

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Diego Design Notes

These are design notes intended to convey how the various components of Diego communicate and interrelate. It is not comprehensive and is generally up-to-date, although not guaranteed to be. If you find something that you suspect is not up-to-date, please open an issue [https://github.com/cloudfoundry/diego-design-notes/issues] on this repository.

Migrating to Diego

We’ve put together some guidelines around transitioning applications off of the DEAs and on to Diego. One reason to move your apps to Diego is to try out SSH access to your CF app instances and Diego LRPs.

What does Diego do?

Diego schedules and runs Tasks and Long-Running Processes:

	A Task is guaranteed to be run at most once.

	A Long-Running Process (LRP) may have multiple instances. Diego is told of the desired LRPs. Each desired LRP may desire multiple instances, which Diego represents as actual LRPs. Diego attempts to keep the correct number of instances running in the face of network failures and crashes.

Clients submit, update, and retrieve Tasks and LRPs to the BBS [https://github.com/cloudfoundry/bbs] (Bulletin Board System) via an RPC-style API over HTTP. Diego’s Auctioneer [https://github.com/cloudfoundry/auctioneer] optimally distributes Tasks and LRPs to the cluster of Diego Cells via an Auction [https://github.com/cloudfoundry/auction] that queries and then sends work to the Cell Rep [https://github.com/cloudfoundry/rep]s. Once the auction assigns a Task or LRP to a Cell, the Executor [https://github.com/cloudfoundry/executor] creates a Garden [https://github.com/cloudfoundry/garden] container and executes the work encoded in the Task/LRP. This work is encoded as a generic, platform-independent recipe of composable actions [https://github.com/cloudfoundry/bbs/blob/master/doc/actions].

The BBS also provides a real-time representation of the state of the Diego cluster (including all desired LRPs, running LRP instances, and in-flight Tasks). The Converger [https://github.com/cloudfoundry/converger] periodically analyzes snapshots of this representation and corrects discrepancies, ensuring that Diego is eventually consistent.

Diego sends real-time streaming logs for Tasks/LRPs to the Loggregator [https://github.com/cloudfoundry/loggregator] system. Diego also registers its running LRP instances with the Gorouter [https://github.com/cloudfoundry/gorouter] to route external web traffic to them.

Diego is the next-generation runtime powering Cloud Foundry (CF), but Diego is abstracted away from CF: CF simply acts as another Diego client via the BBS API. For now, there is a translation layer called the CC-Bridge that converts the Cloud Controller [https://github.com/cloudfoundry/cloud_controller_ng]’s domain-specific requests to stage and run applications into requests for Tasks and LRPs. Eventually Cloud Controller will be modified to communicate directly with the BBS. The process of staging and running a CF application is complex and filled with platform and implementation-specific details. A collection of binaries known collectively as the App Lifecycle encapsulate these concerns. The Tasks and LRPs produced by the CC-Bridge download the App Lifecycle binaries and execute them to stage, to run, and to health-check CF applications.

CF Summit Talks on Diego

	2018 NA: YouTube video [https://www.youtube.com/watch?v=Ru2Q9wyY4ZQ] · Apple Keynote slides [https://drive.google.com/file/d/1YuRY_h0AUmMzrHvbVMT_4u2k0f-TSrCL/view] · PDF slides [https://drive.google.com/file/d/1wXuVayvzdzSv9c4YQ578X3LrtDLk7nAW/view]

	2017 EU: YouTube video [https://www.youtube.com/watch?v=eUZfC41qIRc] · Apple Keynote slides [https://drive.google.com/file/d/1Yfg4pVPhYsCguOq7tf4ugmYmEWT_3FXN/view] · PDF slides [https://drive.google.com/file/d/1dTdf2yJqvPSRiHNpvreWY-WHPXxHEOZ0/view]

	2017 NA: YouTube video [https://www.youtube.com/watch?v=gB-nrdYTTKU] · Apple Keynote slides [https://drive.google.com/file/d/0Bw2c1Jc_v7t1TWoyWFktRzdwRzQ/view] · PDF slides [https://drive.google.com/file/d/0Bw2c1Jc_v7t1dm9ydVlwS2xfRGc/view]

	2016: YouTube video [https://www.youtube.com/watch?v=iv5EpheLLh0] · Apple Keynote slides [https://drive.google.com/file/d/0Bw2c1Jc_v7t1T0dZZ2l3ZWJ5SHM/view] · PDF slides [https://drive.google.com/file/d/0Bw2c1Jc_v7t1WlM4U09WVUE4bWc/view]

	2015: YouTube video [https://www.youtube.com/watch?v=SSxI9eonBVs]

	2014: YouTube video [https://www.youtube.com/watch?v=1OkmVTFhfLY] · Apple Keynote slides [https://drive.google.com/file/d/0B55cOnKV7PrQaTBKRjg4MjE1Ujg/view] · SlideShare slides [http://www.slideshare.net/Pivotal/cloud-foundry-summit-2014-diego-reenvisioning-the-elastic-runtime]

What are all these repos and what do they do?

