

Diffcalc User and Developer Guide

	Author

	Rob Walton

	Contact

	rob.walton (at) diamond.ac.uk

	Web site

	https://github.com/DiamondLightSource/diffcalc

Diffcalc: A Diffraction Condition Calculator for Diffractometer Control

See also the quickstart guide at github [https://github.com/DiamondLightSource/diffcalc/blob/master/README.rst].

	Diffcalc User Guide (You Engine)
	Introduction

	Overview

	Getting Help

	Diffcalc’s Scannables

	Crystal orientation

	Motion

	Scanning in hkl space

	Commands

	References

	Diffcalc User Guide (Deprecated Vlieg Engine)
	1. Introduction

	2. Overview

	3. Getting Help

	4. Diffcalc’s Scannables

	5. Crystal orientation

	6. Moving in hkl space

	7. Scanning in hkl space

	Indices and tables

	Diffcalc Developer Guide
	1. Introduction

	2. Project Files & Directories

	3. Quick-Start: Python API

	4. Development

	Indices and tables

	Acknowledgements

Indices and tables

	Index

	Module Index

	Search Page

Diffcalc User Guide (You Engine)

Diffcalc: A diffraction condition calculator for diffractometer control

	Author

	Rob Walton

	Contact

	rob.walton (at) diamond (dot) ac (dot) uk

	Website

	https://github.com/DiamondLightSource/diffcalc

See also the quickstart guide at github [https://github.com/DiamondLightSource/diffcalc/blob/master/README.rst]

Introduction

This manual assumes that you are running Diffcalc within OpenGDA or have started
it using IPython. It assumes that Diffcalc has been configured for the six
circle diffractometer pictured here:

[image: _images/4s_2d_diffractometer.png]
4s + 2d six-circle diffractometer, from H.You (1999)

Your Diffcalc configuration may have been customised for the geometry of your
diffractometer and possibly the types of experiment you perform. For example, a
five-circle diffractometer might be missing the nu circle above.

The laboratory frame is shown above. With all settings at zero as shown the
crystal cartesian frame aligns with the laboratory frame. Therefore a cubic
crystal mounted squarely in a way that the U matrix (defined below) is unitary
will have h||a||x, k||b||y & l||c||z, crystal and reciprocal-lattice coordinate
frames are defined with respect to the beam and to gravity to be (for a cubic
crystal):

Overview

The following assumes that the diffractometer has been properly levelled, aligned
with the beam and zeroed. See the SPEC fourc manual [http://www.certif.com/spec_manual/fourc_4_2.html].

Before moving in hkl space you must calculate a UB matrix by specifying the
crystal’s lattice parameters (which define the B matrix) and finding two
reflections (from which the U matrix defining any mismount can be inferred);
and, optionally for surface-diffraction experiments, determine how the surface
of the crystal is oriented with respect to the phi axis.

Once a UB matrix has been calculated, the diffractometer may be driven in hkl
coordinates. A valid diffractometer setting maps easily into a single hkl value.
However for a diffractometer with more than three circles there are excess
degrees of freedom when calculating a diffractometer setting from an hkl value.
Diffcalc provides modes for using up the excess degrees of freedom.

Diffcalc does not perform scans directly. Instead, Scannables that use diffcalc
to map between reciprocal lattice space and real diffractometer settings are
scanned using the Gda’s (or minigda’s) generic scan mechanism.

Theory

Thanks to Elias Vlieg for sharing his DOS based DIF software that Diffcalc
has borrowed heavily from. The version of Diffcalc described here is based on papers by
pHH. You. [You1999] and Busing & Levy [Busing1967]. (See also the THANKS.txt file.)

Getting Help

There are few commands to remember. If a command is called without
arguments in some cases Diffcalc will prompt for arguments and provide sensible
defaults which can be chosen by pressing enter.

Orientation. The helpub command lists all commands related with crystal
orientation and the reference vector (often used with surfaces). See the
Orientation Commands section at the end of this manual:

>>> help ub
...

HKL movement. The help hkl list all commands related to moving in reciprocal-lattice
space. See the Motion Commands section at the end of this manual:

>>> help hkl
...

Call help on any command. e.g.:

>>> help loadub
loadub (diffcalc command):
loadub 'name' | num -- load an existing ub calculation

Diffcalc’s Scannables

To list and show the current positions of your beamline’s scannables
use pos with no arguments:

>>> pos

Results in:

Energy and wavelength scannables:

energy 12.3984
wl: 1.0000

Diffractometer scannables, as a group and in component axes (in
the real GDA these have limits):

sixc: mu: 0.0000 delta: 0.0000 gamma: 0.0000 omega: 0.0000 chi: 0.0000 phi: 0.0000
mu: 0.0000
chi: 0.0000
delta: 0.0000
gamma: 0.0000
omega: 0.0000
phi: 0.0000

Dummy counter, which in this example simply counts at 1hit/s:

ct: 0.0000

Hkl scannable, as a group and in component:

hkl: Error: No UB matrix
h: Error: No UB matrix
k: Error: No UB matrix
l: Error: No UB matrix

Parameter scannables, used in some modes, these provide a
scannable alternative to the Motion section. Some constrain of
these constrain virtual angles:

alpha: ---
beta: ---
naz: ---
psi: ---
qaz: ---

and some constrain physical angles:

phi_con: ---
chi_con: ---
delta_con:---
eta_con: ---
gam_con: ---
mu_con: ---

Crystal orientation

Before moving in hkl space you must calculate a UB matrix by specifying the
crystal’s lattice parameters (which define the B matrix) and finding two
reflections (from which the U matrix can be inferred); and, optionally for
surface-diffraction experiments, determine how the surface of the crystal is
oriented with respect to the phi axis.

Start a new UB calculation

A UB calculation contains the description of the crystal-under-test,
any saved reflections, reference angle direction, and a B & UB
matrix pair if they have been calculated or manually specified.
Starting a new UB calculation will clear all of these.

Before starting a UB-calculation, the ub command used to summarise
the state of the current UB-calculation, will reflect that no
UB-calculation has been started:

>>> ub
<<< No UB calculation started >>>

A new UB-calculation calculation may be started and lattice specified
explicitly:

>>> newub 'example'
>>> setlat '1Acube' 1 1 1 90 90 90

or interactively:

>>> newub
calculation name: example
crystal name: 1Acube
crystal system
1) Triclinic
2) Monoclinic
3) Orthorhombic
4) Tetragonal
5) Rhombohedral
6) Hexagonal
7) Cubic
[1]: 7
 a[1]: 1

where a is unit cell basis vector in Angstroms for cubic crystal system.

The ub command will show the state of the current UB-calculation
(and the current energy for reference):

>>> ub
UBCALC

 name: example

REFERNCE

 n_hkl: 1.00000 0.00000 0.00000 <- set

SURFACE NORMAL

 n_phi: 0.00000 0.00000 1.00000 <- set

CRYSTAL

 name: 1Acube

 a, b, c: 1.00000 1.00000 1.00000
 90.00000 90.00000 90.00000 Cubic

 B matrix: 6.28319 0.00000 0.00000
 0.00000 6.28319 0.00000
 0.00000 0.00000 6.28319

UB MATRIX

 <<< none calculated >>>

REFLECTIONS

 <<< none specified >>>

CRYSTAL ORIENTATIONS

 <<< none specified >>>

Load a UB calculation

To load the last used UB-calculation:

>>> lastub
Loading ub calculation: 'mono-Si'

To load a previous UB-calculation:

>>> listub
UB calculations in: /Users/walton/.diffcalc/i16

0) mono-Si 15 Feb 2017 (22:32)
1) i16-32 13 Feb 2017 (18:32)

>>> loadub 0

Generate a U matrix from two reflections

The normal way to calculate a U matrix is to find the position of two
reflections with known hkl values. Diffcalc allows many reflections to be
recorded. After adding first two reflections UB matrix will be calculated
automatically. If there are multiple recorded reflections, the indices or
tags can be provided to calcub command as arguments to calculate UB
matrix from any two given reflections.

Find U matrix from two reflections:

>>> pos wl 1
wl: 1.0000
>>> c2th [0 0 1]
59.99999999999999

>>> pos sixc [0 60 0 30 90 0]
sixc: mu: 0.0000 delta: 60.0000 gam: 0.0000 eta: 30.0000 chi: 90.0000 phi: 0.0000
>>> addref [0 0 1]

>>> pos sixc [0 90 0 45 45 90]
sixc: mu: 0.0000 delta: 90.0000 gam: 0.0000 eta: 45.0000 chi: 45.0000 phi: 90.0000
>>> addref [0 1 1]
Calculating UB matrix.

Check that it looks good:

>>> checkub

 ENERGY H K L H_COMP K_COMP L_COMP TAG
 1 12.3984 0.00 0.00 1.00 0.0000 0.0000 1.0000
 2 12.3984 0.00 1.00 1.00 0.0000 1.0000 1.0000

After adding another reflection we can use the first and the third reflections to recalculate
UB matrix:

>>> addref [1 0 1]

>>> calcub 1 3

>>> checkub

 ENERGY H K L H_COMP K_COMP L_COMP TAG
 1 12.3984 0.00 0.00 1.00 0.0000 0.0000 1.0000
 2 12.3984 0.00 1.00 1.00 0.0000 1.0000 1.0000
 3 12.3984 1.00 0.00 1.00 1.0000 0.0000 1.0000

Generate a U matrix from one reflection

To estimate based on first reflection only:

>>> trialub
resulting U angle: 0.00000 deg
resulting U axis direction: [-1.00000, 0.00000, 0.00000]
Recalculating UB matrix from the first reflection only.
NOTE: A new UB matrix will not be automatically calculated when the orientation reflections are modified.

Edit reflection list

Use showref to show the reflection list:

>>> showref
 ENERGY H K L MU DELTA GAM ETA CHI PHI TAG
 1 12.398 0.00 0.00 1.00 0.0000 60.0000 0.0000 30.0000 90.0000 0.0000
 2 12.398 0.00 1.00 1.00 0.0000 90.0000 0.0000 45.0000 45.0000 90.0000

Use swapref to swap reflections:

>>> swapref 1 2
Not calculating UB matrix as it has been manually set. Use 'calcub' to explicitly recalculate it.
Recalculating UB matrix.

Use delref to delete a reflection:

>>> delref 1

Generate a U matrix from two lattice directions

Another approach to calculate a U matrix is to provide orientation of two crystal lattice
directions using addorient command after aligning sample in laboratory frame of reference.
The first lattice direction should be aligned along the selected direction in the laboratory frame.
For the purpose of finding azimuthal orientation in U matrix calculation it is sufficient for the
projection of the second lattice direction to be aligned to the given orientation in the laboratory
frame in the plane perpendicular to the first lattice orientation.

Find U matrix from two lattice directions:

>>> addorient [0 0 1] [0 0 1]

>>> addorient [1 0 0] [1 1 0]
Calculating UB matrix.

