html.png (127.0.0.1) 1.59ms
[I 150105 18:50:48 web:1811] 200 GET /_images/dims-ci-utils-doc-pdf.png (127.0.0.1) 0.72ms
[I 150105 18:50:48 handlers:109] Browser Connected: http://127.0.0.1:8000/documentation.html

+--------- source/documentation.rst changed -------------------------------------
| Running Sphinx v1.2.3
| loading pickled environment... not yet created
| No builder selected, using default: html
| loading intersphinx inventory from http://docs.python.org/objects.inv...
| building [html]: targets for 8 source files that are out of date
| updating environment: 8 added, 0 changed, 0 removed
| reading sources... [12%] README
| reading sources... [25%] continuousintegration
| reading sources... [37%] deployconfigure
| reading sources... [50%] developing
| reading sources... [62%] documentation
| reading sources... [75%] index
| reading sources... [87%] introduction
| reading sources... [100%] quickstart
/Users/dittrich/git/dims-ci-utils/docs/source/documentation.rst:281: WARNING: Literal block ends without a blank line; unexpected unindent.
/Users/dittrich/git/dims-ci-utils/docs/source/documentation.rst:519: WARNING: Literal block ends without a blank line; unexpected unindent.
|
| looking for now-outdated files... none found
| pickling environment... done
/Users/dittrich/git/dims-ci-utils/docs/source/README.rst:: WARNING: document isn't included in any toctree
| checking consistency... done
| preparing documents... done
| writing output... [12%] README
| writing output... [25%] continuousintegration
| writing output... [37%] deployconfigure
| writing output... [50%] developing
| writing output... [62%] documentation
| writing output... [75%] index
| writing output... [87%] introduction
| writing output... [100%] quickstart
|
| writing additional files... genindex search
| copying images... [33%] dims-ci-utils-doc-pdf.png
| copying images... [66%] DD_home_page_small.jpg
| copying images... [100%] dims-ci-utils-doc-html.png
|
| copying downloadable files... [100%] /Users/dittrich/git/dims-ci-utils/docs/source/images/DD_home_page.png
|
| copying static files... done
| copying extra files... done
| dumping search index... done
| dumping object inventory... done
| build succeeded, 3 warnings.
+--

+--------- source/documentation.rst changed -------------------------------------
| Running Sphinx v1.2.3
| loading pickled environment... done
| No builder selected, using default: html
| building [html]: targets for 0 source files that are out of date
| updating environment: 0 added, 0 changed, 0 removed
| looking for now-outdated files... none found
| no targets are out of date.
+--

[I 150105 18:51:17 handlers:74] Reload 1 waiters: None
[I 150105 18:51:17 web:1811] 200 GET /documentation.html (127.0.0.1) 1.70ms
[I 150105 18:51:17 web:1811] 200 GET /_static/default.css (127.0.0.1) 0.70ms
[I 150105 18:51:17 web:1811] 200 GET /_static/doctools.js (127.0.0.1) 0.76ms
[I 150105 18:51:17 web:1811] 200 GET /_static/underscore.js (127.0.0.1) 0.88ms
[I 150105 18:51:17 web:1811] 200 GET /_static/jquery.js (127.0.0.1) 1.26ms
[I 150105 18:51:17 web:1811] 200 GET /_static/pygments.css (127.0.0.1) 0.71ms
[I 150105 18:51:17 web:1811] 304 GET /livereload.js (127.0.0.1) 0.83ms
[I 150105 18:51:17 web:1811] 200 GET /_images/DD_home_page_small.jpg (127.0.0.1) 1.04ms
[I 150105 18:51:17 web:1811] 200 GET /_static/basic.css (127.0.0.1) 0.54ms
[I 150105 18:51:17 web:1811] 200 GET /_images/dims-ci-utils-doc-html.png (127.0.0.1) 1.86ms
[I 150105 18:51:17 web:1811] 200 GET /_images/dims-ci-utils-doc-pdf.png (127.0.0.1) 0.96ms
[I 150105 18:51:17 handlers:109] Browser Connected: http://127.0.0.1:8000/documentation.html

Every time you change a file, sphinx-autobuild will rebuild it and your
brower will be informed that it needs to reload the page so you can immediately
see the results. This helps in developing Sphinx documentation quickly, as all
you need to do is edit files and watch for error messages in the sphinx-autobuild
window and see if the browser page shows what you want it to show.

Warning

The above example uses --ignore '*.swp' to avoid temporary swap
files created by the vim editor. If you use an editor that creates
temporary files using a different file extension, you should use that
name instead. Otherwise, every time you open a file with the editor
it will appear to sphinx-autobuild as though a source file changed
and it will regenerate the document.

Warning

If you restart the sphinx-autobuild process, you will need to reconnect
the browser to the sphinx-autobuild listening port, otherwise the browser
will stop updating the page automatically at the end of each automatic build.
Refreshing the page can fix this.

If you start the browser and attempt to re-open a previously used URL before
you start sphinx-autobuild, you may experience a similar problem. Try to
use touch to update a file, or edit a file and force a write operation.
Either of these will trigger a rebuild and refresh of the browser, which
should then keep it in sync.

The example above produces a lot of output in the sphinx-autobuild terminal
output, which in practice makes it a little harder to see the error messages.
To decrease the amount of output, you may want to add the -q flag (see also
sphinx-build -h for how to control the underlying build process, and
sphinx-autobuild --help for more autobuild options).

[dittrich@localhost docs (dev)]$ sphinx-autobuild -q --ignore '*.swp' source build/html

Warning

By default, sphinx-autobuild will attempt to bind to port 8000/tcp. If
that port is in use by another instance of sphinx-autobuild, you will
get an error message. Use the -p flag to change the listening port
number to something else (e.g., -p 8001).

6.5. Fixing errors

If there are any problems, Sphinx will call them out with warnings.
Pay attention to the build output.

rm -rf build/*
sphinx-build -b html -d build/doctrees source build/html
Making output directory...
Running Sphinx v1.2.3
loading pickled environment... not yet created
loading intersphinx inventory from http://docs.python.org/objects.inv...
building [html]: targets for 7 source files that are out of date
updating environment: 7 added, 0 changed, 0 removed
reading sources... [14%] README
reading sources... [28%] advanced
reading sources... [42%] developing
reading sources... [57%] index
reading sources... [71%] intro
reading sources... [85%] license
reading sources... [100%] quickstart

/Users/dittrich/git/dims-ci-utils/docs/source/intro.rst:26: WARNING: Inline literal start-string without end-string.
/Users/dittrich/git/dims-ci-utils/docs/source/intro.rst:95: WARNING: Literal block ends without a blank line; unexpected unindent.
looking for now-outdated files... none found
pickling environment... done
checking consistency...
/Users/dittrich/git/dims-ci-utils/docs/source/README.rst:: WARNING: document isn't included in any toctree
/Users/dittrich/git/dims-ci-utils/docs/source/advanced.rst:: WARNING: document isn't included in any toctree
/Users/dittrich/git/dims-ci-utils/docs/source/license.rst:: WARNING: document isn't included in any toctree
done
preparing documents... done
writing output... [14%] README
writing output... [28%] advanced
writing output... [42%] developing
writing output... [57%] index
writing output... [71%] intro
writing output... [85%] license
writing output... [100%] quickstart

writing additional files... genindex search
copying static files... done
copying extra files... done
dumping search index... done
dumping object inventory... done
build succeeded, 23 warnings.

Build finished. The HTML pages are in build/html.

6.5.1. Typographic errors

Both of the errors seen in this first example above are simple typographical
errors in the intro.rst file.

The first one, as it says, involves an improper literal on
line 25:

25 A much longer (2+hours when delivered live) ``Sphinx Tutorial v0.1`_ by Brandon
26 Rhodes from PyCon 2013 walks through the full range of tasks necessary to
27 document a Python code project.

Here is the context for the second error message, regarding line 95:

73 Manually Initiating a ``docs`` directory with ``sphinx-quickstart``
74 ---
75
76 The ``sphinx-quickstart`` program gives you an option of separating the soruce
77 directory from other directories. The result is a directory structure that
78 looks like this: ::
79
80 .
81 ├── Makefile
82 ├── build
83 └── source
84 ├── README.rst
85 ├── _static
86 ├── _templates
87 ├── conf.py
88 ├── developing.rst
89 ├── index.rst
90 ├── intro.rst
91 ├── license.rst
92 └── quickstart.rst
93
94 4 directories, 8 files
95 ..
96

As you can see, there is no blank line before the end of the literal block that
ends on line 94 and before the reST comment tag (..) on line 25 (the one
identified in the error message).

This is a simple error, but it happens quite frequently when inserting literal
text examples. If need be, go back and re-read Sphinx Style Guide [http://documentation-style-guide-sphinx.readthedocs.org/en/latest/style-guide.html] and
Documenting Your Project Using Sphinx [https://pythonhosted.org/an_example_pypi_project/sphinx.html] every now and then when you are
starting out to get a refresher, and also have a browser window up with the
The reStructuredText_ Cheat Sheet: Syntax Reminders [http://docutils.sourceforge.net/docs/user/rst/cheatsheet.txt] or Quick
reStructuredText [http://docutils.sourceforge.net/docs/user/rst/quickref.html] quick reference guide to help while writing reST documents.

6.5.2. Link errors

A more subtle problem that comes up frequently when creating
links to reference material in Sphinx documents is this
error:

/Users/dittrich/git/dims-ci-utils/docs/source/intro.rst:274: ERROR: Unknown
target name: "the restructuredtext_ cheat sheet: syntax reminders".

See if you can spot the reason why by looking very closely at lines
274 and 323 before reading the explanation that follows:

...
273 are starting out to get a refresher, and also have a browser window
274 up with the `The reStructuredText_ Cheat Sheet: Syntax Reminders`_ or
275 `Quick reStructuredText`_ quick reference guide to help while
276 writing reST documents.
...
321 .. _Sphinx Tutorial v0.1: http://brandons-sphinx-tutorial.readthedocs.org/en/v0.1/
323 .. _The reStructuredText_ Cheat Sheet: Syntax Reminders: http://docutils.sourceforge.net/docs/user/rst/cheatsheet.txt
324 .. _Quick reStructuredText: http://docutils.sourceforge.net/docs/user/rst/quickref.html

Unlike the links on lines 321 and 324, the target string specified on
line 323 has two colons in it. This causes Sphinx to parse the line
incorrectly (which in turn causes the Unknown target name error
to be triggered). The error is not really on line 274, but is
actually on line 323! It just presents itself as a missing target
error on line 274. The solution is to make sure that all colons in
targets for links are escaped, except the one before
the URL, like this:

323 .. _The reStructuredText_ Cheat Sheet\: Syntax Reminders: http://docutils.sourceforge.net/docs/user/rst/cheatsheet.txt

6.5.3. LaTeX image errors

You may get errors rendering LaTeX PDF documents that include
image files. Such an error may look like this:

[dittrich@localhost docs (feature/docs)]$ make latexpdf
sphinx-build -b latex -d build/doctrees source build/latex
Running Sphinx v1.2.3

...

Running LaTeX files through pdflatex...
/Applications/Xcode.app/Contents/Developer/usr/bin/make -C build/latex all-pdf
pdflatex 'DIMSCIUtilities.tex'
This is pdfTeX, Version 3.14159265-2.6-1.40.15 (TeX Live 2014/MacPorts 2014_4) (preloaded format=pdflatex)

...

Chapter 1.
[3] [4] (/opt/local/share/texmf-texlive/tex/latex/psnfss/ts1pcr.fd) [5]

pdfTeX warning: pdflatex: arithmetic: number too big
! Dimension too large.
<argument> \ht \@tempboxa

l.348 ...=0.800\linewidth]{images/DD_home_page_small.png}

? q
OK, entering \batchmodemake[1]: *** [DIMSCIUtilities.pdf] Error 1
make: *** [latexpdf] Error 2

The solution to this [http://tex.stackexchange.com/questions/51164/dimension-too-large-on-a-png-figure-under-xelatex-and-beamer] is to use mogrify -density 90 DD_home_page_small.png
to fix the image resolution metadata in the PNG file.

6.5.4. LaTeX Unicode rendering errors

Another error message that could occur when rendering the kind of
text in the code-block seen in Section Typographic errors relates to
the Unicode characters produced by the tree program to show the indentation
levels.

Here is an error message (with the specific lines highlighted) that can show up
in a Jenkins build process FAILURE message:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	Running LaTeX files through pdflatex...
make -C build/latex all-pdf
make[1]: Entering directory `/var/lib/jenkins/jobs/dims-docs-deploy/workspace/ansible-playbooks/docs/build/latex'
pdflatex 'AnsiblePlaybooksRepository.tex'
This is pdfTeX, Version 3.1415926-1.40.10 (TeX Live 2009/Debian)
entering extended mode
(./AnsiblePlaybooksRepository.tex

...

Underfull \hbox (badness 10000) in paragraph at lines 819--822
[]\T1/ptm/m/n/10 While it is not re-quired to in-stall dims-ci-utils, you prob-
a-bly will want to run the play-book
[11] [12] [13]

! Package inputenc Error: Unicode char \u8:â”œ not set up for use with LaTeX.

See the inputenc package documentation for explanation.
Type H <return> for immediate help.
 ...

l.1040 â”œ-- defaults

?
! Emergency stop.
 ...

l.1040 â”œ-- defaults

! ==> Fatal error occurred, no output PDF file produced!
Transcript written on AnsiblePlaybooksRepository.log.
make[1]: *** [AnsiblePlaybooksRepository.pdf] Error 1
make[1]: Leaving directory `/var/lib/jenkins/jobs/dims-docs-deploy/workspace/ansible-playbooks/docs/build/latex'
make: *** [latexpdf] Error 2
Build step 'Custom Python Builder' marked build as failure
Warning: you have no plugins providing access control for builds, so falling back to legacy behavior of permitting any downstream builds to be triggered
Finished: FAILURE

Here is the specific block of text that triggered the rendering
error message:

 .. code-block:: bash

 ── defaults
 ── main.yml
 ── files
 ── base-requirements.txt
 ── debian-virtualenv-prereqs.sh
 ── dimsenv-requirements.txt
 ── macos-virtualenv-prereqs.sh
 ── meta
 ── main.yml
 ── tasks
 ── main.yml
 ── post_tasks.yml -> ../../../dims/post_tasks.yml
 ── pre_tasks.yml -> ../../../dims/pre_tasks.yml
 ── templates
 ── bashrc.dims.virtualenv.j2
 ── builddimsenvmod.sh.j2

 ..

The problem is that the long-dash character is not defined to
LaTeX. This is done in the Sphinx conf.py file, and all DIMS
documents should include these definitions because we frequently
embed output of tree, which uses Unicode characters for line
drawing. (Not all do, which causes random failures when adding text to
Sphinx documents.)

 latex_elements = {
 ...
 # Additional stuff for the LaTeX preamble.
 #
 # The following comes from
 # https://github.com/rtfd/readthedocs.org/issues/416
 #
 'preamble': "".join((
 '\DeclareUnicodeCharacter{00A0}{ }', # NO-BREAK SPACE
 '\DeclareUnicodeCharacter{2014}{\dash}', # LONG DASH
 '\DeclareUnicodeCharacter{251C}{+}', # BOX DRAWINGS LIGHT VERTICAL AND RIGHT
 '\DeclareUnicodeCharacter{2514}{+}', # BOX DRAWINGS LIGHT UP AND RIGHT
)),
 }

Note

See http://tex.stackexchange.com/questions/34604/entering-unicode-characters-in-latex

6.5.5. “LaTeX is not a TTY” errors

Another variation of errors during LaTeX rendering presents itself similarly
to the previous error, but the problem is due to inability to map a Unicode
character to a LaTeX macro: the problem is due to directly (or indirectly)
sending output saved from Unix command line programs that do fancy things
like coloring characters, etc, using ANSI escape sequences. While a terminal
program that uses the Unix TTY subsystem may handle the ANSI escape
sequences, and HTML renderers may know how to handle the ANSI escape
sequences, LaTeX does not. Here is an example of this problem, excerpted
from a Jenkins build job email message:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	 Started by user anonymous
 [EnvInject] - Loading node environment variables.
 Building in workspace /var/lib/jenkins/jobs/dims-docs-deploy/workspace

 Deleting project workspace... done

 [workspace] $ /bin/bash -xe /tmp/shiningpanda5607640542889107840.sh
 + jenkins.logmon
 [workspace] $ /bin/bash -xe /tmp/shiningpanda5535708223044870299.sh
 + jenkins.dims-docs-deploy
 [+++] jenkins.dims-docs-deploy: Deploying documentation
 [+++] jenkins.dims-docs-deploy: Get global vars from jenkins.dims-defaults.
 [+++] jenkins.dims-defaults Default variables
 [+++] PLAYBOOKSREPO=ansible-playbooks
 [+++] INVENTORYREPO=ansible-inventory
 [+++] GITURLPREFIX=git@git.devops.develop:/opt/git/
 [+++] MASTERBRANCH=master
 [+++] DEVBRANCH=develop
 [+++] DEVHOSTS=development
 [+++] MASTERHOSTS=production
 [+++] DEFAULTHOSTFILE=development
 [+++] DEFAULTANSIBLEBRANCH=develop
 [+++] DEFAULTINVENTORYBRANCH=develop
 [+++] DEFAULTREMOTEUSER=ansible

 ...
 ! Package inputenc Error: Keyboard character used is undefined
 (inputenc) in inputencoding `utf8'.

 See the inputenc package documentation for explanation.
 Type H <return> for immediate help.
 ...

 l.5790 ...dl{}GIT/dims\PYGZhy{}dockerfiles/configu

 ! ==> Fatal error occurred, no output PDF file produced!
 Transcript written on UsingDockerinDIMS.log.
 make[1]: *** [UsingDockerinDIMS.pdf] Error 1
 make[1]: Leaving directory `/var/lib/jenkins/jobs/dims-docs-deploy/workspace/dims-dockerfiles/docs/build/latex'
 make: *** [latexpdf] Error 2
 Build step 'Custom Python Builder' marked build as failure
 Warning: you have no plugins providing access control for builds, so falling back to legacy behavior of permitting any downstream builds to be triggered
 Finished: FAILURE

To find the line in question (5790, in this case, called out in output
line 34 above), manually trigger a LaTeX PDF build from the Sphinx
document and then look for the LaTeX source file that corresponds with the
PDF file name (seen in output line 38 above) in the build/latex subdirectory
(in this case, it would be
$GIT/dims-dockerfiles/docs/build/latex/UsingDockerinDIMS.tex) to
find the character that causes the error:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

	 [dimsenv] ~/dims/git/dims-dockerfiles/docs (develop) $ make latexpdf

 ...

 ! Package inputenc Error: Keyboard character used is undefined
 (inputenc) in inputencoding `utf8'.

 See the inputenc package documentation for explanation.
 Type H <return> for immediate help.
 ...

 l.5789 ...dl{}GIT/dims\PYGZhy{}dockerfiles/configu

 ? ^Cmake[1]: *** Deleting file `UsingDockerinDIMS.pdf'
 ^Z
 [1]+ Stopped make latexpdf
 [dimsenv] ~/dims/git/dims-dockerfiles/docs (develop) $ kill -9 %1
 [1]+ Killed: 9 make latexpdf
 [dimsenv] ~/dims/git/dims-dockerfiles/docs (develop) $ pr -n build/latex/UsingDockerinDIMS.tex | less

 ...

 5780 * VPN \PYGZsq{}01\PYGZus{}uwapl\PYGZus{}dimsdev2\PYGZsq{} is running
 5781 * VPN \PYGZsq{}02\PYGZus{}prsm\PYGZus{}dimsdev2\PYGZsq{} is running
 5782 [+++] Sourcing /opt/dims/etc/bashrc.dims.d/bashrc.dims.virtualenv ...
 5783 [+++] Activating DIMS virtual environment (dimsenv) [ansible\PYGZhy{}playbooks v1.2.93]
 5784 [+++] (Create file /home/mboggess/.DIMS\PYGZus{}NO\PYGZus{}DIMSENV\PYGZus{}ACTIVATE to disable)
 5785 [+++] Virtual environment \PYGZsq{}dimsenv\PYGZsq{} activated [ansible\PYGZhy{}playbooks v1.2.93]
 5786 [+++] /opt/dims/bin/dims.install.dimscommands: won\PYGZsq{}t try to install scripts in /opt/dims
 5787 [+++] Sourcing /opt/dims/etc/bashrc.dims.d/git\PYGZhy{}prompt.sh ...
 5788 [+++] Sourcing /opt/dims/etc/bashrc.dims.d/hub.bash\PYGZus{}completion.sh ...
 5789 ESC[1;34m[dimsenv]ESC[0m ESC[1;33mmboggess@dimsdev2:\PYGZti{}/core\PYGZhy{}localESC[0m () \PYGZdl{} bash \PYGZdl{}GIT/dims\PYGZhy{}dockerfiles/configu
 5790 rations/elasticsearch/setup\PYGZus{}cluster.sh
 5791
 5792 elasticsearch@.service 0\PYGZpc{} 0 0.0KB/s \PYGZhy{}\PYGZhy{}:\PYGZhy{}\PYGZhy{} ETA
 5793 elasticsearch@.service 100\PYGZpc{} 1680 1.6KB/s 00:00
 5794
 5795 start\PYGZus{}elasticsearch\PYGZus{}cluster.sh 0\PYGZpc{} 0 0.0KB/s \PYGZhy{}\PYGZhy{}:\PYGZhy{}\PYGZhy{} ETA
 5796 start\PYGZus{}elasticsearch\PYGZus{}cluster.sh 100\PYGZpc{} 75 0.1KB/s 00:00
 5797 ESC[1;34m[dimsenv]ESC[0m ESC[1;33mmboggess@dimsdev2:\PYGZti{}/core\PYGZhy{}localESC[0m () \PYGZdl{} vagrant ssh core\PYGZhy{}01 \PYGZhy{}\PYGZhy{} \PYGZhy{}A
 5798 VM name: core\PYGZhy{}01 \PYGZhy{} IP: 172.17.8.101
 5799 Last login: Wed Sep 9 13:50:22 2015 from 10.0.2.2
 5800
 5801 CoreESC[38;5;206mOESC[38;5;45mSESC[39m alpha (794.0.0)
 5802 ESC]0;core@core\PYGZhy{}01:\PYGZti{}^GESC[?1034hESC[01;32mcore@core\PYGZhy{}01ESC[01;34m \PYGZti{} \PYGZdl{}ESC[00m ls
 5803 ESC[0mESC[01;34minstancesESC[0m start\PYGZus{}elasticsearch\PYGZus{}cluster.sh ESC[01;34mstaticESC[0m ESC[01;34mtemplatesESC[0m
 5804 ESC]0;core@core\PYGZhy{}01:\PYGZti{}^GESC[01;32mcore@core\PYGZhy{}01ESC[01;34m \PYGZti{} \PYGZdl{}ESC[00m bash start\PYGZus{}elasticsearch\PYGZus{}cluster.sh
 5805 ESC]0;core@core\PYGZhy{}01:\PYGZti{}^GESC[01;32mcore@core\PYGZhy{}01ESC[01;34m \PYGZti{} \PYGZdl{}ESC[00m ESC[Ketcdctl cluster\PYGZhy{}hea
 ...

Note

Pay close attention to the commands used to reproduce the error that Jenkins
encountered from the command line. LaTeX, which is being invoked by Sphinx
(a Python program that invokes pdflatex as a subprocess) has some
problems getting the CTRL-C character (see line 14). To work around this,
do the following:

	Suspend the process with CTRL-Z (see line 15).

	Identify the suspended job’s number found within the square brackets on
line 16: ([1]+ Stopped ..., in this case, job 1).

	Use the kill command (see man kill and man signal) to send
the -9 (non-maskable interrupt) signal to the suspended job
(see line 17).

	Use pr -n to add line numbers to the file and pass the output
to a pager like less to find the line number called out by
LaTeX (see lines 19 and 32).

As can be seen in line 32 above, the escape sequence ESC[1;34m (set
foreground color ‘Blue’: see Bash Prompt HOWTO: Chapter 6. ANSI Escape
Sequences: Colours and Cursor Movement [http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/x329.html]) is causing LaTeX to fail.

The moral of the story is, only send properly mapped Unicode and/or UTF-8/ASCII
text to Sphinx, so that when it does not fail when it invokes LaTeX.

Note

You can strip ANSI escape sequences in many ways. Google “strip ANSI
escape sequences” to find some. Another way to handle this is to
disable colorizing, or cut/paste command output as simple text
rather than capturing terminal output with programs like
script.

6.6. Common Tasks

6.6.1. Creating figures with thumbnails with links to larger images

Dave Dittrich’s home page [https://staff.washington.edu/dittrich/] has a section with images, which
uses low-resolution version for the main page and keeps the
high-resolution image in a separate _download directory
to be used as targets in the captions of those thumbnails.
Here is a partial directory listing:

[dittrich@localhost sphinx (master)]$ tree
.
├── Makefile
├── _build
├── _download
├── . . .
├── images
│ ├── Black_Mamba_Vienna-small.jpg
│ ├── Black_Mamba_Vienna.jpg
│ ├── Climbing_Gym_Manchester-small.jpg
│ ├── Climbing_Gym_Manchester.jpg
│ ├── DCA_Sunset-small.jpg
│ ├── DCA_Sunset.jpg
│ ├── QR-code-security-QR-code.gif
│ ├── QR-code-security-QR-code.png
│ ├── Sagrada_Familia_Barcelona-small.jpg
│ ├── Sagrada_Familia_Barcelona.jpg
│ ├── Screen-Shot-2014-12-31-at-1.15.34-PM.png
│ ├── Seattle_Sunset_1-small.jpg
│ ├── Seattle_Sunset_1.jpg
│ ├── Seattle_Sunset_2-small.jpg
│ ├── Seattle_Sunset_2.jpg
│ ├── T-Rex-Chicago-small.jpg
│ ├── T-Rex-Chicago.jpg
│ ├── UW-Memorial-Way-Northbound-small.jpg
│ ├── UW-Memorial-Way-Northbound.jpg
│ ├── WA_OR_Volcanoes-small.jpg
│ ├── WA_OR_Volcanoes.jpg
│ ├── . . .
│ └── weber_guy.png
├── images.rst
├── . . .
└── www.rst

Here is how the figure with link works:

.. figure:: images/DD_home_page_small.jpg
 :alt: Dave Dittrich's home page
 :width: 80%
 :align: center

 A screen shot of Dave Dittrich's home page.
 :download:`Full size image <images/DD_home_page.png>

[image: Dave Dittrich's home page]
A screen shot of Dave Dittrich’s home page.
Full size image

Note

Mouse over the image and right click and you will get the small
image. Mouse over the words Full size image in the caption
and right click and you get the... well, yes... full size image.

Note

The small version of an image can be created using ImageMagick’s
convert program like this:

$ convert DD_home_page.png -resize 50% DD_home_page_small.jpg

6.6.2. Section numbering

Sphinx does not render HTML documents with section numbers by default, but
it will render LaTeX PDF documents with section numbers. To make these both
consistent, add the :numbered: option to the toctree directive:

Contents:

.. toctree::
 :numbered:
 :maxdepth: 2

See http://sphinx-doc.org/markup/toctree.html and http://stackoverflow.com/questions/20061577/sphinx-section-numbering-for-more-than-level-3-headings-sectnum

6.6.3. Converting HTML content to Sphinx reST files

Many of the DIMS project documents are created using templates described in A
forgotten military standard that saves weeks of work (by providing free project
management templates) [http://kkovacs.eu/free-project-management-template-mil-std-498], by Kristof Kovacs. Kovacs’ web site has HTML versions
of each of these templates in a ZIP archive. Download the archive and
unpack it. Using the program html2rest, you can convert these documents
to a reST format document.

Warning

The format of these HTML files is not parsed properly by html2rest,
at least not without some pre-processing. Strip out the HTML break
tags using the following commands:

$ sed 's|
||g' ~/MIL-STD-498-templates-html-master/SRS.html > SRS.html
$ html2rest SRS.html > SRS.rst-orig

Once converted, you can now split the file SRS.rst-orig into separate
sections, enable section numbering with the :numbered: option to the
toctree directive and strip off the hard-coded numbers from sections,
and add labels for sections (for cross-referencing). Here is an example of
before and after for one such section from SRS.html:

Section 5 from the original HTML:

<h1>5. Requirements traceability.</h1>
<p>This paragraph shall contain:
<ol type="a">
 Traceability from each CSCI requirement in this specification to the system (or subsystem, if applicable) requirements it addresses. (Alternatively, this traceability may be provided by annotating each requirement in Section 3.)

 Note: Each level of system refinement may result in requirements not directly traceable to higher-level requirements. For example, a system architectural design that creates multiple CSCIs may result in requirements about how the CSCIs will interface, even though these interfaces are not covered in system requirements. Such requirements may be traced to a general requirement such as "system implementation" or to the system design decisions that resulted in their generation.
 Traceability from each system (or subsystem, if applicable) requirement allocated to this CSCI to the CSCI requirements that address it. All system (subsystem) requirements allocated to this CSCI shall be accounted for. Those that trace to CSCI requirements contained in IRSs shall reference those IRSs.

</p>

Section 5 from SRS.rst-orig after conversion with html2rest:

5. Requirements traceability.
=============================

This paragraph shall contain:

#. Traceability from each CSCI requirement in this specification to
 the system (or subsystem, if applicable) requirements it addresses.
 (Alternatively, this traceability may be provided by annotating each
 requirement in Section 3.) Note: Each level of system refinement may
 result in requirements not directly traceable to higher-level
 requirements. For example, a system architectural design that creates
 multiple CSCIs may result in requirements about how the CSCIs will
 interface, even though these interfaces are not covered in system
 requirements. Such requirements may be traced to a general requirement
 such as "system implementation" or to the system design decisions that
 resulted in their generation.
#. Traceability from each system (or subsystem, if applicable)
 requirement allocated to this CSCI to the CSCI requirements that
 address it. All system (subsystem) requirements allocated to this CSCI
 shall be accounted for. Those that trace to CSCI requirements
 contained in IRSs shall reference those IRSs.

Section 5 in a separate file traceability.rst:

.. _traceability:

Requirements traceability
=========================

This paragraph shall contain:

#. Traceability from each CSCI requirement in this specification to
 the system (or subsystem, if applicable) requirements it addresses.
 (Alternatively, this traceability may be provided by annotating each
 requirement in Section :ref:`requirements`.)

 .. note::

 Each level of system refinement may result in requirements not directly
 traceable to higher-level requirements. For example, a system
 architectural design that creates multiple CSCIs may result in
 requirements about how the CSCIs will interface, even though these
 interfaces are not covered in system requirements. Such requirements may
 be traced to a general requirement such as "system implementation" or to
 the system design decisions that resulted in their generation.

#. Traceability from each system (or subsystem, if applicable)
 requirement allocated to this CSCI to the CSCI requirements that
 address it. All system (subsystem) requirements allocated to this CSCI
 shall be accounted for. Those that trace to CSCI requirements
 contained in IRSs shall reference those IRSs.

The rendered HTML for section 5 can be seen in the
figure Correct rendering of note within list.

6.6.4. Referencing subsections or figures

In the last example covered in section Converting HTML content to Sphinx reST files, note the label
definition .. _traceability: right before the section heading Requirements
traceability. A reference to this label will result in the section heading
being used as the text for the hyperlink. This section itself is preceded by
the label referencinglabels, which is rendered on reference as
Referencing subsections or figures. This is the way to reference a sub-section (or figure,
table, etc.) of a document.

Note

The section Cross-referencing between documents with the sphinx.ext.intersphinx extension builds on this concept of linking
to arbitrary locations in a file by label.

6.7. Common Problems

6.7.1. Improperly referencing links to external documents

Sphinx documents are used to produce HTML, but reST itself
is not like HTML in terms of links to external references. An HTML
document may have many HREF elements that all have the same
text to represent the hyperlink, but links in reST documents
produce targets that can be cross-referenced from multiple places
and need to be unique.

Here is output of sphinx-autobuild showing this problem:

+--------- source/.vmprovisioning.rst.swp changed -------------------------------
/Users/dittrich/git/dims-ci-utils/docs/source/vmprovisioning.rst:3: WARNING: Duplicate explicit target name: "here".
/Users/dittrich/git/dims-ci-utils/docs/source/vmprovisioning.rst:3: WARNING: Duplicate explicit target name: "here".

This message reports that the target name help has been duplicated twice
within the text (meaning it occurs three times in definitions).

Note

The line number reported is not accurate for some reason. It is not actually on line 3 in vmprovisioning.rst.

Here are the three occurrances of the target help in the file:

 [...]

 When a new VM is created from base.ovf via import, it will of course
 inherit the complete hard drive contents from the OVF. If the import
 is done without the ``keepnatmacs`` option, the new VM will have a new
 MAC address, which will then *not* match the details in the udev file,
 at which point the VM's network configuration will appear broken.
 This issue is a known one, see e.g. `here
 <http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1032790>`_
 or simply Google **ubuntu udev vm**.

 [...]

 Again ``packer`` is used to build the ``base-keyed`` OVF from the base OVF.
 We also perform an extra step (see ``base-keyed/base-keyed.json``) in
 converting the OVF to a Vagrant box file. Further, we use the merged
 ``Vagrantfile`` idiom (Packer instructions `here
 <https://www.packer.io/docs/post-processors/vagrant.html>`_ and
 Vagrant description `here
 <https://docs.vagrantup.com/v2/vagrantfile/>`_) to embed SSH
 credentials into the box file itself. These are then available to
 every Vagrant-managed VM created from that box file. This eliminates
 the need to manage (via manual or automated edits) SSH user name and
 private key name in each/every ``Vagrantfile`` spawned from this box.

 [...]

These three links can all be made unique like this:

 [...]

