
Digideep Documentation
Release 2019

Mohammadreza Sharif

Jun 23, 2021

Notes:

1 Installation 3

2 Usage 5

3 Developer Guide: Big Picture 9

4 Developer Guide: In-Depth Information 11

5 Developer Guide: Implementation Guideline 15

6 digideep.pipeline package 17

7 digideep.params package 23

8 digideep.environment package 25

9 digideep.memory package 45

10 digideep.agent package 47

11 digideep.policy package 49

12 digideep.utility package 51

13 Indices and tables 59

Python Module Index 61

Index 63

i

ii

Digideep Documentation, Release 2019

Digideep is a pipeline for fast prototyping Deep Reinforcement Learning (DeepRL) algorithms which uses PyTorch
and Gym / dm_control.

Some important features of Digideep are:

digideep.main.entrypoint()

digideep.main.main(session)

Notes: 1

https://github.com/pytorch/pytorch
https://github.com/openai/gym
https://github.com/deepmind/dm_control

Digideep Documentation, Release 2019

2 Notes:

CHAPTER 1

Installation

1.1 Requirements

• Python 3

• PyTorch

• [OPTIONAL] Tensorboard.

• MuJoCo v200.

• mujoco_py and Gym.

• dm_control.

Note: If you are a student, you can get a free student license for MuJoCo.

1.2 Installation

Simply download the package using the following command and add it to your PYTHONPATH:

1.3 Set your environment

Add the following to your .bashrc or .zshrc:

Assuming you have installed mujoco in '$HOME/.mujoco'
export LD_LIBRARY_PATH=$HOME/.mujoco/mujoco200_linux/bin:$LD_LIBRARY_PATH
export MUJOCO_GL=glfw

3

https://pytorch.org/
https://www.tensorflow.org/tensorboard
https://www.roboti.us/index.html
https://github.com/openai/mujoco-py
https://github.com/openai/gym
https://github.com/deepmind/dm_control

Digideep Documentation, Release 2019

1.4 Patch dm_control initialization issue

If you hit an error regarding GLFW initialization, try the following patch:

Go to the digideep installation path and run:

cd <digideep_path>
cp patch/glfw_renderer.py `pip show dm_control | grep -Po 'Location: (\K.*)'`/dm_
→˓control/_render

4 Chapter 1. Installation

CHAPTER 2

Usage

2.1 Training/Replaying

Listing 1: Command-line arguments

$ python -m digideep.main --help
usage: main.py [-h] [--load-checkpoint <path>] [--play]

[--session-path <path>] [--save-modules <path> [<path> ...]]
[--log-level <n>] [--visdom] [--visdom-port <n>]
[--monitor-cpu] [--monitor-gpu] [--params <name>]
[--cpanel <json dictionary>]

optional arguments:
-h, --help show this help message and exit
--load-checkpoint <path>

Load a checkpoint to resume training from that point.
--play Will play the stored policy.
--session-path <path>

The path to store the sessions. Default is in /tmp
--save-modules <path> [<path> ...]

The modules to be stored in the session.
--log-level <n> The logging level: 0 (debug and above), 1 (info and

above), 2 (warn and above), 3 (error and above), 4
(fatal and above)

--visdom Whether to use visdom or not!
--visdom-port <n> The port of visdom server, it's on 8097 by default.
--monitor-cpu Use to monitor CPU resource statistics on Visdom.
--monitor-gpu Use to monitor GPU resource statistics on Visdom.
--params <name> Choose the parameter set.
--cpanel <json dictionary>

Set the parameters of the cpanel by a json dictionary.

5

Digideep Documentation, Release 2019

Listing 2: Example Usage

Start a training session for a MuJoCo environment using DDPG
Default environment is "Pendulum-v0"
python -m digideep.main --params digideep.params.classic_ddpg

Start a training session for an Atari environment using PPO
Default environment is "PongNoFrameskip-v4"
python -m digideep.main --params digideep.params.atari_ppo

Start a training session for a MuJoCo environment using PPO
Default environment is "Ant-v2"
python -m digideep.main --params digideep.params.mujoco_ppo

Change the parameters in command-line
python -m digideep.main --params digideep.params.mujoco_ppo \

--cpanel '{"model_name":"DMBenchCheetahRun-v0", "from_module":"digideep.
→˓environment.dmc2gym"}'

python -m digideep.main --params digideep.params.mujoco_ppo \
--cpanel '{"model_name":"DMBenchCheetahRun-v0", "from_module":"digideep.

→˓environment.dmc2gym", "recurrent":True}'

Listing 3: Loading a checkpoint to play

Typical loading
python -m digideep.main --play --load-checkpoint "<path-to-checkpoint>"

Loading a checkpoint using its saved modules (through --save-modules option)
PYTHONPATH="<path-to-session>/modules" python -m digideep.main --play --load-
→˓checkpoint "<path-to-checkpoint>"

2.2 Playing for Debugging

Listing 4: Command-line arguments

$ python -m digideep.environment.play --help
usage: play.py [-h] [--list-include [<pattern>]] [--list-exclude [<pattern>]]

[--module <module_name>] [--model <model_name>] [--runs <n>]
[--n-step <n>] [--delay <ms>] [--no-action]

optional arguments:
-h, --help show this help message and exit
--list-include [<pattern>]

List by a pattern
--list-exclude [<pattern>]

List by a pattern
--module <module_name>

The name of the module which will register the model
in use.

--model <model_name> The name of the model to play with random actions.
--runs <n> The number of times to run the simulation.
--n-step <n> The number of timesteps to run each episode.
--delay <ms> The time in milliseconds to delay in each timestep to

(continues on next page)

6 Chapter 2. Usage

Digideep Documentation, Release 2019

(continued from previous page)

make simulation slower.
--no-action The number of timesteps to run each episode.

Listing 5: Running a model with random actions

python -m digideep.environment.play --model "Pendulum-v0"

Listing 6: Running a model with no actions

python -m digideep.environment.play --model "Pendulum-v0" --no-action

Listing 7: Running a model from another module (your custom designed
environment).

python -m digideep.environment.play --model "<model-name>" --module "<module-name>"

Listing 8: List registered modules

python -m digideep.environment.play --list-include ".*"
python -m digideep.environment.play --list-include ".*Humanoid.*"
python -m digideep.environment.play --list-include ".*Humanoid.*" --list-exclude "DM*"

2.2. Playing for Debugging 7

Digideep Documentation, Release 2019

8 Chapter 2. Usage

CHAPTER 3

Developer Guide: Big Picture

3.1 The session and runner

The entrypoint of the program is the main.py module. This module, first creates a Session.

A Session is responsible for command-line arguments, creating a directory for saving the all results related to that
session (logs, checkpoints, . . .), and initiating the assitive tools, e.g. loggers, monitoring tools, visdom server, etc.

After the Session object is created, a Runner object is built, either from an existing checkpoint or from the
parameters file specified at the command-line. The runner class will run the main loop.

3.2 How does runner work

The Runner depends on three main classes: Explorer, Memory, and AgentBase. The connection between
these classes is really simple (and is intentionally written to be so), as depicted in the following general graph about
reinforcement learning:

+-------------+ +--------+
| Explorer | ------------> | Memory |
+-------------+ +--------+

^ |
| (ACTIONS) | (TRAJECTORIES)
| |

+--+
	+---------+			
		SAMPLER		
	+---------+			
	(SAMPLED TRANSITIONS)			

	<------	POLICY	<-----	

(continues on next page)

9

Digideep Documentation, Release 2019

(continued from previous page)

| ---------- |
+--+

AGENT

The corresponding (pseudo-)code for the above graph is:

do in loop:
chunk = self.explorer["train"].update()
self.memory.store(chunk)
for agent_name in self.agents:

self.agents[agent_name].update()

• Explorer: Explorer is responsible for multi-worker environment simulations. It delivers the outputs to the
memory in the format of a flattened dictionary (with depth 1). The explorer is tried to be written in its most
general manner so it needs least possible modifications for adaptation to new methods.

• Memory: It stores all of the information from the explorer in a dictionary of numpy arrays. The memory is also
written in a very general way, so it is usable with most of the methods without modifications.

• agent: The agent uses sampler and policy, and is responsible for training the policy and generating
actions for simulations in the environment.

10 Chapter 3. Developer Guide: Big Picture

CHAPTER 4

Developer Guide: In-Depth Information

In this section, we cover several topics which are essential to understanding how Digideep works.

4.1 Understanding the parameters file

There are two sections in a parameter file. The main section is the def gen_params(cpanel) function, which
gets the cpanel dictionary as its input, and gives the params dictionary as the output. The params dictionary
is the parameter tree of all classes in the project, all in one place. This helps to see the whole structure of the code
in one place and have control over them from a centralized location. Moreover, it allows for scripting the parameter
relationships, in a more transparent way. Then, there is the cpanel dictionary for modifying important parameters
from a “control panel”. The cpanel dictionary may be modified through command-line access:

python -m digideep.main ... --cpanel '{"cparam1":"value1", "cparam2":"value2"}'

Note: It was possible to implement the parameter file using json or yaml files. But then it was less intuitive to
script the relationships between coupled parameters.

4.2 Understanding the data structure of trajectories

The output of the Explorer, trajectories, are organized in the form of a dictionary with the following structure:

{'/observations':(batch_size, n_steps, ...),
'/masks':(batch_size,n_steps,1),
'/rewards':(batch_size,n_steps,1),
'/infos/<info_key_1>':(batch_size,n_steps,...),
'/infos/<info_key_2>':(batch_size,n_steps,...),
...,
'/agents/<agent_1_name>/actions':(batch_size,n_steps,...),

(continues on next page)

11

Digideep Documentation, Release 2019

(continued from previous page)

'/agents/<agent_1_name>/hidden_state':(batch_size,n_steps,...),
'/agents/<agent_1_name>/artifacts/<artifact_1_name>':(batch_size,n_steps,...),
'/agents/<agent_1_name>/artifacts/<artifact_2_name>':(batch_size,n_steps,...),
...,
'/agents/<agent_2_name>/actions':(batch_size,n_steps,...),
'/agents/<agent_2_name>/hidden_state':(batch_size,n_steps,...),
'/agents/<agent_2_name>/artifacts/<artifact_1_name>':(batch_size,n_steps,...),
'/agents/<agent_2_name>/artifacts/<artifact_2_name>':(batch_size,n_steps,...),
...
}

Here, batch_size is the number of concurrent workers in the Explorer class, and n_steps is the length of
each trajectory, i.e. number of timesteps the environment is run.

Note: The names in angle brackets are arbitrary, depending on the agent and environment.

Here’s what each entry in the output mean:

• /observations: Observations from the environment.

• /masks: The done flags of the environment. A mask value of 0 indicates “finished” episode.