Calculate a UB matrix

Unless a U or UB matrix has been manually specified, a new UB matrix will be
calculated after the second reflection has been found, or whenever one of the
first two reflections is changed.

Use the command calcub to force the UB matrix to be calculated from the
first two reflections. In case of using lattice orientations instead of reflections,
use command orientub to force the UB matrix to be calculated from the first two orientations.

UB matrix can be calculated from any combination of two reflections and/or orientations
by providing corresponding reflection/orientation tags or numbers as an argument to calcub.
In case of using one reflection and one orientation it is recommended to use tags to avoid
ambiguity.

If you have misidentified a reflection used for the orientation the
resulting UB matrix will be incorrect. Always use the checkub command
to check that the computed reflection indices agree with the estimated values:

>>> checkub

 ENERGY H K L H_COMP K_COMP L_COMP TAG
 1 12.3984 0.00 1.00 1.00 0.0000 1.0000 1.0000
 2 12.3984 0.00 0.00 1.00 0.0000 0.0000 1.0000

Calculate a U matrix from crystal mismount

U matrix can be defined from crystal mismount by using a rotation matrix calculated from a provided
mismount angle and axis. setmiscut command defines new U matrix by setting it to a rotation matrix
calculated from the specified angle and axis parameters. addmiscut command applies the calculated
rotation matrix to the existing U matrix, i.e. adds extra mismount to the already existing one:

>>> setmiscut 5 [1 0 0]
n_phi: -0.00000 -0.08716 0.99619
n_hkl: 0.00000 0.00000 1.00000 <- set
normal:
 angle: 5.00000
 axis: 1.00000 -0.00000 0.00000

Manually specify U matrix

Set U matrix manually (pretending sample is squarely mounted):

>>> setu [[1 0 0] [0 1 0] [0 0 1]]
Recalculating UB matrix.
NOTE: A new UB matrix will not be automatically calculated when the orientation reflections are modified.

Refining UB matrix with one reflection

UB matrix elements can be refined to match diffractometer settings and crystal orientation experimentally
found for a given reflection with the corresponding reflection indices. refineub command rescales
crystal unit cell dimensions to match with the found scattering angle value and recalculates mismount
parameters to update U matrix:

>>> refineub [1 0 0]
current pos[y]: y
Unit cell scaling factor: 0.99699
Refined crystal lattice:
 a, b, c: 0.99699 0.99699 0.99699
 90.00000 90.00000 90.00000

Update crystal settings?[y]: y
Warning: the old UB calculation has been cleared.
 Use 'calcub' to recalculate with old reflections or
 'orientub' to recalculate with old orientations.
Miscut parameters:
 angle: 2.90000
 axis: -0.00000 1.00000 -0.00000
Apply miscut parameters?[y]: y
 n_phi: 0.67043 -0.00000 0.74198
 n_hkl: 0.00000 0.00000 1.00000 <- set
 normal:
 angle: 42.10000
 axis: 0.00000 1.00000 0.00000

Calculate UB matrix from multiple reflections

Using fitub command UB matrix can be optimised to find best fit for the selected list of reference
reflections . For triclinic crystal system optimal solution is found by solving multivariate linear
regression model, while for the higher symmetry systems it is found by running numerical optimiser:

>>> fitub 1 2 3 4
Fitting crystal lattice parameters...
Fitting orientation matrix...
Refined crystal lattice:
 a, b, c: 10.56348 10.56348 10.81364
 90.00000 90.00000 90.00000
Update crystal settings?[y]: y
Refined U matrix: 0.94559 -0.32489 0.01762
 0.32487 0.94575 0.00437
 -0.01809 0.00160 0.99984
Update U matrix?[y]: y
...
...
...
REFLECTIONS

 ENERGY H K L PHI CHI ETA MU DELTA GAM TAG
1 8.000 0.00 0.00 8.00 -26.3000 89.0000 17.3034 0.0005 33.3569 -0.0042 None
2 8.000 4.00 4.00 8.00 62.4273 53.4451 45.2680 0.0000 90.0825 0.0000 None
3 8.000 0.00 0.00 8.00 13.3485 89.0097 35.0408 0.0000 69.9326 0.0000 None
4 8.000 4.00 4.00 8.00 63.2008 53.4096 44.9007 0.0000 90.1107 0.0000 None

Set the reference vector

The reference vector can be used to define azimuthal direction within the crystal
with which we want to orient the incident or diffracted beam. Orientation of the reference vector
w.r.t the incident and diffracted beam is indicated using alpha and beta angles.

By default the reference vector is set parallel to the theta axis. That is,
along the x-axis of the laboratory coordinate frame.

The ub command shows the current reference vector at the top its report
(or it can be shown by calling setnphi or setnhkl with no args):

>>> ub
...
 REFERNCE

 n_phi: 1.00000 0.00000 0.00000
 n_hkl: 1.00000 0.00000 0.00000 <- set
...

The <- set label here indicates that the reference vector is set in the reciprocal
lattice space. In this case, therefore, its direction in the laboratory coordinate
frame is inferred from the UB matrix.

To set the reference vector in the phi coordinate frame use:

>>> setnphi [1 0 0]
...

To set the reference vector in the crystal’s reciprocal lattice space use:

>>> setnhkl [1 0 0]
...

Set the surface normal vector

The orientation of the sample surface can be set using the surface normal vector defined either in
laboratory coordinate system or reciprocal space. Orientation of the surface normal vector
w.r.t the incident and diffracted beam is indicated using betain and betaout angles.

By default the surface normal vector is set parallel to the phi axis. That is,
along the z-axis of the laboratory coordinate frame.

The ub command shows the current surface normal vector at the top its report
(or it can be shown by calling surfnphi or surfnhkl with no args):

>>> ub
...
 SURFACE NORMAL

 n_phi: 0.00000 0.00000 1.00000 <- set
 n_hkl: 0.00000 0.00000 1.00000
...

The <- set label here indicates that the surface normal vector is set in the laboratory
coordinate frame. In this case, therefore, its direction in the crystal’s
reciprocal lattice space is inferred from the UB matrix.

To set the surface normal vector in the phi coordinate frame use:

>>> surfnphi [0 0 1]
...

To set the surface normal vector in the crystal’s reciprocal lattice space use:

>>> surfnhkl [0 0 1]
...

Motion

Once a UB matrix has been calculated, the diffractometer may be driven
in hkl coordinates. A given diffractometer setting maps easily into a
single hkl value. However for a diffractometer with more than three circles
there are excess degrees of freedom when calculating a diffractometer
setting from an hkl value. Diffcalc provides many for using up
the excess degrees of freedom.

By default Diffcalc selects no mode.

Constraining solutions for moving in hkl space

To get help and see current constraints:

>>> help con
...

>>> con
 DET REF SAMP
 ----------- ----------- -----------
 delta a_eq_b mu
 gam alpha eta
 qaz beta chi
 naz psi phi
 bin_eq_bout mu_is_gam
 betain bisect
 betaout omega

 ! 3 more constraints required

 Type 'help con' for instructions

Three constraints can be given: zero or one from the DET and REF columns and the
remainder from the SAMP column. Not all combinations are currently available.
Use help con to see a summary if you run into troubles.

To configure four-circle vertical scattering:

>>> con gam 0 mu 0 a_eq_b
 gam : 0.0000
 a_eq_b
 mu : 0.0000

In the following the scattering plane is defined as the plane including the
scattering vector, or momentum transfer vector, and the incident beam.

DETECTOR COLUMN:

	delta - physical delta setting (vertical detector motion) del=0 is equivalent to qaz=0

	gam - physical gamma setting (horizontal detector motion) gam=0 is equivalent to qaz=90

	qaz - azimuthal rotation of scattering vector (about the beam, from horizontal)

	naz - azimuthal rotation of reference vector (about the beam, from horizontal)

REFERENCE COLUMN:

	alpha - incident angle to reference vector

	beta - exit angle from reference vector

	psi - azimuthal rotation about scattering vector of reference vector (from scattering plane)

	a_eq_b - bisecting mode with alpha=beta. Equivalent to psi=90

	betain - incident angle to sample surface

	betaout - exit angle from sample surface

	bin_eq_bout - bisecting mode with betain=betaout

SAMPLE COLUMN:

	mu, eta, chi & phi - physical settings

	mu_is_gam - force mu to follow gamma (results in a 5-circle geometry)

	bisect - bisecting mode with scattering vector in chi-circle plane

	omega - bisecting mode with omega angle between scattering vector and chi-circle plane

Diffcalc will report two other (un-constrainable) virtual angles:

	theta - half of 2theta, the angle through the diffracted beam bends

	tau - longitude of reference vector from scattering vector (in scattering plane)

Example constraint modes

There is sometimes more than one way to get the same effect.

Vertical four-circle mode:

>>> con gam 0 mu 0 a_eq_b # or equivalently:
>>> con qaz 90 mu 0 a_eq_b

>>> con alpha 1 # replaces a_eq_b

Horizontal four-circle mode:

>>> con del 0 eta 0 alpha 1 # or equivalently:
>>> con qaz 0 mu 0 alpha 1

Surface vertical mode:

>>> con naz 90 mu 0 betain 1

Surface horizontal mode:

>>> con naz 0 eta 0 betain 1

Z-axis mode (surface horizontal):

>>> con chi (-sigma) phi (-tau) betain 1

where sigma and tau are the offsets required in chi and phi to bring the surface
normal parallel to eta. betain will determine mu directly leaving eta to orient
the planes. Or:

>>> con naz 0 phi 0 betain 1 # or any another sample angle

Z-axis mode (surface vertical):

>>> con naz 0 phi 0 betain 1 # or any another sample angle

Changing constrained values

Once constraints are chosen constrained values may be changed directly:

>>> con mu 10
 gam : 0.0000
 a_eq_b
 mu : 10.0000

or via the associated scannable:

>>> pos mu_con 10
mu_con: 10.00000

Configuring limits and cuts

Diffcalc uses motor limits set in GDA when used from GDA client running on a beamline.
The standalone console version maintains its own limits on axes. These limits
will be used when choosing solutions. If more than one detector solution exists
Diffcalc will ask you to reduce the the limits until there is only one. However
if more than one solution for the sample settings is available it will choose one
that is closest to the current diffractometer orientation.

Use the hardware command to see the current limits and cuts:

>>> hardware
 mu (cut: -180.0)
 delta (cut: -180.0)
 gam (cut: -180.0)
 eta (cut: -180.0)
 chi (cut: -180.0)
 phi (cut: 0.0)
Note: When auto sector/transforms are used,
 cuts are applied before checking limits.

To set the limits in standalone Diffcalc session:

>>> setmin delta -1
>>> setmax delta 145

To set a cut:

>>> setcut phi -180

This causes requests to move phi to be between the configured -180 and +360
degress above this. i.e. it might dive to -10 degrees rather than 350.