 When a new VM is created from base.ovf via import, it will of course
 inherit the complete hard drive contents from the OVF. If the import
 is done without the ``keepnatmacs`` option, the new VM will have a new
 MAC address, which will then *not* match the details in the udev file,
 at which point the VM's network configuration will appear broken.
 This issue is a known one, as seen in the VMWare Knowledge base article
 `Networking fails after cloning an Ubuntu virtual machine (1032790)`_
 or simply Google **ubuntu udev vm**.

 [...]

 Again ``packer`` is used to build the ``base-keyed`` OVF from the base OVF.
 We also perform an extra step (see ``base-keyed/base-keyed.json``) in
 converting the OVF to a Vagrant box file. Further, we use the merged
 ``Vagrantfile`` idiom to embed SSH credentials into the box file itself.
 (See the Packer documentation on the `Vagrant Post-Processor`_ and
 Vagrant documentation on the `Vagrantfile`_.)
 These are then available to
 every Vagrant-managed VM created from that box file. This eliminates
 the need to manage (via manual or automated edits) SSH user name and
 private key name in each/every ``Vagrantfile`` spawned from this box.

 [...]

 .. _Networking fails after cloning an Ubuntu virtual machine (1032790): http://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1032790
 .. _Vagrant Post-Processor: https://www.packer.io/docs/post-processors/vagrant.html
 .. _Vagrantfile: https://docs.vagrantup.com/v2/vagrantfile/

6.7.2. Not having the proper white space around literal blocks

We saw this example, and how to fix it, in Section Fixing errors.

6.7.3. Using inconsistent indentation in literal blocks and directives

Say you are trying to create a list, and you want to include
notes or warnings in one of the list items. Here are examples of
the wrong and right way to do this.

Source code (incorrect indentation within list):

.. _traceability:

Requirements traceability
=========================

This paragraph shall contain:

#. Traceability from each CSCI requirement in this specification to
 the system (or subsystem, if applicable) requirements it addresses.
 (Alternatively, this traceability may be provided by annotating each
 requirement in Section :ref:`requirements`.)

.. note::

 Each level of system refinement may result in requirements not directly
 traceable to higher-level requirements. For example, a system
 architectural design that creates multiple CSCIs may result in
 requirements about how the CSCIs will interface, even though these
 interfaces are not covered in system requirements. Such requirements may
 be traced to a general requirement such as "system implementation" or to
 the system design decisions that resulted in their generation.

#. Traceability from each system (or subsystem, if applicable)
 requirement allocated to this CSCI to the CSCI requirements that
 address it. All system (subsystem) requirements allocated to this CSCI
 shall be accounted for. Those that trace to CSCI requirements
 contained in IRSs shall reference those IRSs.

[image: Incorrect rendering of note within list]
Incorrect rendering of note within list

Source code (correct indentation within list):

.. _traceability:

Requirements traceability
=========================

This paragraph shall contain:

#. Traceability from each CSCI requirement in this specification to
 the system (or subsystem, if applicable) requirements it addresses.
 (Alternatively, this traceability may be provided by annotating each
 requirement in Section :ref:`requirements`.)

 .. note::

 Each level of system refinement may result in requirements not directly
 traceable to higher-level requirements. For example, a system
 architectural design that creates multiple CSCIs may result in
 requirements about how the CSCIs will interface, even though these
 interfaces are not covered in system requirements. Such requirements may
 be traced to a general requirement such as "system implementation" or to
 the system design decisions that resulted in their generation.

#. Traceability from each system (or subsystem, if applicable)
 requirement allocated to this CSCI to the CSCI requirements that
 address it. All system (subsystem) requirements allocated to this CSCI
 shall be accounted for. Those that trace to CSCI requirements
 contained in IRSs shall reference those IRSs.

[image: Correct rendering of note within list]
Correct rendering of note within list

6.7.4. Having multiple colons in link target labels

It is easy to get used to using directives like .. figure::
or .. note:: and placing the double-colon after them.
Labels look similar, but are not directives. They also have
the underscore in front of them and should look like:

.. _label:

This is a reference to :ref:`label`.

6.8. Advanced Use of Sphinx Features

This section discusses more advanced features of Sphinx to accomplish
particular tasks.

To illustrate two cases, consider the following:

	During DIMS development, there will be (1) a DIMS instance for
developers to use, (2) another DIMS instance for test and
evaluation prior to release, and (3) yet another instance
for user acceptance and functional testing that will be used
by the PRISEM user base.

	In production, there will be an instance of DIMS deployed for
different groups in multiple parts of the country, each with
their own name, organizational structure and policies, etc.

In order to produce documentation that provides a sufficient level of precise
detail so as to be immediately useful, documents for DIMS will need to be build
by doing parameterized construction of documentation based on case-specific
parameters.

Put yourself in a DIMS user’s shoes. Which of the following two examples
would be more useful to you?

Note

To access the DIMS front end, connect your browser to:
https://dims.example.com:12345/dimsapi/

Note

To access the DIMS front end, connect your browser to
the specific host and port configured for the
login portal server, followed by the string “/dimsapi/”. Ask
your site administrator for the details.

Every instantiation of the full DIMS system (comprised of many separate service
components) will be unique in several run-time aspects. Each will have its own
IP address block, its own top level Domain Name System name, its own
organizational name, its own policies and its own membership. That is just a
start. One set of documentation cannot possibly be generalized in a way that
it can be used by everyone, without reading like the second example above. Each
instantiation needs its own uniquely produced documentation, which means
documenation must be configured just like the system itself is configured.
If the documentation must be hand-edited for each user, that places a huge
burden on those wanting to implement DIMS and the system will not be used
widely enough to have the intended impact.

6.8.1. Cross-referencing between documents with the sphinx.ext.intersphinx extension

ReST supports Cross-referencing arbitrary locations [http://sphinx-doc.org/markup/inline.html?highlight=ref#role-ref] within a document using
:ref:. To reference arbitrary locations (by their label) in other documents
requires the Sphinx extension sphinx.ext.intersphinx.
(See the documentation for sphinx.ext.intersphinx [http://sphinx-doc.org/ext/intersphinx.html] and Section
Referencing subsections or figures for more on labels.)

Intersphinx links allow, for example, cross referencing a test in the Test Plan
document to a requirement or user story in the Requirements document to provide
requirements traceability in testing.

6.8.1.1. Mapping URLs to documents

The first step is to enable the extension by making sure it
is included in the conf.py file:

 # Add any Sphinx extension module names here, as strings. They can be
 # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
 # ones.
 extensions = [
 'sphinx.ext.autodoc',
 'sphinx.ext.doctest',
 'sphinx.ext.todo',
 'sphinx.ext.intersphinx',
 'sphinx.ext.graphviz',
 'sphinx.ext.ifconfig',
]

When you build HTML output, any labels that are defined in your reST files e
recorded in an inventory file. By default, the inventory is named
objects.inv.

To cross-reference the objects.inv files from other documents
requires a mapping of these inventories to symbolic name to
define a label namespace for use in :ref: directives.

Note

You may use multiple targets for each inventory file, which is necessary
when you are building multiple documents locally before they have been
published in their final internet-accessible web site (e.g, the Read the
Docs site). Obviously, if the remote inventory does not exist, it cannot be
used (but when it does exist, you may want to use it instead of a local
copy). Documents built automatically for publication with Jenkins
would not have local copies, so they automatically would link with remote
versions.

Warning

Because of the chicken/egg problem just described, document sets
that are to be cross-linked would need to be rendered twice in
order to first generate the inventory file that is used by
other documents that reference it, and to get those inventories
from the other documents in order to reference them. This is similar
to how LaTeX works, where the recommendation is to run pdflatex
twice, then run bibtex for bibliographies, then run pdflatex
one last time to get cross-references and citations set up
properly.

In the example below, both local and remote locations are specified.

Warning

You cannot use ‘-‘ in the symbol that maps the inventory files, so
the following examples simply remove that character from the Git
repo names.

intersphinx_cache_limit = -1 # days to keep the cached inventories (0 == forever)
intersphinx_mapping = {
 'dimsocd': ('http://app.devops.develop:8080/docs/develop/html/dims-ocd',
 ('../../dims-ocd/build/html/objects.inv',None)),
 'dimsad': ('http://app.devops.develop:8080/docs/develop/html/dims-ad',
 ('../../dims-ad/build/html/objects.inv',None)),
 'dimstp': ('http://app.devops.develop:8080/docs/develop/html/dims-tp',
 ('../../dims-tp/build/html/objects.inv',None))
}

6.8.1.2. Linking to the label

In the reST document (in this case, the referenceddocs.rst file),
normal :ref: directives are used, but the target of the :ref:
includes the name of the inventory prepended to the label so as
to map to the proper URL. The first reference in this example
maps to the Operational Concept Description document:

 .. _referenceddocs:

 Referenced Documents
 ====================

 The following documents describe the DIMS project and provide background
 material related to tasking.

 #. :ref:`dimsocd:dimsoperationalconceptdescription`

 #. :ref:`dimsad:dimsarchitecturedesign`

 #. :ref:`dimstp:dimstestplan`

 #. HSHQDC-13-C-B0013, "From Local to Gobal Awareness: A Distributed Incident Management System," Draft contract, Section C - Statement of Work (marked up version)

 #. MIL-STD-498, Military Standard Software Development and Documentation,
 AMSC No. N7069, Dec. 1994.

The label dimsoperationalconceptdescription occurs in the index.rst
file on line 3, immediately preceding the title on line 6 (which has the release number
inserted into it).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	 .. DIMS Operational Concept Description documentation master file.

 .. _dimsoperationalconceptdescription:

 ==
 DIMS Operational Concept Description v |release|
 ==

 .. topic:: Executive Summary

 Since HSPD-7 was released in 2003, the Department of Homeland Security has
 had a core mission of working to protect the nationâ€™s critical
 infrastructure. In 2008, the *National Response Framework* was released, and
 ...

The final rendered DIMS System Requirements document has links to
the related DIMS Operational Concept Description, DIMS Architecture
Design, and DIMS Test Plan documents, all with their current
release number visible for precise cross-referencing.

Note

Documents released from the master branch, all at once, will
be easier to trace back to the code base for which they apply.

[image: Rendered intersphinx links]
Rendered intersphinx links

When you build the document, you will see the objects.inv files
being loaded:

(dimsenv)[dittrich@localhost dims-sr (develop)]$ make html
Makefile:27: warning: overriding commands for target `help'
/opt/dims/etc/Makefile.dims.global:48: warning: ignoring old commands for target `help'
sphinx-build -b html -d build/doctrees source build/html
Running Sphinx v1.3.1+
loading pickled environment... done
loading intersphinx inventory from http://app.devops.develop:8080/docs/develop/html/dims-ocd/objects.inv...
loading intersphinx inventory from http://app.devops.develop:8080/docs/develop/html/dims-ad/objects.inv...
loading intersphinx inventory from http://app.devops.develop:8080/docs/develop/html/dims-tp/objects.inv...
building [mo]: targets for 0 po files that are out of date
building [html]: targets for 0 source files that are out of date
updating environment: [config changed] 8 added, 0 changed, 0 removed
reading sources... [12%] appendices
reading sources... [25%] index
...

6.8.2. Insertion of text using direct substitution

Sphinx has ways of producing customized output when documents are built
using direct textual substitution, and through execution of programs from
within Sphinx. The simplest method is direct substitution.

Say you want a copyright symbol in a document. You start by
selecting or creating a file that maps strings surrounded by
pipe characters to some other string. There is a file called
isonum.txt that does this for many Unicode characters,
like the copyright symbol. The first 20 lines of this file
look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 .. This data file has been placed in the public domain.
 .. Derived from the Unicode character mappings available from
 <http://www.w3.org/2003/entities/xml/>.
 Processed by unicode2rstsubs.py, part of Docutils:
 <http://docutils.sourceforge.net>.

 .. |amp| unicode:: U+00026 .. AMPERSAND
 .. |apos| unicode:: U+00027 .. APOSTROPHE
 .. |ast| unicode:: U+0002A .. ASTERISK
 .. |brvbar| unicode:: U+000A6 .. BROKEN BAR
 .. |bsol| unicode:: U+0005C .. REVERSE SOLIDUS
 .. |cent| unicode:: U+000A2 .. CENT SIGN
 .. |colon| unicode:: U+0003A .. COLON
 .. |comma| unicode:: U+0002C .. COMMA
 .. |commat| unicode:: U+00040 .. COMMERCIAL AT
 .. |copy| unicode:: U+000A9 .. COPYRIGHT SIGN
 .. |curren| unicode:: U+000A4 .. CURRENCY SIGN
 .. |darr| unicode:: U+02193 .. DOWNWARDS ARROW
 .. |deg| unicode:: U+000B0 .. DEGREE SIGN
 .. |divide| unicode:: U+000F7 .. DIVISION SIGN

Note

This is how to visually parse line 16: The ..
at the start to indicate a reST directive is
being used, |copy| as the string to match,
unicode:: U+000A9 as a reST directive for a Unicode
character, and .. COPYRIGHT SIGN as a comment that
explains this is the copyright sign. The comment is
unecessary, but helps explain what is being mapped.

You must first include the map before any substitutions will be recognized,
then wherever the string |copy| occurs, the Unicode character U+000A9
will be inserted. Here is a simple example of how to do this:

.. include:: <isonum.txt>

Copyright |copy| 2014-2017 University of Washington. All rights reserved.

This code renders as follows:

Copyright © 2014-2017 University of Washington. All rights reserved.

6.8.3. Insertion of text programmatically

A more complicated way of text substitution is by using the fact
that Sphinx is a Python program, which can include and execute
Python code at run time.

Let’s start by creating a minimial Sphinx doc set using
sphinx-quickstart.

We then modify the conf.py file by uncommenting the
path modification line as follows:

add these directories to sys.path here. If the directory is relative to the
documentation root, use os.path.abspath to make it absolute, like shown here.
sys.path.insert(0, '/opt/dims/etc')

Next, put this line at the very end of the file:

from rst_prolog import *

Create the file /opt/dims/etc/rst_prolog.py and insert
an rst_prolog string that is used by Sphinx before generating
any output files:

rst_prolog = """
.. |dims_ftw| replace:: for the win
"""

Here is a minimal Sphinx file that includes the variable
that we will substitute at compile-time:

.. Sphinx Demo repository documentation master file, created by
 sphinx-quickstart on Tue Dec 30 12:43:11 2014.
 You can adapt this file completely to your liking, but it should at least
 contain the root `toctree` directive.

Welcome to Sphinx Demo repository's documentation!
==

.. toctree::
 :maxdepth: 2

.. include: <rst_prolog>

This is |dims_ftw|!!!

Indices and tables
==================

* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

When you render this file with make html and then load it
with a browser (in this case, lynx), you get the following:

#Welcome to Sphinx Demo repository's documentation! -- Sphinx.. (p1 of 2)
 #Sphinx Demo Repository 1.0 documentation

Navigation

 * index
 * Sphinx Demo Repository 1.0 documentation

Welcome to Sphinx Demo repository's documentation!

This is for the win!!!

Indices and tables

 * Index
 * Module Index
 * Search Page

Table Of Contents
-- press space for next page --
 Arrow keys: Up and Down to move. Right to follow a link; Left to go back.
 H)elp O)ptions P)rint G)o M)ain screen Q)uit /=search [delete]=history list

Warning

When you render this document, Python includes the rst_prolog.py file
(which is actually Python code) and will produce a .pyc file. You may
need to delete it, if and when you remove the associated .py file.

[dittrich@localhost docs (dev)]$ ls -l /opt/dims/etc/
total 24
-rw-r--r-- 1 dims dims 3046 Dec 30 10:11 Makefile.dims.global
-rw-r--r-- 1 dittrich dims 58 Dec 30 15:13 rst_prolog.py
-rw-r--r-- 1 dittrich dims 177 Dec 30 15:14 rst_prolog.pyc

6.8.4. Inserting a graph using Graphviz

Sphinx uses Graphviz [https://en.wikipedia.org/wiki/Graphviz] to render directed and undirected graphs inline in a
document. To insert a graph, create a DOT [https://en.wikipedia.org/wiki/DOT_(graph_description_language)] language file to describe
the graph, then reference the file using the graphviz:: directive.

[image: digraph tools { "DEPLOYING" [shape=rectangle]; "DEVELOPING" [shape=rectangle]; "CONFIGURING" [shape=rectangle]; "OS-ISOs" [shape=rectangle]; "dims-ci-utils" -> "jenkins"; "dims-ci-utils" -> "ansible"; "dims-ci-utils" -> "packer"; "dims-ci-utils" -> "vagrant"; "dims-ci-utils" -> "sphinx"; "dims-ci-utils" -> "git"; "git-extras" -> "git"; "git-flow" -> "git"; "tig" -> "git"; "hub" -> "git"; "OS-ISOs" -> "packer"; "packer" -> "vagrant"; "vagrant" -> "ansible"; "vagrant" -> "DEVELOPING"; "git" -> "DEVELOPING"; "sphinx" -> "DEVELOPING"; "jira" -> "DEVELOPING"; "jira" -> "DEPLOYING"; "jira" -> "CONFIGURING"; "jenkins" -> "DEVELOPING"; "ansible" -> "DEPLOYING"; "jenkins" -> "DEPLOYING"; "dims-ci-utils" -> "CONFIGURING"; "ansible" -> "CONFIGURING"; "jenkins" -> "CONFIGURING"; }]
Relationships between tools and processes in DIMS

THe DOT [https://en.wikipedia.org/wiki/DOT_(graph_description_language)] file for the graph above looks like this:

digraph tools {
 "DEPLOYING" [shape=rectangle];
	"DEVELOPING" [shape=rectangle];
	"CONFIGURING" [shape=rectangle];
	"OS-ISOs" [shape=rectangle];
	"dims-ci-utils" -> "jenkins";
	"dims-ci-utils" -> "ansible";
	"dims-ci-utils" -> "packer";
	"dims-ci-utils" -> "vagrant";
	"dims-ci-utils" -> "sphinx";
	"dims-ci-utils" -> "git";
	"git-extras" -> "git";
	"git-flow" -> "git";
	"tig" -> "git";
	"hub" -> "git";
	"OS-ISOs" -> "packer";
	"packer" -> "vagrant";
 "vagrant" -> "ansible";
 "vagrant" -> "DEVELOPING";
	"git" -> "DEVELOPING";
	"sphinx" -> "DEVELOPING";
	"jira" -> "DEVELOPING";
	"jira" -> "DEPLOYING";
	"jira" -> "CONFIGURING";
	"jenkins" -> "DEVELOPING";
	"ansible" -> "DEPLOYING";
	"jenkins" -> "DEPLOYING";
	"dims-ci-utils" -> "CONFIGURING";
	"ansible" -> "CONFIGURING";
	"jenkins" -> "CONFIGURING";
}

Note

You can find a Gallery [http://ftp.graphviz.org/Gallery.php] of example DOT [https://en.wikipedia.org/wiki/DOT_(graph_description_language)] files at the
Graphviz web site [http://ftp.graphviz.org/Documentation.php] that shows how to do more advanced
things, such as labelled edges [http://ftp.graphviz.org/content/fsm].

7. Continuous Integration

7.1. Continuous Integration

Continuous Integration [http://en.wikipedia.org/wiki/Continuous_integration] is a software engineering process where multiple
developers merge their working code into a coherent system on a regular basis,
allowing for easier testing of code changes and integration of disparate parts
of the system. Using a combination of a build system (Jenkins, in this case)
and triggers invoked by the source code management system (Git, in this case),
a change to source code results in that code being compiled, bundled, and
installed (as necessary) onto the hosts where it needs to run to serve its
function within the system as a whole.

Continuous Integration works well in a software engineering environment
using Agile/Scrum [http://www.perforce.com/company/newsletter/2013/04/beyond-scrum-continuous-integration-build-and-test-automation].

7.2. How source changes are propagated

This section summarizes how changes in source repos are propagated using Jenkins
and Ansible. You can find more information in the documentation for the
ansible-inventory and ansible-playbooks repositories.

Git repos containing DIMS software under development contain “post-receive”
hooks which notify the Jenkins server when changes are pushed to a repository.
We are currently using two kinds of hooks: 1) A general hook which notifies
Jenkins that a push has occured, and 2) A hook which calls a parameterized
Jenkins job when a push has occured.

For the general hook, Jenkins jobs essentially “listen” for the notifications.
A Jenkins job specifies the repository and branch it wishes to be notified
about, as well as optionally specifying particular directory locations it is
monitoring. When a notification is received that matches, the job will
determine if any actually source changes occurred. If so, the job is run.

The “parameterized” hook is used to call a parameterized Jenkins documentation
job when a push is received in a system documentation repository. The Jenkins
job builds the documentation in the repo and deploys it (using Ansible) to any
documentation servers in the system inventory that correspond to the branch
that was updated.

Attention

In general, each repository with DIMS software under development will have
a Jenkins job “listening” for each branch of the repository that we want to
build and deploy continuously. Note that Jenkins jobs can be triggered by
changes to more than one branch, but we found it is unreliable. When using
hubflow to do releases, for example, a job that was supposed to be
triggered by changes in both the master and develop branch only
built the develop branch even though changes had been pushed to both
the master and develop branches. Since we can programmatically
create jobs via the Jenkins Job DSL plugin, it is trivial to create (and
modify) jobs for both the master and develop branches (and other
branches as needed - release branches for testing, for example).

A Jenkins job that builds and deploys updated software from a Git repository
uses Ansible to do the deployment.

Note

We are currently using flat files to define the inventory for a deployment
(a “host” file), although we hope to move to using dynamic inventories.
Either way, we need to define the hosts in a system and group them in ways
that make deployments easy and scalable. (More on this subject can be found
in the ansibleinventory:ansibleinventory documentation.)

Ideally, software in a “develop” branch would be deployed in one or more
development and/or test systems, each defined by a single host file
(inventory). Software in the “master” branch would be deployed to one or more
production or operational systems. One could set up a workflow where release
branches were automatically deployed to a release-test system - where the
software could be tested before final release. (When the code in the release
branch was fully tested and accepted, it would be merged into master
according to the hubflow workflow, which would cause it to be automatically
deployed to production/operational systems).

Figure How software in repositories flows to machines in inventories illustrates this. At the current time, however, we
essentially only have one “system” - a “development” system that has grown
ad hoc and was not created from scratch using our proposed workflows. The
figure shows how we have develop branches of (some) repos also installed in
what we’ve named “prisem”, “project”, and “infrastructure” inventories.
Ideally we would want to consolidate machines under the “development” inventory
if we truly wish to install “develop” branch software automatically on all
these machines. This would make defining jobs in the Jenkins DSL simpler
as well. See the ansibleinventory:ansibleinventory documentation for a
description of our current inventory.

[image: Repos to inventories]
How software in repositories flows to machines in inventories

We define “groups” for machines in inventories. The groups are used by
Ansible to determine whether or not plays should be run on machines in an
inventory. The following figure illustrates this. Machines can be found in
more than one group. The group “all” contains all machines in the inventory.
A playbook that specifies a host of “all” will run on all machines in the
inventory (unless further limited by other means, such as flags passed to
the ansible-playbook command or conditional expressions in a role task). The
dims-ci-utils code, for example, is to be installed on all machines in the
inventory. However, the role that deploys dims-ci-utils restricts a couple
tasks to specific groups of machines. One of those groups is the “git” group.

[image: Git to Ansible groups]
Machines belong to different groups in an inventory

7.3. Continuous deployment of documentation

For our documentation, we currently deploy all docs from all repository
branches to a single VM to make retrieval efficient and to aid in development
of the documentation. Ansible is not used for deployment. We simply use
rsync over SSH to deploy the docs.

The following figure shows the flows involved in documentation deployment.

[image: Documentation deployment]
Diagram of documentation deployment flow.

The workflow runs something like this:

	Push to remote repository runs a post-receive hook.

	Post-receive hook calls the parameterized Jenkins job dims-docs-deploy
if either a branch is deleted or if a branch is updated in a repo that
contains documentation. The job is called twice - once to build html and
once to build PDF.

	Jenkins job dims-deploy-docs runs the script jenkins.docs-deploy

	Script jenkins.docs-deploy clones and checks out the documentation,
builds the documentation, and rsyncs the documentation to the target server.

Documentation is deployed on the target documentation server with the following
directory structure:

/opt/dims/docs/$BRANCH/html/$REPONAME
/opt/dims/docs/$BRANCH/pdf/$REPONAME

Note

$BRANCH only includes the last part of a branch name with the /
delimiter. Therefore, since we use the hubflow branching model, branch
feature/dims-313 is deployed to /opt/dims/docs/dims-313/html/$REPONAME
and /opt/dims/docs/dims-313/pdf/$REPONAME

To view the documentation, you go to https://$HOST:$PORT/docs/$BRANCH/$TYPE/$REPONAME
or go to https://$HOST:$PORT/docs/ and browse the directory tree.

	Currently the Jenkins job defaults to deploying the documentation on

	https://app.devops.develop:8443/docs

The following paragraphs describe this workflow in more detail.

7.3.1. Post-receive hook

The post-receive hook, post-receive-jenkins06alldocs, calls a parameterized
Jenkins job, dims-docs-deploy, when the repository receives a push. The
hook code follows:

The hook determines if the repo contains documentation based upon the existence
of the file $REPO/docs/source/conf.py. This determines the value of
DOCPATH, which is the path in the repository to the Makefile that will
build the docs.

Attention

All DIMS source repositories must have their documentation in a subdirectory
named docs/ in order to simplify the logic of finding and processing
Sphinx documentation.

Once the DOCPATH is determined, two curl commands are sent to Jenkins server
to call the job dims-docs-deploy - once for HTML, and once for PDF.

The hook source is located in dims-ci-utils/git/ and is deployed by the
dims-ci-utils-deploy-$BRANCH jobs.

Note

Currently, we do not have an automated way to add the symlink to the
appropriate repos. The command to do that is:

$ ln -s /opt/git/bin/post-receive-06jenkinsalldocs /opt/git/${REPO}.git/hooks/post-receive-06jenkinsalldocs

7.3.2. Jenkins parameterized job dims-docs-deploy

The parameterized job dims-docs-deploy accepts the following parameters, with the
defaults shown. All parameters are string parameters.

	NAME
	Default Value
	Description

	REPO
	
	Repository to build

	BRANCH
	
	Branch to build

	DOCPATH
	.
	Path to Makefile

	DOCTYPE
	html
	Type of doc to build, html or pdf

	DOCDELETE
	false
	True to delete docs for this branch

	DOCHOST
	app.devops.develop
	Host to receive the docs

	DOCDEST
	/opt/dims/docs
	Root path on host to receive the docs

	DOCURL
	http://app.devops.develop:8443/docs
	URL of docs index

Defaults are given to make it easier to run the job via curl or via the Jenkins
web interface - you don’t need to include all of the parameters unless they
are different than the defaults shown. The post-receive hooks sends the
parameters REPO, BRANCH, DOCPATH, DOCTYPE, and DOCDELETE
when it calls the job.

The dims-docs-deploy job is created via Jenkins DSL, so it is easy to modify if
needed. The Jenkins DSL is located in the file jenkins/DSL/jenkins-dsl.groovy, in
the dims-ci-utils repo. It is automatically run by the Jenkins seed
job dims-seed-job whenever a change is pushed to the
jenkins/DSL directory. In this way, the jobs are always up-to-date.

The portion of jenkins-dsl.groovy that builds the parameterized documentation job
is shown below:

// Parameterized job to build and deploy DIMS documentation
job {
 name 'dims-docs-deploy'
 description ('Job to build and deploy DIMS documenation')
 logRotator(-1, 15, -1, -5)
 parameters {
 stringParam('REPO', '', 'Repository to build')
 stringParam('BRANCH', '', 'Branch of the repo to use')
 stringParam('DOCPATH', '.', 'Path to the doc Makefile from repo root')
 stringParam('DOCTYPE', 'html', 'Type of document to build - html or pdf')
 stringParam('DOCDELETE', 'false', 'True if the documentation is to be deleted')
 stringParam('DOCHOST', docHost, 'Host to receive the docs')
 stringParam('DOCDEST', docDest, 'Root destination on host to deploy the docs')
 stringParam('DOCURL', docUrl, 'URL to documentation root directory')
 }
 wrappers {
 preBuildCleanup()
 }
 // This job runs a script
 steps {
 shell ("jenkins.dims-docs-deploy")
 }
 publishers {
 downstreamParameterized postNotify
 }
}

The post-receive hook calls dims-deploy-docs via curl. You can also do
this manually. For example:

$ curl --data-urlencode "REPO=${REPONAME}" --data-urlencode "BRANCH=${BRANCH}" --data-urlencode "DOCPATH=${DOCPATH}" --data-urlencode "DOCTYPE=${DOCTYPE}" $JENKINSURL/job/$JOB/buildWithParameters

where you have defined the variables shown and
JOB="dims-docs-deploy" and JENKINSURL="http://jenkins.devops.develop"

You can also run the job via the Jenkins UI. Go to
http://jenkins.devops.develop/view/Current/job/dims-docs-deploy/
and click the Build with Parameters link on the left.

7.3.3. Deployment script jenkins.dims-docs-deploy

As you can see in the previous section, the build step of the
dims-docs-deploy job calls the jenkins.dims-docs-deploy script. The
script has access to the job’s parameters as environment variables, so they
don’t need to be passed explicitly when the script is called from the Jenkins
job. The script, jenkins.dims-docs-deploy, along with other scripts used to
build and deploy software by Jenkins, has its source located in
dims-ci-utils/jenkins/job-scripts. It is deployed on Jenkins in the
/opt/dims/bin directory.

The jenkins.dims-docs-deploy script follows the pattern used by other deploy job scripts:

	Get default variables

	Get parameters and massage as needed

	Checkout the docs repo and branch as specified by parameters

	Build the docs

	Deploy the docs

Since we are deploying all documentation to one server irrespective of branch, we do not
use the Ansible infrastructure for final deployment. Instead we simply use ssh to make
the modifications on the target machine as necessary. A variable, REMOTEUSER, is used
for the user making the SSH calls. On Jenkins, this user is ansible. If you are running the
script manually (while testing, for example), you can provide a different user
by calling the script with REMOTEUSER, as in:

$ REPO=dims-sr BRANCH=develop DOCPATH=. DOCTYPE=html REMOTEUSER=$USER jenkins.dims-docs-deploy

Of course, $USER must be a DIMS user on the target machine (one of the default users
installed by Ansible when a DIMS machine is provisioned) and have the appropriate private
key.

For your reference, the jenkins.dims-docs-deploy source follows:

8. Deployment and Configuration

8.1. Deployment and Configuration

8.2. Type of Systems

This section will outline the general types of DIMS systems we will deploy. For example:

	Developer boxes

	Integration environment

	Dedicated test environment

	Production environment

These names were borrowed from the Hubflow documentation
at http://datasift.github.io/gitflow/Versioning.html

8.2.1. Developer boxes

This refers to one of two types of systems:

	Virtual machines (or a system of virtual machines), managed by Vagrant, that a
developer runs on his developer workstation to develop, debug and test code.

	A bare-metal system, such as a laptop, used for development, field testing,
demonstrations, etc.

8.2.2. Integration environment

9. Programming Conventions

This chapter includes examples of programming practices, pointers to
code that can serve as a starting point for new programs, and
other references to help DIMS developers (and their products)
be consistent, maximally functional, robust, and professional.

9.1. Use of Makefile helpers

The Unix make [https://en.wikipedia.org/wiki/Make_(software)] utility is used heavily in DIMS development as a means of
scripting command sequences in a way that simplifies tasks and makes them more
repeatable and consistent. Rather than producing a README file that lists
generic examples of long list of command lines that must be altered slightly
for a specific purpose (e.g., naming things uniquely), a Makefile may be
used that has a single target that identified by a meaningful word like
“target” that can be invoked with one easy to remember command:

$ make target

A DIMS Makefile helper library is available (and encouraged to be used)
to consolidate frequently needed variables, macros, etc., into a single file
that can be included at the top of every DIMS Makefile. One of the things
this library includes is a mechanism to embed self-documenting text that
can be output when you type make help. Here is an example from the
dims-ci-utils/dims/ directory:

[dittrich@27b dims (develop)]$ make help
/Users/dittrich/dims/git/dims-ci-utils/dims
[Using Makefile.dims.global v1.6.22 rev 1.4-295-g38b22c8]

Usage: make [something]

Where "something" is one of the targets listed in the sections below.

 Targets from Makefile.dims.global

 help - Show this help information (usually the default rule)
 dimsdefaults - show default variables included from Makefile.dims.global
 version - show the Git revision for this repo
 envcheck - perform checks of requirements for DIMS development

 Targets from Makefile

 bootstrap - install foundation items (i.e., test_functions.sh,
 test.dims-ci-utils.envcheck, and test.dims-ci-utils.installcheck)
 install - install programs/files
 manifest - create expected results (a manifest, for lack of
 a better term) for installcheck to use.
 (See also: README.installcheck)
 uninstall - remove programs/files
 installdirs - create required directories
 installcheck - test to see if everything installed properly
 clean - Remove manifest.txt file.
 test - run test.dims-ci-utils.envcheck to test test_functions.sh

The first few lines of $GIT/dims-ci-utils/dims/Makefile are shown here,
with the include statement and help text for the target bootstrap:

 # Makefile for DIMS test scripts and other common
 # continuous integration aids.

 # The following include line is special for
 # this one Makefile, since it is used to manage
 # Makefile.dims.global. Other Makefile invocations
 # should use:
 # include $(DIMS)/etc/Makefile.dims.global
 include Makefile.dims.global

 #HELP bootstrap - install foundation items (i.e., test_functions.sh,
 #HELP test.dims-ci-utils.envcheck, and test.dims-ci-utils.installcheck)
 .PHONY: bootstrap
 bootstrap: installdirs \
 $(DIMSETC)/Makefile.dims.global \
 $(DIMSBIN)/test_functions.sh \
 $(DIMSBIN)/test.dims-ci-utils.envcheck \
 $(DIMSBIN)/test.dims-ci-utils.installcheck

 ...