• /rewards: The rewards obtained from the environment.

• /infos/*: Optional information produced by the environment.

• /agents/<agent_name>/actions: Actions took by <agent_name>.

• /agents/<agent_name>/hidden_state: Hidden_states of <agent_name>.

• /agents/<agent_name>/artifacts/*: Optional outputs from the agents which includes additional
information required for training.

Memory will preserve the format of this data structure and store it as it is. Memory is basically a queue; new data
will replace old data when queue is full.

4.3 Understanding the structure of agents

Digideep supports multiple agents in an environment. Agents are responsible to generate exploratory actions and
update their parameters. Agents should inherit AgentBase. There are two important components in a typical com-
ponent: sampler and policy.

Note: The interface of the agent class with the Explorer is the action_generator(). This function is called
to generate actions in the environment. The interface of the agent class with the Runner class is the update()
class. This function is meant to update the parameters of the agent policy based on collected information from the
environment.

As an example of agents, refer to PPO or DDPG.

4.3.1 Sampler

A sampler samples transitions from the memory to train the policy on. Samplers for different methods share similar
parts, thus suggesting to decompose a sampler into smaller units. This obviates developers from some boilerplate

12 Chapter 4. Developer Guide: In-Depth Information

Digideep Documentation, Release 2019

coding. See digideep.memory.sampler for some examples.

4.3.2 Policies

Policy is the function inside an agent that generates actions. A policy should inherit from PolicyBase. Policies
support multi-GPU architectures for inference and architecture. We use torch.nn.DataParallel to activate
multi-GPU functionalities. Note that using multi-GPUs sometimes does not lead to faster computations, due to larger
overheads with respect to gains. It is really problem-dependant.

Every policy should implement the generate_actions() function. This function is to be called in the agent’s
action_generator().

For examples on policies, refer to two available policies in Digideep:

• A stochastic Policy for PPO agent.

• A deterministic DDPG agent.

4.4 Understanding serialization

Digideep is written with serialization in mind from the beginning. The main burden of serialization is on the Runner
class. It saves both the parameters and states of its sub-components: explorer, memory, and agents. Each of these
sub-components are responsible for saving their sub-components states, i.e. in a recursive manner.

Caution: By now, checkpoints only save object states that are necessary for playing the policy, not to resume
training.

At each instance of saving two pickle objects are saved, one saving the Runner, the other saving the states. “Saving”,
at its core, is done by using pickle.dump for the Runner and torch.save for the states in the session class.
“Loading”, uses counterpart functions pickle.load and torch.load for the Runner and states, respectively.

Note: If you are implementing a new method, you should implement your own state_dict and
load_state_dict methods for saving the state of “stateful” objects. Make sure those are called properly dur-
ing saving and loading.

4.5 Debugging tools

There are some tools commonly used while implementing a reinforcement learning method. We have provided the
following assistive tools to help developers debug their codes:

• digideep.utility.profiling.Profiler: A lightweight profiling tool. This will help find parts of
code that irregularly take more time to complete.

• digideep.utility.monitoring.Monitor: A lightweight monitoring tool to keep track of values of
variables in training.

• Debugging tools in digideep.memory.sampler: There a few sampler units that can be injected into the
sampler to inspect shapes, NaN values, and means and standard deviations of a chunk of memory.

• Monitoring CPU/GPU utilization of cores and memory. See stats and runMonitor().

4.4. Understanding serialization 13

Digideep Documentation, Release 2019

4.6 Documentation

We use Sphinx for documentation. If you are not familiar with the syntax, follow the links below:

• Cheat sheet for Google/Numpy style: http://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html

• Basics of reStructuredText: http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

• Example Google Style: https://www.sphinx-doc.org/en/1.7/ext/example_google.html

14 Chapter 4. Developer Guide: In-Depth Information

http://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html
http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://www.sphinx-doc.org/en/1.7/ext/example_google.html

CHAPTER 5

Developer Guide: Implementation Guideline

To implement a new method you need to get a pipeline working as soon as possible. Digideep helps in that manner
with developer-friendly source codes, i.e. extensive comments and documentation besides self-descriptive code. The
pipeline does not need to train any policies at the beginning.

Digideep is very modular, so that you can use your own implementation for any part instead. However, you are
encouraged to fork the source on work on your own copy of the source code for deeper modifications.

5.1 Implementation steps

1. Create a parameter file for your method. You may leave parts that you have not implemented yet blank. Take
a look at digideep.params for some examples of parameters file or see the descriptions in Understanding
the parameters file.

2. Create a class for your agent. Inherit from the AgentBase.

3. Override action_generator() function in your agent’s class. Explorer will call this function to gener-
ate actions. Follow the expected interface described at action_generator(). You can generate random
actions but in the correct output shape to get the pipeline done faster.

Tip: Complete your parameters file as you move forward. Run the program early. Try to debug the interface issues
as soon as possible.

4. In your agent’s class, override reset_hidden_state if you are planning to use recurrent policies.

5. Now, the explorer should work fine, and the trajectories may be stored in the memory. Now, it is time to start
implementation of your policy.

Note: You should first make sure of correct flow of information through components of the runner, i.e. explorer,
memory, and agent, then try to implement the real algorithms. The Explorer and Memory classes are general
classes which can be used with different algorithms.

15

Digideep Documentation, Release 2019

6. To implement your policy, you can inherit from PolicyBase.

7. When implementation of policy is done, modify action_generator() in your agent to generate actions
based on the policy.

8. When policy is done, it’s time to implement the sampler for your method. The sampler is typically used at the
beginning of the step() function of the agent.

9. Implement step() function. This is the body of your method. At the same time, update() function can be
implemented. It is usually just a loop of calls on the step() function.

10. At this point, you have successfully finished implementation of your agent. Now it’s time to debug. You may
use the Profiler and Monitor tools to inspect the values inside your code and watch the timings.

16 Chapter 5. Developer Guide: Implementation Guideline

CHAPTER 6

digideep.pipeline package

6.1 Submodules

6.2 digideep.pipeline.runner module

class digideep.pipeline.runner.Runner(params)
Bases: object

This class controls the main flow of the program. The main components of the class are:

• explorer: A dictionary containing Explorer for the three modes of train, test, and eval. An
Explorer is a class which handles running simulations concurrently in several environments.

• memory: The component responsible for storing the trajectories generated by the explorer.

• agents: A dictionary containing all agents in the environment.

This class also prints the Profiler and Monitor information. Also the main serialization burden is on this
class. The rest of classes only need to implement the state_dict and load_state_dict functions for
serialization.

Caution: The lines of code for testing while training are commented out.

custom()

enjoy()
This function evaluates the current policy in the environment. It only runs the explorer in a loop.

Do a cycle
while not done:

Explore
explorer["eval"].update()

(continues on next page)

17

https://docs.python.org/3/library/functions.html#object

Digideep Documentation, Release 2019

(continued from previous page)

log()

finalize(save=True)

instantiate()
This function will instantiate the memory, the explorers, and the agents with their specific parameters.

lazy_connect_signal()

lazy_init()
Initialization of attributes which are not part of the object state. These need lazy initialization due to proper
initialization when loading from a checkpoint.

load()
This is a function used by the start() function to load the states of internal objects from the checkpoint
and update the objects state dicts.

load_memory()

load_state_dict(state_dict)
This function will load the states of the internal objects:

• Agents

• Explorers (state of train mode would be loaded for test and eval as well)

• Memory

log()
The log function prints a summary of:

• Frame rate and simulated frames.

• Variables sent to the Monitor.

• Profiling information, i.e. registered timing information in the Profiler.

monitor_epoch()

on_sigint_received(signalNumber, frame)

on_sigusr1_received(signalNumber, frame)

override()

save(forced=False)
This is a high-level function for saving both the state of objects and the runner object. It will use helper
functions from Session.

save_final_checkpoint()

start(session)
A function to initialize the objects and load their states (if loading from a checkpoint). This function must
be called before using the train() and enjoy() functions.

If we are starting from scrarch, we will:

• Instantiate all internal components using parameters.

If we are loading from a saved checkpoint, we will:

• Instantiate all internal components using old parameters.

• Load all state dicts.

18 Chapter 6. digideep.pipeline package

Digideep Documentation, Release 2019

• (OPTIONAL) Override parameters.

state_dict()
This function will return the states of all internal objects:

• Agents

• Explorer (only the train mode)

• Memory

Todo: Memory should be dumped in a separate file, since it can get really large. Moreover, it should be
optional.

termination_check()

test()

train()
The function that runs the training loop.

See also:

How does runner work

train_cycle()

6.3 digideep.pipeline.session module

class digideep.pipeline.session.Session(root_path)
Bases: object

This class provides the utilities for storing results of a session. It provides a unique path based on a timestamp
and creates all sub- folders that are required there. A session directory will have the following contents:

• session_YYYYMMDDHHMMSS/:

– checkpoints/: The directory of all stored checkpoints.

– modules/: A copy of all modules that should be saved with the results. This helps to load
checkpoints in evolving codes with breaking changes. Use extra modules with --save-modules
command-line option.

– monitor/: Summary results of each worker environment.

– cpanel.json: A json file including control panel (cpanel) parameters in params file.

– params.yaml: The parameter tree of the session, i.e. the params variable in params file.

– report.log: A log file for Logger class.

– visdom.log: A log file for visdom logs.

– __init__.py: Python __init__ file to convert the session to a module.

Parameters root_path (str) – The path to the digideep module.

Note: This class also initializes helping tools (e.g. Visdom, Logger, Monitor, etc.) and has helper functions for
saving/loading checkpoints.

6.3. digideep.pipeline.session module 19

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

Digideep Documentation, Release 2019

Tip: The default directory for storing sessions is /tmp/digideep_sessions. To change the default
directory use the program with cli argument --session-path <path>

Todo: Complete the session-as-a-module (SaaM) implementation. Then, session_YYYYMMDDHHMMSS
should work like an importable module for testing and inference.

Todo: If restoring a session, visdom.log should be copied from there and replayed.

play resume loading dry-run session-only | implemented

——————————————————————————————– | ———— Train 0 0 0 0 0 | 1 Train
session barebone 0 0 0 0 1 | 1 Train from a checkpoint 0 1 1 0 0 | 1 Play (policy initialized) 1 0 0 0/1 0 | 1 Play
(policy loaded from checkpoint) 1 0 1 0/1 0 | 1

check_if_done()

check_singleton_instance()

createSaaM()
SaaM = Session-as-a-Module This function will make the session act like a python module. The user can
then simply import the module for inference.

dump_cpanel(cpanel)

dump_params(params)

dump_repeal(repeal)

finalize()

get_device()

initLogger()
This function sets the logger level and file.

initProlog()

initTensorboard()
Will initialize the SummaryWriter for tensorboard logging.