Moving in hkl space

Configure a mode, e.g. four-circle vertical:

>>> con gam 0 mu 0 a_eq_b
 gam : 0.0000
 a_eq_b
 mu : 0.0000

Simulate moving to a reflection:

>>> sim hkl [0 1 1]
sixc would move to:
 mu : 0.0000
 delta : 90.0000
 gam : 0.0000
 eta : 45.0000
 chi : 45.0000
 phi : 90.0000

 alpha : 45.0000
 beta : 45.0000
 betain : 30.0000
betaout : 30.0000
 naz : 35.2644
 psi : 90.0000
 qaz : 90.0000
 tau : 45.0000
 theta : 45.0000
 ttheta : 90.0000

Move to reflection:

>>> pos hkl [0 1 1]
hkl: h: 0.00000 k: 1.00000 l: 1.00000

>>> pos sixc
sixc: mu: 0.0000 delta: 90.0000 gam: 0.0000 eta: 45.0000 chi: 45.0000 phi: 90.0000

Simulate moving to a location:

>>> pos sixc [0 60 0 30 90 0]
sixc: mu: 0.0000 delta: 60.0000 gam: 0.0000 eta: 30.0000 chi: 90.0000 phi: 0.0000

Scanning in hkl space

All scans described below use the same generic scanning mechanism
provided by the GDA system or by minigda. Here are some examples.

Fixed hkl scans

In a ‘fixed hkl scan’ something (such as energy or Bin) is scanned,
and at each step hkl is ‘moved’ to keep the sample and detector
aligned. Also plonk the diffractometer scannable (sixc) on there with no
destination to monitor what is actually happening and then
throw on a detector (ct) with an exposure time if appropriate:

>>> #scan scannable_name start stop step [scannable_name [pos or time]]..

>>> scan en 9 11 .5 hkl [1 0 0] sixc ct 1

>>> scan en 9 11 .5 hklverbose [1 0 0] sixc ct 1

>>> scan betain 4 5 .2 hkl [1 0 0] sixc ct 1

>>> scan alpha_par 0 10 2 hkl [1 0 0] sixc ct 1

Scanning hkl

Hkl, or one component, may also be scanned directly:

>>> scan h .8 1.2 .1 hklverbose sixc ct 1

At each step, this will read the current hkl position, modify the h
component and then move to the resulting vector. There is a danger
that with this method k and l may drift. To get around this the start,
stop and step values may also be specified as vectors. So for example:

>>> scan hkl [1 0 0] [1 .3 0] [1 0.1 0] ct1

is equivilant to:

>>> pos hkl [1 0 0]
>>> scan k 0 .3 .1 ct1

but will not suffer from drifting. This method also allows scans along
any direction in hkl space to be performed.

Multidimension scans

Two and three dimensional scans:

>>> scan en 9 11 .5 h .9 1.1 .2 hklverbose sixc ct 1
>>> scan h 1 3 1 k 1 3 1 l 1 3 1 hkl ct 1

Commands

Orientation Commands

	STATE

	– newub {‘name’}

	start a new ub calculation name

	– loadub ‘name’ | num

	load an existing ub calculation

	– lastub

	load the last used ub calculation

	– listub

	list the ub calculations available to load

	– rmub ‘name’ | num

	remove existing ub calculation

	– saveubas ‘name’

	save the ub calculation with a new name

	LATTICE

	– setlat

	interactively enter lattice parameters (Angstroms
and Deg)

	– setlat name a

	assumes cubic

	– setlat name a b

	assumes tetragonal

	– setlat name a b c

	assumes ortho

	– setlat name a b c
gamma

	assumes mon/hex with gam not equal to 90

	– setlat name a b c
alpha beta gamma

	arbitrary

	– c2th [h k l]

	calculate two-theta angle for reflection

	– hklangle [h1 k1 l1]
[h2 k2 l2]

	calculate angle between [h1 k1 l1] and [h2 k2 l2]
crystal planes

	REFERENCE

	– setnphi {[x y z]}

	sets or displays n_phi reference

	– setnhkl {[h k l]}

	sets or displays n_hkl reference

	SURFACE NORMAL

	– surfnphi {[x y z]}

	sets or displays surface normal vector in lab
space

	– surfnhkl {[h k l]}

	sets or displays surface normal vector in
reciprocal space

	REFLECTIONS

	– showref

	shows full reflection list

	– addref

	add reflection interactively

	– addref [h k l]
{‘tag’}

	add reflection with current position and energy

	– addref [h k l] (p1,
.., pN) energy {‘tag’}

	add arbitrary reflection

	– editref num

	interactively edit a reflection

	– delref num

	deletes a reflection (numbered from 1)

	– clearref

	deletes all the reflections

	– swapref

	swaps first two reflections used for calculating
U matrix

	– swapref num1 num2

	swaps two reflections (numbered from 1)

	CRYSTAL ORIENTATIONS

	– showorient

	shows full list of crystal orientations

	– addorient

	add crystal orientation interactively

	– addorient [h k l]
[x y z] {‘tag’}

	add crystal orientation in laboratory frame

	– editorient num

	interactively edit a crystal orientation

	– delorient num

	deletes a crystal orientation (numbered from 1)

	– clearorient

	deletes all the crystal orientations

	– swaporient

	swaps first two crystal orientations used for
calculating U matrix

	– swaporient num1 num2

	swaps two crystal orientations (numbered from 1)

	UB MATRIX

	– fitub ref1 ref2
ref3 ..

	fit UB matrix to match list of provided
reference reflections

	– checkub

	show calculated and entered hkl values for
reflections

	– setu
{[[..][..][..]]}

	manually set u matrix

	– setub
{[[..][..][..]]}

	manually set ub matrix

	– calcub

	(re)calculate u matrix from ref1 and ref2

	– calcub idx1 idx2

	(re)calculate U matrix from reflections and/or
orientations referred by indices and/or tags
idx1 and idx2

	– orientub

	(re)calculate U matrix from reflections and/or
orientations

	– orientub idx1 idx2

	(re)calculate U matrix from the first two
orientations referred by indices and/or tags
idx1 and idx2

	– trialub

	(re)calculate U matrix from the first reflection
(check carefully)

	– trialub idx1

	(re)calculate U matrix from reflection with
index or tag idx only (check carefully)

	– refineub {[h k l]}
{pos}

	refine unit cell dimensions and U matrix to match
diffractometer angles for a given hkl value

	– addmiscut angle
{[x y z]}

	apply miscut to U matrix using a specified miscut
angle in degrees and a rotation axis
(default: [0 1 0])

	– setmiscut angle
{[x y z]}

	manually set U matrix using a specified miscut
angle in degrees and a rotation axis
(default: [0 1 0])

Motion commands

	CONSTRAINTS

	– con

	list available constraints and values

	– con <name> {val}

	constrains and optionally sets one constraint

	– con <name> {val}
<name> {val} <name> {val}

	clears and then fully constrains

	– uncon <name>

	remove constraint

	HKL

	– allhkl [h k l]

	print all hkl solutions ignoring limits

	HARDWARE

	– hardware

	show diffcalc limits and cuts

	– setcut {name {val}}

	sets cut angle

	– setmin {axis {val}}

	set lower limits used by auto sector code (None
to clear)

	– setmax {name {val}}

	sets upper limits used by auto sector code (None
to clear)

	MOTION

	– sim hkl scn

	simulates moving scannable (not all)

	– sixc

	show Eularian position

	– pos sixc [mu, delta,
gam, eta, chi, phi]

	move to Eularian position(None holds an axis
still)

	– sim sixc [mu, delta,
gam, eta, chi, phi]

	simulate move to Eulerian positionsixc

	– hkl

	show hkl position

	– pos hkl [h k l]

	move to hkl position

	– pos {h | k | l} val

	move h, k or l to val

	– sim hkl [h k l]

	simulate move to hkl position

Good luck — RobW

References

	You1999

	H. You. Angle calculations for a ‘4S+2D’ six-circle diffractometer.
J. Appl. Cryst. (1999). 32, 614-623. (pdf link) [http://journals.iucr.org/j/issues/1999/04/00/hn0093/hn0093.pdf].

	Busing1967

	W. R. Busing and H. A. Levy. Angle calculations for 3- and 4-circle X-ray
and neutron diffractometers. Acta Cryst. (1967). 22, 457-464. (pdf link) [http://journals.iucr.org/q/issues/1967/04/00/a05492/a05492.pdf].

Diffcalc User Guide (Deprecated Vlieg Engine)

	Author

	Rob Walton

	Contact

	rob.walton (at) diamond (dot) ac (dot) uk

	Website

	http://www.opengda.org/

Diffcalc: A diffraction condition calculator for diffractometer control

	1. Introduction

	2. Overview
	2.1. Theory

	3. Getting Help

	4. Diffcalc’s Scannables

	5. Crystal orientation
	5.1. Starting a UB calculation

	5.2. Specifying Sigma and Tau for surface diffraction experiments

	5.3. Managing reflections

	5.4. Calculating a UB matrix

	5.5. Manually setting U and UB

	6. Moving in hkl space
	6.1. Modes

	6.2. Mode parameters

	6.3. Sectors

	6.4. The hkl scannable

	6.5. The diffractometer scannable (sixc)

	7. Scanning in hkl space
	7.1. Fixed hkl scans

	7.2. Scanning hkl

	7.3. Multidimension scans

Indices and tables

	Index

	Module Index

	Search Page

1. Introduction

Warning

This manual refers to the ‘Vlieg’ calculation available in Diffcalc I. By
default Diffcalc II now uses its ‘You’ engine. This manual will be updated
soon. For now the developer guide shows how the new constraint system works.

This manual assumes that you are running Diffcalc within the external
framework of the GDA or Minigda and that Diffcalc has been configured
for the six circle diffractometer pictured here:

[image: ../_images/sixcircle_gamma_on_arm.png]
Gamma-on-delta six-circle diffractometer, modified from Elias Vlieg
& Martin Lohmeier (1993)

Your Diffcalc configuration will have been customised for the geometry
of your diffractometer and possibly the types of experiment you
perform. For example: a five-circle diffractometer might be missing
the Gamma circle above, some six-circle modes and the option to fix
gamma that would otherwise exist in some modes.

The laboratory, crystal and reciprocal-lattice coordinate frames are
defined with respect to the beam and to gravity to be (for a cubic crystal):

[image: ../_images/fix.png]
Laboratory and illustratrive crystal coordinate frames for a cubic crystal

The crystal lattice basis vectors are defined within the Cartesian
crystal coordinate frame to be:

[image: ../_images/unit_cell.png]
Unit cell defined in crystal coordinate frame

2. Overview

The following assumes that the diffractometer has been properly levelled, aligned with
the beam and zeroed. See the SPEC fourc manual [http://www.certif.com/spec_manual/fourc_4_2.html].

Before moving in hkl space you must calculate a UB matrix by
specifying the crystal’s lattice parameters (which define the B
matrix) and finding two reflections (from which the
U matrix can be inferred); and, optionally for surface-diffraction
experiments, determine how the surface of the crystal is oriented with
respect to the phi axis.