9.2. Variable Naming Conventions

Because the DIMS project uses several programming languages, and several open source
tools that may have their own naming policies, variable naming is sometimes quiet
hard to normalize into a single form. Programmers also came to the project with
their own preferences and past practices, combined with a desire to make their
own mark and exercise their own creativity. The result is a mixture of naming
conventions and variable name choices that are not entirely consistent.

On top of this, the goal of no hard coded values means that variables are often
used to create other variables in order to break down something as complicated as
a Uniform Resource Locator (URL) that has protocol, host name or address, port
number, directory path, and file name. In order to refer to (a) the complete URL,
(b) just the file name, and (c) the specific version number, requires that
many (but not too many) variables be defined.

Some of these variables will also be specific to the program being used (e.g.,
“consul” for the Consul distributed key/value store program), and some are
shared with the operating system and/or hardware architecture (e.g., “ubuntu”
and “amd64”). It is desireable to not have multiple variables that hold the
same value, but sometimes necessary to have two variables that have slightly
different (but related) values (e.g., ansible_architecture may hold
x86_64, but a program like Consul may use amd64 as the architecture
identifier. The following is the full target URL for the Consul binary:

https://releases.hashicorp.com/consul/0.6.4/consul_0.6.4_linux_amd64.zip

This can be broken down into the following variables:

	Variable
	Example Value(s)

	consul_version
	0.6.4

	consul_os
	linux (for Ubuntu, Debian), darwin (for Mac OS X)

	consul_arch
	amd64 (equivalent to ansible_architecture value x86_64)

	consul_artifact
	consul_{{ consul_version }}_{{ consul_os }}_{{ consul_arch }}.zip

	consul_dist_url
	https://releases.hashicorp.com/consul/{{ consul_version }}/

The templated version of an Ansible play that downloads the distribution
artifact for Consul would thus look like:

- name: Make Consul distribution artifact present
 get_url:
 url={{ consul_dist_url }}/{{ consul_artifact }}
 dest={{ dims_deploy }}/{{ role_name }}
 sha256sum={{ consul_sha256sum }}
 sudo: yes
 tags: [consul]

Using variable names that begin with a consistent string identifying the role or
program that they correspond with also helps in two ways.

First, it groups the names (when sorted) and differentiates variables with the
same function (e.g., identifying a version number) between Ansible roles.
Since Ansible lumps all variables into the same name space, and may process
roles in unpredicatable order, there is a chance that a variable with the same
exact name in two or more roles will not have the value that you think it
will have when the play is actually performed. Names must be either prefixed
with a string that differentiates them (e.g., consul_version vs.
docker_version), or a more complex nested data structure must be used.
Since the latter is more complex, harder to read and harder for those who are
new to Ansible to remember how to use, prefixing and separation by way of
underscore characters is the preferable naming scheme.

Secondly, this naming style matches that already used by other Ansible
facts, which makes the Ansible debugging output a little more consistent
and easier to read, again primarily because of the lexical grouping
that results.

[dimsenv] dittrich@dimsdemo1:~/dims/git/dims-devguide/docs (develop*) $ ls /bin
bash dmesg loginctl ntfsls stty
bunzip2 dnsdomainname lowntfs-3g ntfsmftalloc su
busybox domainname ls ntfsmove sync
bzcat dumpkeys lsblk ntfstruncate tailf
bzcmp echo lsmod ntfswipe tar
bzdiff ed mkdir open tempfile
bzegrep egrep mknod openvt touch
bzexe false mktemp pidof true
bzfgrep fgconsole more ping udevadm
bzgrep fgrep mount ping6 ulockmgr_server
bzip2 findmnt mountpoint plymouth umount
bzip2recover fuser mt plymouth-upstart-bridge uname
bzless fusermount mt-gnu ps uncompress
bzmore getfacl mv pwd unicode_start
cat grep nano rbash vdir
cgroups-mount gunzip nc readlink vmmouse_detect
cgroups-umount gzexe nc.openbsd red which
chacl gzip nc.traditional rm whiptail
chgrp hostname netcat rmdir ypdomainname
chmod ip netstat rnano zcat
chown kbd_mode nisdomainname running-in-container zcmp
chvt keyctl ntfs-3g run-parts zdiff
cp kill ntfs-3g.probe rzsh zegrep
cpio kmod ntfs-3g.secaudit sed zfgrep
dash less ntfs-3g.usermap setfacl zforce
date lessecho ntfscat setfont zgrep
dbus-cleanup-sockets lessfile ntfsck setupcon zless
dbus-daemon lesskey ntfscluster sh zmore
dbus-uuidgen lesspipe ntfscmp sh.distrib znew
dd ln ntfsdump_logfile sleep zsh
df loadkeys ntfsfix ss zsh5
dir login ntfsinfo static-sh

You can see that the Zip and Bzip2 related programs all start with z and bz
respectively. But just because a programs starts with “z” does not mean that
it is a Zip related program (e.g., zsh is a shell, completely unrelated to Zip.)
You can use tab completion in Bash or other shells to find all commands that
start with “z” and guess which ones are part of the Zip program set, but you
can’t use a help sub-command to get the actual list. (See man zip
to see how the documentation lists other options, though not exactly all of
them in the main zip man page.)

Another way of organizing programs (or more precisely, sub-programs) is to use a
plugin-style mechanism for organizination. Git is an example of a multi-component
program suite that does this. It has many sub-programs, each starting with
git- in the name. The Git Hubflow tools integrate themselves into Git
because their names start with git-:

[dimsenv] dittrich@dimsdemo1:~ () $ (cd $(dirname $(which git)); ls git*)
git git-hf git-hf-pull git-hf-update git-shell
git-big-picture git-hf-feature git-hf-push git-hf-upgrade git-upload-archive
git-crypt git-hf-hotfix git-hf-release git-hf-version git-upload-pack
git-cvsserver git-hf-init git-hf-support git-receive-pack

You can use the tab command completion functionality of Bash to help show you
the grouped commands, or use the git help sub-command, which not only lists
them, but also provides even more hints on how to get help and usage
information. Here is the list of first-level sub-commands related to Git
Hubflow:

[dimsenv] dittrich@dimsdemo1:~ () $ git hf help
usage: git hf <subcommand>

Available subcommands are:
 init Initialize a new git repo with support for the branching model.
 feature Manage your feature branches.
 release Manage your release branches.
 hotfix Manage your hotfix branches.
 push Push the changes from your current branch (plus any new tags) back upstream.
 pull Pull upstream changes down into your master, develop, and current branches.
 update Pull upstream changes down into your master and develop branches.
 version Shows version information.

Try 'git hf <subcommand> help' for details.

This downside to this mechanism is that it requires that the top- or mid-level
command (in this case, git) have complex logic and funcationality to
support this plugin model.

An easier way to acheive the same effect of allowing tab command completion
to group commands. The DIMS project uses a convention of multi-component names
separated by periods, kind of like DNS Domain names are constructed. The
first component is supposed to be the high-level grouping, followed by
sub-groups, and lastly sub-functions.

Note

These scripts are installed into either /opt/dims/bin, or Python
virtual environments, as necessary to support development and testing
without breaking the basic system functionality by accidentally installing
a script with a syntax error that fails out when called from another system
script. The tab command completion feature of Bash will find them, regardless
of which directory from the $PATH they are installed in.

The main grouping used within DIMS is dims, and another related
to Packer/Vagrant virtual machines and test/validation functionality
is test. Here is what you get when you use tab command completion
with these two prefixes:

[dimsenv] dittrich@dimsdemo1:~ () $ test.<TAB><TAB>
test.ansible.yaml test.runner.orig
test.dims-ci-utils.envcheck test.supervisor
test.dims-ci-utils.installcheck test.vagrant.ansible-current
test.md5.output test.vagrant.factory
test.packer.factory test.vagrant.list
test.packer.list test.vagrant.listvms
test.runner test.yaml.validate
[dimsenv] dittrich@dimsdemo1:~ () $ dims.<TAB><TAB>
dims.ansible-playbook dims.elasticsearch.service dims.localcluster.start
dims.ansible-playbook.orig dims.git.repoversion dims.localcluster.status
dims.boot2docker dims.git.syncrepos dims.localcluster.stop
dims.buildvirtualenv dims.help dims.makedocset
dims.bumpversion dims.install.createusb dims.nas.mount
dims.cleanup dims.install.dimscommands dims.nas.umount
dims.clusterconfig.list dims.jj2 dims.remote.setupworkstation
dims.clusterconfig.local dims.localcluster.create dims.shutdown
dims.clusterconfig.nas dims.localcluster.destroy dims.sphinx-autobuild
dims.cluster.runscript dims.localcluster.runscript dims.swapcapslockctrl

This helps show or remind you what scripts are available and how they may be
related to each other.

Note

While this naming scheme is the general policy, it is not universally
true for all DIMS programs. Some legacy programs integrated into DIMS,
scripts that were written for specific applications (like list
as one of the Git-shell commands), or programs written by DIMS team
members as prototypes that were not categorized at the time they
were written, have non-standard names.

Also, the organizational taxonomy for naming scripts has grown organically
over time, since this kind of organization is sometimes not readily obvious
at the time someone needs to write a new script. Efforts to refactor these
scripts have taken a lower priority to simply implenting those that are
needed to complete the project.

An effort was begun to bring all of these scripts underneath a main CLI
the way that Git works, in order to better integrate the use of variables
that are used for differentiating between deployments. This high-level
CLI is dimscli (see Developing modules for the DIMS CLI app (dimscli)). This is still a work-in-progress.

Attention

Here are some questions to ask when confronted with variable or program
naming:

	I want to put some value into a variable. Is there already a variable
that has been defined to hold this same value? (If so, is that the
appropriate variable to use? Do we need another variable with the same
value, and how will the next person know which one to use?)

	Is there already a dictionary or other more complex structure that
holds related variables? (If so, is it appropriate to add another field or
mapping to that structure? Is this data structure the place where someone
else will look to find this variable?)

	What naming convention is used elsewhere? Is camelCaseStyle, ALLCAPS,
or all_lower_case_with_underscores used? Think about how you or someone
else will search the source files to find this variable, and ask yourself if
it will be necessary to use a complicated regular expressions or simple one
to find it?

	Is the new name a translation of an existing name, and if so,
why is it being translated instead of used with the exact same spelling?
For example, if Makefile has something like VARIABLE_NAME={{ varName
}} in it, why was varName translated to VARIABLE_NAME? (Look at
the last bullet point to see why this matters.)

	How will the script name group with other scripts when sorted by the
ls program? Will the script be grouped with other simple scripts
that are commonly related, or will it end up being mixed up?

A really good example for helping understanding this point is naming files
with dates in the file names. The strings using the MM_DD_YYYY style
(or the European equivalent DD_MM_YYYY style), or spelled out
Jan_01_2015, Feb_15_2016, etc., will not sort properly. If
instead you use a naming structure that puts the things that change least
frequently to the left, and the things that change most frequently to the
right (e.g., 2015_01_01, 2016_02_15) not only will the names
always sort properly, but they also group better by year and month!

There are sometimes good reasons to deviate from convention, to translate
from one variable name to another, or to create a new variable that holds
the same value as another variable. If you are able to explicitly describe
why a specific new variable name was chosen, put in a comment to explain the
deviation. If you are in doubt, or can’t really give a good reason for
doing something that may have negative consequences later on for someone
else, log a ticket or bring up the issue at a scrum meeting to discuss the
issue and get resolution.

10. Ops-trust-db VM Creation

These are instructions for running Ansible playbooks to install a clone of the current ops-trust database. You first need a VM to install it on. The directions for creating a VM are located at dimspacker:vmquickstart.

If you have already created a server .box file, then you can skip the first part of the instructions. You can either go to dimspacker:vmquickstartinstantiate and create a new server, or if you’ve already created one and want to re-use it, you can destroy it (via vagrant destroy) and bring it back up again fresh via vagrant up.

Section dimspacker:vmquickstartrunansible talks about running playbooks against the VM.

For using the VM as a postgresql server, you don’t need to install the python virtual environment. Just run the following to prepare the VM:

$./run_playbook base-os.yml
$./run_playbook common.yml
$./run_playbook provision-dims-users.yml
$./run_playbook dims-ci-utils-deploy.yml -vv -e artifact_branch=develop

Then, run the ops-trust-testdb-configure.yml playbook:

$./run_playbook -g ops-trust-testdb-servers ops-trust-testdb-configure.yml -vv

This will install postgresql, create the database, and populate it (if it doesn’t already exist). To re-initialize the database (like if you’ve been working with it and want to start over) you need to specify initialize_postgres_dims as true:

$./run_playbook -g ops-trust-testdb-servers ops-trust-testdb-configure.yml -vv -e initialize_postgres_dims=true

Note

The following is an example of the data that exists in the ops-trust table.

The data for ops-trust has been redacted and truncated. Sensitive information has been replaced with * and only the first record of each table has been shown. In addition some tables are not shown.

[('openid_source_cache',), ('second_factors',), ('web_sessions',), ('trustgroup',), ('attestations',), ('member_trustgroup',), ('language_skill',), ('audit_history',), ('languages',), ('member_mailinglist',), ('mailinglist',), ('member',), ('member_email',), ('member_detail_types',), ('member_details',), ('member_language_skill',), ('member_state',), ('member_vouch',), ('message_catalog',), ('message_types',), ('openid_associations',), ('second_factor_types',)]

Executing SELECT on openid_source_cache
Column names: ['src_ip', 'last_try', 'attempt_count']
Number of records: 7
First record: ('*.*.*.*', datetime.datetime(yyyy, mm, dd, hh, mm, ss, 159691), *)

Executing SELECT on second_factors
Column names: ['uuid', 'member', 'type', 'entered', 'active', 'counter', 'key', 'descr']
Number of records: 0

Executing SELECT on web_sessions
Column names: ['id', 'a_session']
Number of records: 59
First record: ('******', "$D = {'form_id' => '******','test' => '******','uuid' => '******','sysadmin' => ******,'_SESSION_ETIME' => ******,'_SESSION_ID' => '******','admin' => ******,'ntg' => ******,'member' => '******','change_pw' => 0,'can_see' => 1,'~logged-in' => 't','trustgroup' => 'dims','_SESSION_REMOTE_ADDR' => '******.******.******.******','_SESSION_CTIME' => ******,'_catalyst_session' => {},'_SESSION_ATIME' => ******};;$D")

Executing SELECT on trustgroup
Column names: ['ident', 'descr', 'shortname', 'min_invouch', 'target_invouch', 'pgp_required', 'please_vouch', 'vouch_adminonly', 'nom_enabled', 'min_outvouch', 'max_inactivity', 'can_time_out', 'max_vouchdays', 'idle_guard', 'has_wiki']
Number of records: 2
First record: ('dims', 'DIMS Trust Group', 'dims', 1, 1, False, False, False, True, 0, datetime.timedelta(30), True, 15, datetime.timedelta(25), True)

Executing SELECT on attestations
Column names: ['ident', 'descr', 'trustgroup']
Number of records: 6
First record: ('met', 'I have met them in person more than once.', 'main')

Executing SELECT on member_trustgroup
Column names: ['member', 'trustgroup', 'admin', 'entered', 'activity', 'state', 'email']
Number of records: 13
First record: ('******', 'main', False, datetime.datetime(yyyy, mm, dd, hh, mm, ss, 275385), datetime.datetime(yyyy, mm, dd, hh, mm, ss, 944053), 'active', '******@uw.edu')

Executing SELECT on language_skill
Column names: ['skill', 'seq']
Number of records: 4
First record: ('native', 4)

Executing SELECT on audit_history
Column names: ['member', 'what', 'entered']
Number of records: 259
First record: ('******', "SQL: UPDATE member_trustgroup SET state = 'approved' WHERE ROW(member, trustgroup, state) = ROW('******', 'dims', 'vetted'); ", datetime.datetime(yyyy, mm, dd, hh, mm, ss, 135660))

Executing SELECT on languages
Column names: ['name', 'iso_639_1']
Number of records: 184
First record: ('Afar', 'aa')

Executing SELECT on member_mailinglist
Column names: ['member', 'lhs', 'trustgroup', 'virtual']
Number of records: 70
First record: ('******', 'general', 'dims', False)

Executing SELECT on mailinglist
Column names: ['lhs', 'trustgroup', 'descr', 'members_only', 'can_add_self', 'automatic', 'always_crypt', 'virtual', 'activity', 'email_footer', 'pubkey', 'key_update_at', 'seckey']
Number of records: 12
First record: ('vetting', 'dims', 'Vetting and Vouching', True, True, True, False, False, None, None, '-----BEGIN PGP PUBLIC KEY BLOCK-----\n******\n-----END PGP PUBLIC KEY BLOCK-----\n', datetime.datetime(yyyy, mm, dd, hh, mm, ss, 252368), '-----BEGIN PGP PRIVATE KEY BLOCK-----\n******\n-----END PGP PRIVATE KEY BLOCK-----\n')

Executing SELECT on member
Column names: ['ident', 'descr', 'affiliation', 'password', 'passwd_chat', 'tz_info', 'im_info', 'tel_info', 'sms_info', 'post_info', 'bio_info', 'airport', 'no_email', 'hide_email', 'furlough', 'change_pw', 'entered', 'activity', 'uuid', 'sysadmin', 'login_attempts', 'login_try_begin', 'image']
Number of records: 8
First record: ('******', '****** ******(Full name)', '@uw.edu', '******', None, '', '', '', None, '', '******', None, False, False, False, False, datetime.datetime(yyyy, mm, dd, hh, mm, ss, 488278), datetime.datetime(yyyy, mm, dd, hh, mm, ss, 288486), '0878ca30-c16a-435d-8991-39dd366fa4d4', False, 0, None, None)

Executing SELECT on member_email
Column names: ['member', 'email', 'pgpkey_id', 'verified', 'pgpkey_expire', 'keyring', 'keyring_update_at']
Number of records: 8
First record: ('*****', '*****@uw.edu', '8E01820D', True, datetime.datetime(yyyy, mm, dd, hh, mm, ss, 0), '-----BEGIN PGP PUBLIC KEY BLOCK-----******\n-----END PGP PUBLIC KEY BLOCK-----\n', datetime.datetime(yyyy, mm, dd, hh, mm, ss, 554641))

Executing SELECT on member_detail_types
Column names: ['type', 'display_name']
Number of records: 1
First record: ('callsign', 'Amateur radio callsign')

Executing SELECT on member_details
Column names: ['member', 'type', 'entered', 'value']
Number of records: 1
First record: ('*****', 'callsign', datetime.datetime(yyyy, mm, dd, hh, mm, ss, 76232), 'none')

Executing SELECT on member_language_skill
Column names: ['member', 'language', 'skill', 'entered']
Number of records: 3
First record: ('*****', 'en', 'native', datetime.datetime(yyyy, mm, dd, hh, mm, ss, 914698))

Executing SELECT on member_state
Column names: ['ident', 'can_login', 'can_see', 'can_send', 'can_recv', 'blocked', 'hidden']
Number of records: 9
First record: ('nominated', False, False, False, False, False, False)

Executing SELECT on member_vouch
Column names: ['vouchor', 'vouchee', 'trustgroup', 'comment', 'entered', 'positive']
Number of records: 19
First record: ('*****', '*****', 'dims', '', datetime.datetime(yyyy, mm, dd, hh, mm, ss, 266320), True)

Executing SELECT on message_catalog
Column names: ['trustgroup', 'message_type', 'message_template']
Number of records: 0

Executing SELECT on message_types
Column names: ['ident', 'descr']
Number of records: 3
First record: ('web_global_hello', 'Global public about Ops-t page')

Executing SELECT on openid_associations
Column names: ['uuid', 'assoc_type', 'session_type', 'mac_key', 'timestamp']
Number of records: 0

Executing SELECT on second_factor_types
Column names: ['type', 'descr']
Number of records: 3
First record: ('TOTP', 'Time based One Time Password - TOPT')

11. Developing Bash scripts

The DIMS project uses many scripts (and GNU make files) to structure,
organize, and serve as an abstraction layer wrapping other applications that
require a large number of variables or command line options to function.
Because the DIMS project attempts to support multiple independent instances of
a set of open source tools on a small-scale distributed system, the ability to
generalize operations across a set of a dozen or more servers is important.
This is not necessary to scale to one large system with hundreds or thousands
of servers, but rather to support a single small group operating multiple
replicated instances of the distributed system for development, testing,
production for group A and production for group B, etc.

Many of the basic scripts used in the DIMS project are written in Bourne Again
Shell (BASH, a.k.a. Bash and bash). Bash is a relatively simple scripting
language for basic things, but quickly can get very complicated when attempting
to perform advanced tasks that are required for scalable distributed systems.

Advanced Bash programming requires understanding of some fairly low-level
Unix/Linux process and file system concepts, as well as learning how to do
run-time debugging of a scripting shell language that can be far more opaque
than languages like Python executed within Integrated Development Environments
(IDEs) and run-time debuggers. (Bash does have a runtime debugger, but there
is a steep learning curve for those diving into advanced Bash scripting.)

DIMs programmers are advised to read, understand, and follow (to the best
of their ability) the Google Shell Style Guide [https://google.github.io/styleguide/shell.xml]. Other references on
advanced Bash scripting can be found in Section Bash programming references.

11.1. Command line processing using Google’s shFlags

One of the most powerful features of Unix/Linux commands is the
ability to inheret default behaviors (e.g., through setting
environment variables that are passed from a process to its
children and children’s children as scripts invoke scripts),
and to be able to alter or select options on the command line
to change the scripts’ behavior.

The DIMS project uses Google’s `shFlags`_ library to standardize
command line processing. Programers are required to study
the Documentation shFlags 1.2.x. [https://github.com/kward/shflags/wiki/Documentation12x] page to learn how `shFlags`_
works and how to use it.

All scripts should support a common set of basic functions such
as the following:

	--help provides help on arguments and options supported
by the script:

$ test.vagrant.list --help
usage: test.vagrant.list [options] [ACTION] FQDN
flags:
 -d,--[no]debug: enable debug mode (default: false)
 -C,--category: category identifier (default: 'devops')
 -D,--deployment: deployment identifier (default: 'develop')
 -g,--group: inventory group to list (default: 'vagrants')
 -r,--[no]running: list only running vagrants (default: false)
 -s,--[no]status: return Vagrant status and exit (default: false)
 -H,--[no]shortnames: return short hostnames (default: false)
 -u,--[no]usage: show usage information (default: false)
 -i,--[no]vagrants: list vagrants from inventory (default: false)
 -m,--[no]vms: list Virtualbox VMs (default: false)
 -v,--[no]verbose: be verbose (default: false)
 -V,--[no]version: print version number and exit (default: false)
 -h,--help: show this help (default: false)

	--usage provides more detailed information and examples of
how to invoke the script to perform required functions:

$ test.vagrant.list --usage
 usage: test.vagrant.factory [options] [ACTION] FQDN
flags:
 -d,--[no]debug: enable debug mode (default: false)
 -b,--[no]list-boxes: list Vagrant boxes (default: false)
 -o,--[no]list-ovfs: list Packer base OVF files (default: false)
 -D,--[no]list-vms: list Virtualbox VMs (default: false)
 -s,--[no]vagrant-status: return Vagrant status and exit (default: false)
 -P,--[no]remove-packer-box: remove Packer box file (default: false)
 -u,--[no]usage: show usage information (default: false)
 -v,--[no]verbose: be verbose (default: false)
 -V,--[no]version: print version number and exit (default: false)
 -h,--help: show this help (default: false)

where 'ACTION' is one of:
 build - build a virtual machine NAME for DEPLOYMENT-CATEGORY from
 locally checked out ansible-playbooks repo
 build-develop - build a virtual machine NAME for DEPLOYMENT-CATEGORY from
 origin, branch dev, of ansible-playbooks (old default packer behavior)
 clean - clean up directory for virtual machine NAME
 destroy - destroy virtual machine NAME
 spotless - completely remove all traces of virtual machine NAME
 get-args - get args for test.vagrant.ansible-current
 show - show parameters used to build virtual machine NAME
 usage - show this help text

... and 'FQDN' is the fully-qualified domain name of a host defined
in the directory /home/dittrich/dims/git/ansible-playbooks/v2/inventory/$DEPLOYMENT/host_vars/

To get the status of a vagrant, use the --vagrant-status option:

 $ test.vagrant.factory --vagrant-status red.devops.local
 Vagrant "red" status: running

To see status of all potential Vagrants, do:

 $ test.vagrant.factory --vagrant-status
 Vagrant "blue14" status: not created
 Vagrant "blue16" status: not created
 Vagrant "core-01" status: running
 Vagrant "core-02" status: running
 Vagrant "core-03" status: running
 Vagrant "green" status: running
 Vagrant "red" status: running
 Vagrant "yellow" status: not created

	--version produces the version number, which is typically
maintained using bumpversion (see Section Managing Version Numbers
for how bumpversion is used.)

$ test.vagrant.list --version
test.vagrant.list 1.2.28

11.2. Script naming conventions

11.3. Bash programming references

	Basic grammar rules of Bash [http://wiki.bash-hackers.org/syntax/basicgrammar], BashHackersWiki

	
	Commandlinefu.com [http://www.commandlinefu.com/]

	
	Find Duplicate Files (based on size first, then MD5 hash) [http://www.commandlinefu.com/commands/view/3555/find-duplicate-files-based-on-size-first-then-md5-hash]

	Recursively remove all empty directories [http://www.commandlinefu.com/commands/view/5131/recursively-remove-all-empty-directories]

	
	GitHub google/styleguide [https://google-styleguide.googlecode.com/] (“Style guides for Google-originated open-source projects”)

	
	Shell Style Guide [https://google.github.io/styleguide/shell.xml]

	
	Command line option parsing

	
	GitHub kward/shflags [https://github.com/kward/shflags] (Automatically exported from https://code.google.com/p/shflags)

	Easy Bash Scripting With Shflags [http://spf13.com/post/easy-bash-scripting-with-shflags], by Steve Francia, July 8, 2011

	Using getopts in bash shell script to get long and short command line options [http://stackoverflow.com/questions/402377/using-getopts-in-bash-shell-script-to-get-long-and-short-command-line-options/7680682#7680682], Stackoverflow post

	
	Advanced Bash scripting

	
	How “Exit Traps” Can Make Your Bash Scripts Way More Robust And Reliable [http://redsymbol.net/articles/bash-exit-traps/], by Aaron Maxwell

	I set variables in a loop that’s in a pipeline. Why do they disappear after the loop terminates? Or, why can’t I pipe data to read? [http://mywiki.wooledge.org/BashFAQ/024], BasFAQ/024

	The Ultimate Bash Array Tutorial with 15 Examples [http://www.thegeekstuff.com/2010/06/bash-array-tutorial], by Sasikala on June 3, 2010

	BashGuide/Arrays [http://mywiki.wooledge.org/BashGuide/Arrays]

	
	Debugging Bash scripts

	
	Debug your shell scripts with bashdb [https://www.linux.com/news/debug-your-shell-scripts-bashdb], by Ben Martin, November 24, 2008

	Debugging a script [http://wiki.bash-hackers.org/scripting/debuggingtips], Bash Hackers Wiki

	Why does my shell script choke on whitespace or other special characters? [http://unix.stackexchange.com/questions/131766/why-does-my-shell-script-choke-on-whitespace-or-other-special-characters], StackExchange post by Gilles, May 24 2014

12. Developing modules for the DIMS CLI app (dimscli)

12.1. Bootstrapping the dimscli app for development

	Clone the repo python-dimscli from git.devops.develop. This can be
done by running dims.git.syncrepos:

	Prepare a new Python virtual environment with all of the DIMS pre-requisite
tools necessary for DIMS software development:

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ VENV=dimscli dimsenv.install.user
sudo password:

PLAY [Install python virtual environment] *************************************

...

PLAY RECAP **
localhost : ok=30 changed=19 unreachable=0 failed=0

The new dimscli virtual environment should show up as an option for
workon:

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ workon
dimscli
dimsenv

	Invoke the new dimscli Python virtual environment.

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ workon dimscli
[+++] Virtual environment 'dimscli' activated [ansible-playbooks v1.2.113]

	Because this is a new Python virtual environment created with the DIMS
build tools, it only has those Python packages defined in Ansible
playbooks role python-virtualenv.

The first time you try to run dimscli, or any time that you change
any of the pre-requisites used for programming dimscli modules,
you must use pip to update and/or install the required
packages. These will eventually be added to the defaults for the
dimsenv standard virtual environment.

[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ pip install -U -r requirements.txt
Collecting pbr<2.0,>=1.4 (from -r requirements.txt (line 1))
Using cached pbr-1.8.1-py2.py3-none-any.whl
Collecting six>=1.9.0 (from -r requirements.txt (line 2))
Using cached six-1.10.0-py2.py3-none-any.whl
Requirement already up-to-date: Babel>=1.3 in /home/dittrich/dims/envs/dimscli/lib/python2.7/site-packages (from -r requirements.txt (line 3))
Collecting cliff>=1.14.0 (from -r requirements.txt (line 4))
Downloading cliff-1.15.0-py2-none-any.whl
Collecting keystoneauth1>=1.0.0 (from -r requirements.txt (line 5))
Downloading keystoneauth1-1.2.0-py2.py3-none-any.whl (149kB)
100% |████████████████████████████████| 151kB 2.7MB/s
Collecting os-client-config!=1.6.2,>=1.4.0 (from -r requirements.txt (line 6))
Downloading os_client_config-1.10.1-py2.py3-none-any.whl (42kB)
100% |████████████████████████████████| 45kB 6.0MB/s

...

Running setup.py bdist_wheel for msgpack-python
Stored in directory: /home/dittrich/.cache/pip/wheels/f3/97/a5/dd6e3b680de10b689464c44bc211239d1fe54bd296ff860897
Running setup.py bdist_wheel for functools32
Stored in directory: /home/dittrich/.cache/pip/wheels/38/c6/c7/ee17acd621120c302e25c2fa8b3a8b235d5d1137c6ab4c9728
Successfully built simplejson warlock msgpack-python functools32
Installing collected packages: msgpack-python, oslo.serialization, python-keystoneclient, simplejson,
python-neutronclient, functools32, jsonschema, jsonpointer, jsonpatch, warlock, python-glanceclient,
python-novaclient, python-cinderclient, python-openstackclient

Successfully installed functools32-3.2.3.post2 jsonpatch-1.12 jsonpointer-1.10 jsonschema-2.5.1 msgpack-python-0.4.6
oslo.serialization-1.11.0 python-cinderclient-1.4.0 python-glanceclient-1.1.0 python-keystoneclient-1.8.1
python-neutronclient-3.1.0 python-novaclient-2.34.0 python-openstackclient-1.8.0 simplejson-3.8.1 warlock-1.2.0
PrettyTable-0.7.2 appdirs-1.4.0 cliff-1.15.0 cliff-tablib-1.1 cmd2-0.6.8 debtcollector-0.10.0 iso8601-0.1.11
keystoneauth1-1.2.0 monotonic-0.4 netaddr-0.7.18 netifaces-0.10.4 os-client-config-1.10.1 oslo.config-2.6.0
oslo.i18n-2.7.0 oslo.utils-2.7.0 oslosphinx-3.3.1 pbr-1.8.1 pyparsing-2.0.5 pytz-2015.7 requests-2.8.1
six-1.10.0 stevedore-1.9.0 tablib-0.10.0 unicodecsv-0.14.1 wrapt-1.10.5

	Once all the pre-requisite packages are installed in the virtual environment,
install the dimscli app and its modules as well using python setup.py
install or pip install -e . (either will work):

[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ python setup.py install
running install
[pbr] Writing ChangeLog
[pbr] Generating ChangeLog
[pbr] ChangeLog complete (0.0s)
[pbr] Generating AUTHORS
[pbr] AUTHORS complete (0.0s)
running build
running build_py
creating build
creating build/lib
creating build/lib/dimscli
creating build/lib/dimscli/common

...

byte-compiling /home/dittrich/dims/envs/dimscli/lib/python2.7/site-packages/dimscli/common/timing.py to timing.pyc
byte-compiling /home/dittrich/dims/envs/dimscli/lib/python2.7/site-packages/dimscli/common/context.py to context.pyc
byte-compiling /home/dittrich/dims/envs/dimscli/lib/python2.7/site-packages/dimscli/common/clientmanager.py to clientmanager.pyc
byte-compiling /home/dittrich/dims/envs/dimscli/lib/python2.7/site-packages/dimscli/common/logs.py to logs.pyc
byte-compiling /home/dittrich/dims/envs/dimscli/lib/python2.7/site-packages/dimscli/common/utils.py to utils.pyc
running install_egg_info
Copying python_dimscli.egg-info to /home/dittrich/dims/envs/dimscli/lib/python2.7/site-packages/python_dimscli-0.0.1.dev391-py2.7.egg-info
running install_scripts
Installing dimscli script to /home/dittrich/dims/envs/dimscli/bin

	Run the dimscli app like any other program, directly from the command line.

There are two ways to use dimscli.

	As a single command with command line options like other Linux commands

[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ dimscli --version
dimscli 0.0.1
[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $

	As an interactive shell that allows you to run multiple commands in
sequence within the same context (i.e., the same state, or runtime settings
you invoke while in the shell) by just just the program name and no
arguments or options.