Link: https://pytorch.org/docs/stable/tensorboard.html

initVarlog()

load_runner()

load_states()

mark_as_done()

parse_arguments()

runMonitor()
This function will load the monitoring tool for CPU and GPU utilization and memory consumption.

save_runner(runner, index)

save_states(states, index)

set_device()

20 Chapter 6. digideep.pipeline package

https://pytorch.org/docs/stable/tensorboard.html

Digideep Documentation, Release 2019

update_params(params)

digideep.pipeline.session.check_checkpoint(path, verbose=False)

digideep.pipeline.session.check_session(path, verbose=False)

digideep.pipeline.session.print_verbose(*args, verbose=False, **kwargs)

6.4 Module contents

6.4. Module contents 21

Digideep Documentation, Release 2019

22 Chapter 6. digideep.pipeline package

CHAPTER 7

digideep.params package

7.1 Submodules

7.2 digideep.params.atari_ppo module

See also:

Understanding the parameters file

digideep.params.atari_ppo.gen_params(cpanel)

7.3 digideep.params.classic_ddpg module

This parameter file is designed for continuous action environments. For discrete action environments minor modifica-
tions might be required.

See also:

Understanding the parameters file

digideep.params.classic_ddpg.gen_params(cpanel)

7.4 digideep.params.mujoco_ppo module

See also:

Understanding the parameters file

digideep.params.mujoco_ppo.gen_params(cpanel)

23

Digideep Documentation, Release 2019

7.5 Module contents

24 Chapter 7. digideep.params package

CHAPTER 8

digideep.environment package

8.1 Subpackages

8.1.1 digideep.environment.common package

Subpackages

digideep.environment.common.vec_env package

Submodules

digideep.environment.common.vec_env.dummy_vec_env module

The MIT License

Copyright (c) 2017 OpenAI (http://openai.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

25

http://openai.com

Digideep Documentation, Release 2019

class digideep.environment.common.vec_env.dummy_vec_env.DummyVecEnv(env_fns)
Bases: digideep.environment.common.vec_env.VecEnv

VecEnv that does runs multiple environments sequentially, that is, the step and reset commands are send to one
environment at a time. Useful when debugging and when num_env == 1 (in the latter case, avoids communica-
tion overhead)

get_images()
Return RGB images from each environment

get_rng_state()

load_state_dict(state_dicts)

render(mode=’human’)

reset()
Reset all the environments and return an array of observations, or a dict of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

set_rng_state(states)

state_dict()

step_async(actions)
Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of
the step.

You should not call this if a step_async run is already pending.

step_wait()
Wait for the step taken with step_async().

Returns (obs, rews, dones, infos):

• obs: an array of observations, or a dict of arrays of observations.

• rews: an array of rewards

• dones: an array of “episode done” booleans

• infos: a sequence of info objects

digideep.environment.common.vec_env.shmem_vec_env module

The MIT License

Copyright (c) 2017 OpenAI (http://openai.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

26 Chapter 8. digideep.environment package

http://openai.com

Digideep Documentation, Release 2019

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class digideep.environment.common.vec_env.shmem_vec_env.ShmemVecEnv(env_fns,
spaces=None)

Bases: digideep.environment.common.vec_env.VecEnv

Optimized version of SubprocVecEnv that uses shared variables to communicate observations.

close_extras()
Clean up the extra resources, beyond what’s in this base class. Only runs when not self.closed.

get_images(mode=’human’)
Return RGB images from each environment

reset()
Reset all the environments and return an array of observations, or a dict of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

step_async(actions)
Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of
the step.

You should not call this if a step_async run is already pending.

step_wait()
Wait for the step taken with step_async().

Returns (obs, rews, dones, infos):

• obs: an array of observations, or a dict of arrays of observations.

• rews: an array of rewards

• dones: an array of “episode done” booleans

• infos: a sequence of info objects

digideep.environment.common.vec_env.subproc_vec_env module

The MIT License

Copyright (c) 2017 OpenAI (http://openai.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

8.1. Subpackages 27

http://openai.com

Digideep Documentation, Release 2019

class digideep.environment.common.vec_env.subproc_vec_env.SubprocVecEnv(env_fns,
spaces=None)

Bases: digideep.environment.common.vec_env.VecEnv

VecEnv that runs multiple environments in parallel in subproceses and communicates with them via pipes.
Recommended to use when num_envs > 1 and step() can be a bottleneck.

close_extras()
Clean up the extra resources, beyond what’s in this base class. Only runs when not self.closed.

get_images()
Return RGB images from each environment

get_rng_state()

load_state_dict(state_dicts)

reset()
Reset all the environments and return an array of observations, or a dict of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

set_rng_state(states)

state_dict()

step_async(actions)
Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of
the step.

You should not call this if a step_async run is already pending.

step_wait()
Wait for the step taken with step_async().

Returns (obs, rews, dones, infos):

• obs: an array of observations, or a dict of arrays of observations.

• rews: an array of rewards

• dones: an array of “episode done” booleans

• infos: a sequence of info objects

digideep.environment.common.vec_env.subproc_vec_env.worker(remote, par-
ent_remote,
env_fn_wrapper)

digideep.environment.common.vec_env.util module

The MIT License

Copyright (c) 2017 OpenAI (http://openai.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

28 Chapter 8. digideep.environment package

http://openai.com

Digideep Documentation, Release 2019

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

digideep.environment.common.vec_env.util.copy_obs_dict(obs)
Deep-copy an observation dict.

digideep.environment.common.vec_env.util.dict_to_obs(obs_dict)
Convert an observation dict into a raw array if the original observation space was not a Dict space.

digideep.environment.common.vec_env.util.obs_space_info(obs_space)
Get dict-structured information about a gym.Space.

Returns keys: a list of dict keys. shapes: a dict mapping keys to shapes. dtypes: a dict mapping
keys to dtypes.

Return type A tuple (keys, shapes, dtypes)

digideep.environment.common.vec_env.util.obs_to_dict(obs)
Convert an observation into a dict.

digideep.environment.common.vec_env.vec_monitor module

The MIT License

Copyright (c) 2017 OpenAI (http://openai.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class digideep.environment.common.vec_env.vec_monitor.VecMonitor(venv, file-
name=None)

Bases: digideep.environment.common.vec_env.VecEnvWrapper

reset()
Reset all the environments and return an array of observations, or a dict of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

step_wait()
Wait for the step taken with step_async().

Returns (obs, rews, dones, infos):

• obs: an array of observations, or a dict of arrays of observations.

8.1. Subpackages 29

http://openai.com

Digideep Documentation, Release 2019

• rews: an array of rewards

• dones: an array of “episode done” booleans

• infos: a sequence of info objects

digideep.environment.common.vec_env.vec_video_recorder module

The MIT License

Copyright (c) 2017 OpenAI (http://openai.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class digideep.environment.common.vec_env.vec_video_recorder.VecVideoRecorder(venv,
di-
rec-
tory,
record_video_trigger,
video_length=200)

Bases: digideep.environment.common.vec_env.VecEnvWrapper

Wrap VecEnv to record rendered image as mp4 video.

close()

close_video_recorder()

reset()
Reset all the environments and return an array of observations, or a dict of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

start_video_recorder()

step_wait()
Wait for the step taken with step_async().

Returns (obs, rews, dones, infos):

• obs: an array of observations, or a dict of arrays of observations.

• rews: an array of rewards

• dones: an array of “episode done” booleans

• infos: a sequence of info objects

30 Chapter 8. digideep.environment package

http://openai.com

Digideep Documentation, Release 2019

Module contents

The MIT License

Copyright (c) 2017 OpenAI (http://openai.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

exception digideep.environment.common.vec_env.AlreadySteppingError
Bases: Exception

Raised when an asynchronous step is running while step_async() is called again.

class digideep.environment.common.vec_env.CloudpickleWrapper(x)
Bases: object

Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle)

exception digideep.environment.common.vec_env.NotSteppingError
Bases: Exception

Raised when an asynchronous step is not running but step_wait() is called.

class digideep.environment.common.vec_env.VecEnv(num_envs, observation_space, ac-
tion_space, spec, env_type)

Bases: abc.ABC

An abstract asynchronous, vectorized environment. Used to batch data from multiple copies of an environment,
so that each observation becomes an batch of observations, and expected action is a batch of actions to be applied
per-environment.

close()

close_extras()
Clean up the extra resources, beyond what’s in this base class. Only runs when not self.closed.

closed = False

get_images()
Return RGB images from each environment

get_viewer()

metadata = {'render.modes': ['human', 'rgb_array']}

render(mode=’human’)

reset()
Reset all the environments and return an array of observations, or a dict of observation arrays.

8.1. Subpackages 31

http://openai.com
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/abc.html#abc.ABC

Digideep Documentation, Release 2019

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

step(actions)
Step the environments synchronously.

This is available for backwards compatibility.

step_async(actions)
Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of
the step.

You should not call this if a step_async run is already pending.

step_wait()
Wait for the step taken with step_async().

Returns (obs, rews, dones, infos):

• obs: an array of observations, or a dict of arrays of observations.

• rews: an array of rewards

• dones: an array of “episode done” booleans

• infos: a sequence of info objects

unwrapped

viewer = None

class digideep.environment.common.vec_env.VecEnvWrapper(venv, observa-
tion_space=None,
action_space=None,
spec=None,
env_type=None)

Bases: digideep.environment.common.vec_env.VecEnv

An environment wrapper that applies to an entire batch of environments at once.

close()

get_images()
Return RGB images from each environment

render(mode=’human’)

reset()
Reset all the environments and return an array of observations, or a dict of observation arrays.

If step_async is still doing work, that work will be cancelled and step_wait() should not be called until
step_async() is invoked again.

step_async(actions)
Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of
the step.

You should not call this if a step_async run is already pending.

step_wait()
Wait for the step taken with step_async().

Returns (obs, rews, dones, infos):

• obs: an array of observations, or a dict of arrays of observations.