Once a UB matrix has been calculated, the diffractometer may be driven
in hkl coordinates. A valid diffractometer setting maps easily into a
single hkl value. However for a diffractometer with more than three circles
there are excess degrees of freedom when calculating a diffractometer
setting from an hkl value. Diffcalc provides modes for using up
the excess degrees of freedom.

Diffcalc does not perform scans directly. Instead, scannables that use
diffcalc to map between reciprocal lattice space and real
diffractometer settings are scanned using the Gda’s (or minigda’s)
generic scan mechanism.

2.1. Theory

Thanks to Elias Vlieg for sharing his dos based DIF software that
Diffcalc has borrowed heavily from. (See also the THANKS.txt file).

See the papers (included in docs/ref):

	Busing & Levi (1966), “Angle Calculations for 3- and 4- Circle X-ray
and Neutron Diffractometers”, Acta Cryst. 22, 457

	Elias Vlieg & Martin Lohmeier (1993), “Angle Calculations for a Six-Circle
Surface X-ray Diffractometer”, J. Appl. Cryst. 26, 706-716

3. Getting Help

There are few commands to remember. If a command is called without
arguments, Diffcalc will prompt for arguments and provide sensible
defaults which can be chosen by pressing enter.

The helpub and helphkl commands provide help with the crystal
orientation and hkl movement phases of an experiment respectively:

>>> helpub

 Diffcalc

 helpub ['command'] - lists all ub commands, or one if command is given
 helphkl ['command'] - lists all hkl commands, or one if command is given

 UB State

 newub 'name' - starts a new ub calculation with no lattice or
 reflection list
 loadub 'name' - loads an existing ub calculation: lattice and
 reflection list
 saveubas 'name' - saves the ubcalculation with a new name (other
 changes autosaved)
 ub - shows the complete state of the ub calculation

 UB lattice

 setlat - prompts user to enter lattice parameters (in
 Angstroms and Deg.)
 setlat 'name' a - assumes cubic
 setlat 'name' a b - assumes tetragonal
 setlat 'name' a b c - assumes ortho
 setlat 'name' a b c gam - assumes mon/hex with gam not equal to 90
 setlat 'name' a b c alpha beta gamma - arbitrary

 UB surface

 sigtau [sigma tau] - sets sigma and tau

UB reflections

 showref - shows full reflection list
 addref - add reflection
 addref h k l ['tag'] - add reflection with hardware position and energy
 addref h k l (p1,p2...pN) energy ['tag']- add reflection with specified position
 and energy
 delref num - deletes a reflection (numbered from 1)
 swapref - swaps first two reflections used for calculating U
 swapref num1 num2 - swaps two reflections (numbered from 1)

UB calculation

 setu [((,,),(,,),(,,))] - manually set u matrix
 setub ((,,),(,,),(,,)) - manually set ub matrix
 calcub - (re)calculate u matrix from ref1 and ref2
 checkub - show calculated and entered hkl values for reflections

>>> helphkl

 Diffcalc

 helphkl [command] - lists all hkl commands, or one if command is given
 helpub [command] - lists all ub commands, or one if command is given

 Settings

 hklmode [num] - changes mode or shows current and available modes
 and all settings
 setalpha [num] - fixes alpha, or shows all settings if no num given
 setgamma [num] - fixes gamma, or shows all settings if no num given
 setbetain [num] - fixes betain, or shows all settings if no num given
 setbetaout [num] - fixes betaout, or shows all settings if no num given
 trackalpha [boolean] - determines wether alpha parameter will track alpha axis
 trackgamma [boolean] - determines wether gamma parameter will track gamma axis
 trackphi [boolean] - determines wether phi parameter will track phi axis
 setsectorlim [omega_high omega_low phi_high phi_low]- sets sector limits

 Motion

 pos hkl [h k l] - move diffractometer to hkl, or read hkl position.
 Use None to hold a value still
 sim hkl [h k l] - simulates moving hkl
 hkl - shows loads of info about current hkl position
 pos sixc [alpha, delta, gamma, omega, chi, phi,]- move diffractometer to Eularian
 position. Use None to hold a
 value still
 sim sixc [alpha, delta, gamma, omega, chi, phi,]- simulates moving sixc
 sixc - shows loads of info about current sixc position

4. Diffcalc’s Scannables

Please see Moving in hkl space and Scanning in hkl space for some relevant examples.

To list and show the current positions of your beamline’s scannables
use pos with no arguments:

>>> pos

Results in:

Energy and wavelength scannables:

energy 12.3984
wl: 1.0000

Diffractometer scannables, as a group and in component axes (in
the real GDA these have limits):

sixc: alpha: 0.0000 delta: 0.0000 gamma: 0.0000 omega: 0.0000 chi: 0.0000 phi: 0.0000
alpha: 0.0000
chi: 0.0000
delta: 0.0000
gamma: 0.0000
omega: 0.0000
phi: 0.0000

Dummy counter, which in this example simply counts at 1hit/s:

cnt: 0.0000

Hkl scannable, as a group and in component:

hkl: Error: No UB matrix
h: Error: No UB matrix
k: Error: No UB matrix
l: Error: No UB matrix

Parameter scannables, used in some modes, these provide a
scannable alternative to the series of fix commands described in
Moving in hkl space.:

 alpha_par:0.00000
 azimuth: ---
 betain: ---
 betaout: ---
 gamma_par:0.00000
 phi_par: ---

Note that where a parameter corresponds with a physical
diffractometer axis, it can also be set to track that axis
directly. See `Tracking axis`_ below.

5. Crystal orientation

Before moving in hkl space you must calculate a UB matrix by
specifying the crystal’s lattice parameters (which define the B
matrix) and finding two reflections (from which the
U matrix can be inferred); and, optionally for surface-diffraction
experiments, determine how the surface of the crystal is oriented with
respect to the phi axis (see Overview).

5.1. Starting a UB calculation

A UB-calculation contains the description of the crystal-under-test,
any saved reflections, sigma & tau (both default to 0), and a B & UB
matrix pair if they have been calculated or manually specified.
Starting a new UB calculation will clear all of these.

Before starting a UB-calculation, the ub command used to summarise
the state of the current UB-calculation, will reflect that no
UB-calculation has been started:

>>> ub
No UB calculation started.
Wavelength: 1.239842
 Energy: 10.000000

A new UB-calculation calculation may be started and lattice specified
explicitly:

>>> newub 'b16_270608'
>>> setlat 'xtal' 3.8401 3.8401 5.43072 90 90 90

or interactively:

>>> newub
calculation name: b16_270608
crystal name: xtal
 a [1]: 3.8401
 b [3.8401]: 3.8401
 c [3.8401]: 5.43072
 alpha [90]: 90
 beta [90]: 90
 gamma [90]: 90

where a,b and c are the lengths of the three unit cell basis vectors
in Angstroms, and alpha, beta and gamma the typically used angles
(defined in the figure above) in Degrees.

The ub command will show the state of the current UB-calculation
(and the current energy for reference):

UBCalc: b16_270608
======

Crystal

name: xtal

lattice: a ,b ,c = 3.84010, 3.84010, 5.43072
 alpha, beta , gamma = 90.00000, 90.00000, 90.00000

reciprocal: b1, b2, b3 = 1.63620, 1.63620, 1.15697
 beta1, beta2, beta3 = 1.57080, 1.57080, 1.57080

B matrix: 1.6362035642769 -0.0000000000000 -0.000000000000
 0.0000000000000 1.6362035642769 -0.000000000000
 0.0000000000000 0.0000000000000 1.156970955450

Reflections

energy h k l alpha delta gamma omega chi phi tag

UB matrix

none calculated

Sigma: 0.000000
Tau: 0.000000
Wavelength: 1.000000
Energy: 12.398420

5.2. Specifying Sigma and Tau for surface diffraction experiments

Sigma and Tau are used in modes that fix either the beam exit or entry angle with
respect to the crystal surface, or that keep the surface normal in the horizontal
laboratory plane. For non surface-diffraction experiments these can
safely be left at zero.

For surface diffraction experiments, where not only the crystal’s
lattice planes must be oriented appropriately but so must the crystal’s
optical surface, two angles _Tau_ and _Sigma_ define the orientation of
the surface with respect to the phi axis. Sigma is (minus) the amount of chi axis
rotation and Tau (minus) the amount of phi axis rotation needed to
move the surface normal parallel to the omega circle
axis. These angles are often determined by reflecting a laser from the
surface of the Crystal onto some thing and moving chi and tau until
the reflected spot remains stationary with movements of omega.

Use sigtau with no args to set interactively:

>>> pos chi -3.1
chi: -3.1000
>>> pos phi 10.0
phi: 10.0000
>>> sigtau
sigma, tau = 0.000000, 0.000000
 chi, phi = -3.100000, 10.000000
sigma[3.1]: 3.1
 tau[-10.0]: 10.0

Sigma and Tau can also be set explicitly:

>>>sigtau 0 0

5.3. Managing reflections

The normal way to calculate a UB matrix is to find the position of two
reflections with known hkl values. Diffcalc allows many
reflections to be recorded but currently only uses the first two when
calculating a UB matrix.

5.3.1. Add reflection at current location

It is normal to first move to a reflection:

>>> pos en 10
en: 10.0000
>>> pos sixc [5.000, 22.790, 0.000, 1.552, 22.400, 14.255]
sixc: alpha: 5.0000 delta: 22.7900 gamma: 0.0000 omega: 1.5520 chi: 22.4000 phi: 14.2550

and then use the addref command either explicitly:

addref 1 0 1.0628 'optional_tag'

or interactively:

>>> addref
h: 1
k: 0
l: 1.0628
current pos[y]: y
tag: 'tag_string'

to add a reflection.

5.3.2. Add a reflection manually

If a reflection cannot be reached but its position is known (or if its
position has been previously determined), a reflection may be added
without first moving to it either explicitly:

>>> addref 0 1 1.0628 [5.000, 22.790, 0.000,4.575, 24.275, 101.320] 'optional_tag'

or interactively:

>>> addref
h: 0
k: 1
l: 1.0628
current pos[y]: n
 alpha[5.000]:
 delta[22.79]:
 gamma[0.000]:
 omega[1.552]: 4.575
 chi[22.40]: 24.275
 phi[14.25]: 101.320
 en[9.998]:
 tag: optional_tag2

5.3.3. Edit reflection list

Use showref to show the reflection list:

>>> showref
 energy h k l alpha delta gamma omega chi phi tag
 1 9.999 1.00 0.00 1.06 5.0000 22.7900 0.0000 1.5520 22.4000 14.2550 1st
 2 9.999 0.00 1.00 1.06 5.0000 22.7900 0.0000 4.5750 24.2750 101.32000 2nd

Use swapref to swap reflections:

>>> swapref 1 2
Recalculating UB matrix.
>>> showref
 energy h k l alpha delta gamma omega chi phi tag
 1 9.999 0.00 1.00 1.06 5.0000 22.7900 0.0000 4.5750 24.2750 101.3200 2nd
 2 9.999 1.00 0.00 1.06 5.0000 22.7900 0.0000 1.5520 22.4000 14.2550 1st

Use delref to delete a reflection:

>>> delref 1
>>> showref
 energy h k l alpha delta gamma omega chi phi tag
 1 9.999 1.00 0.00 1.06 5.0000 22.7900 0.0000 1.5520 22.4000 14.2550 1st

5.4. Calculating a UB matrix

Unless a U or UB matrix has been manually specified, a new UB matrix
will be calculated after the second reflection has been found, or
whenever one of the first two reflections is changed.