Below is a diagrammatic overview of the major repositories and components in Diego and CF (also PDF [https://github.com/cloudfoundry/diego-design-notes/raw/master/diego-overview.pdf] · clickable map [http://htmlpreview.github.io/?https://raw.githubusercontent.com/cloudfoundry/diego-design-notes/master/clickable-diego-overview/clickable-diego-overview.html]).

[image: _images/diego-overview.png]Diego Overview [http://htmlpreview.github.io/?https://raw.githubusercontent.com/cloudfoundry/diego-design-notes/master/clickable-diego-overview/clickable-diego-overview.html]

Components in the blue region are part of the Diego core and handle the running and monitoring of Tasks and LRPs. These components all come from the Diego BOSH release [https://github.com/cloudfoundry/diego-release].

Components in the yellow region provide infrastructure support to Diego and CF components. At the moment, this primarily includes Consul [https://github.com/hashicorp/consul] for DNS-based dynamic service discovery and a consistent key-value store for distributed locks and component discovery.

Components in the orange region support routing HTTP traffic to Diego containers. This includes the Route-Emitter [https://github.com/cloudfoundry/route-emitter] from Diego and the Gorouter [https://github.com/cloudfoundry/gorouter] from CF.

Components in the red region support log and metric aggregation from Diego containers and CF and Diego components.

The green region brings in Cloud Controller [https://github.com/cloudfoundry/cloud_controller_ng] and the CC-Bridge. As the diagram shows, the CC-Bridge merely interfaces with the BBS, translating app-specific messages from the CC to the more generic language of Tasks and LRPs.

The following summarizes the roles and responsibilities of the various components in this diagram.

“User-facing” Components

These “user-facing” components all live in cf-release [https://github.com/cloudfoundry/cf-release]:

	Cloud Controller [https://github.com/cloudfoundry/cloud_controller_ng] (CC):

	provides an API for staging and running apps and provisioning and binding services to them,

	organizes apps and services into a hierarchy with role-based access control suitable for a multi-tenant platform.

	Loggregator [https://github.com/cloudfoundry/loggregator]:

	Doppler aggregates app logs and component and container metrics relayed through the local Metron agents.

	Traffic Controller retrieves logs and metrics from Doppler for end users, enforcing access based on CC roles

	Gorouter [https://github.com/cloudfoundry/gorouter]:

	routes incoming HTTP traffic to processes within the CF/Diego deployment

	this includes routing traffic to both developer apps running within Garden containers and CF components such as CC.

Developers typically interact with CC and the logging system through a client such as the CF CLI [https://github.com/cloudfoundry/cli].

CC-Bridge Components

The CC-Bridge components interact with the Cloud Controller. They serve primarily to translate app-specific notions into the more general notions of LRPs and Tasks:

	Stager [https://github.com/cloudfoundry/stager]:

	receives staging requests from CC, translates them into Diego Tasks, and submits those Tasks to the BBS

	sends a response to CC when a staging Task is completed, successfully or otherwise.

	CC-Uploader [https://github.com/cloudfoundry/cc-uploader]:

	mediates staging uploads from the Executor to CC, translating the Executor’s simple HTTP POST into the complex multipart-form upload CC requires.

	Nsync [https://github.com/cloudfoundry/nsync] splits its responsibilities between two independent processes:

	The nsync-listener listens for desired app requests and updates/creates the desired LRPs via the BBS.

	The nsync-bulker periodically polls CC for all desired apps to ensure the desired state known to Diego is up-to-date.

	TPS [https://github.com/cloudfoundry/tps] also splits its responsibilities between two independent processes:

	The tps-listener provides the CC with information about running LRP instances for cf apps and cf app X requests.

	The tps-watcher monitors ActualLRP activity for crashes and reports them to CC.

Many of the CC-Bridge components are inherently stateless and will eventually be consolidated into Cloud Controller itself.