• rews: an array of rewards

32 Chapter 8. digideep.environment package

Digideep Documentation, Release 2019

• dones: an array of “episode done” booleans

• infos: a sequence of info objects

Submodules

digideep.environment.common.atari_wrappers module

The MIT License

Copyright (c) 2017 OpenAI (http://openai.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class digideep.environment.common.atari_wrappers.ClipRewardEnv(env)
Bases: sphinx.ext.autodoc.importer._MockObject

reward(reward)
Bin reward to {+1, 0, -1} by its sign.

class digideep.environment.common.atari_wrappers.EpisodicLifeEnv(env)
Bases: sphinx.ext.autodoc.importer._MockObject

reset(**kwargs)
Reset only when lives are exhausted. This way all states are still reachable even though lives are episodic,
and the learner need not know about any of this behind-the-scenes.

step(action)

class digideep.environment.common.atari_wrappers.FireResetEnv(env)
Bases: sphinx.ext.autodoc.importer._MockObject

reset(**kwargs)

step(ac)

class digideep.environment.common.atari_wrappers.FrameStack(env, k)
Bases: sphinx.ext.autodoc.importer._MockObject

reset()

step(action)

class digideep.environment.common.atari_wrappers.LazyFrames(frames)
Bases: object

class digideep.environment.common.atari_wrappers.MaxAndSkipEnv(env, skip=4)
Bases: sphinx.ext.autodoc.importer._MockObject

reset(**kwargs)

8.1. Subpackages 33

http://openai.com
https://docs.python.org/3/library/functions.html#object

Digideep Documentation, Release 2019

step(action)
Repeat action, sum reward, and max over last observations.

class digideep.environment.common.atari_wrappers.NoopResetEnv(env,
noop_max=30)

Bases: sphinx.ext.autodoc.importer._MockObject

reset(**kwargs)
Do no-op action for a number of steps in [1, noop_max].

step(ac)

class digideep.environment.common.atari_wrappers.ScaledFloatFrame(env)
Bases: sphinx.ext.autodoc.importer._MockObject

observation(observation)

class digideep.environment.common.atari_wrappers.WarpFrame(env, width=84,
height=84,
grayscale=True)

Bases: sphinx.ext.autodoc.importer._MockObject

observation(frame)

digideep.environment.common.atari_wrappers.make_atari(env_id, timelimit=True)

digideep.environment.common.atari_wrappers.wrap_deepmind(env, episode_life=True,
clip_rewards=True,
frame_stack=False,
scale=False)

Configure environment for DeepMind-style Atari.

digideep.environment.common.monitor module

The MIT License

Copyright (c) 2017 OpenAI (http://openai.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class digideep.environment.common.monitor.Monitor(env, filename, al-
low_early_resets=False,
reset_keywords=(),
info_keywords=())

Bases: sphinx.ext.autodoc.importer._MockObject

EXT = 'monitor.csv'

close()

34 Chapter 8. digideep.environment package

http://openai.com

Digideep Documentation, Release 2019

f = None

get_episode_lengths()

get_episode_rewards()

get_episode_times()

get_total_steps()

reset(**kwargs)

reset_state()

step(action)

update(ob, rew, done, info)

digideep.environment.common.monitor.get_monitor_files(dir)

digideep.environment.common.monitor.load_results(dir)

digideep.environment.common.running_mean_std module

The MIT License

Copyright (c) 2017 OpenAI (http://openai.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class digideep.environment.common.running_mean_std.RunningMeanStd(epsilon=0.0001,
shape=())

Bases: object

load_state_dict(state_dict)

state_dict()

update(x)

update_from_moments(batch_mean, batch_var, batch_count)

digideep.environment.common.running_mean_std.test_runningmeanstd()

digideep.environment.common.running_mean_std.update_mean_var_count_from_moments(mean,
var,
count,
batch_mean,
batch_var,
batch_count)

8.1. Subpackages 35

http://openai.com
https://docs.python.org/3/library/functions.html#object

Digideep Documentation, Release 2019

digideep.environment.common.tile_images module

The MIT License

Copyright (c) 2017 OpenAI (http://openai.com)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

digideep.environment.common.tile_images.tile_images(img_nhwc)
Tile N images into one big PxQ image (P,Q) are chosen to be as close as possible, and if N is square, then P=Q.

Parameters img_nhwc – list or array of images, ndim=4 once turned into array n = batch index, h
= height, w = width, c = channel

Returns ndarray with ndim=3

Return type bigim_HWc

Module contents

8.1.2 digideep.environment.dmc2gym package

Submodules

digideep.environment.dmc2gym.spec2space module

digideep.environment.dmc2gym.test_dmc2gym module

digideep.environment.dmc2gym.test_pickle module

digideep.environment.dmc2gym.viewer module

digideep.environment.dmc2gym.wrapper module

Module contents

8.2 Submodules

8.3 digideep.environment.data_helpers module

This module provides helper functions to manage data outputs from the Explorer class.

36 Chapter 8. digideep.environment package

http://openai.com

Digideep Documentation, Release 2019

See also:

Understanding the data structure of trajectories

digideep.environment.data_helpers.complete_dict_of_list(dic, length)
This function will complete the missing elements of a reference dictionary with similarly-structured None
values.

Listing 1: Example

>>> dic = {'a':[1,2,3,4],
... 'b':[[none,none,none],[none,none,none],[none,none,none],[1,2,3]],
... 'c':[[-1,-2],[-3,-4]]}
>>> # The length of lists under each key is 4 except 'c' which is 2. We have to
→˓complete that.
>>> complete_dict_of_list(dic, 4)
{'a':[1,2,3,4],
'b':[[none,none,none],[none,none,none],[none,none,none],[1,2,3]],
'c':[[-1,-2],[-3,-4],[none,none],[none,none]]}

digideep.environment.data_helpers.convert_time_to_batch_major(episode)
Converts a rollout to have the batch dimension in the major (first) dimension, instead of second dimension.

Parameters episode (dict) – A trajectory in the form of {'key1':(num_steps,
batch_size,...), 'key2':(num_steps,batch_size,...)}

Returns A trajectory in the form of {'key1':(batch_size,num_steps,...),
'key2':(batch_size,num_steps,...)}

Return type dict

Listing 2: Example

>>> episode = {'key1':[[[1],[2]], [[3],[4]], [[5],[6]], [[7],[8]], [[9],[10]]],
'key2':[[[1,2],[3,4]], [[5,6],[7,8]], [[9,10],[11,12]], [[13,14],

→˓[15,16]], [[17,18],[19,20]]]}
>>> convert_time_to_batch_major(episode)
{'key1': array([[[1.],

[3.],
[5.],
[7.],
[9.]],

[[2.],
[4.],
[6.],
[8.],
[10.]]], dtype=float32), 'key2': array([[[1., 2.],
[5., 6.],
[9., 10.],
[13., 14.],
[17., 18.]],

[[3., 4.],
[7., 8.],
[11., 12.],
[15., 16.],
[19., 20.]]], dtype=float32)}

digideep.environment.data_helpers.dict_of_lists_to_list_of_dicts(dic, num)

8.3. digideep.environment.data_helpers module 37

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Digideep Documentation, Release 2019

Function to convert a dict of lists to a list of dicts. Mainly used to prepare actions to be fed into the env.
step(action). env.step assumes action to be in the form of a list the same length as the number of
workers. It will assign the first action to the first worker and so on.

Parameters

• dic (dict) – A dictionary with keys being the actions for different agents in the environ-
ment.

• num (python:int) – The number of workers.

Returns A length with its length being same as num. Each element in the list would be a dictionary
with keys being the agents.

Return type list

Listing 3: Example

>>> dic = {'a1':([1,2],[3,4],[5,6]), 'a2':([9],[8],[7])}
>>> num = 3
>>> dict_of_lists_to_list_of_dicts(dic, num)
[{'a1':[1,2], 'a2':[9]}, {'a1':[3,4], 'a2':[8]}, {'a1':[5,6], 'a2':[7]}]

Caution: This only works for 1-level dicts, not for nested dictionaries.

digideep.environment.data_helpers.extract_keywise(dic, key)
This function will extract a key from all entries in a dictionary. Key should be first-level key.

Parameters

• dic (dict) – The input dictionary containing a dict of dictionaries.

• key – The key name to be extracted.

Returns The result dictionary

Return type dict

Listing 4: Example

>>> dic = {'agent1':{'a':[1,2],'b':{'c':2,'d':4}}, 'agent2':{'a':[3,4],'b':{'c':9,
→˓'d':7}}}
>>> key = 'a'
>>> extract_keywise(dic, key)
{'agent1':[1,2], 'agent2':[3,4]}

digideep.environment.data_helpers.flatten_dict(dic, sep=’/’, prefix=”)
We flatten a nested dictionary into a 1-level dictionary. In the new dictionary keys are combinations of previous
keys, separated by the sep. We follow unix-style file system naming.

Listing 5: Example

>>> Dict = {"a":1, "b":{"c":1, "d":{"e":2, "f":3}}}
>>> flatten_dict(Dict)
{"/a":1, "/b/c":1, "/b/d/e":2, "/b/d/f":3}

digideep.environment.data_helpers.flattened_dict_of_lists_to_dict_of_numpy(dic)

digideep.environment.data_helpers.join_keys(key1, key2, sep=’/’)

38 Chapter 8. digideep.environment package

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Digideep Documentation, Release 2019

Parameters

• key1 (str) – The first key in unix-style file system path.

• key1 – The second key in unix-style file system path.

• sep (str) – The separator to be used.

Listing 6: Example

>>> join_keys('/agent1','artifcats')
'/agent1/artifacts'

digideep.environment.data_helpers.list_of_dicts_to_flattened_dict_of_lists(List,
length)

Function to convert a list of (nested) dicts to a flattened dict of lists. See the example below.

Parameters

• List (list) – A list of dictionaries. Each element in the list is a single sample data
produced from the environment.

• length (python:int) – The length of time sequence. It is used to complete the data
entries which were lacking from some data samples.

Returns A dictionary whose keys are flattened similar to Unix-style file system naming.

Return type dict

Listing 7: Example

>>> List = [{'a':{'f':[1,2], 'g':[7,8]}, 'b':[-1,-2], 'info':[10,20]},
{'a':{'f':[3,4], 'g':[9,8]}, 'b':[-3,-4], 'step':[80,90]}]

>>> Length = 2
>>> list_of_dicts_to_flattened_dict_of_lists(List, Length)
{'/a/f':[[1,2],[3,4]],
'/a/g':[[7,8],[9,8]],

'b':[[-1,-2],[-3,-4]],
'/info':[[10,20],[none,none]],
'/step':[[none,none],[80,90]]}

Listing 8: Example

Intermediate result, before doing ``complete_dict_of_list``:
{'/a/f':[[1,2],[3,4]],
'/a/g':[[7,8],[9,8]],
'b':[[-1,-2],[-3,-4]],
'/info':[[10,20]],
'/step':[[none,none],[80,90]]}
Final result, after doing ``complete_dict_of_list`` ('/info' will become
→˓complete in length):
{'/a/f':[[1,2],[3,4]],
'/a/g':[[7,8],[9,8]],
'b':[[-1,-2],[-3,-4]],
'/info':[[10,20],[none,none]],
'/step':[[none,none],[80,90]]}

digideep.environment.data_helpers.nonify(element)
This function creates an output with all elements being None. The structure of the resulting element is exactly
the structure of the input element. The element cannot contain dicts. The only accepted types are tuple,
list, and np.ndarray. It can contain nested lists and tuples, however.