[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ dimscli
defaults: {u'auth_type': 'password', u'compute_api_version': u'2', 'key': None, u'database_api_version': u'1.0',
'api_timeout': None, u'baremetal_api_version': u'1', 'cacert': None, u'image_api_use_tasks': False,
u'floating_ip_source': u'neutron', u'orchestration_api_version': u'1', u'interface': None, u'network_api_version':
u'2.0', u'image_format': u'qcow2', u'object_api_version': u'1', u'image_api_version': u'2', 'verify': True,
u'identity_api_version': u'2.0', u'volume_api_version': u'1', 'cert': None, u'secgroup_source': u'neutron',
u'dns_api_version': u'2', u'disable_vendor_agent': {}}
cloud cfg: {'auth_type': 'password', u'compute_api_version': u'2', u'orchestration_api_version': u'1',
u'database_api_version': u'1.0', 'cacert': None, u'network_api_version': u'2.0', u'image_format': u'qcow2',
u'object_api_version': u'1', u'image_api_version': u'2', 'verify': True, u'dns_api_version': u'2',
'verbose_level': '1', 'region_name': '', 'api_timeout': None, u'baremetal_api_version': u'1', 'auth': {},
'default_domain': 'default', u'image_api_use_tasks': False, u'floating_ip_source': u'neutron', 'key': None,
'timing': False, 'deferred_help': False, u'identity_api_version': u'2.0', u'volume_api_version': u'1',
'cert': None, u'secgroup_source': u'neutron', u'interface': None, u'disable_vendor_agent': {}}
compute API version 2, cmd group dims.compute.v2
network version 2.0 is not in supported versions 2
network API version 2.0, cmd group dims.network.v2
image API version 2, cmd group dims.image.v2
volume API version 1, cmd group dims.volume.v1
identity API version 2.0, cmd group dims.identity.v2
object_store API version 1, cmd group dims.object_store.v1
(dimscli) help

Shell commands (type help <topic>):
===================================
cmdenvironment edit hi l list pause r save shell show
ed help history li load py run set shortcuts

Undocumented commands:
======================
EOF eof exit q quit

Application commands (type help <topic>):
===
aggregate add host host show role list
aggregate create ip fixed add role remove
aggregate delete ip fixed remove role show
aggregate list ip floating add security group create
aggregate remove host ip floating create security group delete
aggregate set ip floating delete security group list
aggregate show ip floating list security group rule create
catalog list ip floating pool list security group rule delete
catalog show ip floating remove security group rule list
command list keypair create security group set
complete keypair delete security group show
configuration show keypair list server create
console log show keypair show server delete
console url show module list server image create
container create network create server list
container delete network delete server reboot
container list network list server rebuild
container save network set server set
container show network show server show
endpoint create object create server ssh
endpoint delete object delete service create
endpoint list object list service delete
endpoint show object save service list
extension list object show service show
flavor create project create token issue
flavor delete project delete token revoke
flavor list project list user create
flavor set project set user delete
flavor show project show user list
flavor unset role add user role list
help role create user set
host list role delete user show

(dimscli) exit
END return value: 0
[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $

12.2. Command Structure

The dimscli shell follows the openstack client in the manner in which
commands are to be constructed. See the Openstack Command Structure [http://docs.openstack.org/developer/python-openstackclient/commands.html] page
for details. To quote:

Commands consist of an object described by one or more words followed by an
action. Commands that require two objects have the primary object ahead of
the action and the secondary object after the action. Any positional
arguments identifying the objects shall appear in the same order as the
objects. In badly formed English it is expressed as “(Take) object1 (and
perform) action (using) object2 (to it).”

<object-1> <action> <object-2>

Examples:

$ group add user <group> <user>

$ volume type list # 'volume type' is a two-word single object

12.3. Completing commands in dimscli

The initial implementation of dimscli ported from the openstacklient
code base does not have much actual code underlying it, though the
scaffolding of openstacklient and many of its defined modules are
currently configured in the code. You can see the modules that are
not there by simply asking for dimscli --help and noting the
errors (and what they point to, which indicates which code you
need to seek out to use and/or replace.)

[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $ dimscli --help
defaults: {u'auth_type': 'password', u'compute_api_version': u'2', 'key': None, u'database_api_version': u'1.0', 'api_timeout': None, u'baremetal_api_version': u'1', 'cacert': None, u'image_api_use_tasks
': False, u'floating_ip_source': u'neutron', u'orchestration_api_version': u'1', u'interface': None, u'network_api_version': u'2.0', u'image_format': u'qcow2', u'object_api_version': u'1', u'image_api_ve
rsion': u'2', 'verify': True, u'identity_api_version': u'2.0', u'volume_api_version': u'1', 'cert': None, u'secgroup_source': u'neutron', u'dns_api_version': u'2', u'disable_vendor_agent': {}}
cloud cfg: {'auth_type': 'password', u'compute_api_version': u'2', u'orchestration_api_version': u'1', u'database_api_version': u'1.0', 'cacert': None, u'network_api_version': u'2.0', u'image_format': u'
qcow2', u'object_api_version': u'1', u'image_api_version': u'2', 'verify': True, u'dns_api_version': u'2', 'verbose_level': '1', 'region_name': '', 'api_timeout': None, u'baremetal_api_version': u'1', 'a
uth': {}, 'default_domain': 'default', u'image_api_use_tasks': False, u'floating_ip_source': u'neutron', 'key': None, 'timing': False, 'deferred_help': True, u'identity_api_version': u'2.0', u'volume_api
_version': u'1', 'cert': None, u'secgroup_source': u'neutron', u'interface': None, u'disable_vendor_agent': {}}
compute API version 2, cmd group dims.compute.v2
network version 2.0 is not in supported versions 2
network API version 2.0, cmd group dims.network.v2
image API version 2, cmd group dims.image.v2
volume API version 1, cmd group dims.volume.v1
identity API version 2.0, cmd group dims.identity.v2
object_store API version 1, cmd group dims.object_store.v1
usage: dimscli [--version] [-v] [--log-file LOG_FILE] [-q] [-h] [--debug]
 [--os-cloud <cloud-config-name>]
 [--os-region-name <auth-region-name>]
 [--os-cacert <ca-bundle-file>] [--verify | --insecure]
 [--os-default-domain <auth-domain>]
 ...

 --os-object-api-version <object-api-version>
 Object API version, default=1 (Env:
 OS_OBJECT_API_VERSION)

Commands:
Could not load EntryPoint.parse('aggregate_add_host = dimscli.compute.v2.aggregate:AddAggregateHost')
Could not load EntryPoint.parse('aggregate_create = dimscli.compute.v2.aggregate:CreateAggregate')
Could not load EntryPoint.parse('aggregate_delete = dimscli.compute.v2.aggregate:DeleteAggregate')
Could not load EntryPoint.parse('aggregate_list = dimscli.compute.v2.aggregate:ListAggregate')
Could not load EntryPoint.parse('aggregate_remove_host = dimscli.compute.v2.aggregate:RemoveAggregateHost')
Could not load EntryPoint.parse('aggregate_set = dimscli.compute.v2.aggregate:SetAggregate')
Could not load EntryPoint.parse('aggregate_show = dimscli.compute.v2.aggregate:ShowAggregate')
Could not load EntryPoint.parse('catalog_list = dimscli.identity.v2_0.catalog:ListCatalog')
Could not load EntryPoint.parse('catalog_show = dimscli.identity.v2_0.catalog:ShowCatalog')
Could not load EntryPoint.parse('command_list = dimscli.common.module:ListCommand')
 complete print bash completion command
Could not load EntryPoint.parse('configuration_show = dimscli.common.configuration:ShowConfiguration')
Could not load EntryPoint.parse('console_log_show = dimscli.compute.v2.console:ShowConsoleLog')
Could not load EntryPoint.parse('console_url_show = dimscli.compute.v2.console:ShowConsoleURL')
Could not load EntryPoint.parse('container_create = dimscli.object.v1.container:CreateContainer')
Could not load EntryPoint.parse('container_delete = dimscli.object.v1.container:DeleteContainer')
Could not load EntryPoint.parse('container_list = dimscli.object.v1.container:ListContainer')
Could not load EntryPoint.parse('container_save = dimscli.object.v1.container:SaveContainer')
Could not load EntryPoint.parse('container_show = dimscli.object.v1.container:ShowContainer')
Could not load EntryPoint.parse('endpoint_create = dimscli.identity.v2_0.endpoint:CreateEndpoint')
Could not load EntryPoint.parse('endpoint_delete = dimscli.identity.v2_0.endpoint:DeleteEndpoint')
Could not load EntryPoint.parse('endpoint_list = dimscli.identity.v2_0.endpoint:ListEndpoint')
Could not load EntryPoint.parse('endpoint_show = dimscli.identity.v2_0.endpoint:ShowEndpoint')
Could not load EntryPoint.parse('extension_list = dimscli.common.extension:ListExtension')
Could not load EntryPoint.parse('flavor_create = dimscli.compute.v2.flavor:CreateFlavor')
Could not load EntryPoint.parse('flavor_delete = dimscli.compute.v2.flavor:DeleteFlavor')
Could not load EntryPoint.parse('flavor_list = dimscli.compute.v2.flavor:ListFlavor')
Could not load EntryPoint.parse('flavor_set = dimscli.compute.v2.flavor:SetFlavor')
Could not load EntryPoint.parse('flavor_show = dimscli.compute.v2.flavor:ShowFlavor')
Could not load EntryPoint.parse('flavor_unset = dimscli.compute.v2.flavor:UnsetFlavor')
 help print detailed help for another command
Could not load EntryPoint.parse('host_list = dimscli.compute.v2.host:ListHost')
Could not load EntryPoint.parse('host_show = dimscli.compute.v2.host:ShowHost')
Could not load EntryPoint.parse('ip_fixed_add = dimscli.compute.v2.fixedip:AddFixedIP')
Could not load EntryPoint.parse('ip_fixed_remove = dimscli.compute.v2.fixedip:RemoveFixedIP')
Could not load EntryPoint.parse('ip_floating_add = dimscli.compute.v2.floatingip:AddFloatingIP')
Could not load EntryPoint.parse('ip_floating_create = dimscli.compute.v2.floatingip:CreateFloatingIP')
Could not load EntryPoint.parse('ip_floating_delete = dimscli.compute.v2.floatingip:DeleteFloatingIP')
Could not load EntryPoint.parse('ip_floating_list = dimscli.compute.v2.floatingip:ListFloatingIP')
Could not load EntryPoint.parse('ip_floating_pool_list = dimscli.compute.v2.floatingippool:ListFloatingIPPool')
Could not load EntryPoint.parse('ip_floating_remove = dimscli.compute.v2.floatingip:RemoveFloatingIP')
Could not load EntryPoint.parse('keypair_create = dimscli.compute.v2.keypair:CreateKeypair')
Could not load EntryPoint.parse('keypair_delete = dimscli.compute.v2.keypair:DeleteKeypair')
Could not load EntryPoint.parse('keypair_list = dimscli.compute.v2.keypair:ListKeypair')
Could not load EntryPoint.parse('keypair_show = dimscli.compute.v2.keypair:ShowKeypair')
Could not load EntryPoint.parse('module_list = dimscli.common.module:ListModule')
Could not load EntryPoint.parse('network_create = dimscli.network.v2.network:CreateNetwork')
Could not load EntryPoint.parse('network_delete = dimscli.network.v2.network:DeleteNetwork')
Could not load EntryPoint.parse('network_list = dimscli.network.v2.network:ListNetwork')
Could not load EntryPoint.parse('network_set = dimscli.network.v2.network:SetNetwork')
Could not load EntryPoint.parse('network_show = dimscli.network.v2.network:ShowNetwork')
Could not load EntryPoint.parse('object_create = dimscli.object.v1.object:CreateObject')
Could not load EntryPoint.parse('object_delete = dimscli.object.v1.object:DeleteObject')
Could not load EntryPoint.parse('object_list = dimscli.object.v1.object:ListObject')
Could not load EntryPoint.parse('object_save = dimscli.object.v1.object:SaveObject')
Could not load EntryPoint.parse('object_show = dimscli.object.v1.object:ShowObject')
Could not load EntryPoint.parse('project_create = dimscli.identity.v2_0.project:CreateProject')
Could not load EntryPoint.parse('project_delete = dimscli.identity.v2_0.project:DeleteProject')
Could not load EntryPoint.parse('project_list = dimscli.identity.v2_0.project:ListProject')
Could not load EntryPoint.parse('project_set = dimscli.identity.v2_0.project:SetProject')
Could not load EntryPoint.parse('project_show = dimscli.identity.v2_0.project:ShowProject')
Could not load EntryPoint.parse('role_add = dimscli.identity.v2_0.role:AddRole')
Could not load EntryPoint.parse('role_create = dimscli.identity.v2_0.role:CreateRole')
Could not load EntryPoint.parse('role_delete = dimscli.identity.v2_0.role:DeleteRole')
Could not load EntryPoint.parse('role_list = dimscli.identity.v2_0.role:ListRole')
Could not load EntryPoint.parse('role_remove = dimscli.identity.v2_0.role:RemoveRole')
Could not load EntryPoint.parse('role_show = dimscli.identity.v2_0.role:ShowRole')
Could not load EntryPoint.parse('security_group_create = dimscli.compute.v2.security_group:CreateSecurityGroup')
Could not load EntryPoint.parse('security_group_delete = dimscli.compute.v2.security_group:DeleteSecurityGroup')
Could not load EntryPoint.parse('security_group_list = dimscli.compute.v2.security_group:ListSecurityGroup')
Could not load EntryPoint.parse('security_group_rule_create = dimscli.compute.v2.security_group:CreateSecurityGroupRule')
Could not load EntryPoint.parse('security_group_rule_delete = dimscli.compute.v2.security_group:DeleteSecurityGroupRule')
Could not load EntryPoint.parse('security_group_rule_list = dimscli.compute.v2.security_group:ListSecurityGroupRule')
Could not load EntryPoint.parse('security_group_set = dimscli.compute.v2.security_group:SetSecurityGroup')
Could not load EntryPoint.parse('security_group_show = dimscli.compute.v2.security_group:ShowSecurityGroup')
Could not load EntryPoint.parse('server_create = dimscli.compute.v2.server:CreateServer')
Could not load EntryPoint.parse('server_delete = dimscli.compute.v2.server:DeleteServer')
Could not load EntryPoint.parse('server_image_create = dimscli.compute.v2.server:CreateServerImage')
Could not load EntryPoint.parse('server_list = dimscli.compute.v2.server:ListServer')
Could not load EntryPoint.parse('server_reboot = dimscli.compute.v2.server:RebootServer')
Could not load EntryPoint.parse('server_rebuild = dimscli.compute.v2.server:RebuildServer')
Could not load EntryPoint.parse('server_set = dimscli.compute.v2.server:SetServer')
Could not load EntryPoint.parse('server_show = dimscli.compute.v2.server:ShowServer')
Could not load EntryPoint.parse('server_ssh = dimscli.compute.v2.server:SshServer')
Could not load EntryPoint.parse('service_create = dimscli.identity.v2_0.service:CreateService')
Could not load EntryPoint.parse('service_delete = dimscli.identity.v2_0.service:DeleteService')
Could not load EntryPoint.parse('service_list = dimscli.identity.v2_0.service:ListService')
Could not load EntryPoint.parse('service_show = dimscli.identity.v2_0.service:ShowService')
Could not load EntryPoint.parse('token_issue = dimscli.identity.v2_0.token:IssueToken')
Could not load EntryPoint.parse('token_revoke = dimscli.identity.v2_0.token:RevokeToken')
Could not load EntryPoint.parse('user_create = dimscli.identity.v2_0.user:CreateUser')
Could not load EntryPoint.parse('user_delete = dimscli.identity.v2_0.user:DeleteUser')
Could not load EntryPoint.parse('user_list = dimscli.identity.v2_0.user:ListUser')
Could not load EntryPoint.parse('user_role_list = dimscli.identity.v2_0.role:ListUserRole')
Could not load EntryPoint.parse('user_set = dimscli.identity.v2_0.user:SetUser')
Could not load EntryPoint.parse('user_show = dimscli.identity.v2_0.user:ShowUser')
END return value: 1
[dimscli] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop) $

Using the last error message above as an example, there needs to be a module
named $GIT/python-dimscli/dimscli/identity/v2_0/user.py with a
class ShowUser. Look in the python-openstack/openstack/identity/v2_0/
directory for their user.py and build off that example.

Attention

Clone the python-openstackclient repo using git clone
https://git.openstack.org/openstack/python-openstackclient and
see the cliff documentation, Section Exploring the Demo App [http://docs.openstack.org/developer/cliff/demoapp.html], for how
this works.

Attention

See the file $GIT/python-dimscli/README.rst for more
documentation produced during initial creation of the openstackclient
fork of dimscli.

cliff supports list formatting in tables, CSV, JSON, etc., but not in shell
format. That is only supported by the ShowOne class, which is not what we
want for producing a set of variables for insertion into shell environments.

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli list nodes
+----------------+---------------+
| Node | Address |
+----------------+---------------+
b52	10.86.86.7
consul-breathe	10.142.29.117
consul-echoes	10.142.29.116
consul-seamus	10.142.29.120
dimsdemo1	10.86.86.2
dimsdev1	10.86.86.5
dimsdev2	10.86.86.5
four	192.168.0.101
+----------------+---------------+

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli list nodes -f csv
"Node","Address"
"b52","10.86.86.7"
"consul-breathe","10.142.29.117"
"consul-echoes","10.142.29.116"
"consul-seamus","10.142.29.120"
"dimsdemo1","10.86.86.2"
"dimsdev1","10.86.86.5"
"dimsdev2","10.86.86.5"
"four","192.168.0.101"

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli list nodes -f json
[{"Node": "b52", "Address": "10.86.86.7"}, {"Node": "consul-breathe", "Address": "10.142.29.117"}, {"Node": "consul-echoes", "Address": "10.142.29.116"}, {"Node": "consul-seamus", "Address": "10.142.29.120"}, {"Node": "dimsdemo1", "Address": "10.86.86.2"}, {"Node": "dimsdev1", "Address": "10.86.86.5"}, {"Node": "dimsdev2", "Address": "10.86.86.5"}, {"Node": "four", "Address": "192.168.0.101"}]
[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli list nodes -f json | python -m json.tool
[
 {
 "Address": "10.86.86.7",
 "Node": "b52"
 },
 {
 "Address": "10.142.29.117",
 "Node": "consul-breathe"
 },
 {
 "Address": "10.142.29.116",
 "Node": "consul-echoes"
 },
 {
 "Address": "10.142.29.120",
 "Node": "consul-seamus"
 },
 {
 "Address": "10.86.86.2",
 "Node": "dimsdemo1"
 },
 {
 "Address": "10.86.86.5",
 "Node": "dimsdev1"
 },
 {
 "Address": "10.86.86.5",
 "Node": "dimsdev2"
 },
 {
 "Address": "192.168.0.101",
 "Node": "four"
 }
]

To produce the list in the form of shell variables, we need to create a custom
formatter and load it into the dimscli shell via Stevedore.

After adding the new formatter, it is possible to extract the list of nodes registered
with Consul and produce a set of variable declarations from the list.

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli list nodes -f shell
b52="10.86.86.7"
consul_breathe="10.142.29.117"
consul_echoes="10.142.29.116"
consul_seamus="10.142.29.120"
dimsdemo1="10.86.86.2"
dimsdev1="10.86.86.5"
dimsdev2="10.86.86.5"
four="192.168.0.101"

In practice, you may wish to insert these as variables in the shell’s set using
the eval statement for use when invoking shell commands:

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ eval $(dimscli list nodes -f shell --prefix=DIMS_)
[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ set | grep DIMS_
DIMS_REV=unspecified
DIMS_VERSION='1.6.124 (dims-ci-utils)'
DIMS_b52=10.86.86.7
DIMS_consul_breathe=10.142.29.117
DIMS_consul_echoes=10.142.29.116
DIMS_consul_seamus=10.142.29.120
DIMS_dimsdemo1=10.86.86.2
DIMS_dimsdev2=10.86.86.5
DIMS_four=192.168.0.101
 echo "REV: $DIMS_REV";
 echo "[dims-ci-utils version $(version) (rev $DIMS_REV)]";
 echo "$PROGRAM $DIMS_VERSION";
 echo "$BASE $DIMS_VERSION";

12.4. Adding New Columns to Output

Say we want to also include the Consul status, to help determine which node is
currently the Leader in a cluster, which are a Peer in the cluster, and which
are simply an Agent that is proxying to the cluster.

The changes to existing code to affect this new feature are shown here:

commit caab2d05274898878e1123bd337b431c8d2f2a8e
Author: Dave Dittrich <dittrich@u.washington.edu>
Date: Sat Jan 2 12:53:56 2016 -0800

 Add Consul node status to 'nodes list' output

diff --git a/dimscli/list.py b/dimscli/list.py
index 45acdda..3893b10 100644
--- a/dimscli/list.py
+++ b/dimscli/list.py
@@ -26,9 +26,35 @@ class Nodes(Lister):

 log = logging.getLogger(__name__)

+ def get_node_status(self):
+ """
+ Determine the status from Consul
+
+ :return: None
+ """
+ self.leaderDict = dict(zip(['Address', 'Port'],
+ self.consul.status.leader().split(":")))
+ self.peersDictList = [dict(zip(['Address', 'Port'], p.split(":")))
+ for p in self.consul.status.peers()]
+
+ def status(self, address):
+ """
+ Determine node status as returned from Consul.
+
+ :param address: IP address to check
+ :return: One of: "Leader", "Peer", or "Agent"
+ """
+ if address in self.leaderDict.values():
+ return "Leader"
+ elif address in [p['Address'] for p in self.peersDictList]:
+ return "Peer"
+ else:
+ return "Agent"
+
 def take_action(self, parsed_args):
- consul = consulate.Consul()
- nodes = consul.catalog.nodes()
- columns = ('Node', 'Address')
- data = ((node['Node'], node['Address']) for node in nodes)
+ self.consul = consulate.Consul()
+ nodes = self.consul.catalog.nodes()
+ self.get_node_status()
+ columns = ('Node', 'Address', 'Status')
+ data = ((node['Node'], node['Address'], self.status(node['Address'])) for node in nodes)
 return (columns, data)

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli nodes list
+-----------+---------------+--------+
| Node | Address | Status |
+-----------+---------------+--------+
b52	10.86.86.2	Agent
breathe	10.142.29.117	Leader
dimsdemo1	10.86.86.3	Agent
echoes	10.142.29.116	Peer
seamus	10.142.29.120	Peer
+-----------+---------------+--------+
[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli nodes list -f csv
"Node","Address","Status"
"b52","10.86.86.2","Agent"
"breathe","10.142.29.117","Leader"
"dimsdemo1","10.86.86.3","Agent"
"echoes","10.142.29.116","Peer"
"seamus","10.142.29.120","Peer"
[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli nodes list -f json | python -mjson.tool
[
 {
 "Address": "10.86.86.2",
 "Node": "b52",
 "Status": "Agent"
 },
 {
 "Address": "10.142.29.117",
 "Node": "breathe",
 "Status": "Leader"
 },
 {
 "Address": "10.86.86.3",
 "Node": "dimsdemo1",
 "Status": "Agent"
 },
 {
 "Address": "10.142.29.116",
 "Node": "echoes",
 "Status": "Peer"
 },
 {
 "Address": "10.142.29.120",
 "Node": "seamus",
 "Status": "Peer"
 }
]

If we wish to turn a subset of this table into variables, using the shell output
feature added above, we need to select a pair of columns (to map to Variable=Value
in the output). The results could then be used in Ansible playbooks, shell scripts,
selecting color for nodes in a graph, or any number of other purposes.

[dimsenv] dittrich@dimsdemo1:~/dims/git/python-dimscli (develop*) $ dimscli nodes list --column Node --column Status -f shell
b52="Agent"
breathe="Leader"
dimsdemo1="Agent"
echoes="Peer"
seamus="Peer"

12.5. Adding New Commands

In this example, we will add a new command ansible with a subcommand
execute that will use Ansible’s Python API [http://docs.ansible.com/ansible/developing_api.html] (specifically the
ansible.runner.Runner class) to execute arbitrary commands on hosts
via Ansible.

Note

What is being demonstrated here is adding a new subcommand to the
dimscli repo directly. It is also possible to add a new command
from a module in another repo using Stevedore.

Here are the changes that implement this new command:

commit eccf3af707aac5a13144580bfbf548b45616d49f
Author: Dave Dittrich <dittrich@u.washington.edu>
Date: Fri Jan 1 20:34:42 2016 -0800

 Add 'ansible execute' command

diff --git a/dimscli/dimsansible/__init__.py b/dimscli/dimsansible/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/dimscli/dimsansible/ansiblerunner.py b/dimscli/dimsansible/ansiblerunner.py
new file mode 100644
index 0000000..68cd3ea
--- /dev/null
+++ b/dimscli/dimsansible/ansiblerunner.py
@@ -0,0 +1,61 @@
+#!/usr/bin/python
+
+import sys
+import logging
+
+from cliff.lister import Lister
+from ansible.runner import Runner
+
+HOST_LIST = "/etc/ansible/hosts"
+CMD = "/usr/bin/uptime"
+
+class Execute(Lister):
+ """Execute a command via Ansible and return a list of results.
+
+ """
+
+ log = logging.getLogger(__name__)
+
+ def get_parser(self, prog_name):
+ parser = super(Execute, self).get_parser(prog_name)
+ parser.add_argument(
+ "--host-list",
+ metavar="<host-list>",
+ default=HOST_LIST,
+ help="Hosts file (default: {})".format(HOST_LIST),
+)
+ parser.add_argument(
+ "--program",
+ metavar="<program>",
+ default=CMD,
+ help="Program to run (default: {})".format(CMD),
+)
+ return parser
+
+ def take_action(self, parsed_args):
+
+ results = Runner(
+ host_list=parsed_args.host_list,
+ pattern='*',
+ forks=10,
+ module_name='command',
+ module_args=parsed_args.program,
+).run()
+
+ if results is None:
+ print "No hosts found"
+ sys.exit(1)
+
+ outtable = []
+
+ for (hostname, result) in results['contacted'].items():
+ if not 'failed' in result:
+ outtable.append((hostname, 'GOOD', result['stdout']))
+ elif 'failed' in result:
+ outtable.append((hostname, 'FAIL', result['msg']))
+ for (hostname, result) in results['dark'].items():
+ outtable.append((hostname, 'DARK', result['msg']))
+
+ column_names = ('Host', 'Status', 'Results')
+
+ return column_names, outtable
diff --git a/setup.cfg b/setup.cfg
index 14f6ce7..9571d4f 100644
--- a/setup.cfg
+++ b/setup.cfg
@@ -37,6 +37,7 @@ dims.cli =
 files_list = dimscli.list:Files
 nodes_list = dimscli.list:Nodes
 show_file = dimscli.show:File
+ ansible_execute = dimscli.dimsansible.ansiblerunner:Execute

 cliff.formatter.list =
 shell = dimscli.formatters.shell:DIMSShellFormatter

Here is what the command can do (as seen in the --help output).

[dimscli] dittrich@dimsdemo1:ims/git/python-dimscli/dimscli (develop*) $ dimscli ansible execute --help
usage: dimscli ansible execute [-h]
 [-f {csv,html,json,json,shell,table,value,yaml,yaml}]
 [-c COLUMN] [--prefix PREFIX]
 [--max-width <integer>] [--noindent]
 [--quote {all,minimal,none,nonnumeric}]
 [--host-list <host-list>] [--program <program>]

Execute a command via Ansible and return a list of results.

optional arguments:
 -h, --help show this help message and exit
 --host-list <host-list>
 Hosts file (default: /etc/ansible/hosts)
 --program <program> Program to run (default: /usr/bin/uptime)

output formatters:
 output formatter options

 -f {csv,html,json,json,shell,table,value,yaml,yaml}, --format {csv,html,json,json,shell,table,value,yaml,yaml}
 the output format, defaults to table
 -c COLUMN, --column COLUMN
 specify the column(s) to include, can be repeated

shell formatter:
 a format a UNIX shell can parse (variable="value")

 --prefix PREFIX add a prefix to all variable names

table formatter:
 --max-width <integer>
 Maximum display width, 0 to disable

json formatter:
 --noindent whether to disable indenting the JSON

CSV Formatter:
 --quote {all,minimal,none,nonnumeric}
 when to include quotes, defaults to nonnumeric

The script defaults to using the standard Ansible /etc/ansible/hosts file to get its inventory. In this case,
the DIMS $GIT/ansible-inventory/development file was copied to the default location. Using this file to
execute the default command /usr/bin/uptime on the defined development hosts results in the following:

[dimscli] dittrich@dimsdemo1:ims/git/python-dimscli/dimscli (develop*) $ dimscli ansible execute
+--------------------------------+--------+--+
| Host | Status | Results |
+--------------------------------+--------+--+
linda-vm1.devops.develop	GOOD	18:31:22 up 146 days, 8:27, 1 user, load average: 0.00, 0.01, 0.05
u12-dev-ws-1.devops.develop	GOOD	18:31:21 up 146 days, 8:27, 1 user, load average: 0.00, 0.01, 0.05
hub.devops.develop	GOOD	02:31:22 up 128 days, 8:42, 1 user, load average: 0.00, 0.01, 0.05
floyd2-p.devops.develop	GOOD	18:31:21 up 20 days, 56 min, 1 user, load average: 0.02, 0.04, 0.05
u12-dev-svr-1.devops.develop	GOOD	18:31:22 up 142 days, 11:22, 1 user, load average: 0.00, 0.01, 0.05
+--------------------------------+--------+--+

Using the --program command line option, a different command can be run:

[dimscli] dittrich@dimsdemo1:ims/git/python-dimscli/dimscli (develop*) $ dimscli ansible execute --program "ip addr"
+------------------------------+--------+--+
| Host | Status | Results |
+------------------------------+--------+--+
linda-vm1.devops.develop	GOOD	1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
		link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
		inet 127.0.0.1/8 scope host lo
		valid_lft forever preferred_lft forever
		2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
		link/ether 08:00:27:3b:3a:65 brd ff:ff:ff:ff:ff:ff
		inet 10.0.2.15/24 brd 10.0.2.255 scope global eth0
		valid_lft forever preferred_lft forever
		3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
		link/ether 08:00:27:36:2b:2c brd ff:ff:ff:ff:ff:ff
		inet 192.168.88.11/24 brd 192.168.88.255 scope global eth1
		valid_lft forever preferred_lft forever
u12-dev-svr-1.devops.develop	GOOD	1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
		link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
		inet 127.0.0.1/8 scope host lo
		valid_lft forever preferred_lft forever
		inet6 ::1/128 scope host
		valid_lft forever preferred_lft forever
		2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
		link/ether 08:00:27:38:db:8c brd ff:ff:ff:ff:ff:ff
		inet 10.0.2.15/24 brd 10.0.2.255 scope global eth0
		valid_lft forever preferred_lft forever
		inet6 fe80::a00:27ff:fe38:db8c/64 scope link
		valid_lft forever preferred_lft forever
		3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
		link/ether 08:00:27:e7:80:52 brd ff:ff:ff:ff:ff:ff
		inet 192.168.88.13/24 brd 192.168.88.255 scope global eth1
		valid_lft forever preferred_lft forever
		inet6 fe80::a00:27ff:fee7:8052/64 scope link
		valid_lft forever preferred_lft forever
hub.devops.develop	GOOD	1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default
		link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
		inet 127.0.0.1/8 scope host lo
		valid_lft forever preferred_lft forever
		inet6 ::1/128 scope host
		valid_lft forever preferred_lft forever
		2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
		link/ether 08:00:27:9c:f8:95 brd ff:ff:ff:ff:ff:ff
		inet 10.0.2.15/24 brd 10.0.2.255 scope global eth0
		valid_lft forever preferred_lft forever
		inet6 fe80::a00:27ff:fe9c:f895/64 scope link
		valid_lft forever preferred_lft forever
		3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
		link/ether 08:00:27:28:63:2a brd ff:ff:ff:ff:ff:ff
		inet 192.168.88.14/24 brd 192.168.88.255 scope global eth1
		valid_lft forever preferred_lft forever
		inet6 fe80::a00:27ff:fe28:632a/64 scope link
		valid_lft forever preferred_lft forever
		4: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default
		link/ether 56:84:7a:fe:97:99 brd ff:ff:ff:ff:ff:ff
		inet 172.17.42.1/16 scope global docker0
		valid_lft forever preferred_lft forever
		inet6 fe80::5484:7aff:fefe:9799/64 scope link
		valid_lft forever preferred_lft forever
		22: veth6dc6dd5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master docker0 state UP group default
		link/ether 8e:d6:f5:66:fb:88 brd ff:ff:ff:ff:ff:ff
		inet6 fe80::8cd6:f5ff:fe66:fb88/64 scope link
		valid_lft forever preferred_lft forever
		42: vethdc35259: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master docker0 state UP group default
		link/ether 46:c3:87:32:83:a1 brd ff:ff:ff:ff:ff:ff
		inet6 fe80::44c3:87ff:fe32:83a1/64 scope link
		valid_lft forever preferred_lft forever
floyd2-p.devops.develop	GOOD	1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
		link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
		inet 127.0.0.1/8 scope host lo
		valid_lft forever preferred_lft forever
		2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
		link/ether 52:54:00:17:19:9a brd ff:ff:ff:ff:ff:ff
		inet 172.22.29.175/24 brd 172.22.29.255 scope global eth0
		valid_lft forever preferred_lft forever
		3: eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000
		link/ether 52:54:00:85:34:b7 brd ff:ff:ff:ff:ff:ff
u12-dev-ws-1.devops.develop	GOOD	1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
		link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
		inet 127.0.0.1/8 scope host lo
		valid_lft forever preferred_lft forever
		2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
		link/ether 08:00:27:07:6b:00 brd ff:ff:ff:ff:ff:ff
		inet 10.0.2.15/24 brd 10.0.2.255 scope global eth0
		valid_lft forever preferred_lft forever
		3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
		link/ether 08:00:27:75:a0:25 brd ff:ff:ff:ff:ff:ff
		inet 192.168.88.12/24 brd 192.168.88.255 scope global eth1
		valid_lft forever preferred_lft forever
		4: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN
		link/ether 5a:cb:bd:c2:f5:82 brd ff:ff:ff:ff:ff:ff
		inet 172.17.42.1/16 scope global docker0
		valid_lft forever preferred_lft forever
+------------------------------+--------+--+

[dimscli] dittrich@dimsdemo1:ims/git/python-dimscli/dimscli (develop*) $ dimscli ansible execute --program "cat /etc/hosts"
+------------------------------+--------+---+
| Host | Status | Results |
+------------------------------+--------+---+
linda-vm1.devops.develop	GOOD	127.0.0.1 localhost
		127.0.1.1 ubu12-generic
		# The following lines are desirable for IPv6 capable hosts
		::1 ip6-localhost ip6-loopback
		fe00::0 ip6-localnet
		ff00::0 ip6-mcastprefix
		ff02::1 ip6-allnodes
		ff02::2 ip6-allrouters
		127.0.0.1 auth-test.devops.develop manager-test.devops.develop reload-test.devops.develop test5.prisem.washingto
		127.0.0.1 auth-test.devops.develop manager-test.devops.develop reload-test.devops.develop test5.prisem.washingto
		127.0.0.1 auth-test.devops.develop manager-test.devops.develop reload-test.devops.develop test5.prisem.washingto
		127.0.0.1 auth-test.devops.develop manager-test.devops.develop reload-test.devops.develop test5.prisem.washingto
		127.0.0.1 auth-test.devops.develop manager-test.devops.develop reload-test.devops.develop test5.prisem.washingto
		127.0.0.1 auth-test.devops.develop manager-test.devops.develop reload-test.devops.develop test5.prisem.washingto
		127.0.0.1 auth-test.devops.develop manager-test.devops.develop reload-test.devops.develop test5.prisem.washingto
		127.0.0.1 auth-test.devops.develop manager-test.devops.develop reload-test.devops.develop test5.prisem.washingto
		127.0.0.1 auth-test.devops.develop manager-test.devops.develop reload-test.devops.develop test5.prisem.washingto
u12-dev-svr-1.devops.develop	GOOD	127.0.0.1 localhost
		127.0.1.1 u12-dev-svr-1
		# The following lines are desirable for IPv6 capable hosts
		::1 ip6-localhost ip6-loopback
		fe00::0 ip6-localnet
		ff00::0 ip6-mcastprefix
		ff02::1 ip6-allnodes
		ff02::2 ip6-allrouters
hub.devops.develop	GOOD	127.0.0.1 localhost
		127.0.1.1 hub
		# The following lines are desirable for IPv6 capable hosts
		::1 localhost ip6-localhost ip6-loopback
		ff02::1 ip6-allnodes
		ff02::2 ip6-allrouters
		127.0.1.1 hub
floyd2-p.devops.develop	GOOD	127.0.0.1 localhost
		127.0.0.1 floyd2-p floyd2-p.devops.develop
u12-dev-ws-1.devops.develop	GOOD	127.0.0.1 localhost
		127.0.1.1 u12-dev-1
		# The following lines are desirable for IPv6 capable hosts
		::1 ip6-localhost ip6-loopback
		fe00::0 ip6-localnet
		ff00::0 ip6-mcastprefix
		ff02::1 ip6-allnodes
		ff02::2 ip6-allrouters
+------------------------------+--------+---+

To run a command across the full set of ansible-compatible hosts, we can use the helper Makefile in the
$GIT/ansible-inventory repo to extract a list of all hosts specified in any inventory file to
form a complete set.