Components on the Database VMs

The Database VMs provide Diego’s core components and clients a consistent API to the shared state and operations that manage Tasks and LRPs, as well as the data store for that shared state.

	BBS [https://github.com/cloudfoundry/bbs]:

	provides an RPC-style API over HTTP to both core Diego components (rep, auctioneer, converger) and external clients (CC-Bridge, route emitter, SSH proxy),

	encapsulates access to the backing database and manages data migrations, encoding, and encryption,

	performs LRP convergence periodically, comparing DesiredLRPs and their ActualLRPs and taking action to enforce the desired state:

	if an instance is missing or unclaimed for too long, it a new auction is requested.

	if an extra instance is identified, a stop message is sent to the Rep on the Cell hosting the instance.

	performs Task converence periodically, resending auction requests for Tasks that have been pending for too long and completion callbacks for Tasks that have remained completed for too long,

	periodically sends aggregate metrics about DesiredLRPs, ActualLRPs, and Tasks to Loggregator,

	maintains a lock in consul to ensure only one BBS handles requests, migrations, and convergence at a time.

The BBS requires a backing persistent data store. MySQL and PostgreSQL are supported on current versions, and historically etcd [https://github.com/coreos/etcd] was supported through Diego v1.0.

Components on the Cell

These Diego components run and monitor Tasks and LRPs in Garden containers:

	Rep [https://github.com/cloudfoundry/rep]:

	maintains a presence record for the Cell in the BBS,

	participates in auctions [https://github.com/cloudfoundry/auction] to accept new Tasks and LRP instances,

	runs Tasks and LRPs by telling its in-process Executor to create a container and then to run actions in it,

	reacts to container events coming from the Executor,

	periodically ensures its set of Tasks and ActualLRPs in the BBS is in sync with the containers actually present on the Cell.

	Executor [https://github.com/cloudfoundry/executor] (now a logical process running inside the Rep):

	manages container allocations against resource constraints on the Cell, such as memory and disk space,

	implements the actions detailed in the API documentation [https://github.com/cloudfoundry/bbs/blob/master/doc/actions],

	streams stdout and stderr from container processes to the metron-agent running on the Cell, which in turn forwards to the Loggregator system,

	periodically collects container metrics and emits them to Loggregator.

	Garden [https://github.com/cloudfoundry/garden]

	provides a platform-independent server and client to manage garden containers,

	defines an interface to be implemented by container-runners, such as guardian [https://github.com/cloudfoundry/guardian] and garden-windows [https://github.com/cloudfoundry/garden-windows].

	Metron [https://github.com/cloudfoundry/loggregator/tree/develop/src/metron]

	forwards application logs and application and component metrics to doppler [https://github.com/cloudfoundry/loggregator]

Note that there is a specificity gradient across the Rep, the Executor, and Garden. The Rep is concerned with Tasks and LRPs and knows details about their lifecycles. The Executor knows only how to manage a collection of containers and to run actions in these containers. Garden knows nothing about actions and simply provides a concrete implementation of a platform-specific containerization technology that can run arbitrary commands in containers.

Components on the Brain

	Auctioneer [https://github.com/cloudfoundry/auctioneer]

	holds auctions for Tasks and LRP instances.

	runs auctions using the auction [https://github.com/cloudfoundry/auction] package. Auction communication goes over HTTP and is between the Auctioneer and the Cell Reps.

	maintains a lock in consul to ensure only one auctioneer handles auctions at a time.

Components on the Access VMs

	File-Server [https://github.com/cloudfoundry/file-server]

	serves static assets used by our various components, such as the App Lifecycle binaries (see below).

	SSH Proxy [https://github.com/cloudfoundry/diego-ssh]

	brokers connections between SSH clients and SSH servers running inside instance containers,

	authorizes access to CF app instances based on Cloud Controller roles.

Routing Translation Components

	Route-Emitter [https://github.com/cloudfoundry/route-emitter]

	monitors DesiredLRP state and ActualLRP state via the BBS. When a change is detected, the Route-Emitter emits route registration and unregistration messages to the gorouter [https://github.com/cloudfoundry/gorouter] via the NATS [https://github.com/nats-io/gnatsd] message bus,

	periodically emits the entire routing table to the router,

	maintains a lock in consul to ensure only one route-emitter handles route registration at a time.