8.3. digideep.environment.data_helpers module 39

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

Digideep Documentation, Release 2019

Listing 9: Example

>>> Input = [(1,2,3), (1,2,4,5,[-1,-2])]
>>> nonify(Input)
[(none,none,none), (none,none,none,none,[none,none])]

digideep.environment.data_helpers.unflatten_dict(dic, sep=’/’)
Unflattens a flattened dictionary into a nested dictionary.

Listing 10: Example

>>> Dict = {"/a":1, "/b/c":1, "/b/d/e":2, "/b/d/f":3}
>>> unflatten_dict(Dict)
{"a":1, "b":{"c":1, "d":{"e":2, "f":3}}}

digideep.environment.data_helpers.update_dict_of_lists(dic, item, index=0)
This function updates a dictionary with a new item.

Listing 11: Example

>>> dic = {'a':[1,2,3], 'c':[[-1,-2],[-3,-4]]}
>>> item = {'a':4, 'b':[1,2,3]}
>>> index = 3
>>> update_dict_of_lists(dic, item, index)
{'a':[1,2,3,4],
'b':[[none,none,none],[none,none,none],[none,none,none],[1,2,3]],
'c':[[-1,-2],[-3,-4]]}

Note: c in the above example is not “complete” yet! The function complete_dict_of_list() will
complete the keys which need to be completed!

Caution: This function does not support nested dictionaries.

8.4 digideep.environment.explorer module

class digideep.environment.explorer.Explorer(session, agents=None, **params)
Bases: object

A class which runs environments in parallel and returns the result trajectories in a unified structure. It support
multi-agents in an environment.

Note: The entrypoint of this class is the update() function, in which the step() function will be called for
n_steps times. In the step() function, the prestep() function is called first to get the actions from the
agents. Then the env.step function is called to execute those actions in the environments. After the loop is
done in the update(), we do another prestep() to save the observations/actions of the last step.
This indicates the final action that the agent would take without actually executing that. This information will
be useful in some algorithms.

Parameters

40 Chapter 8. digideep.environment package

https://docs.python.org/3/library/functions.html#object

Digideep Documentation, Release 2019

• session (Session) – The running session object.

• agents (dict) – A dictionary of the agents and their corresponding agent objects.

• mode (str) – The mode of the Explorer, which is any of the three: train | test | eval

• env (env) – The parameters of the environment.

• do_reset (bool) – A flag indicating whether to reset the environment at the update start.

• final_action (bool) – A flag indicating whether in the final call of prestep() the
action should also be generated or not.

• num_workers (python:int) – Number of workers to work in parallel.

• deterministic (bool) – Whether to choose the optimial action or to mix some noise
with the action (i.e. for exploration).

• n_steps (python:int) – Number of steps to take in the update().

• render (bool) – A flag used to indicate whether environment should be rendered at each
step.

• render_delay (python:float) – The amount of seconds to wait after calling env.
render. Used when environment is too fast for visualization, typically in eval mode.

• seed (python:int) – The environment seed.

Variables

• steps (python:int) – Number of times the step() function is called.

• n_episode (python:int) – Number of episodes (a full round of simulation) generated
so far.

• timesteps (python:int) – Number of total timesteps of experience generated so far.

• was_reset (bool) – A flag indicating whether the Explorer has been just reset or not.

• observations – A tracker of environment observations used to produce the actions for
the next step.

• masks – A tracker of environment done flag indicating the start of a new episode.

• hidden_states – A tracker of hidden_states of the agents for producing the next step
action in recurrent policies.

Caution: Use do_reset with caution; only when you know what the consequences are. Generally there
are few oportunities when this flag needs to be true.

Tip: This class is partially serializable. It only saves the state of environment wrappers and not the environment
per se.

See also:

Understanding the data structure of trajectories

close()
It closes all environments.

load_state_dict(state_dict)

8.4. digideep.environment.explorer module 41

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Digideep Documentation, Release 2019

monitor_n_episode()

monitor_timesteps()

prestep(final_step=False)
Function to produce actions for all of the agents. This function does not execute the actions in the envi-
ronment.

Parameters final_step (bool) – A flag indicating whether this is the last call of this func-
tion.

Returns The pre-transition dictionary containing observations, masks, and agents informations.
The format is like: {"observations":..., "masks":..., "agents":...
}

Return type dict

report_rewards(infos)
This function will extract episode information from infos and will send them to Monitor class.

reset()
Will reset the Explorer and all of its states. Will set was_reset to True to prevent immediate resets.

state_dict()

step()
Function that runs the prestep and the actual env.step functions. It will also manipulate the transition
data to be in appropriate format.

Returns The full transition information, including the pre-transition (actions, last observations,
etc) and the results of executing actions on the environments, i.e. rewards and infos.
The format is like: {"observations":..., "masks":..., "rewards":..
., "infos":..., "agents":...}

Return type dict

See also:

Understanding the data structure of trajectories

update()
Runs step() for n_steps times.

Returns A dictionary of unix-stype file system keys including all information generated by the
simulation.

Return type dict

See also:

Understanding the data structure of trajectories

8.5 digideep.environment.make_environment module

This module is inspired by pytorch-a2c-ppo-acktr.

class digideep.environment.make_environment.MakeEnvironment(session, mode, seed,
**params)

Bases: object

This class will make the environment. It will apply the wrappers to the environments as well.

42 Chapter 8. digideep.environment package

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr/
https://docs.python.org/3/library/functions.html#object

Digideep Documentation, Release 2019

Tip: Except Monitor environment, no environment will be applied on the environment unless explicitly
specified.

create_envs(num_workers=1, force_no_monitor=False, extra_env_kwargs={})

get_config()
This function will generate a dict of interesting specifications of the environment.

Note: Observation and action can be nested spaces.Dict.

make_env(rank, force_no_monitor=False, extra_env_kwargs={})

registered = False

run_wrapper_stack(env, stack)
Apply a series of wrappers.

digideep.environment.make_environment.space2config(S)
Function to convert space’s characteristics into a config-space dict.

8.6 digideep.environment.play module

8.7 digideep.environment.wrappers module

8.8 Module contents

8.6. digideep.environment.play module 43

Digideep Documentation, Release 2019

44 Chapter 8. digideep.environment package

CHAPTER 9

digideep.memory package

9.1 Submodules

9.2 digideep.memory.generic module

9.3 digideep.memory.sampler module

9.4 Module contents

45

Digideep Documentation, Release 2019

46 Chapter 9. digideep.memory package

CHAPTER 10

digideep.agent package

10.1 Submodules

10.2 digideep.agent.base module

10.3 digideep.agent.ddpg module

10.4 digideep.agent.noises module

This module is dedicated to noise models used in other methods.

Each noise class should implement the __call__ method. See the examples EGreedyNoise and
OrnsteinUhlenbeckNoise.

class digideep.agent.noises.EGreedyNoise(**params)
Bases: object

This class implements simple e-greedy noise. The noise is sampled from uniform distribution.

Parameters

• std (python:float) – Standard deviation of the noise.

• e (python:float) – The probability of choosing a noisy action.

• lim (python:float) – Boundary of the noise (noise will be clipped beyond this value.)

Note: This class is not dependant on its history.

load_state_dict(state_dict)

reset()

47

https://docs.python.org/3/library/functions.html#object

Digideep Documentation, Release 2019

state_dict()

class digideep.agent.noises.OrnsteinUhlenbeckNoise(**params)
Bases: object

An implementation of the Ornstein-Uhlenbeck noise.

The noise model is 𝑑𝑥𝑡 = ℎ𝑒𝑡𝑎(𝜇− 𝑥𝑡) 𝑑𝑡+ 𝜎 𝑑𝑊𝑡.

Parameters

• mu – Parameter 𝜇 which indicates the final value that 𝑥 will converge to.

• theta – Parameter :math:‘ heta‘.

• sigma – Parameter 𝜎 which is the std of the additional normal noise.

• lim – The action limit, which can be a np.array for a vector of actions.

Note: This class is state serializable.

load_state_dict(state_dict)

reset(action)

state_dict()

10.5 digideep.agent.ppo module

10.6 Module contents

48 Chapter 10. digideep.agent package

https://docs.python.org/3/library/functions.html#object
https://en.wikipedia.org/wiki/Ornstein%E2%80%93Uhlenbeck_process

CHAPTER 11

digideep.policy package

11.1 Subpackages

11.1.1 digideep.policy.deterministic package

Submodules

digideep.policy.deterministic.policy module

Module contents

11.1.2 digideep.policy.stochastic package

Submodules

digideep.policy.stochastic.blocks module

digideep.policy.stochastic.common module

digideep.policy.stochastic.distributions module

digideep.policy.stochastic.policy module

49

Digideep Documentation, Release 2019

Module contents

11.2 Submodules

11.3 digideep.policy.base module

11.4 Module contents

50 Chapter 11. digideep.policy package

CHAPTER 12

digideep.utility package

12.1 Subpackages

12.1.1 digideep.utility.visdom_engine package

Submodules

digideep.utility.visdom_engine.Instance module

class digideep.utility.visdom_engine.Instance.VisdomInstance(port=8097,
log_to_filename=None,
replay=True)

Bases: object

This class is a singleton for getting an instance of Visdom client. It also replays all the logs at the loading time.

Session is responsible for initializing the log_file and replaying the old log.

Parameters

• port (python:int) – The port number of the running Visdom server.

• log_to_filename (str) – The log file for the Visdom server.

• replay (bool, False) – Whether to replay from existing Visdom log files in the path.
Use with care if the log file is very big.

static getVisdomInstance(**kwargs)
Static access method.

51

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Digideep Documentation, Release 2019

digideep.utility.visdom_engine.WebServer module

class digideep.utility.visdom_engine.WebServer.VisdomWebServer(port=8097, en-
able_login=False,
user-
name=’visdom’,
pass-
word=’visdom’,
cookie_secret=’visdom@d1c11598d2fb’)

Bases: object

This class runs a Visdom Server.

Parameters

• port (python:int) – Port for server to run on.

• enable_login (bool) – Whether to activate login screen for the server.

• username (str) – The username for login.

• password (str) – The password for login. A hashed version of the password will be
stored in the Visdom settings.

• cookie_secret (str) – A unique string to be used as a cookie for the server.

run()
Method that runs forever

digideep.utility.visdom_engine.Wrapper module

This module is highly inspired by: https://github.com/pytorch/tnt

BSD 3-Clause License

Copyright (c) 2017- Sergey Zagoruyko, Copyright (c) 2017- Sasank Chilamkurthy, All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

52 Chapter 12. digideep.utility package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/pytorch/tnt

Digideep Documentation, Release 2019

class digideep.utility.visdom_engine.Wrapper.VisdomWrapper(command, win,
**kwargs)

Bases: object

This class does not need to be serializable.