Note

This helper Makefile was originally written to take a set of static inventory files
and generate a set, rather than forcing someone to manually edit a file and manually
combine all hosts from any file (which is error prone, tedious, difficult to remember
how to do... basically impractical for a scalable solution.)

[dimscli] dittrich@dimsdemo1:ims/git/python-dimscli/dimscli (develop*) $ (cd $GIT/ansible-inventory; make help)
usage: make [something]

Where 'something' is one of:

 help - Show this help information
 all - Default is create complete_inventory file.

 inventory - Create file 'complete_inventory' with all hosts
 from any file with an '[all]' section in it.

 tree - Produce a tree listing of everything except
 'older-*' directories.

 clean - Clean up files.

[dimscli] dittrich@dimsdemo1:ims/git/python-dimscli/dimscli (develop*) $ (cd $GIT/ansible-inventory; make inventory)
echo '[all]' > complete_inventory
cat development hosts-old infrastructure Makefile prisem project | awk '\
 /^\[all\]/ { echo = 1; next; }\
 /^$/ { echo = 0; }\
 { if (echo == 1) { print; } }' |\
 sort | uniq >> complete_inventory

Now this list can be used to run the command across the full set of hosts under Ansible control.

[dimscli] dittrich@dimsdemo1:ims/git/python-dimscli/dimscli (develop*) $ dimscli ansible execute --host-list /home/dittrich/dims/git/ansible-inventory/complete_inventory
+------------------------------+--------+--+
| Host | Status | Results |
+------------------------------+--------+--+
rabbitmq.devops.develop	GOOD	18:35:04 up 20 days, 1:00, 1 user, load average: 0.00, 0.04, 0.05
wellington.devops.develop	GOOD	18:35:06 up 146 days, 8:43, 1 user, load average: 0.43, 0.64, 0.43
hub.devops.develop	GOOD	02:35:02 up 128 days, 8:46, 1 user, load average: 0.11, 0.06, 0.05
git.devops.develop	GOOD	18:35:03 up 146 days, 8:30, 2 users, load average: 0.18, 0.07, 0.06
time.devops.develop	GOOD	18:35:04 up 20 days, 1:00, 2 users, load average: 0.06, 0.13, 0.13
jira-int.devops.develop	GOOD	18:35:03 up 146 days, 8:30, 2 users, load average: 0.18, 0.07, 0.06
u12-dev-ws-1.devops.develop	GOOD	18:35:05 up 146 days, 8:30, 1 user, load average: 0.01, 0.02, 0.05
sso.devops.develop	GOOD	18:35:05 up 146 days, 8:30, 1 user, load average: 0.00, 0.02, 0.05
lapp-int.devops.develop	GOOD	18:35:02 up 146 days, 8:31, 2 users, load average: 0.16, 0.05, 0.06
foswiki-int.devops.develop	GOOD	18:35:03 up 146 days, 8:31, 1 user, load average: 0.00, 0.01, 0.05
u12-dev-svr-1.devops.develop	GOOD	18:35:03 up 142 days, 11:26, 1 user, load average: 0.03, 0.04, 0.05
linda-vm1.devops.develop	GOOD	18:35:05 up 146 days, 8:31, 1 user, load average: 0.13, 0.04, 0.05
floyd2-p.devops.develop	GOOD	18:35:02 up 20 days, 59 min, 1 user, load average: 0.08, 0.04, 0.05
jenkins-int.devops.develop	GOOD	18:35:03 up 146 days, 8:31, 1 user, load average: 0.01, 0.02, 0.05
lapp.devops.develop	GOOD	18:35:02 up 146 days, 8:31, 1 user, load average: 0.16, 0.05, 0.06
eclipse.devops.develop	DARK	SSH encountered an unknown error during the connection. We recommend you re-run the command using -vvvv, which will enable SSH debugging output to help diagnose the issue
lancaster.devops.develop	DARK	SSH encountered an unknown error during the connection. We recommend you re-run the command using -vvvv, which will enable SSH debugging output to help diagnose the issue
+------------------------------+--------+--+

Note

As can be seen here, the hosts eclipse.devops.develop and
lancaster.devops.develop do not conform with the standard use of
Ansible via SSH. These kind of one-off or manually-configured hosts
limit the scalability and consistent use of Ansible as a system
configuration and management tool.

12.6. Adding a Module in Another Repo

[dimsenv] dittrich@dimsdemo1:~/git/ansible-playbooks () $ cookiecutter https://git.openstack.org/openstack-dev/cookiecutter.git
Cloning into 'cookiecutter'...
remote: Counting objects: 602, done.
remote: Compressing objects: 100% (265/265), done.
remote: Total 602 (delta 345), reused 563 (delta 310)
Receiving objects: 100% (602/602), 81.17 KiB | 0 bytes/s, done.
Resolving deltas: 100% (345/345), done.
Checking connectivity... done.
module_name [replace with the name of the python module]: dims_ansible_playbook
repo_group [openstack]: dims
repo_name [replace with the name for the git repo]: ansible-playbooks
launchpad_project [replace with the name of the project on launchpad]:
project_short_description [OpenStack Boilerplate contains all the boilerplate you need to create an OpenStack package.]: Python ansible-playbook module for dimscli
Initialized empty Git repository in /home/dittrich/git/ansible-playbooks/ansible-playbooks/.git/
[master (root-commit) 7d01bbe] Initial Cookiecutter Commit.
 26 files changed, 647 insertions(+)
 create mode 100644 .coveragerc
 create mode 100644 .gitignore
 create mode 100644 .gitreview
 create mode 100644 .mailmap
 create mode 100644 .testr.conf
 create mode 100644 CONTRIBUTING.rst
 create mode 100644 HACKING.rst
 create mode 100644 LICENSE
 create mode 100644 MANIFEST.in
 create mode 100644 README.rst
 create mode 100644 babel.cfg
 create mode 100644 dims_ansible_playbook/__init__.py
 create mode 100644 dims_ansible_playbook/tests/__init__.py
 create mode 100644 dims_ansible_playbook/tests/base.py
 create mode 100644 dims_ansible_playbook/tests/test_dims_ansible_playbook.py
 create mode 100755 doc/source/conf.py
 create mode 100644 doc/source/contributing.rst
 create mode 100644 doc/source/index.rst
 create mode 100644 doc/source/installation.rst
 create mode 100644 doc/source/readme.rst
 create mode 100644 doc/source/usage.rst
 create mode 100644 requirements.txt
 create mode 100644 setup.cfg
 create mode 100644 setup.py
 create mode 100644 test-requirements.txt
 create mode 100644 tox.ini
[dimsenv] dittrich@dimsdemo1:~/git/ansible-playbooks () $ ls -l
total 4
drwxrwxr-x 5 dittrich dittrich 4096 Jan 1 16:17 ansible-playbooks

13. Service Discovery Using Consul

Consul provides many services that are used by DIMS components, including
a key/value store and DNS service. DIMS takes advantage of the DNS
service by having dnsmasq on each host direct certain queries to
the Consul cluster for resolution, which can be used for service discovery (as
opposed to hard-coding IP addresses or specific host names and port numbers
in source code or configuration files.) The chapter Developing modules for the DIMS CLI app (dimscli) discusses
some of the ways Consul is accessed by dimscli (e.g., see Section
Adding New Columns to Output)

A program named ianitor (GitHub ClearcodeHQ/ianitor [https://github.com/ClearcodeHQ/ianitor]) facilitates using
this Consul DNS capability by wrapping services so they are registered in
Consul’s DNS and monitored by Consul’s health checking features. This
would allow a monitoring application to notify someone when a DIMS service
component (such as something in the backend data store) becomes unavailable.

Note

The ianitor package from PyPi is installed in the DIMS Python Virtual
Environment, so it should be available on all DIMS components that would
need it.

This registration and service discovery process be illustrated using the
netcat (nc) program to create a listening process that will demonstrate
how this works.

First, we start nc on a specific listening port

[dimsenv] dittrich@dimsdemo1:~ () $ ianitor --port 9999 netcat -- nc -l 9999

There is no output at this point, since nc is now running in the
foreground (under the watch of ianitor, also running in the foreground)
patiently listening on port 9999 for something to connect to it. You can
prove to yourself that it is running by looking in the process tree:

 init(1)-+-ModemManager(1000)-+-{ModemManager}(1032)
 | `-{ModemManager}(1036)
 | ...
 |-lightdm(1662)-+-Xorg(1673)
 | |-lightdm(1738)-+-init(2060)-+-GoogleTalkPlugi(3880)-+-{GoogleTalkPlugi}(3881)
 | | | | ...
 | | | |-tmux(3066)-+-bash(4512)---ianitor(680)---nc(683)
 | | | | ...
 | ...

Now that the service is running, we can validate that iainitor has
registered it in Consul. Figure Consul Service Listing shows Consul’s
view of Services showing service:netcat has been registered and
is alive and healthy.

[image: Consul Service Listing]
Consul Service Listing

Using dig, the host on which this service was registered
can be obtained by a simple A record lookup for
netcat.service.consul, as seen here:

 [dimsenv] dittrich@dimsdemo1:~ () $ dig netcat.service.consul

 ; <<>> DiG 9.9.5-3ubuntu0.7-Ubuntu <<>> netcat.service.consul
 ;; global options: +cmd
 ;; Got answer:
 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16448
 ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

 ;; QUESTION SECTION:
 ;netcat.service.consul. IN A

 ;; ANSWER SECTION:
 netcat.service.consul. 0 IN A 10.86.86.7

 ;; Query time: 26 msec
 ;; SERVER: 127.0.0.1#53(127.0.0.1)
 ;; WHEN: Sun Jan 24 12:19:58 PST 2016
 ;; MSG SIZE rcvd: 76

Now switch to Consul’s Nodes tab. Figure Consul service registration for netcat shows
that node dimsdemo1 is running the service netcat, and this time the
service port is also shown to the right (“:9999”):

[image: Consul service registration for netcat]
Consul service registration for netcat

The service’s port number can also be obtained from Consul
via dnsmasq by asking for the DNS SRV record for
netcat.service.consul:

 [dimsenv] dittrich@dimsdemo1:~ () $ dig netcat.service.consul SRV

 ; <<>> DiG 9.9.5-3ubuntu0.7-Ubuntu <<>> netcat.service.consul SRV
 ;; global options: +cmd
 ;; Got answer:
 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 8464
 ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

 ;; QUESTION SECTION:
 ;netcat.service.consul. IN SRV

 ;; ANSWER SECTION:
 netcat.service.consul. 0 IN SRV 1 1 9999 dimsdemo1.node.dc1.consul.

 ;; ADDITIONAL SECTION:
 dimsdemo1.node.dc1.consul. 0 IN A 10.86.86.7

 ;; Query time: 13 msec
 ;; SERVER: 127.0.0.1#53(127.0.0.1)
 ;; WHEN: Sun Jan 24 12:48:44 PST 2016
 ;; MSG SIZE rcvd: 146

Now we can test connecting to the netcat listener (which will show anything
that gets sent to it after the TCP connection is established.)

Attention

When attempting to duplicate this example, keep in mind that
you must have already enabled iptables access to the port
on which nc is listening, otherwise any connection
attempt will be blocked and this won’t work as shown here.
Always keep iptables in mind when trying to expose
network services and test them.

The first test will be using curl from the command line:

 [dimsenv] dittrich@dimsdemo1:~ () $ curl --data Hello http://dimsdemo1.node.dc1.consul:9999/areyouthere

Going back to the window where we ran ianitor, the result is the following:

 [dimsenv] dittrich@dimsdemo1:~ () $ ianitor --port 9999 netcat -- netcat -l 9999
 POST /areyouthere HTTP/1.1
 User-Agent: curl/7.35.0
 Host: dimsdemo1.node.dc1.consul:9999
 Accept: */*
 Content-Length: 5
 Content-Type: application/x-www-form-urlencoded

 Hello

Note

Because netcat simply listens on a port and then prints out what
it receives (never sending anything back), both windows will hang. Just
CTRL-C to kill them. This is just a proof-of-concept, not a real
service. If you kill the ianitor/nc command first, the
curl response will make this very clear with this message:

curl: (52) Empty reply from server

If you connect directly using http://dimsdemo1.node.dc1.consul:9999 from a
browser, you would get a slightly different result.

 [dimsenv] dittrich@dimsdemo1:~ () $ ianitor --port 9999 netcat -- netcat -l 9999
 GET / HTTP/1.1
 Host: dimsdemo1.node.dc1.consul:9999
 User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:43.0) Gecko/20100101 Firefox/43.0
 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
 Accept-Language: en-US,en;q=0.5
 Accept-Encoding: gzip, deflate
 Connection: keep-alive

In practice, ianitor would be used to wrap a service that is being
started by some process manager, such as supervisord. See the
Example supervisord config [https://github.com/ClearcodeHQ/ianitor#example-supervisord-config] on the ianitor GitHub page.

14. Docker Datacenter

This chapter documents a walk thru for running a development instance of
Docker Universal Control Plane [https://www.docker.com/products/docker-universal-control-plane], part of Docker Datacenter [https://www.docker.com/products/docker-datacenter].

Watch a UCP demo [https://www.docker.com/products/docker-universal-control-plane#/demo].

14.1. Datacenter Walk-thru

The following output walks thru these items:

	starting 3 VMs with Docker Machine [https://docs.docker.com/machine/]

	installing UCP on one node as a controller; joining 2 other nodes

	setting up container networking [http://docs-stage.docker.com.s3-website-us-east-1.amazonaws.com/ucp/networking/] on each node

	creating one overlay network [https://docs.docker.com/engine/userguide/networking/dockernetworks/]

	starting a Consul [https://www.consul.io/] container on each node

####################################
DESTROY PREV DOCKER-MACHINE VMS:
1. STOP NODES
2. REMOVE NODES
3. REMOVE VIRTUALBOX HOST-ONLY-
INTERFACE
####################################

[dimsenv] mboggess@dimsdev2:~ () $ docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS
node1 - virtualbox Running tcp://192.168.99.100:2376 v1.10.2
node2 - virtualbox Running tcp://192.168.99.101:2376 v1.10.2
node3 - virtualbox Running tcp://192.168.99.102:2376 v1.10.2
[dimsenv] mboggess@dimsdev2:~ () $ docker-machine stop node1
Stopping "node1"...
Machine "node1" was stopped.
[dimsenv] mboggess@dimsdev2:~ () $ docker-machine stop node2
Stopping "node2"...
Machine "node2" was stopped.
[dimsenv] mboggess@dimsdev2:~ () $ docker-machine stop node3
Stopping "node3"...
Machine "node3" was stopped.
[dimsenv] mboggess@dimsdev2:~ () $ docker-machine rm node1
About to remove node1
Are you sure? (y/n): y
Successfully removed node1
[dimsenv] mboggess@dimsdev2:~ () $ docker-machine rm node2
About to remove node2
Are you sure? (y/n): y
Successfully removed node2
[dimsenv] mboggess@dimsdev2:~ () $ docker-machine rm node3
About to remove node3
Are you sure? (y/n): y
Successfully removed node3
[dimsenv] mboggess@dimsdev2:~ () $ docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS
[dimsenv] mboggess@dimsdev2:~ () $ vboxmanage list hostonlyifs
Name: vboxnet0
GUID: 786f6276-656e-4074-8000-0a0027000000
DHCP: Disabled
IPAddress: 192.168.99.1
NetworkMask: 255.255.255.0
IPV6Address: fe80:0000:0000:0000:0800:27ff:fe00:0000
IPV6NetworkMaskPrefixLength: 64
HardwareAddress: 0a:00:27:00:00:00
MediumType: Ethernet
Status: Up
VBoxNetworkName: HostInterfaceNetworking-vboxnet0

[dimsenv] mboggess@dimsdev2:~ () $ vboxmanage hostonlyif
Usage:

VBoxManage hostonlyif ipconfig <name>
 [--dhcp |
 --ip<ipv4> [--netmask<ipv4> (def: 255.255.255.0)] |
 --ipv6<ipv6> [--netmasklengthv6<length> (def: 64)]]
 create |
 remove <name>

[dimsenv] mboggess@dimsdev2:~ () $ vboxmanage hostonlyif remove vboxnet0
0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%
[dimsenv] mboggess@dimsdev2:~ () $ vboxmanage list hostonlyifs

#################################
START NEW DOCKER MACHINE VMS: #
#################################

[dimsenv] mboggess@dimsdev2:~ () $ docker-machine create -d virtualbox \
> --virtualbox-memory "2000" \
> --virtualbox-disk-size "5000" node0
Running pre-create checks...
(node0) You are using version 4.3.28r100309 of VirtualBox. If you encounter issues, you might want to upgrade to version 5 at https://www.virtualbox.org
Creating machine...
(node0) Copying /home/mboggess/.docker/machine/cache/boot2docker.iso to /home/mboggess/.docker/machine/machines/node0/boot2docker.iso...
(node0) Creating VirtualBox VM...
(node0) Creating SSH key...
(node0) Starting the VM...
(node0) Check network to re-create if needed...
(node0) Found a new host-only adapter: "vboxnet0"
(node0) Waiting for an IP...
Waiting for machine to be running, this may take a few minutes...
Detecting operating system of created instance...
Waiting for SSH to be available...
Detecting the provisioner...
Provisioning with boot2docker...
Copying certs to the local machine directory...
Copying certs to the remote machine...
Setting Docker configuration on the remote daemon...
Checking connection to Docker...
Docker is up and running!
To see how to connect your Docker Client to the Docker Engine running on this virtual machine, run: docker-machine env node0
[dimsenv] mboggess@dimsdev2:~ () $ docker-machine create -d virtualbox \
> --virtualbox-memory "2000" node1
Running pre-create checks...
(node1) You are using version 4.3.28r100309 of VirtualBox. If you encounter issues, you might want to upgrade to version 5 at https://www.virtualbox.org
Creating machine...
(node1) Copying /home/mboggess/.docker/machine/cache/boot2docker.iso to /home/mboggess/.docker/machine/machines/node1/boot2docker.iso...
(node1) Creating VirtualBox VM...
(node1) Creating SSH key...
(node1) Starting the VM...
(node1) Check network to re-create if needed...
(node1) Waiting for an IP...
Waiting for machine to be running, this may take a few minutes...
Detecting operating system of created instance...
Waiting for SSH to be available...
Detecting the provisioner...
Provisioning with boot2docker...
Copying certs to the local machine directory...
Copying certs to the remote machine...
Setting Docker configuration on the remote daemon...
Checking connection to Docker...
Docker is up and running!
To see how to connect your Docker Client to the Docker Engine running on this virtual machine, run: docker-machine env node1
[dimsenv] mboggess@dimsdev2:~ () $ docker-machine create -d virtualbox --virtualbox-memory "2000" node2
Running pre-create checks...
(node2) You are using version 4.3.28r100309 of VirtualBox. If you encounter issues, you might want to upgrade to version 5 at https://www.virtualbox.org
Creating machine...
(node2) Copying /home/mboggess/.docker/machine/cache/boot2docker.iso to /home/mboggess/.docker/machine/machines/node2/boot2docker.iso...
(node2) Creating VirtualBox VM...
(node2) Creating SSH key...
(node2) Starting the VM...
(node2) Check network to re-create if needed...
(node2) Waiting for an IP...
Waiting for machine to be running, this may take a few minutes...
Detecting operating system of created instance...
Waiting for SSH to be available...
Detecting the provisioner...
Provisioning with boot2docker...
Copying certs to the local machine directory...
Copying certs to the remote machine...
Setting Docker configuration on the remote daemon...
Checking connection to Docker...
Docker is up and running!
To see how to connect your Docker Client to the Docker Engine running on this virtual machine, run: docker-machine env node2
[dimsenv] mboggess@dimsdev2:~ () $ docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS
node0 - virtualbox Running tcp://192.168.99.100:2376 v1.10.2
node1 - virtualbox Running tcp://192.168.99.101:2376 v1.10.2
node2 - virtualbox Running tcp://192.168.99.102:2376 v1.10.2

##############################
INSTALL UCP ON CONTROLLER:
##############################

The following command is important.
It sets up the shell environment to interact
with the Docker engine on that node.
[dimsenv] mboggess@dimsdev2:~ () $ eval $(docker-machine env node0)
[dimsenv] mboggess@dimsdev2:~ () $ docker run --rm -it \
> -v /var/run/docker.sock:/var/run/docker.sock \
> --name ucp docker/ucp install -i \
> --swarm-port 3376 --host-address $(docker-machine ip node0)
Unable to find image 'docker/ucp:latest' locally
latest: Pulling from docker/ucp
9ba637b863b8: Pull complete
a3ed95caeb02: Pull complete
Digest: sha256:1016db92f68ef6f9b58053e10eec8465efc7344a3f1e4cbb8fc3e446c42e89d4
Status: Downloaded newer image for docker/ucp:latest
INFO[0000] Verifying your system is compatible with UCP

Remember your password. The username is "admin".
Please choose your initial Orca admin password:
Confirm your initial password:
INFO[0016] Pulling required images... (this may take a while)
WARN[0044] None of the hostnames we'll be using in the UCP certificates [node0 127.0.0.1 172.17.0.1 192.168.99.100] contain a domain component. Your generated certs may fail TLS validation unless you only use one of these shortnames or IPs to connect. You can use the --san flag to add more aliases
You may enter additional aliases (SANs) now or press enter to proceed with the above list.
Additional aliases:
INFO[0047] Installing UCP with host address 192.168.99.100 - If this is incorrect, please specify an alternative address with the '--host-address' flag
INFO[0000] Generating UCP Cluster Root CA
INFO[0018] Generating UCP Client Root CA
INFO[0021] Deploying UCP Containers
INFO[0026] UCP instance ID: 3RSF:3X4K:YW6L:I6E2:XFT3:3INP:JHBF:AFEB:PUXE:FNDU:SELW:43GE
INFO[0026] UCP Server SSL: SHA1 Fingerprint=13:C0:19:5A:98:92:34:18:9A:CB:3E:4F:EB:A3:0E:D6:E3:8E:4E:C6
INFO[0026] Login as "admin"/(your admin password) to UCP at https://192.168.99.100:443

#######################################
JOIN OTHER NODES TO UCP CONTROLLER:
#######################################

Make sure to run the eval command for each node
before the docker run command!
[dimsenv] mboggess@dimsdev2:~ () $ eval $(docker-machine env node1)
[dimsenv] mboggess@dimsdev2:~ () $ docker run --rm -it -v /var/run/docker.sock:/var/run/docker.sock --name ucp docker/ucp join -i --host-address $(docker-machine ip node1)
Please enter the URL to your UCP server: https://192.168.99.100
UCP server https://192.168.99.100
Subject: ucp
Issuer: UCP Client Root CA
SHA1 Fingerprint=13:C0:19:5A:98:92:34:18:9A:CB:3E:4F:EB:A3:0E:D6:E3:8E:4E:C6
Do you want to trust this server and proceed with the join? (y/n): y
Please enter your UCP Admin username: admin
Please enter your UCP Admin password:
INFO[0017] Pulling required images... (this may take a while)
WARN[0048] None of the hostnames we'll be using in the UCP certificates [node1 127.0.0.1 172.17.0.1 192.168.99.101] contain a domain component. Your generated certs may fail TLS validation unless you only use one of these shortnames or IPs to connect. You can use the --san flag to add more aliases
You may enter additional aliases (SANs) now or press enter to proceed with the above list.
Additional aliases:
INFO[0000] This engine will join UCP and advertise itself with host address 192.168.99.101 - If this is incorrect, please specify an alternative address with the '--host-address' flag
INFO[0000] Verifying your system is compatible with UCP
INFO[0006] Starting local swarm containers
[dimsenv] mboggess@dimsdev2:~ () $ eval $(docker-machine env node2)
[dimsenv] mboggess@dimsdev2:~ () $ docker run --rm -it -v /var/run/docker.sock:/var/run/docker.sock --name ucp docker/ucp join -i --host-address $(docker-machine ip node2)
Please enter the URL to your UCP server: https://192.168.99.100
UCP server https://192.168.99.100
Subject: ucp
Issuer: UCP Client Root CA
SHA1 Fingerprint=13:C0:19:5A:98:92:34:18:9A:CB:3E:4F:EB:A3:0E:D6:E3:8E:4E:C6
Do you want to trust this server and proceed with the join? (y/n): y
Please enter your UCP Admin username: admin
Please enter your UCP Admin password:
INFO[0013] Pulling required images... (this may take a while)
WARN[0043] None of the hostnames we'll be using in the UCP certificates [node2 127.0.0.1 172.17.0.1 192.168.99.102] contain a domain component. Your generated certs may fail TLS validation unless you only use one of these shortnames or IPs to connect. You can use the --san flag to add more aliases
You may enter additional aliases (SANs) now or press enter to proceed with the above list.
Additional aliases:
INFO[0000] This engine will join UCP and advertise itself with host address 192.168.99.102 - If this is incorrect, please specify an alternative address with the '--host-address' flag
INFO[0000] Verifying your system is compatible with UCP
INFO[0003] Starting local swarm containers

###############################
SETUP CONTAINER NETWORKING:
###############################

[dimsenv] mboggess@dimsdev2:~ () $ eval $(docker-machine env node0)
[dimsenv] mboggess@dimsdev2:~ () $ docker-machine ssh node0
 ## .
 ## ## ## ==
 ## ## ## ## ## ===
 /"""""""""""""""""___/ ===
      ~~~ {~~ ~~~~ ~~~ ~~~~ ~~~ ~ /  ===- ~~~
           \______ o           __/
             \    \         __/
              \____\_______/
 _                 _   ____     _            _
| |__   ___   ___ | |_|___ \ __| | ___   ___| | _____ _ __
'_ \ / _ \ / _ \| __	__) / _`	/ _ \ / __		/ / _ \ '__					
	_)	(_)	(_)		_ / __/ (_		(_)	(__	<  __/
_.__/ \___/ \___/ \__	_____\__,_	\___/ \___	_	\_\___	_				
Boot2Docker version 1.10.2, build master : 611be10 - Mon Feb 22 22:47:06 UTC 2016
Docker version 1.10.2, build c3959b1

# Run the engine-discovery command using the
#  --update flag to force the update
docker@node0:~$ docker run --rm -it --name ucp \
> -v /var/run/docker.sock:/var/run/docker.sock \
> docker/ucp engine-discovery \
> --controller 192.168.99.100 \
> --host-address 192.168.99.100 --update
INFO[0000] This cluster does not have high availability because you only have a single controller.
INFO[0000] If you plan to add additional replica nodes for HA, you should do this before running this tool to reduce downtime.
WARN[0002] Configuration updated.  You will have to manually restart the docker daemon for the changes to take effect.

# Restart docker. Since this is a boot2docker node,
#  it's via init.d rather than the service command.
docker@node0:~$ sudo /etc/init.d/docker restart
Need TLS certs for node0,127.0.0.1,10.0.2.15,192.168.99.100
-------------------

# Check to see if docker is running.
# If this is the first or second nodes, the etcd cluster
#  will complain because it hasn't achieved a quorum yet.
docker@node0:~$ sudo tail -f /var/log/docker.log
time="2016-03-07T22:11:44.070183580Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -A POSTROUTING -p tcp -s 172.17.0.6 -d 172.17.0.6 --dport 12382 -j MASQUERADE]"
time="2016-03-07T22:11:44.093786359Z" level=debug msg="Assigning addresses for endpoint ucp-client-root-ca's interface on network bridge"
time="2016-03-07T22:11:44.094136165Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -A DOCKER -p tcp -d 0/0 --dport 12376 -j DNAT --to-destination 172.17.0.4:2376 ! -i docker0]"
time="2016-03-07T22:11:44.097042994Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t filter -A DOCKER ! -i docker0 -o docker0 -p tcp -d 172.17.0.4 --dport 2376 -j ACCEPT]"
time="2016-03-07T22:11:44.097919349Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -A POSTROUTING -p tcp -s 172.17.0.4 -d 172.17.0.4 --dport 2376 -j MASQUERADE]"
time="2016-03-07T22:11:44.120796586Z" level=debug msg="Assigning addresses for endpoint ucp-proxy's interface on network bridge"
time="2016-03-07T22:11:47.002871426Z" level=debug msg="could not find network 1faf51793e49dbfb42520d09598c45431e0a4791ca280866d2d451965ef88b05: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:11:50.003202887Z" level=debug msg="could not find endpoint b605cdd78addde5cfde07aa525d67ce9855fc106b8477a6effdf1cc22a185254 in global: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:11:53.005044110Z" level=debug msg="could not find network 1faf51793e49dbfb42520d09598c45431e0a4791ca280866d2d451965ef88b05: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:11:55.240581226Z" level=debug msg="could not find endpoint 8e2956581574300e02f4efb367eb88e042f82a80985ed50f282f79d0529b0e23 in global: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:11:58.240348551Z" level=debug msg="failed to get endpoints for network bridge scope global: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:01.240514251Z" level=debug msg="could not find network 1faf51793e49dbfb42520d09598c45431e0a4791ca280866d2d451965ef88b05: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:04.240443463Z" level=error msg="discovery error: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:04.240519734Z" level=warning msg="Registering as \"192.168.99.100:12376\" in discovery failed: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:04.240552300Z" level=debug msg="could not find endpoint 87e7556fe7ffe84c25abe1a0838f51ef54389eb6c87468f8431eec495fcf4c5c in global: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:07.240511596Z" level=debug msg="failed to get endpoints for network bridge scope global: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:07.241604653Z" level=error msg="discovery error: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:10.240455936Z" level=error msg="discovery error: Unexpected watch error"
time="2016-03-07T22:12:10.240512021Z" level=debug msg="could not find network 1faf51793e49dbfb42520d09598c45431e0a4791ca280866d2d451965ef88b05: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:13.240302992Z" level=debug msg="could not find endpoint 95bb73a58f52adcf1ca98ba9a1298eb6447684b5716a59c4b43481b13795bcc2 in global: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:16.240504890Z" level=debug msg="failed to get endpoints for network bridge scope global: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:19.240514865Z" level=debug msg="could not find network 1faf51793e49dbfb42520d09598c45431e0a4791ca280866d2d451965ef88b05: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:19.240580469Z" level=debug msg="Assigning addresses for endpoint ucp-cluster-root-ca's interface on network bridge"
time="2016-03-07T22:12:19.240598629Z" level=debug msg="RequestAddress(LocalDefault/172.17.0.0/16, <nil>, map[])"
time="2016-03-07T22:12:19.243498664Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -A DOCKER -p tcp -d 0/0 --dport 12381 -j DNAT --to-destination 172.17.0.8:12381 ! -i docker0]"
time="2016-03-07T22:12:19.246101114Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t filter -A DOCKER ! -i docker0 -o docker0 -p tcp -d 172.17.0.8 --dport 12381 -j ACCEPT]"
time="2016-03-07T22:12:19.248576494Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -A POSTROUTING -p tcp -s 172.17.0.8 -d 172.17.0.8 --dport 12381 -j MASQUERADE]"
time="2016-03-07T22:12:19.276450231Z" level=debug msg="Assigning addresses for endpoint ucp-cluster-root-ca's interface on network bridge"
time="2016-03-07T22:12:22.240591811Z" level=debug msg="could not find network 1faf51793e49dbfb42520d09598c45431e0a4791ca280866d2d451965ef88b05: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:25.240425959Z" level=warning msg="Registering as \"192.168.99.100:12376\" in discovery failed: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:25.240490015Z" level=debug msg="could not find endpoint b605cdd78addde5cfde07aa525d67ce9855fc106b8477a6effdf1cc22a185254 in global: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:28.240338660Z" level=debug msg="could not find network 1faf51793e49dbfb42520d09598c45431e0a4791ca280866d2d451965ef88b05: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:31.240448754Z" level=error msg="discovery error: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:12:31.240505330Z" level=debug msg="could not find network 1faf51793e49dbfb42520d09598c45431e0a4791ca280866d2d451965ef88b05: client: etcd cluster is unavailable or misconfigured"
^C
docker@node0:~$ exit
[dimsenv] mboggess@dimsdev2:~ () $ docker-machine ssh node1
                        ##         .
                  ## ## ##        ==
               ## ## ## ## ##    ===
           /"""""""""""""""""\___/ ===
      ~~~ {~~ ~~~~ ~~~ ~~~~ ~~~ ~ /  ===- ~~~
 ______ o __/
 \ \ __/
 ___________/
 _ _ ____ _ _
| |__ ___ ___ | |_|___ \ __| | ___ ___| | _____ _ __
'_ \ / _ \ / _ \| __	__) / _`	/ _ \ / __		/ / _ \ '__					
)	()	(_)		_ / __/ (_		(_)	(__	< __/
_.__/ ___/ ___/ __	_______,_	___/ ___	_	____	_				
Boot2Docker version 1.10.2, build master : 611be10 - Mon Feb 22 22:47:06 UTC 2016
Docker version 1.10.2, build c3959b1

Run the engine-discovery command using the
--update flag to force the update
docker@node1:~$ docker run --rm -it --name ucp \
> -v /var/run/docker.sock:/var/run/docker.sock \
> docker/ucp engine-discovery \
> --controller 192.168.99.100 \
> --host-address 192.168.99.101 --update
INFO[0000] This cluster does not have high availability because you only have a single controller.
INFO[0000] If you plan to add additional replica nodes for HA, you should do this before running this tool to reduce downtime.
WARN[0002] Configuration updated. You will have to manually restart the docker daemon for the changes to take effect.