Use the command calcub to force the UB matrix to be calculated
from the first two reflections.

If you have misidentified a reflection used for the orientation the
resulting UB matrix will be incorrect. Always use the checkub
command to check that the computed values agree with the estimated values:

>>>checkub
 energy h k l h_comp k_comp l_comp tag
1 9.9987 1.00 0.00 1.06 1.0000 0.0000 1.0628 1st
2 9.9987 0.00 1.00 1.06 -0.0329 1.0114 1.0400 2nd

Notice that the first reflection will always match, but that the
second will not match exactly. (The system of equations used to
calculate the U matrix is overdetermined and some information from the
second reflection is thrown away.)

5.5. Manually setting U and UB

To help find the initial reflections it may be useful to set the U
matrix manually—to the identity matrix for example. Use the setu
command to do this. Once set the diffractometer may be driven to the
ideal location of a reflection and then the actual reflection
sought. Normally this would be done in the default mode, four-circle-bisecting, (see
Moving in hkl space). In the following example this has been done
by setting the alpha to 5 and leaving gamma at 0 (it would be normal
to leave alpha at 0):

>>> hklmode 1
1) fourc bisecting
 alpha: 0.0
 gamma: 0.0

>>> setalpha 5
alpha: 0 --> 5.000000
>>> setu
row1[1 0 0]:
row2[0 1 0]:
row3[0 0 1]:
>>> sim hkl [1,0,1.0628] # Check it all makes sense
sixc would move to:
 alpha : 5.00000 deg
 delta : 22.79026 deg
 gamma : 0.00000 deg
 omega : 5.82845 deg
 chi : 24.57658 deg
 phi : 6.14137 deg

 theta : 70702.991919
 2theta : 23.303705
 Bin : 6.969151
 Bout : 6.969151
 azimuth : 7.262472

>>> pos hkl [1,0,1.0628]
hkl: h: 1.00000 k: 0.00000 l: 1.06280

>>> # scan about to find actual reflection

>>> addref
h[0.0]: 1
k[0.0]: 0
l[0.0]: 1.0628
current pos[y]: y
tag: 'ref1'
>>>

There is currently no way to refine a manually specified U matrix by
inferring as much as possible from just one found reflection.

6. Moving in hkl space

Once a UB matrix has been calculated, the diffractometer may be driven
in hkl coordinates. A given diffractometer setting maps easily into a
single hkl value. However for a diffractometer with more than three circles
there are excess degrees of freedom when calculating a diffractometer
setting from an hkl value. Diffcalc provides many for using up
the excess degrees of freedom.

By default Diffcalc selects four-circle bisecting mode (see below).

Note that to play along with the following run the file in
example/session/sixc_example.py to configure the UB-calculation.

6.1. Modes

Use the command hklmode to summarise the state of Diffcalc’s angle
calculator. It shows a list the available modes for your
diffractometer and the parameters that must be fixed for each, the
current mode and the current parameter settings:

>>> hklmode
Available modes:
 0) fourc fixed-bandlw (alpha, gamma, blw) (Not impl.)
 1) fourc bisecting (alpha, gamma)
 2) fourc incoming (alpha, gamma, betain)
 3) fourc outgoing (alpha, gamma, betaout)
 4) fourc azimuth (alpha, gamma, azimuth) (Not impl.)
 5) fourc fixed-phi (alpha, gamma, phi) (Not impl.)
10) fivec bisecting (gamma)
11) fivec incoming (gamma, betain)
12) fivec outgoing (gamma, betaout)
13) fivec bisecting (alpha)
14) fivec incoming (alpha, betain)
15) fivec outgoing (alpha, betaout)
20) zaxis bisecting ()
21) zaxis incoming (betain)
22) zaxiz outgoing (betaout)

Current mode:

1) fourc bisecting
Parameters:

 alpha: 0.0
 gamma: 0.0
 betain: --- (not relevant in this mode)
 betaout: --- (not relevant in this mode)
 azimuth: --- (not relevant in this mode)
 phi: --- (not relevant in this mode)
 blw: --- (not relevant in this mode)

Note that ‘Not impl.’ is short for ‘not implemented’. Standby.

Your output may differ. For example:

	When listed with a typical five-circle diffractometer with no gamma
circle: the fourc modes will have no gamma parameter to fix
(actually it will have been fixed under the covers to 0), there
will be no gamma or alpha parameters to fix in the five circle
modes (again, under the covers gamma will have been fixed) and
there will be no zaxis modes (as these require six circles, or an
actual z-axis diffractometer).

	When listed with a typical four-circle diffractometer with no alpha
or gamma circle, the four-circle modes will appear with no alpha or
gamma parameters (again, they are fixed under the covers), and
there will be no five circle or zaxis modes.

To change the current mode, call hklmode with an argument:

>>> hklmode 2
2) fourc incoming
 alpha: 0.0
 gamma: 0.0
 betain: ---

(The dashes next to the betain parameter indicate that a parameter
has not yet been set.)

6.2. Mode parameters

A parameter can be set using either one of the series of {{{set}}}
commands, by moving one of the scannables associated with each
parameter or, where appropriate, by asking that a parameter track an
axis.

6.2.1. Set commands

Use the series of commands set<param_name> to set a parameter:

>>> setalpha 3
alpha: 0 --> 3.000000
>>> setbetain 5
WARNING: The parameter betain is not used in mode 1
betain: --- --> 5.000000
>>> setalpha # With no args, the current value is displayed
alpha: 3
>>> setbetain
betain: ---

6.2.2. Parameter Scannables

In most installations there will be a scannable for each parameter. In
this example installation, the parameters which correspond to physical
axes have had ‘_par’ appended to their names to prevent clashes. These
may be used to change a parameter either with the pos command or
by using them within a scan (see Scanning in hkl space).:

>>> pos betain
betain: 0.00000
>>> pos betain 5
betain: 5.00000
>>> setbetain
betain: 5

>>> pos alpha_par
alpha_par:3.00000
>>> setalpha
alpha: 3

6.2.3. Tracking Axis

Where a parameter matches an axis name, that parameter may be set to
track that axis:

>>> pos alpha
alpha: 5.0000

>>> hklmode 1
1) fourc bisecting
 alpha: 0.0
 gamma: 0.0

>>> trackalpha
alpha: 5

>>> pos alpha
alpha: 6.0000

>>> hklmode 1
1) fourc bisecting
 alpha: 6.0 (tracking physical axis)
 gamma: 0.0

Although convenient, there is a danger with this method that in
geometries where the axes are built from other axes (such as in a
kappa geometry), the position of an axis may drift slightly during a
scan.

6.3. Sectors

When mapping from reciprocal lattice space to a set of diffractometer
settings, there is normally a choice of solutions for the sample
orientation. The selected sector mode will determine which solution is
used. There is currently only one sector mode:

6.3.1. Sector mode: Find first solution within sector limits

In this sector mode, taken from ‘DIF’, the first solution found within
the ‘sector limits’ is chosen. These are different from the physical
or software limits on the axes and can be checked/modified using
setsectorlim:

>>> setsectorlim
omega_high[270]:
 omega_low[-90]:
 phi_high[180]:
 phi_low[-180]:

6.4. The hkl scannable

Once a UB matrix has been calculated, a mode chosen and parmeters set,
use the hkl scannable to move to a point in reciprocal lattice space:

>>> pos hkl [1,0,0]
hkl: h: 1.00000 k: -0.00000 l: -0.00000
>>> pos sixc
sixc: alpha: 3.0000 delta: 17.2252 gamma: 4.0000 omega: 7.5046 chi: -24.6257 phi: 4.8026
>>> pos hkl
hkl: h: 1.00000 k: -0.00000 l: -0.00000
>>> hkl
hkl:
 h : 1.000000
 k : -0.000000
 l : -0.000000
 2theta : 18.582618
 Bin : -0.387976
 Bout : -0.387976
 azimuth : 1.646099

Notice that typing hkl will also display some virtual angles (such
as twotheta and Bin), that checking the position with pos hkl will
not.

To get this extra information into a scan use the scannable hklverbose
instead of hkl:

>>> pos hklverbose [1,0,0]
hklverbose: h: 1.00000 k: -0.00000 l: -0.00000 2theta : 18.582618 Bin : -0.387976
 Bout :-0.387976 azimuth : 1.646099

The sim command will report, without moving the diffractometer,
where an hkl position would be found:

>>> sim hkl [1,0,0]
sixc would move to:
 alpha : 3.00000 deg
 delta : 17.22516 deg
 gamma : 4.00000 deg
 omega : 7.50461 deg
 chi : -24.62568 deg
 phi : 4.80260 deg

 theta : 70702.991919
 2theta : 18.582618
 Bin : -0.387976
 Bout : -0.387976
 azimuth : 1.646099

6.4.1. Moving out of range

Not every hkl position can be reached:

>>> pos hkl [10,10,10]
Exception: Could not compute delta for this hkl position

6.5. The diffractometer scannable (sixc)

We’ve seen this before, but it also works with sim:

gda>>>sim sixc [3, 17.22516, 4, 7.50461, -24.62568, 4.80260]
hkl would move to:
 h : 1.000000
 k : 0.000000
 l : -0.000000

7. Scanning in hkl space

All scans described below use the same generic scanning mechanism
provided by the GDA system or by minigda. Here are some examples.

7.1. Fixed hkl scans

In a ‘fixed hkl scan’ something (such as energy or Bin) is scanned,
and at each step hkl is ‘moved’ to keep the sample and detector
aligned. Also plonk the diffractometer scannable (sixc) on there with no
destination to monitor what is actually happening and then
throw on a detector (cnt) with an exposure time if appropriate:

>>> #scan scannable_name start stop step [scannable_name [pos or time]]..