Parameters

• command – The visdom command.

• win – The window name.

• kwargs – The dictionary of keyword arguments. May include opts and env.

Note: If you want to be consistent between different runs, you must assign ‘win’ as input.

Example

>>> v = VisdomWrapper('line', win='TestLoss', opts={'title':'TestLoss'}, X=np.
→˓array([1]), Y=np.array([4]))

get_env()

get_win()

run(**kwargs)

class digideep.utility.visdom_engine.Wrapper.VisdomWrapperPlot(plot_type, win,
**kwargs)

Bases: digideep.utility.visdom_engine.Wrapper.VisdomWrapper

In the append function, user should provide X=np.array(...), Y=np.array(...)

append(**kwargs)

Module contents

12.2 Submodules

12.3 digideep.utility.filter module

class digideep.utility.filter.MovingAverage(size=1, window_size=10)
Bases: object

An implementation of moving average. It has an internal queue of the values.

Parameters

• size (python:int) – The length of the value vector.

• window_size (python:int) – The window size for calculation of the moving average.

append(item)

data

max

mean

12.2. Submodules 53

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Digideep Documentation, Release 2019

median

min

std

12.4 digideep.utility.logging module

class digideep.utility.logging.Logger
Bases: object

This is a helper class which is intended to simplify logging in a single file from different modules in a package.
The Logger class uses a singleton1 pattern.

It also provides multi-level logging each in a specific style. The levels are DEBUG, INFO, WARN, ERROR,
FATAL.

Listing 1: Example

logger.set_log_level(2)
logger.info('This is a test of type INFO.') # Will not be shown
logger.warn('This is a test of type WARN.') # Will be shown
logger.fatal('This is a test of type FATAL.') # Will be shown

logger.set_log_level(3)
logger.info('This is a test of type INFO.') # Will not be shown
logger.warn('This is a test of type WARN.') # Will not be shown
logger.fatal('This is a test of type FATAL.') # Will be shown

logger.set_logfile('path_to_the_log_file')
... All logs will be stored in the specified file from now on.
They will be shown on the output as well.

debug(*args, sep=’ ’, end=’\n’, flush=False)

error(*args, sep=’ ’, end=’\n’, flush=False)

fatal(*args, sep=’ ’, end=’\n’, flush=False)

static getInstance()
Static access method.

info(*args, sep=’ ’, end=’\n’, flush=False)

set_log_level(log_level)

set_logfile(filename)

warn(*args, sep=’ ’, end=’\n’, flush=False)

12.5 digideep.utility.monitoring module

class digideep.utility.monitoring.Monitor
Bases: object

A very simple and lightweight implementation for a global monitoring tool. This class keeps track of a variable’s
mean, standard deviation, minimum, maximum, and sum in a recursive manner.

1 https://gist.github.com/pazdera/1098129

54 Chapter 12. digideep.utility package

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://gist.github.com/pazdera/1098129

Digideep Documentation, Release 2019

>>> monitor.reset()
>>> for i in range(1000):
... monitor('loop index', i)
...
>>> print(monitor)
>> loop index [1000x] = 499.5 (+-577.639 %95) in range{0 < 999}

Todo: Provide batched monitoring of variables.

Note: This class does not implement moving average. For a moving average implementation refer to
MovingAverage.

discard_key(key)

dump()

get_meta_key(key)

pack_data()

pack_keys(keys)

reset()

set_meta_key(key, value)

set_output_file(path)

class digideep.utility.monitoring.WindowValue(value, window)
Bases: object

append(value)

get_max()

get_min()

get_num()

get_std()

get_sum()

get_win()

12.6 digideep.utility.plotting module

class digideep.utility.plotting.Plotter(**params)
Bases: object

append(y, x=None)

12.7 digideep.utility.profiling module

class digideep.utility.profiling.KeepTime(name)
Bases: object

12.6. digideep.utility.plotting module 55

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Digideep Documentation, Release 2019

add_name()

get_current_level()

get_full_path()

get_level()

pop_name()

set_level()

class digideep.utility.profiling.Profiler
Bases: object

This class provides a very simple yet light implementation of function profiling. It is very easy to use:

>>> profiler.reset()
>>> profiler.start("loop")
>>> for i in range(100000):
... print(i)
...
>>> profiler.lapse("loop")
>>> print(profiler)
>> loop [1x, 27.1s]

Alternatively, you may use profiler with KeepTime:

>>> with KeepTime("loop2"):
... for i in range(100000):
... print(i)
...
>>> print(profiler)
>> loop2 [1x, 0.0s]

Note: The number of callings to start() and lapse() should be the same.

dump(meta={})

get_keys()

get_occurence(name)

get_time_average(name)

get_time_overall(name)

lapse(name)

reset()

set_output_file(path)

start(name)

56 Chapter 12. digideep.utility package

https://docs.python.org/3/library/functions.html#object

Digideep Documentation, Release 2019

12.8 digideep.utility.stats module

12.9 digideep.utility.timer module

class digideep.utility.timer.Timer(task, interval=1.0)
Bases: threading.Thread

Thread that executes a task every N seconds

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

setInterval(interval)
Set the number of seconds we sleep between executing our task

shutdown()
Stop this thread

task_exec()
The task done by this thread - override in subclasses

12.10 digideep.utility.toolbox module

digideep.utility.toolbox.count_parameters(model)
Counts the number of parameters in a PyTorch model.

digideep.utility.toolbox.dump_dict_as_json(filename, dic, sort_keys=False)
This function dumps a python dictionary in json format to a file.

Parameters

• filename (path) – The address to the file.

• dic (dict) – The dictionary to be dumped in json format. It should be json-serializable.

• sort_keys (bool, False) – Will sort the dictionary by its keys before dumping to the
file.

digideep.utility.toolbox.dump_dict_as_yaml(filename, dic)

digideep.utility.toolbox.get_class(addr)
Return a instance of a class by using only its name.

Parameters addr (str) – The name of the class/function which should be in the format
MODULENAME[.SUBMODULE1[.SUBMODULE2[...]]].CLASSNAME

digideep.utility.toolbox.get_module(addr)
Return a instance of a module by using only its name.

Parameters addr (str) – The name of the module which should be in the format
MODULENAME[.SUBMODULE1[.SUBMODULE2[...]]]

digideep.utility.toolbox.get_rng_state()

digideep.utility.toolbox.load_json_as_dict(filename)

12.8. digideep.utility.stats module 57

https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Digideep Documentation, Release 2019

digideep.utility.toolbox.load_yaml_as_dict(filename)

digideep.utility.toolbox.seed_all(seed, cuda_deterministic=False)

digideep.utility.toolbox.set_rng_state(states)

digideep.utility.toolbox.strict_update(dict_target, dict_source)

12.11 Module contents

58 Chapter 12. digideep.utility package

CHAPTER 13

Indices and tables

• genindex

• modindex

59

Digideep Documentation, Release 2019

60 Chapter 13. Indices and tables

Python Module Index

d
digideep.agent, 48
digideep.agent.ddpg, 47
digideep.agent.noises, 47
digideep.agent.ppo, 48
digideep.environment, 43
digideep.environment.common, 36
digideep.environment.common.atari_wrappers,

33
digideep.environment.common.monitor, 34
digideep.environment.common.running_mean_std,

35
digideep.environment.common.tile_images,

36
digideep.environment.common.vec_env, 31
digideep.environment.common.vec_env.dummy_vec_env,

25
digideep.environment.common.vec_env.shmem_vec_env,

26
digideep.environment.common.vec_env.subproc_vec_env,

27
digideep.environment.common.vec_env.util,

28
digideep.environment.common.vec_env.vec_monitor,

29
digideep.environment.common.vec_env.vec_video_recorder,

30
digideep.environment.data_helpers, 36
digideep.environment.explorer, 40
digideep.environment.make_environment,

42
digideep.environment.wrappers, 43
digideep.main, 1
digideep.memory, 45
digideep.params, 24
digideep.params.atari_ppo, 23
digideep.params.classic_ddpg, 23
digideep.params.mujoco_ppo, 23
digideep.pipeline, 21

digideep.pipeline.runner, 17
digideep.pipeline.session, 19
digideep.utility, 58
digideep.utility.filter, 53
digideep.utility.logging, 54
digideep.utility.monitoring, 54
digideep.utility.plotting, 55
digideep.utility.profiling, 55
digideep.utility.stats, 57
digideep.utility.timer, 57
digideep.utility.toolbox, 57
digideep.utility.visdom_engine, 53
digideep.utility.visdom_engine.Instance,

51
digideep.utility.visdom_engine.WebServer,

52
digideep.utility.visdom_engine.Wrapper,

52

61

Digideep Documentation, Release 2019

62 Python Module Index

Index

A
add_name() (digideep.utility.profiling.KeepTime

method), 55
AlreadySteppingError, 31
append() (digideep.utility.filter.MovingAverage

method), 53
append() (digideep.utility.monitoring.WindowValue

method), 55
append() (digideep.utility.plotting.Plotter method), 55
append() (digideep.utility.visdom_engine.Wrapper.VisdomWrapperPlot

method), 53

C
check_checkpoint() (in module

digideep.pipeline.session), 21
check_if_done() (digideep.pipeline.session.Session

method), 20
check_session() (in module

digideep.pipeline.session), 21
check_singleton_instance()

(digideep.pipeline.session.Session method), 20
ClipRewardEnv (class in

digideep.environment.common.atari_wrappers),
33

close() (digideep.environment.common.monitor.Monitor
method), 34

close() (digideep.environment.common.vec_env.vec_video_recorder.VecVideoRecorder
method), 30

close() (digideep.environment.common.vec_env.VecEnv
method), 31

close() (digideep.environment.common.vec_env.VecEnvWrapper
method), 32

close() (digideep.environment.explorer.Explorer
method), 41

close_extras() (digideep.environment.common.vec_env.shmem_vec_env.ShmemVecEnv
method), 27

close_extras() (digideep.environment.common.vec_env.subproc_vec_env.SubprocVecEnv
method), 28

close_extras() (digideep.environment.common.vec_env.VecEnv

method), 31
close_video_recorder()