Restart docker. Since this is a boot2docker node,
it's via init.d rather than the service command.
docker@node1:~$ sudo /etc/init.d/docker restart
Need TLS certs for node1,127.0.0.1,10.0.2.15,192.168.99.101

Check to see if docker is running.
If this is the first or second nodes, the etcd cluster
will complain because it hasn't achieved a quorum yet.
docker@node1:~$ sudo tail -f /var/log/docker.log
time="2016-03-07T22:13:46.271986099Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -n -L DOCKER]"
time="2016-03-07T22:13:46.272800845Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -N DOCKER]"
time="2016-03-07T22:13:46.273586600Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t filter -n -L DOCKER]"
time="2016-03-07T22:13:46.274353619Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t filter -n -L DOCKER-ISOLATION]"
time="2016-03-07T22:13:46.275113441Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t filter -C DOCKER-ISOLATION -j RETURN]"
time="2016-03-07T22:13:46.276694579Z" level=debug msg="/usr/local/sbin/iptables, [--wait -I DOCKER-ISOLATION -j RETURN]"
time="2016-03-07T22:13:49.257937305Z" level=debug msg="Registering ipam driver: \"default\""
time="2016-03-07T22:13:49.258517657Z" level=error msg="discovery error: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:13:52.258733627Z" level=error msg="discovery error: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:13:52.259818156Z" level=debug msg="failed to get endpoints for network bridge scope global: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:13:55.257366820Z" level=debug msg="failed to get networks for scope global: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:13:55.257706784Z" level=error msg="discovery error: Unexpected watch error"
time="2016-03-07T22:13:55.258525392Z" level=debug msg="releasing IPv4 pools from network bridge (1000394495e2c6bd577004f17a75ed038c7f1696448275552fd1d7219e38f02e)"
time="2016-03-07T22:13:55.258554539Z" level=debug msg="ReleaseAddress(LocalDefault/172.17.0.0/16, 172.17.0.1)"
time="2016-03-07T22:13:55.258957934Z" level=debug msg="ReleasePool(LocalDefault/172.17.0.0/16)"
time="2016-03-07T22:13:55.260916658Z" level=info msg="Default bridge (docker0) is assigned with an IP address 172.17.0.0/16. Daemon option --bip can be used to set a preferred IP address"
time="2016-03-07T22:13:55.260932331Z" level=debug msg="Allocating IPv4 pools for network bridge (b88f0323c65d45add2d7b24c36a9206d006b420c6030273192d24721948d0e02)"
time="2016-03-07T22:13:55.260946821Z" level=debug msg="RequestPool(LocalDefault, 172.17.0.0/16, , map[], false)"
time="2016-03-07T22:13:55.263397489Z" level=debug msg="RequestAddress(LocalDefault/172.17.0.0/16, 172.17.0.1, map[RequestAddressType:com.docker.network.gateway])"
time="2016-03-07T22:13:55.263939490Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -C POSTROUTING -s 172.17.0.0/16 ! -o docker0 -j MASQUERADE]"
time="2016-03-07T22:13:55.265768161Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -C DOCKER -i docker0 -j RETURN]"
time="2016-03-07T22:13:55.269104645Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -I DOCKER -i docker0 -j RETURN]"
time="2016-03-07T22:13:55.279625706Z" level=debug msg="/usr/local/sbin/iptables, [--wait -D FORWARD -i docker0 -o docker0 -j DROP]"
time="2016-03-07T22:13:55.281677039Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t filter -C FORWARD -i docker0 -o docker0 -j ACCEPT]"
time="2016-03-07T22:13:55.283548456Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t filter -C FORWARD -i docker0 ! -o docker0 -j ACCEPT]"
time="2016-03-07T22:13:55.285372426Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t filter -C FORWARD -o docker0 -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT]"
time="2016-03-07T22:13:55.286692461Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -C PREROUTING -m addrtype --dst-type LOCAL -j DOCKER]"
time="2016-03-07T22:13:55.288968983Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -A PREROUTING -m addrtype --dst-type LOCAL -j DOCKER]"
time="2016-03-07T22:13:55.292775137Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -C OUTPUT -m addrtype --dst-type LOCAL -j DOCKER ! --dst 127.0.0.0/8]"
time="2016-03-07T22:13:55.295829670Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -A OUTPUT -m addrtype --dst-type LOCAL -j DOCKER ! --dst 127.0.0.0/8]"
time="2016-03-07T22:13:55.297141841Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t filter -C FORWARD -o docker0 -j DOCKER]"
time="2016-03-07T22:13:55.298264112Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t filter -C FORWARD -o docker0 -j DOCKER]"
time="2016-03-07T22:13:55.299305220Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t filter -C FORWARD -j DOCKER-ISOLATION]"
time="2016-03-07T22:13:55.301557053Z" level=debug msg="/usr/local/sbin/iptables, [--wait -D FORWARD -j DOCKER-ISOLATION]"
time="2016-03-07T22:13:55.302973335Z" level=debug msg="/usr/local/sbin/iptables, [--wait -I FORWARD -j DOCKER-ISOLATION]"
time="2016-03-07T22:13:55.306115140Z" level=warning msg="Your kernel does not support cgroup blkio weight"
time="2016-03-07T22:13:55.306137240Z" level=warning msg="Your kernel does not support cgroup blkio weight_device"
time="2016-03-07T22:13:55.306368634Z" level=debug msg="Cleaning up old shm/mqueue mounts: start."
time="2016-03-07T22:13:55.306436591Z" level=debug msg="Cleaning up old shm/mqueue mounts: done."
time="2016-03-07T22:13:55.306847988Z" level=debug msg="Loaded container 21d865de28e79c10a80125d1fb13d72f3e6b3d44accf8264b3e285d3b5ddbe2d"
time="2016-03-07T22:13:55.307060932Z" level=debug msg="Loaded container d5d7a3b2009769571f35029711c2564b7ee6231cbadfa858c9bad471a933f676"
time="2016-03-07T22:13:55.307357391Z" level=debug msg="Starting container d5d7a3b2009769571f35029711c2564b7ee6231cbadfa858c9bad471a933f676"
time="2016-03-07T22:13:55.309267051Z" level=debug msg="Starting container 21d865de28e79c10a80125d1fb13d72f3e6b3d44accf8264b3e285d3b5ddbe2d"
time="2016-03-07T22:13:55.310005643Z" level=debug msg="container mounted via layerStore: /mnt/sda1/var/lib/docker/aufs/mnt/b8c1dc4410caf9f4fab300b45a9f0fbff089d70294540060f76f1f2f9f572ac1"
time="2016-03-07T22:13:55.310584317Z" level=debug msg="container mounted via layerStore: /mnt/sda1/var/lib/docker/aufs/mnt/129e034a6b4e86ec6f8f294a1d900575fd811ac461509a392543bcf63a81e269"
time="2016-03-07T22:13:58.257050034Z" level=debug msg="failed to get networks for scope global: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:14:01.256474377Z" level=debug msg="failed to get networks for scope global: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:14:04.256797930Z" level=debug msg="failed to get endpoints for network bridge scope global: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:14:04.257003090Z" level=debug msg="Assigning addresses for endpoint ucp-proxy's interface on network bridge"
time="2016-03-07T22:14:04.257028352Z" level=debug msg="RequestAddress(LocalDefault/172.17.0.0/16, <nil>, map[])"
time="2016-03-07T22:14:04.259816002Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -A DOCKER -p tcp -d 0/0 --dport 12376 -j DNAT --to-destination 172.17.0.2:2376 ! -i docker0]"
time="2016-03-07T22:14:04.263040050Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t filter -A DOCKER ! -i docker0 -o docker0 -p tcp -d 172.17.0.2 --dport 2376 -j ACCEPT]"
time="2016-03-07T22:14:04.265142604Z" level=debug msg="/usr/local/sbin/iptables, [--wait -t nat -A POSTROUTING -p tcp -s 172.17.0.2 -d 172.17.0.2 --dport 2376 -j MASQUERADE]"
time="2016-03-07T22:14:04.292801112Z" level=debug msg="Assigning addresses for endpoint ucp-proxy's interface on network bridge"
time="2016-03-07T22:14:07.256722098Z" level=debug msg="failed to get endpoints for network bridge scope global: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:14:07.256809339Z" level=debug msg="Assigning addresses for endpoint ucp-swarm-join's interface on network bridge"
time="2016-03-07T22:14:07.256832041Z" level=debug msg="RequestAddress(LocalDefault/172.17.0.0/16, <nil>, map[])"
time="2016-03-07T22:14:07.259553952Z" level=debug msg="Assigning addresses for endpoint ucp-swarm-join's interface on network bridge"
time="2016-03-07T22:14:08.636576527Z" level=warning msg="Registering as \"192.168.99.101:12376\" in discovery failed: client: etcd cluster is unavailable or misconfigured"
time="2016-03-07T22:14:08.845887701Z" level=info msg="Daemon has completed initialization"
time="2016-03-07T22:14:08.845913783Z" level=info msg="Docker daemon" commit=c3959b1 execdriver=native-0.2 graphdriver=aufs version=1.10.2
time="2016-03-07T22:14:08.846256409Z" level=debug msg="Registering routers"
time="2016-03-07T22:14:08.846270306Z" level=debug msg="Registering HEAD, /containers/{name:.*}/archive"
time="2016-03-07T22:14:08.847061019Z" level=debug msg="Registering GET, /containers/json"
time="2016-03-07T22:14:08.847153618Z" level=debug msg="Registering GET, /containers/{name:.*}/export"
time="2016-03-07T22:14:08.847238114Z" level=debug msg="Registering GET, /containers/{name:.*}/changes"
time="2016-03-07T22:14:08.847326718Z" level=debug msg="Registering GET, /containers/{name:.*}/json"
time="2016-03-07T22:14:08.847399636Z" level=debug msg="Registering GET, /containers/{name:.*}/top"
time="2016-03-07T22:14:08.847474180Z" level=debug msg="Registering GET, /containers/{name:.*}/logs"
time="2016-03-07T22:14:08.847546361Z" level=debug msg="Registering GET, /containers/{name:.*}/stats"
time="2016-03-07T22:14:08.847617874Z" level=debug msg="Registering GET, /containers/{name:.*}/attach/ws"
time="2016-03-07T22:14:08.847760982Z" level=debug msg="Registering GET, /exec/{id:.*}/json"
time="2016-03-07T22:14:08.847832158Z" level=debug msg="Registering GET, /containers/{name:.*}/archive"
time="2016-03-07T22:14:08.847912683Z" level=debug msg="Registering POST, /containers/create"
time="2016-03-07T22:14:08.847974072Z" level=debug msg="Registering POST, /containers/{name:.*}/kill"
time="2016-03-07T22:14:08.848047654Z" level=debug msg="Registering POST, /containers/{name:.*}/pause"
time="2016-03-07T22:14:08.848126808Z" level=debug msg="Registering POST, /containers/{name:.*}/unpause"
time="2016-03-07T22:14:08.848204817Z" level=debug msg="Registering POST, /containers/{name:.*}/restart"
time="2016-03-07T22:14:08.848278681Z" level=debug msg="Registering POST, /containers/{name:.*}/start"
time="2016-03-07T22:14:08.848348615Z" level=debug msg="Registering POST, /containers/{name:.*}/stop"
time="2016-03-07T22:14:08.848420618Z" level=debug msg="Registering POST, /containers/{name:.*}/wait"
time="2016-03-07T22:14:08.848491251Z" level=debug msg="Registering POST, /containers/{name:.*}/resize"
time="2016-03-07T22:14:08.848590568Z" level=debug msg="Registering POST, /containers/{name:.*}/attach"
time="2016-03-07T22:14:08.848669165Z" level=debug msg="Registering POST, /containers/{name:.*}/copy"
time="2016-03-07T22:14:08.848742896Z" level=debug msg="Registering POST, /containers/{name:.*}/exec"
time="2016-03-07T22:14:08.848819642Z" level=debug msg="Registering POST, /exec/{name:.*}/start"
time="2016-03-07T22:14:08.848889548Z" level=debug msg="Registering POST, /exec/{name:.*}/resize"
time="2016-03-07T22:14:08.848958077Z" level=debug msg="Registering POST, /containers/{name:.*}/rename"
time="2016-03-07T22:14:08.849037834Z" level=debug msg="Registering POST, /containers/{name:.*}/update"
time="2016-03-07T22:14:08.849109277Z" level=debug msg="Registering PUT, /containers/{name:.*}/archive"
time="2016-03-07T22:14:08.849190550Z" level=debug msg="Registering DELETE, /containers/{name:.*}"
time="2016-03-07T22:14:08.849216845Z" level=debug msg="Registering GET, /images/json"
time="2016-03-07T22:14:08.849318873Z" level=debug msg="Registering GET, /images/search"
time="2016-03-07T22:14:08.849373401Z" level=debug msg="Registering GET, /images/get"
time="2016-03-07T22:14:08.849428402Z" level=debug msg="Registering GET, /images/{name:.*}/get"
time="2016-03-07T22:14:08.849509958Z" level=debug msg="Registering GET, /images/{name:.*}/history"
time="2016-03-07T22:14:08.849580238Z" level=debug msg="Registering GET, /images/{name:.*}/json"
time="2016-03-07T22:14:08.849658289Z" level=debug msg="Registering POST, /commit"
time="2016-03-07T22:14:08.849710575Z" level=debug msg="Registering POST, /images/create"
time="2016-03-07T22:14:08.849765617Z" level=debug msg="Registering POST, /images/load"
time="2016-03-07T22:14:08.849832560Z" level=debug msg="Registering POST, /images/{name:.*}/push"
time="2016-03-07T22:14:08.849910171Z" level=debug msg="Registering POST, /images/{name:.*}/tag"
time="2016-03-07T22:14:08.849985573Z" level=debug msg="Registering DELETE, /images/{name:.*}"
time="2016-03-07T22:14:08.850055502Z" level=debug msg="Registering GET, /networks"
time="2016-03-07T22:14:08.850105467Z" level=debug msg="Registering GET, /networks/{id:.*}"
time="2016-03-07T22:14:08.850177977Z" level=debug msg="Registering POST, /networks/create"
time="2016-03-07T22:14:08.850235246Z" level=debug msg="Registering POST, /networks/{id:.*}/connect"
time="2016-03-07T22:14:08.850306649Z" level=debug msg="Registering POST, /networks/{id:.*}/disconnect"
time="2016-03-07T22:14:08.850389979Z" level=debug msg="Registering DELETE, /networks/{id:.*}"
time="2016-03-07T22:14:08.850473015Z" level=debug msg="Registering OPTIONS, /{anyroute:.*}"
time="2016-03-07T22:14:08.850537923Z" level=debug msg="Registering GET, /_ping"
time="2016-03-07T22:14:08.850603214Z" level=debug msg="Registering GET, /events"
time="2016-03-07T22:14:08.850654396Z" level=debug msg="Registering GET, /info"
time="2016-03-07T22:14:08.850697470Z" level=debug msg="Registering GET, /version"
time="2016-03-07T22:14:08.850746844Z" level=debug msg="Registering POST, /auth"
time="2016-03-07T22:14:08.850784258Z" level=debug msg="Registering GET, /volumes"
time="2016-03-07T22:14:08.850834588Z" level=debug msg="Registering GET, /volumes/{name:.*}"
time="2016-03-07T22:14:08.850936508Z" level=debug msg="Registering POST, /volumes/create"
time="2016-03-07T22:14:08.850995395Z" level=debug msg="Registering DELETE, /volumes/{name:.*}"
time="2016-03-07T22:14:08.851065688Z" level=debug msg="Registering POST, /build"
time="2016-03-07T22:14:08.851130299Z" level=info msg="API listen on [::]:2376"
time="2016-03-07T22:14:08.851169803Z" level=info msg="API listen on /var/run/docker.sock"
time="2016-03-07T22:14:09.137038800Z" level=debug msg="Calling GET /v1.15/info"
time="2016-03-07T22:14:09.137075352Z" level=debug msg="GET /v1.15/info"
time="2016-03-07T22:14:09.142123681Z" level=debug msg="Calling GET /v1.15/version"
time="2016-03-07T22:14:09.142158720Z" level=debug msg="GET /v1.15/version"
time="2016-03-07T22:14:09.144484526Z" level=debug msg="Calling GET /v1.15/containers/json"
time="2016-03-07T22:14:09.144504295Z" level=debug msg="GET /v1.15/containers/json?all=1&size=0"
time="2016-03-07T22:14:09.212279532Z" level=debug msg="Calling GET /v1.15/events"
time="2016-03-07T22:14:09.212316010Z" level=debug msg="GET /v1.15/events"
time="2016-03-07T22:14:09.222183110Z" level=debug msg="Calling GET /v1.15/containers/d5d7a3b2009769571f35029711c2564b7ee6231cbadfa858c9bad471a933f676/json"
time="2016-03-07T22:14:09.222216653Z" level=debug msg="GET /v1.15/containers/d5d7a3b2009769571f35029711c2564b7ee6231cbadfa858c9bad471a933f676/json"
time="2016-03-07T22:14:09.247701879Z" level=debug msg="Calling GET /v1.15/containers/21d865de28e79c10a80125d1fb13d72f3e6b3d44accf8264b3e285d3b5ddbe2d/json"
time="2016-03-07T22:14:09.247740095Z" level=debug msg="GET /v1.15/containers/21d865de28e79c10a80125d1fb13d72f3e6b3d44accf8264b3e285d3b5ddbe2d/json"
time="2016-03-07T22:14:09.271798719Z" level=debug msg="Calling GET /v1.15/images/json"
time="2016-03-07T22:14:09.271838761Z" level=debug msg="GET /v1.15/images/json?all=1"
time="2016-03-07T22:14:09.280243977Z" level=debug msg="Calling GET /v1.15/volumes"
time="2016-03-07T22:14:09.280284281Z" level=debug msg="GET /v1.15/volumes"
time="2016-03-07T22:14:09.295893747Z" level=debug msg="Calling GET /v1.15/networks"
time="2016-03-07T22:14:09.295919607Z" level=debug msg="GET /v1.15/networks"
^C
docker@node1:~$ exit
[dimsenv] mboggess@dimsdev2:~ () $ docker-machine ssh node2
 ## .
 ## ## ## ==
 ## ## ## ## ## ===
 /"""""""""""""""""___/ ===
      ~~~ {~~ ~~~~ ~~~ ~~~~ ~~~ ~ /  ===- ~~~
           \______ o           __/
             \    \         __/
              \____\_______/
 _                 _   ____     _            _
| |__   ___   ___ | |_|___ \ __| | ___   ___| | _____ _ __
'_ \ / _ \ / _ \| __	__) / _`	/ _ \ / __		/ / _ \ '__					
	_)	(_)	(_)		_ / __/ (_		(_)	(__	<  __/
_.__/ \___/ \___/ \__	_____\__,_	\___/ \___	_	\_\___	_				
Boot2Docker version 1.10.2, build master : 611be10 - Mon Feb 22 22:47:06 UTC 2016
Docker version 1.10.2, build c3959b1

# Run the engine-discovery command using the
#  --update flag to force the update
docker@node2:~$ docker run --rm -it --name ucp \
> -v /var/run/docker.sock:/var/run/docker.sock \
> docker/ucp engine-discovery \
> --controller 192.168.99.100 \
> --host-address 192.168.99.102 --update
INFO[0000] This cluster does not have high availability because you only have a single controller.
INFO[0000] If you plan to add additional replica nodes for HA, you should do this before running this tool to reduce downtime.
WARN[0002] Configuration updated.  You will have to manually restart the docker daemon for the changes to take effect.

# Restart docker. Since this is a boot2docker node,
#  it's via init.d rather than the service command.
docker@node2:~$ sudo /etc/init.d/docker restart
Need TLS certs for node2,127.0.0.1,10.0.2.15,192.168.99.102
-------------------

# Check to see if docker is running.
# If this is the first or second nodes, the etcd cluster
#  will complain because it hasn't achieved a quorum yet.
docker@node2:~$ sudo tail -f /var/log/docker.log
time="2016-03-07T22:15:19.579838639Z" level=debug msg="Registering DELETE, /volumes/{name:.*}"
time="2016-03-07T22:15:19.579943547Z" level=debug msg="Registering POST, /build"
time="2016-03-07T22:15:19.580001959Z" level=info msg="API listen on [::]:2376"
time="2016-03-07T22:15:19.580066049Z" level=info msg="API listen on /var/run/docker.sock"
time="2016-03-07T22:15:19.680998567Z" level=debug msg="2016/03/07 22:15:19 [DEBUG] serf: messageJoinType: node2\n"
time="2016-03-07T22:15:19.681292971Z" level=debug msg="2016/03/07 22:15:19 [DEBUG] serf: messageJoinType: node2\n"
time="2016-03-07T22:15:19.701548847Z" level=debug msg="2016/03/07 22:15:19 [DEBUG] serf: messageJoinType: node2\n"
time="2016-03-07T22:15:19.880935252Z" level=debug msg="2016/03/07 22:15:19 [DEBUG] serf: messageJoinType: node2\n"
time="2016-03-07T22:15:19.901325865Z" level=debug msg="2016/03/07 22:15:19 [DEBUG] serf: messageJoinType: node2\n"
time="2016-03-07T22:15:23.858113731Z" level=debug msg="Watch triggered with 3 nodes" discovery=etcd
time="2016-03-07T22:15:25.639472644Z" level=debug msg="Watch triggered with 3 nodes" discovery=etcd
^C
docker@node2:~$ exit


###########################
# CREATE OVERLAY NETWORK: #
###########################

[dimsenv] mboggess@dimsdev2:~ () $ docker-machine ssh node0
                        ##         .
                  ## ## ##        ==
               ## ## ## ## ##    ===
           /"""""""""""""""""\___/ ===
      ~~~ {~~ ~~~~ ~~~ ~~~~ ~~~ ~ /  ===- ~~~
 ______ o __/
 \ \ __/
 ___________/
 _ _ ____ _ _
| |__ ___ ___ | |_|___ \ __| | ___ ___| | _____ _ __
'_ \ / _ \ / _ \| __	__) / _`	/ _ \ / __		/ / _ \ '__					
)	()	(_)		_ / __/ (_		(_)	(__	< __/
_.__/ ___/ ___/ __	_______,_	___/ ___	_	____	_				
Boot2Docker version 1.10.2, build master : 611be10 - Mon Feb 22 22:47:06 UTC 2016
Docker version 1.10.2, build c3959b1
docker@node0:~$ docker network create -d overlay --subnet=10.4.0.0/16 data.local
96f50ce413255df69e8dfe616190c90d3380d25204c16b27be0c66ebe04057cf
docker@node0:~$ docker network ls
NETWORK ID NAME DRIVER
96f50ce41325 data.local overlay
1faf51793e49 bridge bridge
b1b5091c0275 none null
4faefa7c2e28 host host
docker@node0:~$ exit
[dimsenv] mboggess@dimsdev2:~ () $ docker info
Containers: 7
 Running: 7
 Paused: 0
 Stopped: 0
Images: 7
Server Version: 1.10.2
Storage Driver: aufs
 Root Dir: /mnt/sda1/var/lib/docker/aufs
 Backing Filesystem: extfs
 Dirs: 59
 Dirperm1 Supported: true
Execution Driver: native-0.2
Logging Driver: json-file
Plugins:
 Volume: local
 Network: host bridge overlay null
Kernel Version: 4.1.18-boot2docker
Operating System: Boot2Docker 1.10.2 (TCL 6.4.1); master : 611be10 - Mon Feb 22 22:47:06 UTC 2016
OSType: linux
Architecture: x86_64
CPUs: 1
Total Memory: 1.909 GiB
Name: node0
ID: AFDQ:Z3N3:OPVT:VTYE:CF5Y:FIZ6:7BIJ:6N6I:GXQ3:DFOP:QV6H:XQKM
Debug mode (server): true
 File Descriptors: 70
 Goroutines: 113
 System Time: 2016-03-07T22:17:05.675047056Z
 EventsListeners: 1
 Init SHA1:
 Init Path: /usr/local/bin/docker
 Docker Root Dir: /mnt/sda1/var/lib/docker
Labels:
 provider=virtualbox
Cluster store: etcd://192.168.99.100:12379
Cluster advertise: 192.168.99.100:12376

##########################
RUN CONSUL CONTAINERS:
##########################

Remember to run the eval command for each node
before running the Consul docker run command!
[dimsenv] mboggess@dimsdev2:~ () $ eval $(docker-machine env node0)
[dimsenv] mboggess@dimsdev2:~ () $ docker run -d --name=consul-node0 --net=data.local -v /mnt:/data -p 192.168.99.100:8300:8300 -p 192.168.99.100:8301:8301 -p 192.168.99.100:8301:8301/udp -p 192.168.99.100:8302:8302 -p 192.168.99.100:8302:8302/udp -p 192.168.99.100:8400:8400 -p 192.168.99.100:8500:8500 -p 192.168.99.100:8600:8600 -p 172.17.0.1:53:53/udp progrium/consul -node node0 -server -dc local -advertise 192.168.99.100 -bootstrap-expect 3
Unable to find image 'progrium/consul:latest' locally
latest: Pulling from progrium/consul
c862d82a67a2: Pull complete
0e7f3c08384e: Pull complete
0e221e32327a: Pull complete
09a952464e47: Pull complete
60a1b927414d: Pull complete
4c9f46b5ccce: Pull complete
417d86672aa4: Pull complete
b0d47ad24447: Pull complete
fd5300bd53f0: Pull complete
a3ed95caeb02: Pull complete
d023b445076e: Pull complete
ba8851f89e33: Pull complete
5d1cefca2a28: Pull complete
Digest: sha256:8cc8023462905929df9a79ff67ee435a36848ce7a10f18d6d0faba9306b97274
Status: Downloaded newer image for progrium/consul:latest
678e7c48ef46be766e198a414d901078fad1110cf688425703758ce53f1d5758

EVAL!
[dimsenv] mboggess@dimsdev2:~ () $ eval $(docker-machine env node1)
[dimsenv] mboggess@dimsdev2:~ () $ docker run -d --name=consul-node1 --net=data.local -v /mnt:/data -p 192.168.99.101:8300:8300 -p 192.168.99.101:8301:8301 -p 192.168.99.101:8301:8301/udp -p 192.168.99.101:8302:8302 -p 192.168.99.101:8302:8302/udp -p 192.168.99.101:8400:8400 -p 192.168.99.101:8500:8500 -p 192.168.99.101:8600:8600 -p 172.17.0.1:53:53/udp progrium/consul -node node1 -server -dc local -advertise 192.168.99.101 -join 192.168.99.100
Unable to find image 'progrium/consul:latest' locally
latest: Pulling from progrium/consul
c862d82a67a2: Pull complete
0e7f3c08384e: Pull complete
0e221e32327a: Pull complete
09a952464e47: Pull complete
60a1b927414d: Pull complete
4c9f46b5ccce: Pull complete
417d86672aa4: Pull complete
b0d47ad24447: Pull complete
fd5300bd53f0: Pull complete
a3ed95caeb02: Pull complete
d023b445076e: Pull complete
ba8851f89e33: Pull complete
5d1cefca2a28: Pull complete
Digest: sha256:8cc8023462905929df9a79ff67ee435a36848ce7a10f18d6d0faba9306b97274
Status: Downloaded newer image for progrium/consul:latest
e3b0881350ca414ac9a652f8fd65f80714c108d316d00a3810162a2f0fc5491e

EVAL!
[dimsenv] mboggess@dimsdev2:~ () $ eval $(docker-machine env node2)
[dimsenv] mboggess@dimsdev2:~ () $ docker run -d --name=consul-node2 --net=data.local -v /mnt:/data -p 192.168.99.102:8300:8300 -p 192.168.99.102:8301:8301 -p 192.168.99.102:8301:8301/udp -p 192.168.99.102:8302:8302 -p 192.168.99.102:8302:8302/udp -p 192.168.99.102:8400:8400 -p 192.168.99.102:8500:8500 -p 192.168.99.102:8600:8600 -p 172.17.0.1:53:53/udp progrium/consul -node node2 -server -dc local -advertise 192.168.99.102 -join 192.168.99.100
Unable to find image 'progrium/consul:latest' locally
latest: Pulling from progrium/consul
c862d82a67a2: Pull complete
0e7f3c08384e: Pull complete
0e221e32327a: Pull complete
09a952464e47: Pull complete
60a1b927414d: Pull complete
4c9f46b5ccce: Pull complete
417d86672aa4: Pull complete
b0d47ad24447: Pull complete
fd5300bd53f0: Pull complete
a3ed95caeb02: Pull complete
d023b445076e: Pull complete
ba8851f89e33: Pull complete
5d1cefca2a28: Pull complete
Digest: sha256:8cc8023462905929df9a79ff67ee435a36848ce7a10f18d6d0faba9306b97274
Status: Downloaded newer image for progrium/consul:latest
69f710905924070ae83f5833129cef38f7409b5ecabdc7335111fe5430571a45

Once you’ve completed the steps outlined, you should be able to go to
https://<controller-ip>:443, log in with “admin” and the password you
gave during the prompt, submit the license, and see the following:

[image: _images/UCPdashboard.png]
[image: _images/UCPcontainers.png]

14.2. Further Information

As more is learned about Docker Datacenter, particularly admin-related
information, it will be documented here.

15. Debugging and Development

This chapter covers some tools and tactics used for testing and debugging
misbehaving system components, or obtaining sufficient detail about how
subsystem components work in order to control them to achieve project goals and
requirement objectives. Executing some command line or triggering an
action in a user interface that results in the system appearing to
“hang” can be caused by many things. Just looking at the surface and
seeing no action is useless in determining the root cause of the
issue. The ability to turn a “black box” into a “transparent box”
is invaluable to the process of testing and debugging.

Hint

Some useful resources on the processes of testing and debugging
are listed here:

	Testing and Debugging [http://www.jodypaul.com/SWE/TD/TestDebug.html]

	White-box testing, Wikipedia [https://en.wikipedia.org/wiki/White-box_testing]

	White-Box Testing [http://www.drdobbs.com/tools/white-box-testing/184404030], by Oliver Cole, March 1, 2000

15.1. Determining File System Affects of Running Programs

Many programs used in the DIMS project consume gigabytes of disk storage,
often in hidden locations that are not obvious to the user. The act of
taking an Ubuntu 14.04 install ISO image, converting it with Packer
into a BOX file, turning that into a Virtualbox image, and instantiating
a Vagrant virtual machine can turn just under 1 GB into 3-5 GB of storage.
Multiply that by a dozen or more virtual machines and this quickly can
add up. If you are not aware of what gets created, and you change names
of virtual machines, you can end up with a huge amount of wasted disk
space with unused virtual disks, virtual machine images, etc.

For this reason, every programmer developing tools that use programs
like this should be methodical about understanding every process in
terms of inputs, process, and outputs, such that it is possible
to see what is produced to help the person using your tools know
what is happening, and to undo those effects in a controlled way
to simplify cleaning up.

Hint

An easy way to help the user of your tools is to be organized and
put large files related to a workflow like Packer->Virtualbox->Vagrant
VM creation under a single directory path like /vm that can
deleted in one step, backed up and moved to another system with
a larger hard drive, or expanded by mounting a second hard drive
onto that directory path as a mount point. Scattering the files
across many unrelated subdirectories in random locations and
depths within the user’s $HOME directory tree makes it much
harder to handle a situation where the hard drive on a laptop
reaches 100% utilization.

Let’s take a look at a portion of the workflow of Packer->Virtualbox->Vagrant
creation to see how to white-box disk utilization and space management.

We start by changing directory into the $GIT/dims-packer repository where
tools for creating Vagrants using Packer are kept. We create an initial empty
file to serve as a marker in time for then locating any files that
were created after this file.