>>> scan en 9 11 .5 hkl [1,0,0] sixc cnt 1

>>> scan en 9 11 .5 hklverbose [1,0,0] sixc cnt 1

>>> scan betain 4 5 .2 hkl [1,0,0] sixc cnt 1

>>> scan alpha_par 0 10 2 hkl [1,0,0] sixc cnt 1

>>> trackalpha
>>> scan alpha 0 10 2 hkl [1,0,0] sixc cnt 1 # Equivalent to last scan

7.2. Scanning hkl

Hkl, or one component, may also be scanned directly:

>>> scan h .8 1.2 .1 hklverbose sixc cnt 1

At each step, this will read the current hkl position, modify the h
component and then move to the resulting vector. There is a danger
that with this method k and l may drift. To get around this the start,
stop and step values may also be specified as vectors. So for example:

>>> scan hkl [1,0,0] [1,.3,0] [1,0.1,0] cnt1

is equivilant to:

>>> pos hkl [1,0,0]
>>> scan k 0 .3 .1 cnt1

but will not suffer from drifting. This method also allows scans along
any direction in hkl space to be performed.

7.3. Multidimension scans

Two and three dimensional scans:

>>> scan en 9 11 .5 h .9 1.1 .2 hklverbose sixc cnt 1
>>> scan h 1 3 1 k 1 3 1 l 1 3 1 hkl cnt 1

Good luck — RobW

Diffcalc Developer Guide

	Author

	Rob Walton

	Contact

	rob.walton (at) diamond (dot) ac (dot) uk

	Website

	http://www.opengda.org/

Diffcalc: A diffraction condition calculator for diffractometer control

	1. Introduction

	2. Project Files & Directories

	3. Quick-Start: Python API
	3.1. Setup environment

	3.2. Start

	3.3. Configure a diffraction calculator

	3.4. Calling the API

	3.5. Getting help

	3.6. Orientation

	3.7. Motion

	4. Development

Indices and tables

	Index

	Module Index

	Search Page

1. Introduction

Diffcalc is a diffraction condition calculator used for controlling
diffractometers within reciprocal lattice space. It performs the same
task as the fourc, sixc, twoc, kappa, psic and
surf macros from SPEC [http://www.certif.com/].

Diffcalc’s standard calculation engine is an implementation of
[You1999] . The first versions of Diffcalc were based on
[Vlieg1993] and [Vlieg1998] and a ‘Vlieg’ engine is still
available. The ‘You’ engine is more generic and the plan is to remove
the old ‘Vlieg’ engine once beamlines have been migrated. New users
should use the ‘You’ engine.

The foundations for this type of calculation were laid by by Busing &
Levi in their classic paper [Busing1967]. Diffcalc’s orientation
algorithm is taken from this paper. Busing & Levi also provided the
original definition of the coordinate frames and of the U and B
matrices used to describe a crystal’s orientation and to convert between
Cartesian and reciprical lattice space.

Geometry plugins are used to adapt the six circle model used
internally by Diffcalc to apply to other diffractometers. These
contain a dictionary of the ‘missing’ angles which Diffcalc uses to
constrain these angles internally, and a methods to map from external
angles to Diffcalc angles and visa versa.

Options to use Diffcalc:

	The User manual next to this developer manual or README file on github.

	The quickstart-api section describes how to run up only
the core in Python [http://python.org]. This provides a base option for system integration.

Diffcalc will work with Python 2.7 or higher with numpy [http://numpy.scipy.org/], or with
Jython 2.7 of higher with Jama [http://math.nist.gov/javanumerics/jama/].

	*

	The very small ‘Willmott’ engine currently handles the case for
surface diffraction where the surface normal is held vertical
[Willmott2011]. The ‘You’ engine handles this case fine, but
currently spins nu into an unhelpful quadrant. We hope to
remove the need for this engine soon.

	You1999

	H. You. Angle calculations for a ‘4S+2D’ six-circle diffractometer.
J. Appl. Cryst. (1999). 32, 614-623. (pdf link) [http://journals.iucr.org/j/issues/1999/04/00/hn0093/hn0093.pdf].

	Busing1967

	W. R. Busing and H. A. Levy. Angle calculations for 3- and 4-circle X-ray
and neutron diffractometers. Acta Cryst. (1967). 22, 457-464. (pdf link) [http://journals.iucr.org/q/issues/1967/04/00/a05492/a05492.pdf].

	Vlieg1993

	Martin Lohmeier and Elias Vlieg. Angle calculations for a six-circle
surface x-ray diffractometer. J. Appl. Cryst. (1993). 26, 706-716. (pdf link) [http://journals.iucr.org/j/issues/1993/05/00/la0044/la0044.pdf].

	Vlieg1998

	Elias Vlieg. A (2+3)-type surface diffractometer: mergence of the z-axis and
(2+2)-type geometries. J. Appl. Cryst. (1998). 31, 198-203. (pdf link) [http://journals.iucr.org/j/issues/1998/02/00/pe0028/pe0028.pdf].

	Willmott2011

	C. M. Schlepütz, S. O. Mariager, S. A. Pauli, R. Feidenhans’l and
P. R. Willmott. Angle calculations for a (2+3)-type diffractometer: focus
on area detectors. J. Appl. Cryst. (2011). 44, 73-83. (pdf link) [http://journals.iucr.org/j/issues/2011/01/00/db5088/db5088.pdf].

2. Project Files & Directories

	diffcalc

	The main source package.

	test

	Diffcalcs unit-test package (use Nose [http://readthedocs.org/docs/nose/en/latest/] to run them).

	diffcmd

	A spec-like openGDA emulator.

	numjy

	A very minimal implentation of numpy for jython. It supports only what
Diffcalc needs.

	doc

	The documentation is written in reStructuredText and can be compiled into
html and pdf using Python’s Sphinx [http://sphinx.pocoo.org]. With Sphinx
installed use make clean all from within the user and developer guide
folders to build the documentation.

	startup

	Starup scripts called by diffcmd or openGDA to startup diffcalc

	model

	Vrml models of diffractometers and a hokey script for animating then and
controlling them from diffcalc.

Warning

This documentation is out of date. The README and the user doc has been updated recently. For now if you need help with API, please contact me at Diamond. – Rob Walton

3. Quick-Start: Python API

This section describes how to run up only the core in Python or
IPython. This provides an API which could be used to integrate Diffcalc into an
existing data acquisition system; although the interface described in
the README would normally provide a better starting point.

For a full description of what Diffcalc does and how to use it please
see the ‘Diffcalc user manual’.

3.1. Setup environment

Change directory to the diffcalc project (python adds the current
working directory to the path):

$ cd diffcalc
$ ls
COPYING diffcalc doc example mock.py mock.pyc model numjy test

If using Python make sure numpy and diffcalc can be imported:

$ python
Python 2.7.2+ (default, Oct 4 2011, 20:06:09)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>> import diffcalc

If using Jython make sure Jama and diffcalc can be imported:

$ jython -Dpython.path=<diffcalc_root>:<path_to_Jama>/Jama-1.0.1.jar

Jython 2.2.1 on java1.5.0_11
Type "copyright", "credits" or "license" for more information.
>>> import Jama
>>> import diffcalc

3.2. Start

With Python start the sixcircle_api.py example startup script (notice
the -i and -m) and call demo_all():

$ python -i -m startup.api.sixcircle
>>> demo_all()

IPython requires:

$ ipython -i startup/api/sixcircle.py
>>> demo_all()

Alternatively start Python or IPython and cut and paste lines from the rest of
this tutorial.

3.3. Configure a diffraction calculator

By default some exceptions are handled in a way to make user interaction
friendlier. Switch this off with:

>>> import diffcalc.util
>>> diffcalc.util.DEBUG = True

To setup a Diffcalc calculator, first configure diffcalc.settings module:

>>> from diffcalc import settings
>>> from diffcalc.hkl.you.geometry import SixCircle
>>> from diffcalc.hardware import DummyHardwareAdapter
>>> settings.hardware = DummyHardwareAdapter(('mu', 'delta', 'gam', 'eta', 'chi', 'phi'))
>>> settings.geometry = SixCircle() # @UndefinedVariable

The hardware adapter is used by Diffcalc to read up the current angle
settings, wavelength and axes limits. It is primarily used to simplify
commands for end users. It could be dropped for this API use, but it
is also used for the important job of checking axes limits while
choosing solutions.

Geometry plugins are used to adapt the six circle model used
internally by Diffcalc to apply to other diffractometers. These
contain a dictionary of the ‘missing’ angles which Diffcalc internally
uses to constrain these angles, and a methods to map from
external angles to Diffcalc angles and visa versa.

3.4. Calling the API

The diffcalc.dc.dcyou module (and others) read the diffcalc.settings module when first
imported. Note that this means that changes to the settings will most likely
have no effect unless diffcalc.dc.dcyou is reloaded:

>>> import diffcalc.dc.dcyou as dc

This includes the two critical functions:

def hkl_to_angles(h, k, l, energy=None):
 """Convert a given hkl vector to a set of diffractometer angles

 return angle tuple and virtual angles dictionary
 """

def angles_to_hkl(angle_tuple, energy=None):
 """Converts a set of diffractometer angles to an hkl position

 Return hkl tuple and virtual angles dictionary
 """

diffcalc.dc.dcyou also brings in all the commands from diffcalc.ub.ub,
diffcalc.hardware and diffcalc.hkl.you.hkl. That is it includes all the
commands exposed in the top level namespace when diffcalc is used interactively:

>>> dir(dc)

['__builtins__', '__doc__', '__file__', '__name__', '__package__',
'_hardware','_hkl', '_ub', 'addref', 'allhkl', 'angles_to_hkl', 'c2th',
'calcub', 'checkub', 'clearref', 'con', 'constraint_manager', 'delref',
'diffcalc', 'editref', 'energy_to_wavelength', 'hardware', 'hkl_to_angles',
'hklcalc', 'lastub', 'listub', 'loadub', 'newub', 'rmub', 'saveubas', 'setcut',
'setlat', 'setmax', 'setmin', 'settings', 'setu', 'setub', 'showref',
'swapref', 'trialub', 'ub', 'ub_commands_for_help', 'ubcalc', 'uncon']

This doesn’t form the best API to program against though, so it is best to
use the four modules more directly. The example below assumes you have
also imported:

>>> from diffcalc.ub import ub
>>> from diffcalc import hardware
>>> from diffcalc.hkl.you import hkl

3.5. Getting help

To get help for the diffcalc angle calculations, the orientation phase, the
angle calculation phase, and the dummy hardware adapter commands:

>>> help(dc)
>>> help(ub)
>>> help(hkl)
>>> help(hardware)

3.6. Orientation

To orient the crystal for example (see the user manual for a fuller
tutorial) first find some reflections:

Create a new ub calculation and set lattice parameters
ub.newub('test')
ub.setlat('cubic', 1, 1, 1, 90, 90, 90)

Add 1st reflection (demonstrating the hardware adapter)
hardware.settings.hardware.wavelength = 1
ub.c2th([1, 0, 0]) # energy from hardware
settings.hardware.position = 0, 60, 0, 30, 0, 0 # mu del nu eta chi ph
ub.addref([1, 0, 0]) # energy & pos from hardware

Add 2nd reflection (this time without the hardware adapter)
ub.c2th([0, 1, 0], 12.39842)
ub.addref([0, 1, 0], [0, 60, 0, 30, 0, 90], 12.39842)