(digideep.environment.common.vec_env.vec_video_recorder.VecVideoRecorder
method), 30

closed (digideep.environment.common.vec_env.VecEnv
attribute), 31

CloudpickleWrapper (class in
digideep.environment.common.vec_env),
31

complete_dict_of_list() (in module
digideep.environment.data_helpers), 37

convert_time_to_batch_major() (in module
digideep.environment.data_helpers), 37

copy_obs_dict() (in module
digideep.environment.common.vec_env.util),
29

count_parameters() (in module
digideep.utility.toolbox), 57

create_envs() (digideep.environment.make_environment.MakeEnvironment
method), 43

createSaaM() (digideep.pipeline.session.Session
method), 20

custom() (digideep.pipeline.runner.Runner method),
17

D
data (digideep.utility.filter.MovingAverage attribute), 53
debug() (digideep.utility.logging.Logger method), 54
dict_of_lists_to_list_of_dicts() (in mod-

ule digideep.environment.data_helpers), 37
dict_to_obs() (in module

digideep.environment.common.vec_env.util),
29

digideep.agent (module), 48
digideep.agent.ddpg (module), 47
digideep.agent.noises (module), 47
digideep.agent.ppo (module), 48
digideep.environment (module), 43
digideep.environment.common (module), 36

63

Digideep Documentation, Release 2019

digideep.environment.common.atari_wrappers
(module), 33

digideep.environment.common.monitor
(module), 34

digideep.environment.common.running_mean_std
(module), 35

digideep.environment.common.tile_images
(module), 36

digideep.environment.common.vec_env
(module), 31

digideep.environment.common.vec_env.dummy_vec_env
(module), 25

digideep.environment.common.vec_env.shmem_vec_env
(module), 26

digideep.environment.common.vec_env.subproc_vec_env
(module), 27

digideep.environment.common.vec_env.util
(module), 28

digideep.environment.common.vec_env.vec_monitor
(module), 29

digideep.environment.common.vec_env.vec_video_recorder
(module), 30

digideep.environment.data_helpers (mod-
ule), 36

digideep.environment.explorer (module), 40
digideep.environment.make_environment

(module), 42
digideep.environment.wrappers (module), 43
digideep.main (module), 1
digideep.memory (module), 45
digideep.params (module), 24
digideep.params.atari_ppo (module), 23
digideep.params.classic_ddpg (module), 23
digideep.params.mujoco_ppo (module), 23
digideep.pipeline (module), 21
digideep.pipeline.runner (module), 17
digideep.pipeline.session (module), 19
digideep.utility (module), 58
digideep.utility.filter (module), 53
digideep.utility.logging (module), 54
digideep.utility.monitoring (module), 54
digideep.utility.plotting (module), 55
digideep.utility.profiling (module), 55
digideep.utility.stats (module), 57
digideep.utility.timer (module), 57
digideep.utility.toolbox (module), 57
digideep.utility.visdom_engine (module),

53
digideep.utility.visdom_engine.Instance

(module), 51
digideep.utility.visdom_engine.WebServer

(module), 52
digideep.utility.visdom_engine.Wrapper

(module), 52

discard_key() (digideep.utility.monitoring.Monitor
method), 55

DummyVecEnv (class in
digideep.environment.common.vec_env.dummy_vec_env),
25

dump() (digideep.utility.monitoring.Monitor method),
55

dump() (digideep.utility.profiling.Profiler method), 56
dump_cpanel() (digideep.pipeline.session.Session

method), 20
dump_dict_as_json() (in module

digideep.utility.toolbox), 57
dump_dict_as_yaml() (in module

digideep.utility.toolbox), 57
dump_params() (digideep.pipeline.session.Session

method), 20
dump_repeal() (digideep.pipeline.session.Session

method), 20

E
EGreedyNoise (class in digideep.agent.noises), 47
enjoy() (digideep.pipeline.runner.Runner method), 17
entrypoint() (in module digideep.main), 1
EpisodicLifeEnv (class in

digideep.environment.common.atari_wrappers),
33

error() (digideep.utility.logging.Logger method), 54
Explorer (class in digideep.environment.explorer), 40
EXT (digideep.environment.common.monitor.Monitor at-

tribute), 34
extract_keywise() (in module

digideep.environment.data_helpers), 38

F
f (digideep.environment.common.monitor.Monitor

attribute), 34
fatal() (digideep.utility.logging.Logger method), 54
finalize() (digideep.pipeline.runner.Runner

method), 18
finalize() (digideep.pipeline.session.Session

method), 20
FireResetEnv (class in

digideep.environment.common.atari_wrappers),
33

flatten_dict() (in module
digideep.environment.data_helpers), 38

flattened_dict_of_lists_to_dict_of_numpy()
(in module digideep.environment.data_helpers),
38

FrameStack (class in
digideep.environment.common.atari_wrappers),
33

64 Index

Digideep Documentation, Release 2019

G
gen_params() (in module

digideep.params.atari_ppo), 23
gen_params() (in module

digideep.params.classic_ddpg), 23
gen_params() (in module

digideep.params.mujoco_ppo), 23
get_class() (in module digideep.utility.toolbox), 57
get_config() (digideep.environment.make_environment.MakeEnvironment

method), 43
get_current_level()

(digideep.utility.profiling.KeepTime method),
56

get_device() (digideep.pipeline.session.Session
method), 20

get_env() (digideep.utility.visdom_engine.Wrapper.VisdomWrapper
method), 53

get_episode_lengths()
(digideep.environment.common.monitor.Monitor
method), 35

get_episode_rewards()
(digideep.environment.common.monitor.Monitor
method), 35

get_episode_times()
(digideep.environment.common.monitor.Monitor
method), 35

get_full_path() (digideep.utility.profiling.KeepTime
method), 56

get_images() (digideep.environment.common.vec_env.dummy_vec_env.DummyVecEnv
method), 26

get_images() (digideep.environment.common.vec_env.shmem_vec_env.ShmemVecEnv
method), 27

get_images() (digideep.environment.common.vec_env.subproc_vec_env.SubprocVecEnv
method), 28

get_images() (digideep.environment.common.vec_env.VecEnv
method), 31

get_images() (digideep.environment.common.vec_env.VecEnvWrapper
method), 32

get_keys() (digideep.utility.profiling.Profiler
method), 56

get_level() (digideep.utility.profiling.KeepTime
method), 56

get_max() (digideep.utility.monitoring.WindowValue
method), 55

get_meta_key() (digideep.utility.monitoring.Monitor
method), 55

get_min() (digideep.utility.monitoring.WindowValue
method), 55

get_module() (in module digideep.utility.toolbox), 57
get_monitor_files() (in module

digideep.environment.common.monitor),
35

get_num() (digideep.utility.monitoring.WindowValue
method), 55

get_occurence() (digideep.utility.profiling.Profiler
method), 56

get_rng_state() (digideep.environment.common.vec_env.dummy_vec_env.DummyVecEnv
method), 26

get_rng_state() (digideep.environment.common.vec_env.subproc_vec_env.SubprocVecEnv
method), 28

get_rng_state() (in module
digideep.utility.toolbox), 57

get_std() (digideep.utility.monitoring.WindowValue
method), 55

get_sum() (digideep.utility.monitoring.WindowValue
method), 55

get_time_average()
(digideep.utility.profiling.Profiler method),
56

get_time_overall()
(digideep.utility.profiling.Profiler method),
56

get_total_steps()
(digideep.environment.common.monitor.Monitor
method), 35

get_viewer() (digideep.environment.common.vec_env.VecEnv
method), 31

get_win() (digideep.utility.monitoring.WindowValue
method), 55

get_win() (digideep.utility.visdom_engine.Wrapper.VisdomWrapper
method), 53

getInstance() (digideep.utility.logging.Logger
static method), 54

getVisdomInstance()
(digideep.utility.visdom_engine.Instance.VisdomInstance
static method), 51

I
info() (digideep.utility.logging.Logger method), 54
initLogger() (digideep.pipeline.session.Session

method), 20
initProlog() (digideep.pipeline.session.Session

method), 20
initTensorboard()

(digideep.pipeline.session.Session method), 20
initVarlog() (digideep.pipeline.session.Session

method), 20
instantiate() (digideep.pipeline.runner.Runner

method), 18

J
join_keys() (in module

digideep.environment.data_helpers), 38

K
KeepTime (class in digideep.utility.profiling), 55

Index 65

Digideep Documentation, Release 2019

L
lapse() (digideep.utility.profiling.Profiler method), 56
lazy_connect_signal()

(digideep.pipeline.runner.Runner method),
18

lazy_init() (digideep.pipeline.runner.Runner
method), 18

LazyFrames (class in
digideep.environment.common.atari_wrappers),
33

list_of_dicts_to_flattened_dict_of_lists()
(in module digideep.environment.data_helpers),
39

load() (digideep.pipeline.runner.Runner method), 18
load_json_as_dict() (in module

digideep.utility.toolbox), 57
load_memory() (digideep.pipeline.runner.Runner

method), 18
load_results() (in module

digideep.environment.common.monitor),
35

load_runner() (digideep.pipeline.session.Session
method), 20

load_state_dict()
(digideep.agent.noises.EGreedyNoise method),
47

load_state_dict()
(digideep.agent.noises.OrnsteinUhlenbeckNoise
method), 48

load_state_dict()
(digideep.environment.common.running_mean_std.RunningMeanStd
method), 35

load_state_dict()
(digideep.environment.common.vec_env.dummy_vec_env.DummyVecEnv
method), 26

load_state_dict()
(digideep.environment.common.vec_env.subproc_vec_env.SubprocVecEnv
method), 28

load_state_dict()
(digideep.environment.explorer.Explorer
method), 41

load_state_dict()
(digideep.pipeline.runner.Runner method),
18

load_states() (digideep.pipeline.session.Session
method), 20

load_yaml_as_dict() (in module
digideep.utility.toolbox), 57

log() (digideep.pipeline.runner.Runner method), 18
Logger (class in digideep.utility.logging), 54

M
main() (in module digideep.main), 1

make_atari() (in module
digideep.environment.common.atari_wrappers),
34

make_env() (digideep.environment.make_environment.MakeEnvironment
method), 43

MakeEnvironment (class in
digideep.environment.make_environment),
42

mark_as_done() (digideep.pipeline.session.Session
method), 20

max (digideep.utility.filter.MovingAverage attribute), 53
MaxAndSkipEnv (class in

digideep.environment.common.atari_wrappers),
33

mean (digideep.utility.filter.MovingAverage attribute), 53
median (digideep.utility.filter.MovingAverage attribute),

54
metadata (digideep.environment.common.vec_env.VecEnv

attribute), 31
min (digideep.utility.filter.MovingAverage attribute), 54
Monitor (class in digideep.environment.common.monitor),

34
Monitor (class in digideep.utility.monitoring), 54
monitor_epoch() (digideep.pipeline.runner.Runner

method), 18
monitor_n_episode()

(digideep.environment.explorer.Explorer
method), 41

monitor_timesteps()
(digideep.environment.explorer.Explorer
method), 42

MovingAverage (class in digideep.utility.filter), 53

N
nonify() (in module

digideep.environment.data_helpers), 39
NoopResetEnv (class in

digideep.environment.common.atari_wrappers),
34

NotSteppingError, 31

O
obs_space_info() (in module

digideep.environment.common.vec_env.util),
29

obs_to_dict() (in module
digideep.environment.common.vec_env.util),
29

observation() (digideep.environment.common.atari_wrappers.ScaledFloatFrame
method), 34

observation() (digideep.environment.common.atari_wrappers.WarpFrame
method), 34

on_sigint_received()
(digideep.pipeline.runner.Runner method),

66 Index

Digideep Documentation, Release 2019

18
on_sigusr1_received()