Service Registration and Component Coordination

	Consul [https://github.com/hashicorp/consul]:

	provides dynamic service registration and load-balancing via DNS resolution,

	provides a consistent key-value store for maintenance of distributed locks and component presence.

	Locket [https://github.com/cloudfoundry/locket]:

	provides abstractions for locks and service registration that encapsulate interactions with consul.

Platform-Specific Components

Diego is largely platform-agnostic. All platform-specific concerns are delegated to two types of components: the garden backends and the app lifecycles.

Garden Backends

Garden [https://github.com/cloudfoundry/garden] contains a set of interfaces each platform-specific backend must implement. These interfaces contain methods to perform the following actions:

	create/delete containers

	apply resource limits to containers

	open and attach network ports to containers

	copy files into/out of containers

	run processes within containers, streaming back stdout and stderr data

	annotate containers with arbitrary metadata

	snapshot containers for down-timeless redeploys

Current implementations:

	Garden-runC (a.k.a. Guardian) [https://github.com/cloudfoundry/guardian] provides a linux-specific implementation of a Garden interface.

	Garden-Windows [https://github.com/cloudfoundry/garden-windows] provides a Windows-specific implementation of a Garden interface.

App Lifecycles

Each App Lifecycle provides a set of binaries that manage a Cloud Foundry-specific application lifecycle. There are three binaries:

	The Builder stages a CF application. The CC-Bridge runs the Builder as a Task on every staging request. The Builder perfoms static analysis on the application code and does any necessary pre-processing before the application is first run.

	The Launcher runs a CF application. The CC-Bridge sets the Launcher as the Action on the CF application’s DesiredLRP. The Launcher executes the user’s start command with the correct system context (working directory, environment variables, etc.).

	The Healthcheck performs a status check of a running CF application from inside the container. The CC-Bridge sets the Healthcheck as the Monitor action on the CF application’s DesiredLRP.

Current implementations:

	Buildpack-App-Lifecycle [https://github.com/cloudfoundry/buildpackapplifecycle] implements a buildpack-based lifecycle.

	Docker-App-Lifecycle [https://github.com/cloudfoundry/dockerapplifecycle] implements a lifecycle to stage and run Docker images as CF apps.

	Windows-App-Lifecycle [https://github.com/cloudfoundry/windows_app_lifecycle] implements a lifecycle for .NET applications on Windows.

Bringing it all together

CF and Diego consist of many disparate components. Ensuring that these components work together correctly is a challenge addressed by these entities:

	Inigo [https://github.com/cloudfoundry/inigo]:

	is an integration test suite that launches the various Diego components and exercises them through various test cases. As such, Inigo validates that a given set of component versions are mutually compatible.

	in addition to exercising various ordinary test cases, Inigo can exercise exceptional cases, such as when a component fails or is unavailable for a period, that would be more difficult to orchestrate against a BOSH-deployed Diego cluster.

	Vizzini [https://github.com/cloudfoundry/vizzini]:

	is a suite of acceptance-level tests that run against a deployment of Diego with consul and routing components from CF,

	interacts directly with the BBS API to run the tests,

	ensures that Diego executes work and recovers from failure quickly by placing stringent timing requirements on many of the tests.

	CF Acceptance Tests [https://github.com/cloudfoundry/cf-acceptance-tests]:

	is a suite of acceptance-level tests that run against CF and Diego deployed together,

	uses the CF CLI [https://github.com/cloudfoundry/cli] to run the tests.

	Auction [https://github.com/cloudfoundry/auction]:

	encodes the behavioral details around the auction.

	includes a simulation test suite that validates the correctness and performance of the auction algorithm. The simulation can be run for different algorithms, at different scales. The simulation can either be run in-process (for quick feedback loops) or across multiple processes (to understand the role of communication in the auction) or even across multiple machines in a cloud-like infrastructure (to understand the impact of latency on the auction).

	the auctioneer and rep use the auction package to participate in the auction.

The BOSH Release

Diego-Release [https://github.com/cloudfoundry/diego-release] packages Diego as a BOSH release. Its README [https://github.com/cloudfoundry/diego-release] includes detailed instructions for deploying CF and Diego to a local BOSH-Lite [https://github.com/cloudfoundry/bosh-lite].

Diego-Release is also the canonical GOPATH for the Diego. All Diego development takes place inside the Diego-Release directory.

Docker Support in CF + Diego

This document discusses Diego’s support for running Docker images and outlines how CF uses Diego to run Docker images.