Note

The example here will search through a set of directories that were
chosen based on knowledge that they exist and are used by various tools.
To obtain this knowledge, it is often helpful to start looking at the
root of the filesystem (/) and look for any files in any
directories, which you will quickly find has a lot of unrelated file
system additions that just happen to have been made at the same time
as the program you were running. A more precise way to identify
where files are created is to trace execution of the program in
question, following all forked children, using a program like
strace and/or ltrace, however these tools require a much
deeper understanding of how the Unix/Linux kernel works.

$ cd $GIT/dims-packer

$ cd $GIT/dims-packer
$ find /home/dittrich/.vagrant.d/ /home/dittrich/.packer.d/ /home/dittrich/VirtualBox\ VMs/ . /vm -newer foo -ls
56230373 4 drwxrwxr-x 7 dittrich dittrich 4096 Mar 15 13:14 /home/dittrich/.vagrant.d/
56230688 0 -rw-rw-r-- 1 dittrich dittrich 0 Mar 15 13:14 /home/dittrich/.vagrant.d/data/machine-index/index.lock
56230689 4 drwxr-xr-x 2 dittrich dittrich 4096 Mar 15 13:14 /home/dittrich/.packer.d/
56230691 4 -rw-rw-r-- 1 dittrich dittrich 318 Mar 15 13:14 /home/dittrich/.packer.d/checkpoint_cache
55314574 4 drwx------ 6 dittrich dittrich 4096 Mar 15 13:24 /home/dittrich/VirtualBox\ VMs/
58589344 2183628 -rw------- 1 dittrich dittrich 2240348160 Mar 15 13:27 /home/dittrich/VirtualBox\ VMs/vagrant-run-ns1_default_1458069887689_42029/ns1_box-disk1.vmdk
58987212 4 drwx------ 2 dittrich dittrich 4096 Mar 15 13:24 /home/dittrich/VirtualBox\ VMs/devserver
55574611 4 drwxrwxr-x 19 dittrich dittrich 4096 Mar 15 13:24 .
58590167 4 drwxrwxr-x 2 dittrich dittrich 4096 Mar 15 13:24 ./vagrant-output
58590705 633044 -rw-rw-r-- 1 dittrich dittrich 648229139 Mar 15 13:24 ./vagrant-output/packer_devserver_box_virtualbox.box
55574679 4 drwxrwxr-x 2 dittrich dittrich 4096 Mar 15 13:14 ./ubuntu_64_vagrant
55574655 4 -rw-rw-r-- 1 dittrich dittrich 3263 Mar 15 13:14 ./ubuntu_64_vagrant/devserver-base.json
55574654 4 -rw-rw-r-- 1 dittrich dittrich 3044 Mar 15 13:14 ./ubuntu_64_vagrant/devserver-box.json
58590704 4 drwxr-xr-x 2 dittrich dittrich 4096 Mar 15 13:21 ./output-devserver
58590711 12 -rw------- 1 dittrich dittrich 10629 Mar 15 13:20 ./output-devserver/devserver.ovf
58590712 620528 -rw------- 1 dittrich dittrich 635416064 Mar 15 13:21 ./output-devserver/devserver-disk1.vmdk
55574612 4 drwxrwxr-x 8 dittrich dittrich 4096 Mar 15 13:27 ./.git

[dimsenv] dittrich@dimsdemo1:~/dims/git/dims-packer (feature/dims-696*) $ touch foo2
[dimsenv] dittrich@dimsdemo1:~/dims/git/dims-packer (feature/dims-696*) $ find /home/dittrich/.vagrant.d/ /home/dittrich/.packer.d/ /home/dittrich/VirtualBox\ VMs/ . /vm -newer foo2 -ls
56230373 4 drwxrwxr-x 7 dittrich dittrich 4096 Mar 15 13:33 /home/dittrich/.vagrant.d/
56230688 0 -rw-rw-r-- 1 dittrich dittrich 0 Mar 15 13:33 /home/dittrich/.vagrant.d/data/machine-index/index.lock
55574612 4 drwxrwxr-x 8 dittrich dittrich 4096 Mar 15 13:33 ./.git
53346305 4 drwxr-xr-x 5 dittrich dittrich 4096 Mar 15 13:33 /vm
53346306 4 drwxrwxr-x 2 dittrich dittrich 4096 Mar 15 13:33 /vm/devserver
53346314 4 -rw-rw-r-- 1 dittrich dittrich 1 Mar 15 13:33 /vm/devserver/.vagrant-IP
53346310 4 -rw-rw-r-- 1 dittrich dittrich 6 Mar 15 13:33 /vm/devserver/.vagrant-ISDESKTOP
53346311 4 -rw-rw-r-- 1 dittrich dittrich 7 Mar 15 13:33 /vm/devserver/.vagrant-VMTYPE
53346312 4 -rw-rw-r-- 1 dittrich dittrich 7 Mar 15 13:33 /vm/devserver/.vagrant-PLATFORM
53346309 4 -rw-rw-r-- 1 dittrich dittrich 10 Mar 15 13:33 /vm/devserver/.vagrant-NAME
53346313 4 -rw-rw-r-- 1 dittrich dittrich 32 Mar 15 13:33 /vm/devserver/.vagrant-BOXNAME
53346316 4 -rw-rw-r-- 1 dittrich dittrich 26 Mar 15 13:33 /vm/devserver/.vagrant-VAGRANTFILEPATH
53346319 8 -rwxrwxr-x 1 dittrich dittrich 4351 Mar 15 13:33 /vm/devserver/test.vagrant.ansible-current
53346318 8 -rw-rw-r-- 1 dittrich dittrich 4245 Mar 15 13:33 /vm/devserver/Makefile
53346315 4 -rw-rw-r-- 1 dittrich dittrich 1 Mar 15 13:33 /vm/devserver/.vagrant-FORWARDPORT
53346308 4 -rw-rw-r-- 1 dittrich dittrich 2738 Mar 15 13:33 /vm/devserver/Vagrantfile
53346307 4 -rw-rw-r-- 1 dittrich dittrich 2028 Mar 15 13:33 /vm/devserver/.vagrant_show
53346317 4 -rw-rw-r-- 1 dittrich dittrich 199 Mar 15 13:33 /vm/devserver/hosts

[dimsenv] dittrich@dimsdemo1:~/dims/git/dims-packer (feature/dims-696*) $ touch foo3
[dimsenv] dittrich@dimsdemo1:~/dims/git/dims-packer (feature/dims-696*) $ find /home/dittrich/.vagrant.d/ /home/dittrich/.packer.d/ /home/dittrich/VirtualBox\ VMs/ . /vm -newer foo3 -ls
56230373 4 drwxrwxr-x 7 dittrich dittrich 4096 Mar 15 13:48 /home/dittrich/.vagrant.d/
56230681 4 drwxrwxr-x 4 dittrich dittrich 4096 Mar 15 13:34 /home/dittrich/.vagrant.d/data
56232110 0 -rw-rw-r-- 1 dittrich dittrich 0 Mar 15 13:34 /home/dittrich/.vagrant.d/data/lock.dotlock.lock
56230688 0 -rw-rw-r-- 1 dittrich dittrich 0 Mar 15 13:48 /home/dittrich/.vagrant.d/data/machine-index/index.lock
56232608 0 -rw-rw-r-- 1 dittrich dittrich 0 Mar 15 13:34 /home/dittrich/.vagrant.d/data/lock.machine-action-fab0a1f680af28d59f47b677629a540a.lock
56230682 4 drwxrwxr-x 2 dittrich dittrich 4096 Mar 15 13:35 /home/dittrich/.vagrant.d/tmp
56230680 4 drwxrwxr-x 11 dittrich dittrich 4096 Mar 15 13:35 /home/dittrich/.vagrant.d/boxes
58987205 4 drwxrwxr-x 3 dittrich dittrich 4096 Mar 15 13:35 /home/dittrich/.vagrant.d/boxes/packer_devserver_box_virtualbox
58987206 4 drwxrwxr-x 3 dittrich dittrich 4096 Mar 15 13:35 /home/dittrich/.vagrant.d/boxes/packer_devserver_box_virtualbox/0
58987207 4 drwxrwxr-x 2 dittrich dittrich 4096 Mar 15 13:35 /home/dittrich/.vagrant.d/boxes/packer_devserver_box_virtualbox/0/virtualbox
58987202 646144 -rw-rw-r-- 1 dittrich dittrich 661647360 Mar 15 13:35 /home/dittrich/.vagrant.d/boxes/packer_devserver_box_virtualbox/0/virtualbox/devserver_box-disk1.vmdk
58987203 4 -rw-rw-r-- 1 dittrich dittrich 26 Mar 15 13:35 /home/dittrich/.vagrant.d/boxes/packer_devserver_box_virtualbox/0/virtualbox/metadata.json
58987200 4 -rw-rw-r-- 1 dittrich dittrich 258 Mar 15 13:34 /home/dittrich/.vagrant.d/boxes/packer_devserver_box_virtualbox/0/virtualbox/Vagrantfile
58987201 12 -rw-rw-r-- 1 dittrich dittrich 10785 Mar 15 13:34 /home/dittrich/.vagrant.d/boxes/packer_devserver_box_virtualbox/0/virtualbox/box.ovf
55574611 4 drwxrwxr-x 19 dittrich dittrich 4096 Mar 15 13:48 .
55574612 4 drwxrwxr-x 8 dittrich dittrich 4096 Mar 15 13:48 ./.git
55575296 4 -rw-rw-r-- 1 dittrich dittrich 2590 Mar 15 13:48 ./make-devserver-201603151348.txt
53346306 4 drwxrwxr-x 5 dittrich dittrich 4096 Mar 15 13:48 /vm/devserver
53346314 4 -rw-rw-r-- 1 dittrich dittrich 14 Mar 15 13:48 /vm/devserver/.vagrant-IP
53346310 4 -rw-rw-r-- 1 dittrich dittrich 6 Mar 15 13:48 /vm/devserver/.vagrant-ISDESKTOP
53346311 4 -rw-rw-r-- 1 dittrich dittrich 7 Mar 15 13:48 /vm/devserver/.vagrant-VMTYPE
53346312 4 -rw-rw-r-- 1 dittrich dittrich 7 Mar 15 13:48 /vm/devserver/.vagrant-PLATFORM
53346309 4 -rw-rw-r-- 1 dittrich dittrich 10 Mar 15 13:48 /vm/devserver/.vagrant-NAME
53346313 4 -rw-rw-r-- 1 dittrich dittrich 32 Mar 15 13:48 /vm/devserver/.vagrant-BOXNAME
53347678 4 drwxrwxr-x 10 dittrich dittrich 4096 Mar 15 13:48 /vm/devserver/dims-keys
53347720 0 -rw-rw-r-- 1 dittrich dittrich 0 Mar 15 13:48 /vm/devserver/dims-keys/README.rd
53347719 4 -rw-rw-r-- 1 dittrich dittrich 43 Mar 15 13:48 /vm/devserver/dims-keys/.gitignore
53347722 4 drwxrwxr-x 2 dittrich dittrich 4096 Mar 15 13:48 /vm/devserver/dims-keys/ansible-pub
. . .
53347752 4 -rw-rw-r-- 1 dittrich dittrich 402 Mar 15 13:48 /vm/devserver/dims-keys/ssh-pub/dims_andclay_rsa.pub
53347775 4 -rw-rw-r-- 1 dittrich dittrich 79 Mar 15 13:48 /vm/devserver/dims-keys/ssh-pub/dims_eliot_rsa.sig
53346320 4 drwxrwxr-x 3 dittrich dittrich 4096 Mar 15 13:34 /vm/devserver/.vagrant
53346321 4 drwxrwxr-x 3 dittrich dittrich 4096 Mar 15 13:34 /vm/devserver/.vagrant/machines
53346322 4 drwxrwxr-x 3 dittrich dittrich 4096 Mar 15 13:34 /vm/devserver/.vagrant/machines/default
53346323 4 drwxrwxr-x 2 dittrich dittrich 4096 Mar 15 13:34 /vm/devserver/.vagrant/machines/default/virtualbox
53346316 4 -rw-rw-r-- 1 dittrich dittrich 26 Mar 15 13:48 /vm/devserver/.vagrant-VAGRANTFILEPATH
53346318 8 -rw-rw-r-- 1 dittrich dittrich 4245 Mar 15 13:48 /vm/devserver/Makefile
53346315 4 -rw-rw-r-- 1 dittrich dittrich 1 Mar 15 13:48 /vm/devserver/.vagrant-FORWARDPORT
53346308 4 -rw-rw-r-- 1 dittrich dittrich 2751 Mar 15 13:48 /vm/devserver/Vagrantfile
53346307 4 -rw-rw-r-- 1 dittrich dittrich 2041 Mar 15 13:48 /vm/devserver/.vagrant_show
53346317 4 -rw-rw-r-- 1 dittrich dittrich 212 Mar 15 13:48 /vm/devserver/hosts

$ touch foo4
$ find /home/dittrich/.vagrant.d/ /home/dittrich/.packer.d/ /home/dittrich/VirtualBox\ VMs/ . /vm -newer foo4 -ls
58589344 2183628 -rw------- 1 dittrich dittrich 2240348160 Mar 15 14:17 /home/dittrich/VirtualBox\ VMs/vagrant-run-ns1_default_1458069887689_42029/ns1_box-disk1.vmdk
55574611 4 drwxrwxr-x 19 dittrich dittrich 4096 Mar 15 14:13 .
55576829 28 -rw-rw-r-- 1 dittrich dittrich 27191 Mar 15 14:13 ./Makefile
55574612 4 drwxrwxr-x 8 dittrich dittrich 4096 Mar 15 14:13 ./.git
53870594 4 drwxrwxr-x 5 dittrich dittrich 4096 Mar 15 14:15 /vm/vagrant-run-ns1
53870676 4 -rw-rw-r-- 2 dittrich dittrich 4 Mar 15 14:13 /vm/vagrant-run-ns1/ns1.dims
53870676 4 -rw-rw-r-- 2 dittrich dittrich 4 Mar 15 14:13 /vm/vagrant-run-ns1/ns1.local
53346306 4 drwxrwxr-x 5 dittrich dittrich 4096 Mar 15 13:51 /vm/devserver
53347790 4 -rw-rw-r-- 1 dittrich dittrich 2756 Mar 15 13:51 /vm/devserver/Vagrantfile

15.2. Testing Code on Branches

The DIMS development environment uses Python virtual environments on developer workstations
in order to isolate functional “production” code from more volatile development or test
quality code. This means that development code on feature branches can safely be tested
by following these basic steps:

	Create a new Python virtual environment that is a clone of the current stable code
base.

	Pull the latest code from the repos to be tested, and check out the latest code.

	Install the programs from these branches into the new Python virtual environment,
using programs like dims.install.dimscommands and/or dims.ansible-playbook
as necessary.

	Test the code, possibly using the test.runner script to invoke scripted tests
that help validate the funtionality of the new code.

When you are satisfied with the tests, the Python virtual environment can safely
be deleted (or you can switch back to the “production” default dimsenv
Python virtual environment) to return to using stable program code.

Let’s say we are going to test the repos ansible-playbooks and dims-packer,
both on the feature branch named feature/interfaces.

First, create the new Python virtual environment:

[dimsenv] dittrich@dimsdemo1:~ () $ dimsenv.update --venv interfaces -v
[+] NO virtual environment identified and is active
[+] User virtual environment "interfaces" needs replacement
[+] Running: virtualenv-clone /opt/dims/envs/dimsenv /home/dittrich/dims/envs/interfaces
[+] Installing pre/post scripts from /opt/dims/envs into /home/dittrich/dims/envs
[+] Processing files for /home/dittrich/dims/envs/interfaces/bin
[+] Installed keys.host.create
[+] Installed dyn_inv.py
[+] Installed dims-ci-utils.update.user
[+] Installed fix.adddeploylinks
[+] Installed fix.ansible_managed
[+] Installed fix.addlinks
[+] Installed fix.addvars
[+] Installed fix.includes
[+] Installed fix.removetrailingspaces
[+] Installed dims.install.createusb
[+] Installed dims.makedocset
[+] Installed dims.boot2docker
[+] Installed dims.buildvirtualenv
[+] Installed dims.bumpversion
[+] Installed dims.jj2
[+] Installed dims.git.repoversion
[+] Installed dims.nas.mount
[+] Installed dims.nas.umount
[+] Installed dims.remote.setupworkstation
[+] Installed dims.swapcapslockctrl
[+] Installed dims.shutdown
[+] Installed dims.sphinx-autobuild
[+] Installed test.ansible.yaml
[+] Installed test.md5.output
[+] Installed test.supervisor
[+] Installed test.yaml.validate
[+] Installed dims.localcluster.create
[+] Installed dims.localcluster.start
[+] Installed dims.localcluster.stop
[+] Installed dims.localcluster.destroy
[+] Installed dims.localcluster.status
[+] Installed dims.localcluster.runscript
[+] Installed dims.clusterconfig.nas
[+] Installed dims.clusterconfig.local
[+] Installed dims.clusterconfig.list
[+] Installed dims.cluster.runscript
[+] Installed dims.elasticsearch.service
[+] Installed test.vagrant.ansible-current
[+] Installed test.vagrant.factory
[+] Installed test.vagrant.list
[+] Installed test.packer.factory
[+] Installed test.packer.list
[+] Installed test.vagrant.listvms
[+] Successfully installed 43 programs
[-] To enable the interfaces virtual environment, do "exec bash" or log out/log in

Activate the new virtual environment:

[dimsenv] dittrich@dimsdemo1:~ () $ workon interfaces
[+] Virtual environment 'dimsenv' activated [ansible-playbooks v1.3.33]
[interfaces] dittrich@dimsdemo1:~ () $

Update the first repo and check out the desired branch for testing.

[interfaces] dittrich@dimsdemo1:~ () $ cd $GIT/ansible-playbooks
[interfaces] dittrich@dimsdemo1:~/dims/git/ansible-playbooks (develop*) $ git hf update && git hf pull && git checkout feature/interfaces
Fetching origin
remote: Counting objects: 71, done.
remote: Compressing objects: 100% (44/44), done.
remote: Total 44 (delta 33), reused 0 (delta 0)
Unpacking objects: 100% (44/44), done.
From git.devops.develop:/opt/git/ansible-playbooks
 d3ae79a..cd789e9 develop -> origin/develop
 * [new branch] feature/interfaces -> origin/feature/interfaces
Summary of actions:
- Any changes to branches at origin have been downloaded to your local repository
- Any branches that have been deleted at origin have also been deleted from your local repository
- Any changes from origin/master have been merged into branch 'master'
- Any changes from origin/develop have been pulled into branch 'develop'
- Any resolved merge conflicts have been pushed back to origin
- You are now on branch 'develop'
Fetching origin
Summary of actions:
Branch feature/interfaces set up to track remote branch feature/interfaces from origin by rebasing.
Switched to a new branch 'feature/interfaces'
[dimsenv] dittrich@dimsdemo1:~/dims/git/ansible-playbooks (feature/interfaces*) $

Update the subsequent repo(s), as necessary, and check out the desired branch for testing.

[interfaces] dittrich@dimsdemo1:~/dims/git/ansible-playbooks (feature/interfaces*) $ cd $GIT/dims-packer
[interfaces] dittrich@dimsdemo1:~/dims/git/dims-packer (feature/interfaces*) $ git hf update && git hf pull && git checkout feature/interfaces
Fetching origin
remote: Counting objects: 72, done.
remote: Compressing objects: 100% (55/55), done.
remote: Total 61 (delta 30), reused 0 (delta 0)
Unpacking objects: 100% (61/61), done.
From git.devops.develop:/opt/git/dims-packer
 069d966..2d47264 feature/interfaces -> origin/feature/interfaces

Summary of actions:
- Any changes to branches at origin have been downloaded to your local repository
- Any branches that have been deleted at origin have also been deleted from your local repository
- Any changes from origin/master have been merged into branch 'master'
- Any changes from origin/develop have been merged into branch 'develop'
- Any resolved merge conflicts have been pushed back to origin
- You are now on branch 'feature/interfaces'
Fetching origin
Updating 069d966..2d47264
Fast-forward
 Makefile-vagrant.j2 | 2 +-
 Vagrantfile.j2 | 23 ++++++++++++++---------
 scripts/all/create-network-interfaces.sh | 17 +++++++++++++----
 scripts/all/{network-capture.sh => network-debug.sh} | 1 -
 scripts/jessie/after-up/00-create-network-interfaces.sh | 1 +
 scripts/{xenial/post-provision.sh => jessie/after-up/05-jessie-networking.sh} | 22 +++++++++++++++++-----
 scripts/jessie/after-up/10-network-debug.sh | 1 +
 scripts/jessie/post-provision.sh | 42 --
 scripts/trusty/after-up/00-create-network-interfaces.sh | 1 +
 scripts/trusty/after-up/10-network-debug.sh | 1 +
 scripts/trusty/post-provision.sh | 42 --
 scripts/wheezy/after-up/00-create-network-interfaces.sh | 1 +
 scripts/wheezy/after-up/10-network-debug.sh | 1 +
 scripts/wheezy/post-provision.sh | 42 --
 scripts/xenial/after-up/00-create-network-interfaces.sh | 1 +
 scripts/xenial/after-up/10-network-debug.sh | 1 +
 test.vagrant.factory | 62 ++++++++++++++++++++++++++++++++++----------------------------
 17 files changed, 87 insertions(+), 174 deletions(-)
 rename scripts/all/{network-capture.sh => network-debug.sh} (99%)
 create mode 120000 scripts/jessie/after-up/00-create-network-interfaces.sh
 rename scripts/{xenial/post-provision.sh => jessie/after-up/05-jessie-networking.sh} (68%)
 create mode 120000 scripts/jessie/after-up/10-network-debug.sh
 delete mode 100755 scripts/jessie/post-provision.sh
 create mode 120000 scripts/trusty/after-up/00-create-network-interfaces.sh
 create mode 120000 scripts/trusty/after-up/10-network-debug.sh
 delete mode 100755 scripts/trusty/post-provision.sh
 create mode 120000 scripts/wheezy/after-up/00-create-network-interfaces.sh
 create mode 120000 scripts/wheezy/after-up/10-network-debug.sh
 delete mode 100755 scripts/wheezy/post-provision.sh
 create mode 120000 scripts/xenial/after-up/00-create-network-interfaces.sh
 create mode 120000 scripts/xenial/after-up/10-network-debug.sh

Summary of actions:
- Any changes from origin/feature/interfaces have been pulled into branch 'feature/interfaces'
Already on 'feature/interfaces'
Your branch is up-to-date with 'origin/feature/interfaces'.
[interfaces] dittrich@dimsdemo1:~/dims/git/dims-packer (feature/interfaces*) $

Now that both repos have been pulled, and their respective feature/interfaces branches
checked out, install any updated programs to be tested:

[interfaces] dittrich@dimsdemo1:~/dims/git/dims-packer (feature/interfaces*) $ dims.install.dimscommands -v
[+] Processing files for /home/dittrich/dims/envs/interfaces/bin
[+] Installed test.vagrant.factory
[+] Successfully installed 1 program

15.3. Debugging Vagrant

Vagrant [https://www.vagrantup.com/] is used to create and destroy Virtual Machine sub-systems within
DIMS deployments. It is designed to create replicable development environments,
but is also being used to instantiate replica DIMS deployments to facilitate
not only development, but also testing and isolation of deployments to exercise
and document system administration tasks.

Vagrant, like Ansible and some other open source tools used in the DIMS project,
sometimes are sparse on documentation, especially of advanced features necessary
for small-scale distributed systems deployment. This can make debugging harder,
since the functionality is wrapped in a black box that is the vagrant command
line (which may be buried within a Makefile and/or Bash script.)

15.3.1. Verbosity in Vagrant Provisioners

The first way to turn this black box into a white box is to enable debugging
within the provisioners being called, such as the ansible provisioner.
To do this, the Vagrantfile produced by DIMS scripts allows an environment
variable VERBOSITY to be passed to the ansible provisioner:

. . .
ANSIBLE_VERBOSITY = ENV['VERBOSITY'].nil? ? "vv" : ENV['VERBOSITY']
 . . .
 config.vm.provision "ansible" do |ansible|
 . . .
 # Use the environment variable VERBOSITY to change verbosity level.
 ansible.verbose = ANSIBLE_VERBOSITY
 . . .
 end
. . .

This mechanism adds verbosity to the provisioner being called by
Vagrant, but does nothing to help you see what Vagrant itself is doing
before and after the ansible provisioner is called.

15.3.2. Vagrant Debug Logging

To get debugging output from Vagrant itself, there is another
environment variable that produces log output from Vagrant
onto stderr, which can be redirected to a file for examination
(shown here is the context of a GNU Makefile):

#HELP up - Do 'vagrant up --no-provision'
.PHONY: up
up:
 @if ["$(VAGRANT_STATUS)" != "running"]; then \
 echo "[+] vagrant up --no-provision"; \
 VAGRANT_LOG=debug vagrant up --no-provision 2>/tmp/vagrant-$(FQDN).log; \
 fi

The output is quite voluminous and shows not only what Vagrant is doing
internally, but also how it is calling programs like vboxmanage to
manipulate the Vagrant Virtual Machine.

. . .
 INFO global: Vagrant version: 1.8.6
 INFO global: Ruby version: 2.2.5
 INFO global: RubyGems version: 2.4.5.1
 INFO global: VAGRANT_LOG="debug"
. . .
 INFO subprocess: Starting process: ["/usr/bin/VBoxManage", "sharedfolder", "add", "16425ef3-0e00-4c8e-89aa-116065f1cb36", "--name", "home_ansible_vagrant", "--hostpath", "/vm/run/blue14"]
 INFO subprocess: Command not in installer, restoring original environment...
DEBUG subprocess: Selecting on IO
DEBUG subprocess: Waiting for process to exit. Remaining to timeout: 32000
DEBUG subprocess: Exit status: 0
 INFO subprocess: Starting process: ["/usr/bin/VBoxManage", "setextradata", "16425ef3-0e00-4c8e-89aa-116065f1cb36", "VBoxInternal2/SharedFoldersEnableSymlinksCreate/home_ansible_sources", "1"]
 INFO subprocess: Command not in installer, restoring original environment...
DEBUG subprocess: Selecting on IO
DEBUG subprocess: Waiting for process to exit. Remaining to timeout: 32000
DEBUG subprocess: Exit status: 0
 INFO subprocess: Starting process: ["/usr/bin/VBoxManage", "sharedfolder", "add", "16425ef3-0e00-4c8e-89aa-116065f1cb36", "--name", "home_ansible_sources", "--hostpath", "/vm/cache/sources"]
 INFO subprocess: Command not in installer, restoring original environment...
DEBUG subprocess: Selecting on IO
DEBUG subprocess: Waiting for process to exit. Remaining to timeout: 32000
DEBUG subprocess: Exit status: 0
. . .

Caution

Remember that environment variables, once set, are inheritted by all child
processes (unless they are unset before another sub-process is started).
Using an environment variable to enable logging in a program means that
not only the initial process running the vagrant program, but all
child processes created by this parent process that also run vagrant
will have debugging output on stdout. If the Vagrantfile itself
instructs vagrant to directly run vagrant, the parent process will
receive this output on stderr and may interpret it to mean “failure”
when there is actually no real error.

Shell provisioner to do post-provisioning actions
See https://github.com/emyl/vagrant-triggers/wiki/Trigger-recipes
config.trigger.after [:provision], :stdout => true do
 run "vagrant ssh -c '/opt/dims/bin/trigger.runner --state after-provision'"
end

In this case, make sure that :stderr => false is included on the
trigger configuration line to either prevent output to stderr and/or
config non-error exit code values.

15.3.3. Use the Source, Luke

Lastly, you may need to read the Vagrant source code itself to find
out how Vagrant operates. For example, the file vagrant/plugins/providers/virtualbox/action/network.rb shows the defaults used by Vagrant for Virtualbox virtual
networking using DHCP:

#---
DHCP Server Helper Functions
#---

DEFAULT_DHCP_SERVER_FROM_VBOX_INSTALL = {
 network_name: 'HostInterfaceNetworking-vboxnet0',
 network: 'vboxnet0',
 ip: '192.168.56.100',
 netmask: '255.255.255.0',
 lower: '192.168.56.101',
 upper: '192.168.56.254'
}.freeze

This shows the default range for dynamically assigned addresses (which you will
want to avoid using for any static addresses on the same network to avoid
possible conflicts.)

The source code, a few lines lower, also shows what and how Vagrant will log
the fact that it is creating a DHCP server to manage addresses:

@logger.debug("Creating a DHCP server...")
@env[:machine].provider.driver.create_dhcp_server(interface[:name], config)

The string “Creating a DHCP server...” is what you would look for in
the log output produced by setting the VAGRANT_LOG environment
variable as described earlier.

16. Robot Framework

This chapter briefly introduces the Robot Framework, how to
install it, how to configure it with PyCharm, and other
helpful tidbits for running Robot Framework tests.

16.1. Overview

Robot Framework [http://robotframework.org/] is an open source product developed by Google.
It is a keyword-driven framework that automates the testing
process. Robot has builtin test [http://robotframework.org/#test-libraries] libraries, external test [http://robotframework.org/#test-libraries] libraries,
and you can develop your own test libraries in Python or Java.
Additionally, Robot’s tests are written in natural language, and are
thus easy to develop and read.

16.2. Installation

Prerequisites:

	Python 2.7

	python-setuptools

	python-pip

	python-wxgtk2.8

Then run:

pip install robotframework

16.3. Configuring with Pycharm

For features like syntax highlighting of Robot files
and “jump to source” for Robot test library functions,
you need to install a PyCharm plugin. The one for the
Robot Framework is called intellibot [https://plugins.jetbrains.com/plugin/7386?pr=].

To install the intellibot plugin:

	Go to Preferences > Plugins > Browse repositories

	Type “intellibot” in the search box

	Click Download and install

This will allow you to hover over a function defined
in some test library and click to jump to the source.
It also enables syntax highlighting of *.robot
files.

If there are any other file types you’d like to include
in having Robot syntax highlighting, do the following:

	Go to Preferences > File Types > Robot Feature Files

	Click the “+” in a box

	Add *.txt or any other file extension for which you’d
like to have Robot syntax highlighting always enabled.

There are many video tutorials for installing and configuring
Robot Framework and PyCharm, including this one [https://www.youtube.com/watch?v=r3Mg60r1Jjk].

16.4. Libraries

There are three main categories of test libraries: standard,
external, and yours. Standard libraries are “builtin”, meaning
you don’t need to “include” those files to have access to their
functions. These standard libraries are comprised of commands
that execute code to handle things like verifications,
conversions, and other multi-purpose functions.

Most tutorials, etc. focus on testing web applications. In order
to run these tests, you need Selenium2Library [https://github.com/robotframework/Selenium2Library]. This is one of
the many “external” libraries you can use. To install and use,
simply run

pip install robotframework-selenium2library

External library files from which you’d like to access code must be
included in the test scripts.

In addition to the standard and external libraries, you can create
your own test libraries. The Robot Framework website says “it’s a
breeze”. As would be expected, test library files you create and
wish to use must be included in the test scripts.

All test libraries are written in Java or Python. To learn more about
how to develop your own test libraries, check out the framework’s
User Guide [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html] section on test library APIs [http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#id208].

16.5. Other Helpful Hints

Examples of the following will be added in the near future.

	Syntax

	In keywords, use a <TAB> on lines defining commands (the list
under the keyword heading

	When using a variable in a keyword, put two (2) spaces between
the keyword and the variable

	Logic

	It’s often helpful to have a validation check at the end of a
keyword’s set of commands. For example, Once a web page is up,
validate that a certain string you are expecting to be there
does indeed exist.

16.6. Basic Project Structure

The following is the basic layout of a Robot Framework project:

..
└── project_root
 ├── run_tests.py
 ├── keywords
 │ ├── lib
 └── tests
 ├── test1.robot
 └── test2.robot

where project_root has the main controller for executing tasks.
This might be a Python script called “run_tests.py” as in the
Intro to Robot and Examples [https://www.youtube.com/watch?v=CrkfmqFbJpU] tutorial does. The subfolder
keywords holds keyword files of the Robot Framework commands.
The subfolder lib holds the python-based (or java-based) keyword
extensions. And the subfolder tests holds all the test scripts
for the project.

16.7. Running Tests

Much, much more will be added to this section as we learn more,
but for now, here is the basic way to run a Robot test:

$ pybot tests/test.robot

This will place all the results from test.robot in the directory
from which you ran the script. To change the directory where you
wish the result output to reside, add the -d flag:

$ pybot -d $RESULTS_DIR tests/test.robot

16.8. Tutorials

	Configure Pycharm and Robot [https://www.youtube.com/watch?v=r3Mg60r1Jjk]

	Intro to Robot and Examples [https://www.youtube.com/watch?v=CrkfmqFbJpU]

17. Appendices

17.1. Setting up DNS using dnsmasq

DNS is designed to be a distributed, hierarchical, system of
mapping names to IP addresses (and the reverse, IP addresses
to names).

Note

To learn more about it, see:

	How the Domain Name System (DNS) Works [http://www.verisigninc.com/en_US/domain-names/online/how-dns-works/index.xhtml], by Verisign

	How does DNS work? [http://cr.yp.to/djbdns/intro-dns.html], by D.J. Berstein

	The Domain Name System [https://en.wikipedia.org/wiki/Domain_Name_System], Wikipedia

The important thing to note is that if you only have one DNS
server set, and that server only serves it’s own names and does
not make recursive queries for domains it does not know, you
will not be able to talk to many hosts on the internet.

These instructions will configure dnsmasq on a developer’s
workstation (e.g., a laptop computer) to serve as the primary
DNS server for that system, using a local DNS server behind a
VPN (when connected to the VPN) or recursively directing queries
to Google’s name servers for all other DNS requests. This should
work for any DNS requests made from this client system in a
reliable way.