To check the state of the current UB calculation:

>>> ub.ub()

 UBCALC

 name: test

 n_phi: 0.00000 0.00000 1.00000 <- set
 n_hkl: -0.00000 0.00000 1.00000
 miscut: None

 CRYSTAL

 name: cubic

 a, b, c: 1.00000 1.00000 1.00000
 90.00000 90.00000 90.00000

 B matrix: 6.28319 0.00000 0.00000
 0.00000 6.28319 0.00000
 0.00000 0.00000 6.28319

 UB MATRIX

 U matrix: 1.00000 0.00000 0.00000
 0.00000 1.00000 0.00000
 0.00000 0.00000 1.00000

 U angle: 0

 UB matrix: 6.28319 0.00000 0.00000
 0.00000 6.28319 0.00000
 0.00000 0.00000 6.28319

 REFLECTIONS

 ENERGY H K L MU DELTA GAM ETA CHI PHI TAG
 1 12.398 1.00 0.00 0.00 0.0000 60.0000 0.0000 30.0000 0.0000 0.0000
 2 12.398 0.00 1.00 0.00 0.0000 60.0000 0.0000 30.0000 0.0000 90.0000

And finally to check the reflections were specified acurately:

>>> dc.checkub()

 ENERGY H K L H_COMP K_COMP L_COMP TAG
1 12.3984 1.00 0.00 0.00 1.0000 0.0000 0.0000
2 12.3984 0.00 1.00 0.00 -0.0000 1.0000 0.0000

3.7. Motion

Hkl positions and virtual angles can now be read up from angle
settings (the easy direction!):

>>> dc.angles_to_hkl((0., 60., 0., 30., 0., 0.)) # energy from hardware

((1.0, 5.5511151231257827e-17, 0.0),
{'alpha': -0.0,
 'beta': 3.5083546492674376e-15,
 'naz': 0.0,
 'psi': 90.0,
 'qaz': 90.0,
 'tau': 90.0,
 'theta': 29.999999999999996})

Before calculating the settings to reach an hkl position (the trickier
direction) hardware limits must be set and combination of constraints
chosen. The constraints here result in a four circle like mode with a
vertical scattering plane and incident angle ‘alpha’ equal to the exit
angle ‘beta’:

>>> hkl.con('qaz', 90)
! 2 more constraints required
 qaz: 90.0000

>>> hkl.con('a_eq_b')
! 1 more constraint required
 qaz: 90.0000
 a_eq_b

>>> hkl.con('mu', 0)
 qaz: 90.0000
 a_eq_b
 mu: 0.0000

To check the constraints:

>>> hkl.con()
 DET REF SAMP
 ====== ====== ======
 delta --> a_eq_b --> mu
 alpha eta
--> qaz beta chi
 naz psi phi
 mu_is_nu

 qaz: 90.0000
 a_eq_b
 mu: 0.0000

 Type 'help con' for instructions

Limits can be set to help Diffcalc choose a solution:

>>> hardware.setmin('delta', 0) # used when choosing solution

Angles and virtual angles are then easily determined for a given hkl reflection:

>>> dc.hkl_to_angles(1, 0, 0) # energy from hardware
((0.0, 60.0, 0.0, 30.0, 0.0, 0.0),
 {'alpha': -0.0,
 'beta': 0.0,
 'naz': 0.0,
 'psi': 90.0,
 'qaz': 90.0,
 'tau': 90.0,
 'theta': 30.0}
)

4. Development

The files are kept here [https://github.com/DiamondLightSource/diffcalc] on github [https://github.com]. See bootcamp for an introduction to
using github. To contribute please fork the project. Otherwise you can make
a read-only clone or export.

Code format should follow pep8 guidelines. PyDev has a good pep8 checker.

To run the tests install nose [http://nose.readthedocs.org/en/latest/], change directory into the test folder and run:

$ nosetests
.......... ...
--
Ran 3914 tests in 9.584s

OK (SKIP=15)

Acknowledgements

We would like to acknowledge the people who have made a direct impact on the
Diffcalc project, knowingly or not, in terms of encouragement, suggestions,
criticism, bug reports, code contributions, and related projects.

Names are ordered alphabetically by surname.

	Allesandro Bombardi

	Mark Booth

	
	
	Busing

	Steve Collins

	Mirian Garcia-Fernandez

	
	
	Levy

	Martin Lohmier

	Chris Nicklin

	Elias Vlieg — writer of DIF software used as a model for Diffcalc

	Robert Walton

	
	You

	Fajin Yuan

Thank you!

Rob Walton & Irakli Sikharulidze

Index

Diffcalc User Guide (You Engine)

Diffcalc: A diffraction condition calculator for diffractometer control

	Author

	Rob Walton

	Contact

	rob.walton (at) diamond (dot) ac (dot) uk

	Website

	https://github.com/DiamondLightSource/diffcalc

See also the quickstart guide at github [https://github.com/DiamondLightSource/diffcalc/blob/master/README.rst]

Introduction

This manual assumes that you are running Diffcalc within OpenGDA or have started
it using IPython. It assumes that Diffcalc has been configured for the six
circle diffractometer pictured here:

[image: _images/4s_2d_diffractometer.png]
4s + 2d six-circle diffractometer, from H.You (1999)

Your Diffcalc configuration may have been customised for the geometry of your
diffractometer and possibly the types of experiment you perform. For example, a
five-circle diffractometer might be missing the nu circle above.

The laboratory frame is shown above. With all settings at zero as shown the
crystal cartesian frame aligns with the laboratory frame. Therefor a cubic
crystal mounted squarely in a way that the U matrix (defined below) is unitary
will have h||a||x, k||b||y & l||c||z, crystal and reciprocal-lattice coordinate
frames are defined with respect to the beam and to gravity to be (for a cubic
crystal):

Overview

The following assumes that the diffractometer has been properly leveled, aligned
with the beam and zeroed. See the SPEC fourc manual [http://www.certif.com/spec_manual/fourc_4_2.html].

Before moving in hkl space you must calculate a UB matrix by specifying the
crystal’s lattice parameters (which define the B matrix) and finding two
reflections (from which the U matrix defining any mismount can be inferred);
and, optionally for surface-diffraction experiments, determine how the surface
of the crystal is oriented with respect to the phi axis.

Once a UB matrix has been calculated, the diffractometer may be driven in hkl
coordinates. A valid diffractometer setting maps easily into a single hkl value.
However for a diffractometer with more than three circles there are excess
degrees of freedom when calculating a diffractometer setting from an hkl value.
Diffcalc provides modes for using up the excess degrees of freedom.

Diffcalc does not perform scans directly. Instead, Scannables that use diffcalc
to map between reciprocal lattice space and real diffractometer settings are
scanned using the Gda’s (or minigda’s) generic scan mechanism.

Theory

Thanks to Elias Vlieg for sharing his dos based DIF software that Diffcalc
has borrowed heavily from. The version of Diffcalc described here is based on papers by
pHH. You. [You1999] and Busing & Levy [Busing1967]. (See also the THANKS.txt file.)

Getting Help

There are few commands to remember. If a command is called without
arguments in some cases Diffcalc will prompt for arguments and provide sensible
defaults which can be chosen by pressing enter.

Orientation. The helpub command lists all commands related with crystal
orientation and the reference vector (often used with surfaces). See the
Orientation Commands section at the end of this manual:

>>> help ub
...

HKL movement. The help hkl list all commands related to moving in reciprocal-lattice
space. See the Motion Commands section at the end of this manual:

>>> help hkl
...

Call help on any command. e.g.:

==> help loadub

Diffcalc’s Scannables

To list and show the current positions of your beamline’s scannables
use pos with no arguments:

>>> pos

Results in:

Energy and wavelength scannables:

energy 12.3984
wl: 1.0000

Diffractometer scannables, as a group and in component axes (in
the real GDA these have limits):

sixc: mu: 0.0000 delta: 0.0000 gamma: 0.0000 omega: 0.0000 chi: 0.0000 phi: 0.0000
mu: 0.0000
chi: 0.0000
delta: 0.0000
gamma: 0.0000
omega: 0.0000
phi: 0.0000

Dummy counter, which in this example simply counts at 1hit/s:

ct: 0.0000

Hkl scannable, as a group and in component:

hkl: Error: No UB matrix
h: Error: No UB matrix
k: Error: No UB matrix
l: Error: No UB matrix

Parameter scannables, used in some modes, these provide a
scannable alternative to the Motion section. Some constrain of
these constrain virtual angles:

alpha: ---
beta: ---
naz: ---
psi: ---
qaz: ---

and some constrain physical angles:

phi_con: ---
chi_con: ---
delta_con:---
eta_con: ---
gam_con: ---
mu_con: ---

Crystal orientation

Before moving in hkl space you must calculate a UB matrix by specifying the
crystal’s lattice parameters (which define the B matrix) and finding two
reflections (from which the U matrix can be inferred); and, optionally for
surface-diffraction experiments, determine how the surface of the crystal is
oriented with respect to the phi axis.

Start a new UB calculation

A UB calculation contains the description of the crystal-under-test,
any saved reflections, reference angle direction, and a B & UB
matrix pair if they have been calculated or manually specified.
Starting a new UB calculation will clear all of these.

Before starting a UB-calculation, the ub command used to summarise
the state of the current UB-calculation, will reflect that no
UB-calculation has been started:

==> ub

A new UB-calculation calculation may be started and lattice specified
explicitly:

==> newub 'example'
==> setlat '1Acube' 1 1 1 90 90 90

or interactively:

>>> newub
calculation name: example
crystal name: 1Acube
 a [1]: 1
 b [1]: 1
 c [1]: 1
 alpha [90]: 90
 beta [90]: 90
 gamma [90]: 90

where a,b and c are the lengths of the three unit cell basis vectors
in Angstroms, and alpha, beta and gamma are angles in Degrees.

The ub command will show the state of the current UB-calculation
(and the current energy for reference):

==> ub

Load a UB calculation

To load the last used UB-calculation:

>>> lastub
Loading ub calculation: 'mono-Si'

To load a previous UB-calculation:

>>> listub
UB calculations in: /Users/walton/.diffcalc/i16

0) mono-Si 15 Feb 2017 (22:32)
1) i16-32 13 Feb 2017 (18:32)

>>> loadub 0

Generate a U matrix from two reflections

The normal way to calculate a U matrix is to find the position of two
reflections with known hkl values. Diffcalc allows many reflections to be
recorded but currently only uses the first two when calculating a UB matrix.

Find U matrix from two reflections:

==> pos wl 1
==> c2th [0 0 1]
59.99999999999999

==> pos sixc [0 60 0 30 90 0]
==> addref [0 0 1]

==> pos sixc [0 90 0 45 45 90]
==> addref [0 1 1]

Check that it looks good:

==> checkub

Generate a U matrix from one reflection

To estimate based on first reflection only:

==> trialub

Manually specify U matrix

Set U matrix manually (pretending sample is squarely mounted):

==> setu [[1 0 0] [0 1 0] [0 0 1]]

Edit reflection list

Use showref to show the reflection list:

==> showref

Use swapref to swap reflections:

==> swapref 1 2
Recalculating UB matrix.