Docker v1 image manifest is scheduled to be deprecated as of Diego v3.0.0. It’s recommended to use the v2 image manifest schema going forward.

	Pushing a Docker image with the CF CLI

	CLI 6.13.0 and later

	CLI 6.12.4 and earlier

	How Diego runs Docker images

	How CC tells Diego to launch Docker images

	Docker in a multi-tenant world

	Docker Deltas

Pushing a Docker image with the CF CLI

CLI 6.13.0 and later

Versions 6.13.0 and later of the CF CLI include native support for pushing a Docker image as a CF app, with the cf push command’s -o or --docker-image flags. For example, running

cf push my-app -o cloudfoundry/lattice-app

will push the image located at cloudfoundry/lattice-app.

CLI 6.12.4 and earlier

Versions 6.12.4 and earlier of the CF CLI do not natively support pushing Docker images, but the Diego CLI Plugin [https://github.com/cloudfoundry-incubator/diego-cli-plugin] provides this functionality with its docker-push command. For example, running

cf docker-push my-app cloudfoundry/lattice-app

will push the image located at cloudfoundry/lattice-app.

How Diego runs Docker images

A Docker image consists of two things: a collection of layers to download and mount (the raw bits that form the file system) and metadata that describes what command should be run, as what user, and in what environment (the ENTRYPOINT and CMD directives, among others, specified in the Dockerfile).

Diego uses Garden-Linux [https://github.com/cloudfoundry-incubator/garden-linux] to construct Linux containers. These containers are built on the same Linux kernel technologies that power all Linux containers: namespaces and cgroups. When a container is created a file system must be mounted as the root file system of the container. Garden-Linux supports mounting Docker images as root file systems for the containers it constructs. Garden-Linux fetches and caches the individual layers associated with the Docker image, then combines and mounts them as the root file system, using the same libraries that power Docker.

This process yields a container with contents that match the contents of the associated Docker image exactly.

Once a container is created Diego then runs and monitors processes inside of it. The BBS API [https://github.com/cloudfoundry-incubator/bbs] allows the Diego consumer to specify exactly which commands to run within the container. In particular, it is possible to run, monitor, and route to multiple processes within a single container.

How CC tells Diego to launch Docker images

To reiterate: Diego’s LRPs and Tasks can reference a Docker image as the source for the container root filesystem. In order to then run the appropriate process(es) within the container the LRP/Task must be configured appropriately. Docker images include metadata that describe what should be run in the container.

To run a Docker image on Diego the Cloud Controller first performs a staging step. This step runs as a Diego Task that fetches the metadata associated with the Docker image and returns some of it to the CC. Once CC receives the Docker metadata, it uses it to construct an appropriate LRP and submits the LRP to Diego. When constructing the LRP, the CC takes into account any user-specified overrides (for example, a custom start command or custom environment variables). The CC will also run the start command as the user specified in the Docker image, and will currently tell Diego and the Gorouter to route traffic to the lowest-numbered port exposed in the Docker image. (We expect CC to support routing to multiple ports soon.)

Technically the responsibilities ascribed to the CC are shared between the CC and CC-Bridge, but this detail is not particularly important.

Docker in a multi-tenant world

Since Docker allows users to fully specify the contents of their root filesystems the attack surface area for a Docker-based container running on Diego is somewhat higher than that of a buildpack application (which runs on a trusted root filesystem).

The Garden-Linux team has implemented a host of features to allow us to run Docker images more securely in a multi-tenant context. In particular, we use the user-namespacing feature found on modern Linux kernels to ensure that even if a user manages to escalate privileges within the container (via a setuid executable, for example) they do not actually gain escalated privileges on the host.

CC always runs Docker containers on Diego with user namespaces enabled. This does imply that certain features (such as mounting FuseFS devices) will not work in Docker containers.

There is more work to be done to mitigate our security concerns around running Docker containers in multi-tenant environments. Until we have a greater degree of confidence we recommend running only trusted Docker containers on the platform.

Because of these concerns, CC currently default not to allow Docker-based apps to run on the platform. To enable them to run, a CC admin can turn on the diego_docker feature flag by running cf enable-feature-flag diego_docker. Disabling it later will cause CC to tell Diego to stop all Docker-based apps within a few convergence cycles (on the order of a minute).

Docker Deltas

At this point, Garden-Linux runs Docker images with robust support for users embedded in the filesystem, and can run even the barest of images as containers.