17.1.1. Mac OS X configuration

Attention

The following instructions are partially specific to Mac OS X,
which handles network configuration using System Preferences...

Start by creating a Location called VPN” to use for
controlling the DNS configuration of the Mac. Figure
:ref:`networklocation` shows the location *VPN enabled.

[image: Mac OS X Network Preferences, Location]
Mac OS X Network Preferences, Location

Figure Mac OS X Network Preferences, DNS shows the settings
for DNS Server and Search. Set DNS Server to
only be 127.0.0.1 for force all DNS queries to
only go to the local dnsmasq server. The Search
list should include your normal domain that you want
to be appended to any short (or partially qualified)
DNS names.

[image: Mac OS X Network Preferences, DNS]
Mac OS X Network Preferences, DNS

When set this way, as soon as the network is enabled on any
interface (be it WiFi, Bluetooth, USB ethernet, or wired
ethernet), the VPN location will be enabled and the host’s
/etc/resolv.conf file will be set to look like this:

#
Mac OS X Notice
#
This file is not used by the host name and address resolution
or the DNS query routing mechanisms used by most processes on
this Mac OS X system.
#
This file is automatically generated.
#
search devops.develop ops.develop
nameserver 127.0.0.1

Edit the dnsmasq configuration file (/opt/local/etc/dnsmasq.conf
on the Mac, and /etc/dnsmasq.conf on Ubuntu 14.04). Set the following
variables as shown in the examples.

	Add a line referencing an alternative resolve.conf file to
control upstream DNS servers.

Change this line if you want dns to get its upstream servers from
somewhere other that /etc/resolv.conf
#resolv-file=/etc/resolv.conf
resolv-file=/etc/resolv.dnsmasq

	Set the server entries for forward lookups containing the top level
domain devops.develop and reverse maps for the DIMS VPN network
range (192.168.88.0/24, which is expressed as
88.168.192.in-addr.arpa for DNS reverse mappings) as shown in the
highlighted lines here:

Add other name servers here, with domain specs if they are for
non-public domains.
#server=/localnet/192.168.0.1
server=/devops.develop/192.168.88.101
server=/dims-dev.devops.develop/127.0.0.1

Example of routing PTR queries to nameservers: this will send all
address->name queries for 192.168.3/24 to nameserver 10.1.2.3
#server=/3.168.192.in-addr.arpa/10.1.2.3
server=/88.168.192.in-addr.arpa/192.168.88.101

Note

The second server line in the first set above creates a test
domain dims-dev.devops.develop that is served by this
dnsmasq server on the local host address. This allows you to
test services running on the loopback interface.

Attention

Mac users will need to configure dnsmasq to run under
_mdnsresponder account. Use the following lines:

If you want dnsmasq to change uid and gid to something other
than the default, edit the following lines.
user=_mdnsresponder
group=_mdnsresponder

	If you also have a home network that you wish to associate with a specific
alternative domain, use the domain setting as shown here:

Set a different domain for a particular subnet
#domain=wireless.thekelleys.org.uk,192.168.2.0/24
domain=home,192.168.1.0/24

	
Caution

When switching a VPN connection on and off, where you are trying to use
non-public DNS names served by a server behind the VPN, you may encounter a
situation where queries for a non-public domain are sent to public DNS
servers, which will return an “NXDOMAIN” response, which looks like this

Host abcquq12examfooltest.com not found: 3(NXDOMAIN)

The local server may cache this result. When you then connect
to the VPN and regain access to the private server which should
be able to now respond with the correct result, your next attempt
to resolve the domain may find the cached NXDOMAIN result
and tell you the domain still does not exist (when you are assuming
that it does, since the VPN is now up.) This is both confusing,
and frustrating, unless you are aware of how DNS caching works.

To prevent this problem, disable negative caching as follows:

If you want to disable negative caching, uncomment this.
no-negcache

	
Attention

As a debugging mechanism, you may need to enable logging of
DNS queries and/or DHCP transactions. Do that by uncommenting
the following lines:

For debugging purposes, log each DNS query as it passes through
dnsmasq.
log-queries

Log lots of extra information about DHCP transactions.
log-dhcp

	Create the alternative resolv.conf file referenced in the
dnsmasq.conf file above to have the contents shown here:

[dittrich@localhost etc]$ cat resolv.dnsmasq
search devops.develop ops.develop
nameserver 8.8.8.8
nameserver 192.168.88.101
nameserver 128.95.120.1

	Test the configuration.

With VPN disconnected:

[dittrich@localhost etc]$ dig @127.0.0.1 jira.devops.develop

; <<>> DiG 9.8.3-P1 <<>> @127.0.0.1 jira.devops.develop
; (1 server found)
;; global options: +cmd
;; connection timed out; no servers could be reached

With VPN enabled:

[dittrich@localhost etc]$ dig @127.0.0.1 jira.devops.develop

; <<>> DiG 9.8.3-P1 <<>> @127.0.0.1 jira.devops.develop
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 58384
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;jira.devops.develop. IN A

;; ANSWER SECTION:
jira.devops.develop. 0 IN A 192.168.88.97

;; Query time: 18 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Wed Jul 1 17:32:54 2015
;; MSG SIZE rcvd: 60

17.1.2. Logging

On 7/2/15 6:47 AM, Linda Parsons wrote:

> Do you know where the queries are logged on os x? I can’t find logs
> anywhere. I can see in /var/log/system.log where dnsmasq is stopped and
> started - that’s it.

syslog and rsyslog are very fine-grained and controllable in terms of where
logs go (i.e., which file, which logging host, both, etc.), though each program
choses what facility and severity level it will log at. Here is excerpt from
dnsmasq man page:

-8, --log-facility=<facility>
Set the facility to which dnsmasq will send syslog entries, this defaults
to DAEMON, and to LOCAL0 when debug mode is in operation. If the facility
given contains at least one '/' character, it is taken to be a filename,
and dnsmasq logs to the given file, instead of syslog. If the facility is
'-' then dnsmasq logs to stderr. (Errors whilst read- ing configuration
will still go to syslog, but all output from a successful startup, and all
output whilst running, will go exclusively to the file.) When logging to a
file, dnsmasq will close and reopen the file when it receives SIGUSR2.
This allows the log file to be rotated without stopping dnsmasq.

...

When it receives SIGUSR2 and it is logging direct to a file (see
--log-facility) dnsmasq will close and reopen the log file. Note that
during this operation, dnsmasq will not be running as root. When it first
creates the logfile dnsmasq changes the ownership of the file to the
non-root user it will run as. Logrotate should be configured to create a
new log file with the ownership which matches the existing one before
sending SIGUSR2. If TCP DNS queries are in progress, the old logfile will
remain open in child processes which are handling TCP queries and may
continue to be written. There is a limit of 150 seconds, after which all
existing TCP processes will have expired: for this reason, it is not wise
to configure log- file compression for logfiles which have just been
rotated. Using logrotate, the required options are create and delay-
compress.

So dnsmasq can bypass syslog/rsyslog filters and log directly to a
file.

Note

Adding the option log-facility=/var/log/dnsmasq.log diverts log messages
into the file var/log/dnsmasq.log.

Caution

dnsmasq, when logging directly to a file, does not handle
rolling of the log file or otherwise limiting its growth. The file
will just continue to grow without bounds over time. You can rename
the file at any time, then send the SIGUSR2 signal to the dnsmasq
process, which will open a new log file. (See the man page output
above for more details.)

Note

Ok, I figured out that dnsmasq logs to /var/log/debug.log in
general, which led me to realize these messages have a log level of debug.
But on Mac OS X the default is not to log debug messages. I had to edit
the /etc/asl.conf file to set the log level to debug. Then the
debug messages would show up in the console using all messages. Keep the
level at debug for a short time but have turned it off as it slows down
the system a lot. I could see from the debug statements how the request
to 127.0.0.1 were being forwarded.

Caution

Setting the full system logging level to debug just to get
messages from one service is over-kill. It is preferable to force
the specific service to log at a facility and/or severity
level that is then filtered by syslog/rsyslog, allowing
just those messages you want to be logged to go to a place you
want them to go. The log-faility option above works better
for this.

17.1.3. Split-Horizon DNS

Organizations often use non-routable network address ranges,
as defined by RFC 1918 - Address Allocation for Private Internets [https://tools.ietf.org/html/rfc1918],
on the internal portion of a firewalled network that also has
external internet-facing

The video DNS Split Brain [https://youtu.be/55YONDU22qc] explains some of the issues of handling
DNS mappings in situations where networks are partitioned. An organization
may have service domain names be the same to point to separate internal
and external resources, even though they have completely different IP addresses.
A web server, for example, may be accessible to users on the internet
with limited public content, while another server that has the same fully-qualified
domain name may be hosted on the inside of a firewall and VPN with different
content that is private to the organization. Having multiple DNS servers,
rather than just one DNS server, and configuring them to properly
answer and/or forward DNS requests differently (depending on the perspective
of the client making the request) adds complexity for system administration,
but can simplify things from a user perspective when trying to access a resource.

References on configuring dnsmasq and the concept of Split-horizon DNS
are included in the dittrich:dns Section of the home page of
dittrich:homepage.

17.2. Using a Case-Sensitive sparse image on Mac OS X

At the beginning of Section Source Code Management with Git, a caution
block describes a problem involving sharing source code
repositories between systems having file systems that are
case-sensitive with other operating systems having file
systems that are case-insensitive.

This section provides the steps for creating a case-sensitive sparse
HFS file image that can be mounted on a Mac OS X system to better
integrate with Git source respositories using case-sensitive
file and/or directory names in the respository.

Note

This example arbitrarily uses an 8GB sparse image. Change size as
necessary for your own situation.

We are going to take the existing contents of a directory ($HOME/dims/git
in this case) and replace it with a mounted case-sensitive journalled HFS
sparse disk image. We are using a sparse image to avoid needlessly wasting
space by allocating a disk image larger than is necessary.

	Use the OS X Disk Image app to create a sparse image. This is shown
in Figure Creating a sparse image with Disk Utility.

[image: Creating a sparse image with Disk Utility]
Creating a sparse image with Disk Utility

	Move the existing directory to another name, so we can replace that
directory with an empty directory to act a mount point for our
sparse bundle:

[dittrich@localhost ~]$ cd ~/dims
[dittrich@localhost dims]$ mv git git.tmp
[dittrich@localhost dims]$ mkdir git

	Mount the sparse image using hdiutil:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 [dittrich@localhost dims]$ hdiutil attach -mountpoint ~/dims/git ~/Desktop/DIMS_HFS_CaseSensitive.sparseimage
 /dev/disk3 GUID_partition_scheme
 /dev/disk3s1 EFI
 /dev/disk3s2 Apple_HFS /Users/dittrich/dims/git
 [dittrich@localhost dims]$ mount
 /dev/disk1 on / (hfs, local, journaled)
 devfs on /dev (devfs, local, nobrowse)
 map -hosts on /net (autofs, nosuid, automounted, nobrowse)
 map auto_home on /home (autofs, automounted, nobrowse)
 /dev/disk2s1 on /Volumes/_mdSSD (hfs, local, nodev, nosuid, journaled, noowners)
 /dev/disk3s2 on /Users/dittrich/dims/git (hfs, local, nodev, nosuid, journaled, noowners, mounted by dittrich)

	Move the files from the temporary directory into the case-sensitive
mounted volume, or re-clone any repositories that were causing problems
with case-sensitive files, then delete the temporary directory.

[dittrich@localhost dims]$ mv git.tmp/* git
[dittrich@localhost dims]$ rmdir git.tmp

	Add lines to your ~/.bash_profile file to ensure this sparse
image is mounted at the start of every initial login session.

mount | grep -q "$HOME/dims/git"
if [$? -eq 1]; then
 hdiutil attach -mountpoint ~/dims/git ~/Desktop/DIMS_HFS_CaseSensitive.sparseimage 2>/dev/null
 mount | grep -q "$HOME/dims/git"
 if [$? -ne 0]; then
 echo "[---] Failed to mount ~/Desktop/DIMS_HFS_CaseSensitive.sparseimage to ~/dims/git"
 fi
fi

You should see something like the following for the initial terminal window:

Last login: Fri Feb 13 04:48:45 on ttys005

[+++] DIMS shell initialization
[+++] Sourcing /opt/dims/etc/bashrc.dims.d/bashrc.dims.virtualenv ...
[+++] Activating DIMS virtual environment (dimsenv)
[+++] (Create file /Users/dittrich/.DIMS_NO_DIMSENV_ACTIVATE to disable)
[+++] Virtual environment dimsenv activated
[+++] Mounted sshfs gituser@git.devops.develop:cfg as /Users/dittrich/dims/cfg
/dev/disk3 GUID_partition_scheme
/dev/disk3s1 EFI
/dev/disk3s2 Apple_HFS /Users/dittrich/dims/git
/dev/disk3s2 on /Users/dittrich/dims/git (hfs, local, nodev, nosuid, journaled, noowners, mounted by dittrich)

Note

If you forgot to set a volume label when you created the sparse image
file in Disk Utility, and the disk image just created gets mounted as
“Disk Image”, you may wish to change the label. To do this, after the
volume is mounted you can rename it using the command:

[dittrich@localhost docs (develop)]$ diskutil rename "Disk Image" DIMS_Git
Volume on disk2s2 renamed to DIMS_Git

If/when the sparse image becomes filled, you can compact it using
hdiutil as described in the superuser post Shrink a .sparseimage [http://superuser.com/questions/275148/shrink-a-sparseimage].

[dimsenv] dittrich@27b:~ () $ hdiutil eject /Users/dittrich/dims/git
"disk2" unmounted.
"disk2" ejected.
[dimsenv] dittrich@27b:~ () $ hdiutil compact ~/Desktop/DIMS_HFS_CaseSensitive.sparseimage
Starting to compact…
Reclaiming free space…
..
Finishing compaction…
..
Reclaimed 1.3 GB out of 6.2 GB possible.

17.3. Google Hangouts ‘Original Version’ Screenshare Instructions

	Everyone can do it, at the same time!

	Hover your cursor over the left hand edge of your Hangouts window.

	A menu will slide out with lots of icons.

	To screenshare, click the second icon down, a green monitor with a white
arrow pointing to the right.

	You can choose to share your whole desktop or individual windows of other
applications you have open on your desktop. It doesn’t appear you can share
all windows of an application, such as Terminal. If you have 5 Terminal
windows open, you can only share 1 of them. You can open multiple tabs, and
those will be shared.

	Resizing of windows works just fine when screensharing also.

Index

 _images/deploy_all_docs.jpeg
Parameterized Documentation Deployment

dims-ci-utils

packer

GIT

HOOK

e post-

JENKINS

JoB

receive-06jenkinsalldocs

DOCREPO
DOCBRANCH
DOCPATH
DOCTYPE
Systenydee DOCDELETE
repo
e
%0©
X
A
< “éo
‘e
RS s 0 W

dims-docs-deploy
jenkins.docs-deploy

Get defaults

S E—

Get parameters
and variables

—y
Checkout repo
Build doc

G

Deploy via ssh or
delete

Docs
server

_images/HFS_CaseSensitive_Sparseimage.png
@& Disk Utility

File Edit Images Window Help

S0

Verify Info Burn

Save As:

Tags:

Encryption

Where: [Desktop

Disk Utility

00 = &

B

Mount Eject Enable Journaling New Image Convert Resize Image

New Blank Image

B

Name:

Disk Image

Size:

Format:

Partitions:

Image Format:

Custom... (8 GB)

Mac OS Extended (Case-sensitive, Journaled)

none

Single partition - GUID Partition Map

sparse disk image

Cancel

e —

ume, or image

Log

_images/note_in_list_correct.png
5. Requirements traceability |

This paragraph shall contain:

1.

o

Traceabilty from each CSCI requirement in this specification to the system (or subsystem, if applicable) requirements
it addresses. (Alternatively, this traceabilty may be provided by annotating each requirement in Section
Requirements.)

Note: Each level of system refinement may result in requirements not directly traceable to higher-level
requirements. For example, a system architectural design that creates multiple CSCls may result in requirements
about how the CSCIs will interface, even though these interfaces are not covered in system requirements. Such
requirements may be traced to a general requirement such as “system implementation” or to the system design
decisions that resulted in their generation.

. Traceability from each system (or subsystem, if applicable) requirement allocated to this CSCI to the CSCI

requirements that address it. All system (subsystem) requirements allocated to this CSCI shall be accounted for.
Those that trace to CSCI requirements contained in IRSs shall reference those IRSs.

_images/OSX-network-DNS.png
.’ System Preferences Edit View Window Help

@® i Network

’,}‘ Wi-Fi

Wi-Fi TCP/IP WINS 802.1X Proxies Hardware

DNS Servers: Search Domains:
127.0.0.1 apl.washington.edu
+ IPv4 or IPv6 addresses +

? Cancel OK

_images/ianitor-netcat.png
[C: SERvICES, oDES KEVIVALUE AcL c1+ o)
‘ netcat
Fiter by name | anystas v Bwa
I consul 3 passing TAGS
No tags
l netcat. 2passing NODES
I dimsdemol 1086.86.7 2passing

Service 'netcat' check service:netcat

Serf Health Status serfHealtn

passing

passing

_static/up.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		DIMS Developer Guide v 1.0.0

 		Introduction

 		Overview

 		Referenced documents

 		Development and Core Tool Policy

 		General Software Development Philosophy

 		DIMS Development Credo

 		Source Code Control

 		Copyright

 		Python Development and Debugging

 		License

 		Developing on a fork from GitHub

 		Communication and coordination

 		Daily Scrum

 		Remote Coordination

 		Using Google Hangout

 		Ops-Trust email lists

 		Source Code Management with Git

 		Foundational Git Resources

 		The need for policy and discipline

 		Global Git Configuration

 		Daily tasks with Git

 		Updating local repos

 		Finding Changes and Changed Files

 		Managing Version Numbers

 		Initializing a repo for hub-flow

 		Infrequent tasks with Git

 		Cloning multiple repos from git.devops.develop

 		Adding a newly-created repository

 		Creating Git repositories

 		Cherry-picking a commit from one branch to another

 		Synchronizing with an upstream repository

 		Starting a “release”

 		Branch Renaming

 		Deleting accidentally created tags

 		Recovering deleted files

 		Fixing comments in unpublished commits

 		Squashing Commits Before Merging

 		Merging changes from develop into feature branches to keep up to date

 		Permanently Removing Files from a Git Repo

 		Git and Secrets

 		Ansible Vault

 		git-crypt

 		Git and Unix permissions

 		Documenting DIMS Components

 		Required Background Reading

 		Why Sphinx?

 		Manually Initiating a docs directory with sphinx-quickstart

 		Separated source and build directories

 		Mixed source and build

 		Building Sphinx Documentation

 		Manually Building HTML

 		Manually Building PDF using LaTeX

 		Automatically building HTML

 		Fixing errors

 		Typographic errors

 		Link errors

 		LaTeX image errors

 		LaTeX Unicode rendering errors

 		“LaTeX is not a TTY” errors

 		Common Tasks

 		Creating figures with thumbnails with links to larger images

 		Section numbering

 		Converting HTML content to Sphinx reST files

 		Referencing subsections or figures

 		Common Problems

 		Improperly referencing links to external documents

 		Not having the proper white space around literal blocks

 		Using inconsistent indentation in literal blocks and directives

 		Having multiple colons in link target labels

 		Advanced Use of Sphinx Features

 		Cross-referencing between documents with the sphinx.ext.intersphinx extension

 		Insertion of text using direct substitution

 		Insertion of text programmatically

 		Inserting a graph using Graphviz

 		Continuous Integration

 		Continuous Integration

 		How source changes are propagated

 		Continuous deployment of documentation

 		Post-receive hook

 		Jenkins parameterized job dims-docs-deploy

 		Deployment script jenkins.dims-docs-deploy

 		Deployment and Configuration

 		Deployment and Configuration

 		Type of Systems

 		Developer boxes

 		Integration environment

 		Programming Conventions

 		Use of Makefile helpers

 		Variable Naming Conventions

 		Ops-trust-db VM Creation

 		Developing Bash scripts

 		Command line processing using Google's shFlags

 		Script naming conventions

 		Bash programming references

 		Developing modules for the DIMS CLI app (dimscli)

 		Bootstrapping the dimscli app for development

 		Command Structure

 		Completing commands in dimscli

 		Adding New Columns to Output

 		Adding New Commands

 		Adding a Module in Another Repo

 		Service Discovery Using Consul

 		Docker Datacenter

 		Datacenter Walk-thru

 		Further Information

 		Debugging and Development

 		Determining File System Affects of Running Programs

 		Testing Code on Branches

 		Debugging Vagrant

 		Verbosity in Vagrant Provisioners

 		Vagrant Debug Logging

 		Use the Source, Luke

 		Robot Framework

 		Overview

 		Installation

 		Configuring with Pycharm

 		Libraries

 		Other Helpful Hints

 		Basic Project Structure

 		Running Tests

 		Tutorials

 		Appendices

 		Setting up DNS using dnsmasq

 		Mac OS X configuration

 		Logging

 		Split-Horizon DNS

 		Using a Case-Sensitive sparse image on Mac OS X

 		Google Hangouts 'Original Version' Screenshare Instructions

_static/UW-logo.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_images/infinite-hangout.png
Firefox Web Browser
Google+ Hangouts - Mozilla Firefox
google.com

{*”} oIms _5”61} i:' i Allow plus.google.com to run "Google Talk Video Renderer" Continue Blocking| | Allov
+++] Sourcing /op

[+++] OpenVPN status
i oot ot e
* VPN '02_prsm_dims

[+++] Sourcing /opt/

[+++] Activating DIV
[+++] (Create file /grmymmmm:

[+++] Virtual enviro

4t ttrichedinsdenor: - @)

fatal: wWorking tree

Group chat

Jopt/dt

4) 1:36PM %

_images/git-model@2x.png
release

feature
branches hotfixes master

branches develop

Severe bug
fixed for
production:
hotfix0.2
Incorporate
bugfix in
develop

09 o

Major
feature for
next release

Feature
for future
release

Start of
release
branch for

From this point on, .0

“next release”
means the release
after 1.0

Bugfixes from
rel. branch
may be
continuously
merged back
into develop

1.0

ST~
\

_static/comment-bright.png

_images/git_to_groups.png
GIT

develop branch This example inventory has groups: all,
changes I prisem, tupelo, dashboard, git,
| | elasticsearch
dims-ci-utils } 3
SN 1 development inventory
; ALL
_ | | P prisem |] TN
prisem ; ; N gt
\\\\\\\T\\\\\\%\\\\\\ [tupelo \\\ Vi
dims-dashboard : 3){"/(/iashboard \\g (élasticsearch \
: : \) 4 E - e
tupelo 3 !

ansible-playbook command
via host (inventory),
playbook

_images/OSX-network-Location.png
B8 Opera File Edit View History Bookmarks Window
About This Mac

bpment Environ I Network boot
System Preferences... P "
Location > Automatic I¢
App Store... 1 update v VPN 13
Recent Items > Network Preferences... ©
Force Quit Opera XO08D
Sleep
Restart... 7
Shut Down...

Log Out Dave Dittrich... {8Q

-

_images/UCPcontainers.png
¢ | ¥ @ [shepherstown brewery

@ Dashboard

RESOURCES

& Applications

© Contalners

Nodes

Volumes

Networks

[Images
UCP ADMIN
& Users &Teams

@ Settings

DLEIIE | Hide stopped &system containers ~

® 697710905924

® 3b0881350ca

| @ 678e7c4sels6

NODE

node2

nodet

node0

NAME IMAGE

consul-node2 progrium/consul
consul-nodet progrium/consul
consul-node0 progrium/consul

Universal Control Plane 1.0.0 (9025773)

CREATED

2016-03-07 173

110 -0500

2016-03-07 173

2016-03-07 173

Items per page

API122

10

25

50

100

_images/UCPdashboard.png
2 Universal Control

¢ | ¥ @ [shepherstown brewery

@ @) @ https://192.168.99.100/#/dashboard

@ Dashboard

RESOURCES

& Applications

© Containers

Nodes

Volumes

& Networks

[Images
UCP ADMIN
& Users &Teams

@ Settings

Dashboard

Overview

0 22 40

Resources

CPU
0%
Cluster Controllers
STATUS CONTROLLER URL SWARM MANAGER
B ritpsi192.168.99.100:443 tcp://192.168.99.100:3376

Universal Control Plane 1.0.0(9025773) | API:1.22

Memory

Scheduling Strategy: spread

_images/intersphinx-links.png
2.Referenced Documents
3.Requirements
4.Qualification provisions
5.Notes

6.License

7. Appendices

» 2. Referenced Documents

2. Referenced Documents

The following documents describe the DIMS project and provide
background material related to tasking.

1

2.

3

4. HSHQDC-13-C-B0013, “From Local to Gobal Awareness: A Distributed
Incident Management System,” Draft contract, Section C - Statement of
Work (marked up version)

5. MIL-STD-498, Military Standard Software Development and
Documentation, AMSC No.N7069, Dec. 1994.

_images/graphviz-d9a7b4927e09e04b84ce62a6a67c5ef74e44d187.png
dims-ci-utils 0S-1SOs git-extras,

jenkins

CONFIGURING

packer sphinx
vagrant

ansible DEVELOPING

DEPLOYING

jira

git-flow

tig

hub

_images/DD_home_page_small.jpg
< > 0 ® [0

Dave Dittrich

il

\ Dave Dittrich

‘StatusiSenio Softwar Enpinar/Computer Speclst,
Toniied Pysics Laborstory

esing wih the Adhanced Persistent That

beloe o even 3 thing.

1 you spend more on cofea than o IT secury, the you wil b hacked. Whats more,

aichaca Carke,Former Specia Adior o he residen on ybersscuity, BSA 2002

In the informtion conony, ling to mainsin on nformed view of the leve of cyber-
veat il 00n b a0 unsutanabl sk fo Baard level dsison makers, The ptantaly
G impac of ndiidusl and curultive cybar-Sacks mesns (ot the e has bcome
e responbity of Chil Exacutves ond Saards o Directos, rther . specolst

TABLE OF CONTENTS
s At Respone Contnm
bt (shsSesog)
[

images

p—
pr—
Sousung

_images/dims-ci-utils-doc-html.png
) %
© 0 O | ouve pisrich—Dave i | |5 Welcome o the DIMS 1t |

[® file:// /Users/dittrich/git/dims~ci-utils/docs/ build/htmi /index.htm]

DIMS Cl Utiliies 1.0.4 documentation » next index

Table Of Contents Welcome to the DIMS CI Utilities’ documentation!
S This document describes the DIMS Cl Utilities (dims-ci-uti1s for short) and how to use them in DIMS development.

The DIMS CI Utilities are intended to provide common utilities, documentation standards, and a framework with which to build a
complex system in a scalable manner. These utilities are divided into subsections that are used in various places with the
development and testing environments of DIMS. These include:

This Page « Development using Git for source code management
« Continuous integration build/deploy using Jenkins
« Deployment, installation, and configuration using Ansible
Quick search « Instantiation and handling of build/destroy lifecycle stages of Virtualbox virtual machines using Packer and

I Vegrant

Enter search terms or a module, * Introduction
class or function name. o Introduction

o Documentation with Sphinx
o Source code management with Git
o Continuous integration with Jenkins
o Deployment and configuration with Ansible
« Quick Start Guide
Quick Start Guide
Installation steps
DIMS Directory Tree
Group membership
Environment Variable Settings
Clone the source code repository
Install the DIMS Cl utiities
Example: YAML file validation
« Documentation
Documentation
Required Background Reading
Why Sphinx?
Installing Sphynx
Manually Initiating a accs directory with sphinx-quickstart
Common Problems

ow Source

6000000

°

°

s o000

_images/consul-service-netcat.png
® - o consul by HashiCorp - Chromium

/@ consulby Hashicory x _\ -

< > @ (D 10.142.29.120:8500/ui/#/dc1 fnodes/dimsdemot

SERVICES NODES KEYIVALUE AcL be1- o]
dimsdemol 10.6.86.7 DEREGISTER
Filler by name any siatus v ExpAND.
I bs2 0 services SERVICES
netcat 9999
I breathe 1services Notags
l dimsdemo1 1 services CHECKS
I dimsdemo2 0services)
Service 'netcat’ check service:netcat passing
| echoes 2services
NoTES
[our 0services ourpur
I rabbitmq 0services
I ceamus R I ———
Serf Health Status serfriealtn passing
NoTES
outpuT

LOCK SESSIONS

No sessions

_images/note_in_list_incorrect.png
5. Requirements traceability

This paragraph shall contai

1. Traceability from each CSCI requirement in this specification to the system (or subsystem, if applicable) requirements
it addresses. (Alternatively, this traceabilty may be provided by annotating each requirement in Section

Requirements.)

Note: Each level of system refinement may result in requirements not directly traceable to higher-level requirements.
For example, a system architectural design that creates multiple CSCls may result in requirements about how the CSCls
will interface, even though these interfaces are not covered in system requirements. Such requirements may be traced to
ageneral requirement such as "system implementation” or to the system design decisions that resulted in their

generation.

1. Traceability from each system (or subsystem, if applicable) requirement allocated to this CSCI to the CSCI
requirements that address it. All system (subsystem) requirements allocated to this CSCI shall be accounted for.
Those that trace to CSCI requirements contained in IRSs shall reference those IRSs.

_images/repos_to_inventories.png
GIT
develop |
repo C Vv\fﬂf]fSter‘
o Melegsg
\\\\\\\ . . de ez\\\\
S \\\ \\\\ op
S \\\del’@\\\\
.. \\\qu -
S Qe -
\\@l’@ AN
ey
S % \\\
Should have one repo to one
system inventory N

relationship. We can have a
one repo to many systems if
that relationship is always
true.

Inventory - Systems

development
y
> production
-
test
A
prisem
.
project
A

infrastructure

_images/google-hangout-plugin-settings.png
Firefox Web Browser

[+++] DIMS shell inil

@ https://plus.google.com/hangouts

Google+ Hangouts - Mozilla Firefox

[RRRNIETILEOIIEI Allow plus.google.comto run plugins?

[+++] OpenVPN status
* VPN '01_uwapl_dir

* VPN '02_prsm_dinsEECEEICREIN

[+++] Sourcing /opt/|

[RROEIPURRIRRE AR | oogle Talk video Renderer | Allowand Remember

[+++] (Create file /
[+++] Virtual envirg
dittrichedinsdenol
fatal: wWorking tree
dittrichedinsdenol

Cancel

B
B @ o roma

= eremy o

TAsK: [comnon
<127.0.0.1> RERC
Tttne state-file
fatled: [127.0.0
nsg: file (fetc

[FRTaL: a1l hosts

127,001

[---] play “conr
[++1 Rumntng 1

PLAY [Install/co

GATHERING FACTS
<127.0.0.1> RERO
ok: [127.0.0.1]

ThsK: [dnsnasq
skipping: [127.0

TASK: (dnsmasq
<127.0.0.1 RERC
ok: [127.0.0.1]
State’: iabsent

/_/gserdhf2ggjeizx:

Allow and Remember

B | = -]

Dave

e e o e o]

—

B e o

as

o5 desktop
popy

gan-dins buttavic]

+

Megan

<€) 1:39PM %

_images/dims-ci-utils-doc-pdf.png
806 [« DIMSClUtilities.pdf (page 1 of 35)

EmEEale

DIMS CI Utilities Documentation
Release 1.0.4

David Dittrich

_images/gitx-newrelease.png
80606
Le]
Refesh

[ansible-playbooks (branch: dev)

ANSIBLE-PLAYBOOKS
W stage

BRANCHES

REMOTES
» @ origin

TAGs
OTHER

STASHES
Bl L6bScc7 Add tags for.

SUBMODULES

[+p])+8]) [

J [e=2]

@D wal e Q- Subject, Author, SHA
Subject Author

(E0Bump version: 1.2.0 + 1.2.1 Dave Dittrich
(EEE Merge tag '1.2.0' into dev for Release 1.2.0. Dave Dittrich
({5t (S5 rERD) (signmesier) (126)Merge branch 'release/1.2.0' to produce new release. Dave Dittrich
Bump version: 1.1.4 ~ 1.2.0 Dave Dittrich
Bump version: 1.1.3 ~ 1.14 Dave Dittrich
Add docs/ directory and put under bumpversion control Dave Dittrich
Bump version: 1.1.2 ~ 1.1.3 Dave Dittrich
Add VERSION to bumpversion control Dave Dittrich
Bump version: 1.1.1 = 1.1.2 Dave Dittrich
Add dnsmasg templates Dave Dittrich
Add version variable for bumpversion Dave Dittrich
Add bumpversion config file Dave Dittrich

Renamed tomeat role to tomcat-0zone so as not to interfere with refactoring of the tomcat role
DIMS-326 - modify when: not use_http comparison to also check against text false

Moved tasks to modify Ubuntu firefox browser startup page to desktop-setup role

Using dims_user and dims_group rather than hard-coded values in tasks file for logstash
Added missing step to install kibana web source, added kibana config file, added comments
Fixed kiban nain confiauration install

Bump version: 12.0 - 1.2.1

Dave Dittrich (author)
Jan 22, 2015, 6:45:10 PM

=

© bumpversion.cfg

© VERSION

© docs/source/conf.py
© group_vars/all

Linda Parsons
Linda Parsons
Linda Colby
Linda Colby
Linda Parsons
Linda Parsons

commit : d4fe@53ctab695c69357d780c3648720c615dd9
tree : fafcd712114208786b876cB3e586ad1chrc3ddbl
parent : 2ec921ce05b3bd71888b7069990c735acd6b141

+1-1
+1-1
+2-2
+1-1

Giff —git a/.bumpversion.cfg b/.bumpversion.cfg
index 4e4docd, .03471e0 100644

—— a/.bumpuersion. cfg

“+++ b/ bumpversion. cfg

@15 +1,5 ee

(2-][+0] s 8|2

764 commits loaded