(digideep.pipeline.runner.Runner method),
18

OrnsteinUhlenbeckNoise (class in
digideep.agent.noises), 48

override() (digideep.pipeline.runner.Runner
method), 18

P
pack_data() (digideep.utility.monitoring.Monitor

method), 55
pack_keys() (digideep.utility.monitoring.Monitor

method), 55
parse_arguments()

(digideep.pipeline.session.Session method), 20
Plotter (class in digideep.utility.plotting), 55
pop_name() (digideep.utility.profiling.KeepTime

method), 56
prestep() (digideep.environment.explorer.Explorer

method), 42
print_verbose() (in module

digideep.pipeline.session), 21
Profiler (class in digideep.utility.profiling), 56

R
registered (digideep.environment.make_environment.MakeEnvironment

attribute), 43
render() (digideep.environment.common.vec_env.dummy_vec_env.DummyVecEnv

method), 26
render() (digideep.environment.common.vec_env.VecEnv

method), 31
render() (digideep.environment.common.vec_env.VecEnvWrapper

method), 32
report_rewards() (digideep.environment.explorer.Explorer

method), 42
reset() (digideep.agent.noises.EGreedyNoise

method), 47
reset() (digideep.agent.noises.OrnsteinUhlenbeckNoise

method), 48
reset() (digideep.environment.common.atari_wrappers.EpisodicLifeEnv

method), 33
reset() (digideep.environment.common.atari_wrappers.FireResetEnv

method), 33
reset() (digideep.environment.common.atari_wrappers.FrameStack

method), 33
reset() (digideep.environment.common.atari_wrappers.MaxAndSkipEnv

method), 33
reset() (digideep.environment.common.atari_wrappers.NoopResetEnv

method), 34
reset() (digideep.environment.common.monitor.Monitor

method), 35
reset() (digideep.environment.common.vec_env.dummy_vec_env.DummyVecEnv

method), 26

reset() (digideep.environment.common.vec_env.shmem_vec_env.ShmemVecEnv
method), 27

reset() (digideep.environment.common.vec_env.subproc_vec_env.SubprocVecEnv
method), 28

reset() (digideep.environment.common.vec_env.vec_monitor.VecMonitor
method), 29

reset() (digideep.environment.common.vec_env.vec_video_recorder.VecVideoRecorder
method), 30

reset() (digideep.environment.common.vec_env.VecEnv
method), 31

reset() (digideep.environment.common.vec_env.VecEnvWrapper
method), 32

reset() (digideep.environment.explorer.Explorer
method), 42

reset() (digideep.utility.monitoring.Monitor method),
55

reset() (digideep.utility.profiling.Profiler method), 56
reset_state() (digideep.environment.common.monitor.Monitor

method), 35
reward() (digideep.environment.common.atari_wrappers.ClipRewardEnv

method), 33
run() (digideep.utility.timer.Timer method), 57
run() (digideep.utility.visdom_engine.WebServer.VisdomWebServer

method), 52
run() (digideep.utility.visdom_engine.Wrapper.VisdomWrapper

method), 53
run_wrapper_stack()

(digideep.environment.make_environment.MakeEnvironment
method), 43

runMonitor() (digideep.pipeline.session.Session
method), 20

Runner (class in digideep.pipeline.runner), 17
RunningMeanStd (class in

digideep.environment.common.running_mean_std),
35

S
save() (digideep.pipeline.runner.Runner method), 18
save_final_checkpoint()

(digideep.pipeline.runner.Runner method),
18

save_runner() (digideep.pipeline.session.Session
method), 20

save_states() (digideep.pipeline.session.Session
method), 20

ScaledFloatFrame (class in
digideep.environment.common.atari_wrappers),
34

seed_all() (in module digideep.utility.toolbox), 58
Session (class in digideep.pipeline.session), 19
set_device() (digideep.pipeline.session.Session

method), 20
set_level() (digideep.utility.profiling.KeepTime

method), 56

Index 67

Digideep Documentation, Release 2019

set_log_level() (digideep.utility.logging.Logger
method), 54

set_logfile() (digideep.utility.logging.Logger
method), 54

set_meta_key() (digideep.utility.monitoring.Monitor
method), 55

set_output_file()
(digideep.utility.monitoring.Monitor method),
55

set_output_file()
(digideep.utility.profiling.Profiler method),
56

set_rng_state() (digideep.environment.common.vec_env.dummy_vec_env.DummyVecEnv
method), 26

set_rng_state() (digideep.environment.common.vec_env.subproc_vec_env.SubprocVecEnv
method), 28

set_rng_state() (in module
digideep.utility.toolbox), 58

setInterval() (digideep.utility.timer.Timer method),
57

ShmemVecEnv (class in
digideep.environment.common.vec_env.shmem_vec_env),
27

shutdown() (digideep.utility.timer.Timer method), 57
space2config() (in module

digideep.environment.make_environment),
43

start() (digideep.pipeline.runner.Runner method), 18
start() (digideep.utility.profiling.Profiler method), 56
start_video_recorder()

(digideep.environment.common.vec_env.vec_video_recorder.VecVideoRecorder
method), 30

state_dict() (digideep.agent.noises.EGreedyNoise
method), 47

state_dict() (digideep.agent.noises.OrnsteinUhlenbeckNoise
method), 48

state_dict() (digideep.environment.common.running_mean_std.RunningMeanStd
method), 35

state_dict() (digideep.environment.common.vec_env.dummy_vec_env.DummyVecEnv
method), 26

state_dict() (digideep.environment.common.vec_env.subproc_vec_env.SubprocVecEnv
method), 28

state_dict() (digideep.environment.explorer.Explorer
method), 42

state_dict() (digideep.pipeline.runner.Runner
method), 19

std (digideep.utility.filter.MovingAverage attribute), 54
step() (digideep.environment.common.atari_wrappers.EpisodicLifeEnv

method), 33
step() (digideep.environment.common.atari_wrappers.FireResetEnv

method), 33
step() (digideep.environment.common.atari_wrappers.FrameStack

method), 33
step() (digideep.environment.common.atari_wrappers.MaxAndSkipEnv

method), 34
step() (digideep.environment.common.atari_wrappers.NoopResetEnv

method), 34
step() (digideep.environment.common.monitor.Monitor

method), 35
step() (digideep.environment.common.vec_env.VecEnv

method), 32
step() (digideep.environment.explorer.Explorer

method), 42
step_async() (digideep.environment.common.vec_env.dummy_vec_env.DummyVecEnv

method), 26
step_async() (digideep.environment.common.vec_env.shmem_vec_env.ShmemVecEnv

method), 27
step_async() (digideep.environment.common.vec_env.subproc_vec_env.SubprocVecEnv

method), 28
step_async() (digideep.environment.common.vec_env.VecEnv

method), 32
step_async() (digideep.environment.common.vec_env.VecEnvWrapper

method), 32
step_wait() (digideep.environment.common.vec_env.dummy_vec_env.DummyVecEnv

method), 26
step_wait() (digideep.environment.common.vec_env.shmem_vec_env.ShmemVecEnv

method), 27
step_wait() (digideep.environment.common.vec_env.subproc_vec_env.SubprocVecEnv

method), 28
step_wait() (digideep.environment.common.vec_env.vec_monitor.VecMonitor

method), 29
step_wait() (digideep.environment.common.vec_env.vec_video_recorder.VecVideoRecorder

method), 30
step_wait() (digideep.environment.common.vec_env.VecEnv

method), 32
step_wait() (digideep.environment.common.vec_env.VecEnvWrapper

method), 32
strict_update() (in module

digideep.utility.toolbox), 58
SubprocVecEnv (class in

digideep.environment.common.vec_env.subproc_vec_env),
27

T
task_exec() (digideep.utility.timer.Timer method), 57
termination_check()

(digideep.pipeline.runner.Runner method),
19

test() (digideep.pipeline.runner.Runner method), 19
test_runningmeanstd() (in module

digideep.environment.common.running_mean_std),
35

tile_images() (in module
digideep.environment.common.tile_images), 36

Timer (class in digideep.utility.timer), 57
train() (digideep.pipeline.runner.Runner method), 19
train_cycle() (digideep.pipeline.runner.Runner

method), 19

68 Index

Digideep Documentation, Release 2019

U
unflatten_dict() (in module

digideep.environment.data_helpers), 40
unwrapped (digideep.environment.common.vec_env.VecEnv

attribute), 32
update() (digideep.environment.common.monitor.Monitor

method), 35
update() (digideep.environment.common.running_mean_std.RunningMeanStd

method), 35
update() (digideep.environment.explorer.Explorer

method), 42
update_dict_of_lists() (in module

digideep.environment.data_helpers), 40
update_from_moments()

(digideep.environment.common.running_mean_std.RunningMeanStd
method), 35

update_mean_var_count_from_moments() (in
module digideep.environment.common.running_mean_std),
35

update_params() (digideep.pipeline.session.Session
method), 20

V
VecEnv (class in digideep.environment.common.vec_env),

31
VecEnvWrapper (class in

digideep.environment.common.vec_env),
32

VecMonitor (class in
digideep.environment.common.vec_env.vec_monitor),
29

VecVideoRecorder (class in
digideep.environment.common.vec_env.vec_video_recorder),
30

viewer (digideep.environment.common.vec_env.VecEnv
attribute), 32

VisdomInstance (class in
digideep.utility.visdom_engine.Instance),
51

VisdomWebServer (class in
digideep.utility.visdom_engine.WebServer),
52

VisdomWrapper (class in
digideep.utility.visdom_engine.Wrapper),
52

VisdomWrapperPlot (class in
digideep.utility.visdom_engine.Wrapper),
53

W
warn() (digideep.utility.logging.Logger method), 54
WarpFrame (class in

digideep.environment.common.atari_wrappers),
34

WindowValue (class in digideep.utility.monitoring), 55
worker() (in module

digideep.environment.common.vec_env.subproc_vec_env),
28

wrap_deepmind() (in module
digideep.environment.common.atari_wrappers),
34

Index 69

	Installation
	Usage
	Developer Guide: Big Picture
	Developer Guide: In-Depth Information
	Developer Guide: Implementation Guideline
	digideep.pipeline package
	digideep.params package
	digideep.environment package
	digideep.memory package
	digideep.agent package
	digideep.policy package
	digideep.utility package
	Indices and tables
	Python Module Index
	Index