Note that Diego runs and manages Docker applications just as it runs and manages build-pack based applications. In particular, it assumes that the application is a 12-factor app [http://12factor.net], and is therefore subject to the same lifecycle policies as buildpack-based 12-factor apps (such as restart with crash back-off, and evacuation during rolling updates of the Diego Cells). Diego does not yet support ways of mounting other volumes to Garden containers or linking separate containers, although these are both areas of active interest and research that we intend to address soon.

Migrating to Diego

Diego is meant to be an in-place replacement of the DEAs. Droplets staged on DEAs should run on Diego without any changes (and vice versa).

With that said, there are a handful of differences between Diego and the DEAs. Some of these are slated to be addressed. Some are not (though they can be if we get feedback that they need to be).

This migration guide is made up of three sections:

	Targeting Diego is intended for developers and describes the API calls necessary to run on Diego.

	Installing the Diego-Enabler CLI Plugin

	Starting a new application on Diego

	Transitioning an application between backends

	Running route-less applications (such as workers and schedulers)

	Recognizing capacity issues

	Diego Deltas describes known differences between Diego and the DEAs.

	On-Demand Buildpack Downloads

	Files API

	CF-Specific Environment Variables

	Disk Quota Over-Enforcement during Container Setup

	Health Checks

	Behavior of Crashing Applications

	Environment Variable Interpolation

	File Permission Modes

	Mixed Instances

	Application Log Lines

	Managing the Migration is intended for operators and describes the tooling available to manage a migration to Diego and proposes some approaches.

	The Importance of Communication

	Auditing Applications

	Controlling Access to the Diego Boolean

	Setting the Default Backend

	Forcibly Moving Applications

	A Detailed Transition Timeline

Targeting Diego

App developers can ask CF to run their applications on Diego by setting the diego boolean field on their application to true. Applications with their diego field set to true will both stage and run on Diego.

It is possible to modify the diego field on a running application. This will cause it to transition from one backend to the other immediately, although without guaranteed uptime. To ensure uptime, we recommend performing a blue-green deployment [http://docs.cloudfoundry.org/devguide/deploy-apps/blue-green.html] in which the new, ‘green’ app is placed onto Diego intentionally.

The following instructions assume you have the Diego-Enabler CLI plugin [https://github.com/cloudfoundry-incubator/Diego-Enabler]. Instructions for installing it follow.

Installing the Diego-Enabler CLI Plugin

The Diego-Enabler CLI plugin [https://github.com/cloudfoundry-incubator/Diego-Enabler] makes opting into Diego easier. It is intended for use with CF CLI v6.13.0+. Install it from the CF-Community repo as follows:

cf add-plugin-repo CF-Community http://plugins.cloudfoundry.org/
cf install-plugin Diego-Enabler -r CF-Community

For CF CLI versions older than v6.13.0, install the Diego-Beta plugin [https://github.com/cloudfoundry-incubator/diego-cli-plugin] instead.

The Diego-Enabler (and Diego-Beta) plugin includes subcommands to enable-diego and disable-diego for an app. You can also check on whether an application has opted into Diego via has-diego-enabled. There is also support around modifying the application’s health check with set-health-check and get-health-check.

Starting a new application on Diego

To start a new application on Diego you must push the application without starting it. Once the app is created, you can set the diego boolean on it and then start it.

	Push the application without starting it:

cf push APPLICATION_NAME --no-start

	Set the diego boolean:

cf enable-diego APPLICATION_NAME

This is equivalent to running cf curl /v2/apps/$(cf app APPLICATION_NAME --guid) -X PUT -d '{"diego":true}'

	Start the application:

cf start APPLICATION_NAME

Transitioning an application between backends

Simply setting the diego boolean via

cf enable-diego APPLICATION_NAME

will cause an existing application to transition to Diego. The application will immediately start running on Diego and will eventually stop running on the DEAs. While this gives some safety, there are no strong guarantees around uptime.

If you want to ensure uptime we recommend performing a blue-green deploy (that is, push a copy of your application to Diego, then swap routes and scale down the DEA application).

To transition back to the DEAs, run

cf disable-diego APPLICATION_NAME

To tell which backend the application is targeting, run

cf has-diego-enabled APPLICATION_NAME

Running route-less applications (such as workers and schedulers)

For the DEA backend, cf push APP_NAME --no-route does two things:

	it skips creating and binding a route for the application

	it implicitly causes the DEAs to skip the port health-check on application startup

By default, when starting an application the DEAs wait until the application is listening on its assigned port before marking it as ready to receive traffic. To determine whether or not to perform this check, the DEA inspects the routes bound to the application and determines: if they’re present the port check is performed. If they’re empty, no port check is performed.