Use delref to delete a reflection:

>>> delref 1

Calculate a UB matrix

Unless a U or UB matrix has been manually specified, a new UB matrix will be
calculated after the second reflection has been found, or whenever one of the
first two reflections is changed.

Use the command calcub to force the UB matrix to be calculated from the
first two reflections.

If you have misidentified a reflection used for the orientation the
resulting UB matrix will be incorrect. Always use the checkub
command to check that the computed values agree with the estimated values:

==> checkub

Set the reference vector

When performing surface experiments the reference vector should be set normal
to the surface. It can also be used to define other directions within the crystal
with which we want to orient the incident or diffracted beam.

By default the reference vector is set parallel to the phi axis. That is,
along the z-axis of the phi coordinate frame.

The ub command shows the current reference vector, along with any inferred
miscut, at the top its report (or it can be shown by calling setnphi or
setnhkl' with no args):

>>> ub
...
n_phi: 0.00000 0.00000 1.00000 <- set
n_hkl: -0.00000 0.00000 1.00000
miscut: None
...

The <- set label here indicates that the reference vector is set in the phi
coordinate frame. In this case, therefor, its direction in the crystal’s
reciprocal lattice space is inferred from the UB matrix.

To set the reference vector in the phi coordinate frame use:

>>> setnphi [0 0 1]
...

This is useful if the surface normal has be found with a laser or by x-ray
occlusion. This vector must currently be manually calculated from the sample
angle settings required to level the surface (sigma and tau commands on the
way).

To set the reference vector in the crystal’s reciprocal lattice space use (this
is a quick way to determine the surface orientation if the surface is known to
be cleaved cleanly along a known axis):

>>> setnhkl [0 0 1] ...

Motion

Once a UB matrix has been calculated, the diffractometer may be driven
in hkl coordinates. A given diffractometer setting maps easily into a
single hkl value. However for a diffractometer with more than three circles
there are excess degrees of freedom when calculating a diffractometer
setting from an hkl value. Diffcalc provides many for using up
the excess degrees of freedom.

By default Diffcalc selects no mode.

Constraining solutions for moving in hkl space

To get help and see current constraints:

>>> help con
...

==> con

Three constraints can be given: zero or one from the DET and REF columns and the
remainder from the SAMP column. Not all combinations are currently available.
Use help con to see a summary if you run into troubles.

To configure four-circle vertical scattering:

==> con gam 0 mu 0 a_eq_b

In the following the scattering plane is defined as the plane including the
scattering vector, or momentum transfer vector, and the incident beam.

DETECTOR COLUMN:

	delta - physical delta setting (vertical detector motion) del=0 is equivalent to qaz=0

	gam - physical gamma setting (horizontal detector motion) gam=0 is equivalent to qaz=90

	qaz - azimuthal rotation of scattering vector (about the beam, from horizontal)

	naz - azimuthal rotation of reference vector (about the beam, from horizontal)

REFERENCE COLUMN:

	alpha - incident angle to surface (if reference is normal to surface)

	beta - exit angle from surface (if reference is normal to surface)

	psi - azimuthal rotation about scattering vector of reference vector (from scattering plane)

	a_eq_b - bisecting mode with alpha=beta. Equivalent to psi=90

SAMPLE COLUMN:

	mu, eta, chi & phi - physical settings

	mu_is_gam - force mu to follow gamma (results in a 5-circle geometry)

Diffcalc will report two other (un-constrainable) virtual angles:

	theta - half of 2theta, the angle through the diffracted beam bends

	tau - longitude of reference vector from scattering vector (in scattering plane)

Example constraint modes

There is sometimes more than one way to get the same effect.

Vertical four-circle mode:

>>> con gam 0 mu 0 a_eq_b # or equivalently:
>>> con qaz 90 mu 0 a_eq_b

>>> con alpha 1 # replaces a_eq_b

Horizontal four-circle mode:

>>> con del 0 eta 0 alpha 1 # or equivalently:
>>> con qaz 0 mu 0 alpha 1

Surface vertical mode:

>>> con naz 90 mu 0 alpha 1

Surface horizontal mode:

>>> con naz 0 eta 0 alpha 1

Z-axis mode (surface horizontal):

>>> con chi (-sigma) phi (-tau) alpha 1

where sigma and tau are the offsets required in chi and phi to bring the surface
normal parallel to eta. Alpha will determine mu directly leaving eta to orient
the planes. Or:

>>> con naz 0 phi 0 alpha 1 # or any another sample angle

Z-axis mode (surface vertical):

>>> con naz 0 phi 0 alpha 1 # or any another sample angle

Changing constrained values

Once constraints are chosen constrained values may be changed directly:

==> con mu 10

or via the associated scannable:

==> pos mu_con 10

Configuring limits and cuts

Diffcalc maintains its own limits on axes. These limits will be used when
choosing solutions. If more than one detector solution is exists Diffcalc will
ask you to reduce the the limits until there is only one. However if more than
one solution for the sample settings is available it will choose one base on
heuristics.

Use the hardware command to see the current limits and cuts:

==> hardware

To set the limits:

==> setmin delta -1
==> setmax delta 145

To set a cut:

==> setcut phi -180

This causes requests to move phi to be between the configured -180 and +360
degress above this. i.e. it might dive to -10 degrees rather than 350.

Moving in hkl space

Configure a mode, e.g. four-circle vertical:

==> con gam 0 mu 0 a_eq_b

Simulate moving to a reflection:

==> sim hkl [0 1 1]

Move to reflection:

==> pos hkl [0 1 1]

==> pos sixc

Simulate moving to a location:

==> pos sixc [0 60 0 30 90 0]

Scanning in hkl space

All scans described below use the same generic scanning mechanism
provided by the GDA system or by minigda. Here are some examples.

Fixed hkl scans

In a ‘fixed hkl scan’ something (such as energy or Bin) is scanned,
and at each step hkl is ‘moved’ to keep the sample and detector
aligned. Also plonk the diffractometer scannable (sixc) on there with no
destination to monitor what is actually happening and then
throw on a detector (ct) with an exposure time if appropriate:

>>> #scan scannable_name start stop step [scannable_name [pos or time]]..

>>> scan en 9 11 .5 hkl [1 0 0] sixc ct 1

>>> scan en 9 11 .5 hklverbose [1 0 0] sixc ct 1

>>> scan betain 4 5 .2 hkl [1 0 0] sixc ct 1

>>> scan alpha_par 0 10 2 hkl [1 0 0] sixc ct 1

Scanning hkl

Hkl, or one component, may also be scanned directly:

>>> scan h .8 1.2 .1 hklverbose sixc ct 1

At each step, this will read the current hkl position, modify the h
component and then move to the resulting vector. There is a danger
that with this method k and l may drift. To get around this the start,
stop and step values may also be specified as vectors. So for example:

>>> scan hkl [1 0 0] [1 .3 0] [1 0.1 0] ct1

is equivilant to:

>>> pos hkl [1 0 0]
>>> scan k 0 .3 .1 ct1

but will not suffer from drifting. This method also allows scans along
any direction in hkl space to be performed.

Multidimension scans

Two and three dimensional scans:

>>> scan en 9 11 .5 h .9 1.1 .2 hklverbose sixc ct 1
>>> scan h 1 3 1 k 1 3 1 l 1 3 1 hkl ct 1

Commands

Orientation Commands

==> UB_HELP_TABLE

Motion commands

==> HKL_HELP_TABLE

Good luck — RobW

References

	You1999

	H. You. Angle calculations for a ‘4S+2D’ six-circle diffractometer.
J. Appl. Cryst. (1999). 32, 614-623. (pdf link) [http://journals.iucr.org/j/issues/1999/04/00/hn0093/hn0093.pdf].

	Busing1967

	W. R. Busing and H. A. Levy. Angle calculations for 3- and 4-circle X-ray
and neutron diffractometers. Acta Cryst. (1967). 22, 457-464. (pdf link) [http://journals.iucr.org/q/issues/1967/04/00/a05492/a05492.pdf].

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down.png

_static/diffcalc_web.png
FDIFFCALC

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/sixcircle_gamma_on_arm.png
g

S P

Q'~c,',.c Yo

_images/unit_cell.png

_images/4s_2d_diffractometer.png

_images/fix.png
&

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Diffcalc User and Developer Guide

 		
 Diffcalc User Guide (You Engine)

 		
 Introduction

 		
 Overview

 		
 Theory

 		
 Getting Help

 		
 Diffcalc’s Scannables

 		
 Crystal orientation

 		
 Start a new UB calculation

 		
 Load a UB calculation

 		
 Generate a U matrix from two reflections

 		
 Generate a U matrix from one reflection

 		
 Edit reflection list

 		
 Generate a U matrix from two lattice directions

 		
 Calculate a UB matrix

 		
 Calculate a U matrix from crystal mismount

 		
 Manually specify U matrix

 		
 Refining UB matrix with one reflection

 		
 Calculate UB matrix from multiple reflections

 		
 Set the reference vector

 		
 Set the surface normal vector

 		
 Motion

 		
 Constraining solutions for moving in hkl space

 		
 Example constraint modes

 		
 Changing constrained values

 		
 Configuring limits and cuts

 		
 Moving in hkl space

 		
 Scanning in hkl space

 		
 Fixed hkl scans

 		
 Scanning hkl

 		
 Multidimension scans

 		
 Commands

 		
 Orientation Commands

 		
 Motion commands

 		
 References

 		
 Diffcalc User Guide (Deprecated Vlieg Engine)

 		
 Introduction

 		
 Overview

 		
 Theory

 		
 Getting Help

 		
 Diffcalc’s Scannables

 		
 Crystal orientation

 		
 Starting a UB calculation

 		
 Specifying Sigma and Tau for surface diffraction experiments

 		
 Managing reflections

 		
 Calculating a UB matrix

 		
 Manually setting U and UB

 		
 Moving in hkl space

 		
 Modes

 		
 Mode parameters

 		
 Sectors

 		
 The hkl scannable

 		
 The diffractometer scannable (sixc)

 		
 Scanning in hkl space

 		
 Fixed hkl scans

 		
 Scanning hkl

 		
 Multidimension scans

 		
 Indices and tables

 		
 Diffcalc Developer Guide

 		
 Introduction

 		
 Project Files & Directories

 		
 Quick-Start: Python API

 		
 Setup environment

 		
 Start

 		
 Configure a diffraction calculator

 		
 Calling the API

 		
 Getting help

 		
 Orientation

 		
 Motion

 		
 Development

 		
 Indices and tables

 		
 Acknowledgements

_static/up.png

_static/up-pressed.png