Diego configures its health checks differently from the DEAs. With Diego, cf push APP_NAME --no-route only skips creating and binding a route for the application. It does not tell Diego which type of health check to perform.

By default, Diego does the same port-based health check that the DEA performs. If your application does not listen on a port (for example, if you are pushing a worker or a scheduler app), then it will never satisfy this port check, and Diego will eventually mark it as crashed. In these cases you must tell Diego not to perform a port-based health check via:

cf set-health-check APPLICATION_NAME none

The none name here is unfortunately misleading: if your app instance exits unexpectedly, Diego will still detect this and restart it automatically. We plan to add process as a better name for this type of health-check soon.

For the time being, the two valid values for the health check are currently port and none, with port the default. You can retrieve the current health check for your application via

cf get-health-check APPLICATION_NAME

Recognizing capacity issues

The Cloud Controller is responsible for scheduling applications on the DEAs. With Diego this responsibility shifts entirely to Diego. As a result, the Cloud Controller does not know, ahead of time, whether or not there is capacity to stage or to run the application. Instead, this information (referred to as a placement error) is available asynchronously and comes from Diego via the cf app API.

The CLI has already been updated to:

	display placement error information when cf app is invoked

	inform users when staging fails because of a placement error

	inform users when cf push fails because the application cannot be placed

Currently, cf apps is misleading. It will show all instances as healthy even if some of them have a placement error. We intend to address this soon.

Diego Deltas

Here’s a list of some of the (known!) differences between Diego and the DEAs.

On-Demand Buildpack Downloads

The first time a staging task lands on a cell, it may take longer than usual as it downloads the buildpacks into the cell’s download cache.

Why?

As part of the tight coupling of the DEAs to the buildpack-based app model, Cloud Controller and the DEAs communicate with each other to warm the DEAs with the entire set of admin buildpacks registered with Cloud Controller.

As Diego is intended to be a more generic container runtime, it does not have a specific first-class notion of buildpacks, and instead treats them more generically as a cacheable asset. Diego also does not expose a mechanism to pre-warm cached assets on individual cells. This means that each cell will download buildpacks into its cache only when a staging task running on that cell requests them.

Workarounds

In practice, after a short amount of time in an environment with any substantial client load, all the Diego cells will have cached these buildpack downloads as part of processing buildpack staging tasks, and this problem will not be observed.

Developers that are particularly concerned with occasionally encountering this issue after updates to their target CF deployment can specify a particular buildpack via the -b option on cf push, although then they will lose the benefits of the auto-detect flow through all of the admin buildpacks.

Future plans

While staging performance has already been improved vastly by allowing Diego to bind-mount buildpacks into containers, as the DEAs already do, it could be beneficial to optimize this first-staging-task experience, especially in environments that have many more admin buildpacks installed than the default CF buildpacks. There may be some refinements to make on the Diego cells, such as having the cell reps resume their download caches on restart and optimizing the number of concurrent downloads to maximize throughput on the client side.

Improving throughput for concurrent requests at the Cloud Controller Blobstore may also mitigate this issue. For environments using WebDAV as a replacement for NFS, the CAPI team has indicated that there is likely additional tuning of the WebDAV server that could improve throughput substantially. The incubating Bits Service project may also provide the correct separation of concerns within CF to help mitigate this performance issue with later tuning or caching optimizations.

We are wary of introducing a mechanism to warm the Diego cells in a CF deployment with buildpacks as they start up, as the DEAs do today. It it much more common for cells to start in a CF deployment as part of a rolling update through the cluster, in which case the network bandwidth and disk I/O operations on the cell are more important to use to start replacement instances for evacuating app instances on other cells. Forcing each cell to download buildpacks at startup time instead will likely interfere with that instance evacuation process.

Files API

Diego does not support the cf files API.

Why?

CF’s existing feature set is massive and we had to cut scope to ship a Diego beta in a timely fashion. Moreover, while supporting the files API in particular is relatively straightforward - we are hoping to solve the problem of “accessing a running container” more generically and comprehensively.

Workarounds

None*

	Technically, there are hacky ways around this. There’s nothing stopping running applications from having secured endpoints that fetch files from their local filesystems…

Future Plans

We are planning on providing full-blown SSH access to running containers. The intent is to support at least the following three usecases:

	Shell access via SSH

	scp support for fetching files

	Support for port-forwarding

We believe this solves a host of problems by building on top of an established, and secure, protocol.

CF-Specific Environment Variables

Cloud Foundry supplies certain environment variables to app instances running on the DEAs, as documented here [http://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html]. These environment variables differ slightly for app instances running on Diego.

VCAP_APPLICATION

There are a few entries in the VCAP_APPLICATION payload that are not provided on Diego:

	users: This value has apparently been null since some time in 2012.

	started_at_timestamp and state_timestamp: Time at which the instance is considered started, in Unix epoch time format.

	started_at and start: Same as started_at_timestamp, but in human-readable format.

Additionally, while Diego does now provide application_uris and its undocumented alias uris in the VCAP_APPLICATION payload, the values will always be stale if routes are mapped or unmapped form the app after its latest restart. On the DEAs, these values may be out of date, but will eventually converge as individual application instances restart. To guarantee that an app has the current list of URIs, it must be restarted via Cloud Controller (so that Diego receives a new DesiredLRP specification with updated VCAP_APPLICATION fields).

VCAP_APP_HOST

The DEAs currently set this environment variable to 0.0.0.0 in all cases.

Workarounds

	None: unfortunately, Cloud Controller disallows users from setting the VCAP_APP_HOST environment variable on an app, or indeed any environment variable prefixed with VCAP_. It is recommended that you migrate away from the VCAP_APP_HOST environment variable, especially as it no longer provides useful information for the app instance.

VCAP_APP_PORT

This environment variable is deprecated. Apps should now determine the port on which to listen from the PORT environment variable instead. Note that CF_INSTANCE_PORT generally has a different value [http://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html#CF-INSTANCE-PORT] and so should not be used as a replacement.

Workarounds

	None: unfortunately, Cloud Controller disallows users from setting the VCAP_APP_PORT environment variable on an app, or indeed any environment variable prefixed with VCAP_.

Disk Quota Over-Enforcement during Container Setup

When copying a droplet, a buildpack, or other assets into a container, the Garden-Linux backend may end up over-reporting the amount of disk used in that container. If this disk usage exceeds the quota allocated to the container, the copying-in operation will fail, and the container will crash. If you see crash events for your CF app with the exit description, “Copying into the container failed”, this quota issue is likely the cause.

This erroneous reporting appears to be an interaction between the how the backing filesystem that garden-linux uses for container images accounts for disk usage and how payloads are streamed into the container. Once the payloads have been copied in successfully, the disk usage is eventually reported accurately (or even as less than expected, due to the backing filesystem’s ability to de-duplicate some data in the files it stores).

Workarounds

Application developers can increase the amount of disk allocated to their application instances. As a rule of thumb, try allocating a disk amount at least twice the size of the unpacked application droplet (which can be determined by the disk usage reported when running on the DEAs).

To accommodate the resulting increase in the disk amounts allocated to instances, platform operators can allocate more disk to their cells, or can tune the reps to report more available disk than is actually present on the Cell VMs. This is effectively overcommitting disk on the Cells.
Platform operators may also need to increase the maximum allowed disk quota for an app instance in the Cloud Controller configuration, via the cc.maximum_app_disk_in_mb BOSH property in the CF deployment manifest, especially if apps over 1 GB in size are running on the deployment.

The Diego and Garden teams are still investigating the exact behavior and causes of this usage over-reporting, and would appreciate feedback, data points comparing droplet size with required minimum disk quota, and even test assets from the community as developers and operators encounter problems with the disk usage.

Health Checks

The DEAs perform a single health check when launching an application. This health is used to verify that the application is “up” before routing to it. The default health check simply checks that the application has started listening on $PORT. Once the application is up the DEA no longer performs any health checks. The application is considered crashed only when it exits. As mentioned above applications with no associated routes aren’t health-checked at all.

Diego does health checks differently. Like the DEAs, Diego performs the health check to identify when the application is “up”. Diego continues to perform the health check (every 30 seconds) after the application comes up. This allows Diego to identify stuck applications – applications that may still be running but are actually in a degraded state – and restart them.

Currently Diego supports a port-based health check (like the DEAs). However, Diego’s health check is completely generic: Diego simply runs a process in the container periodically, and if the process exits succesfully the application is considered healthy. There are plans to support URL-based health checks and, potentially, arbitrary custom health-check commands.

Applications that do not listen on a port will need to disable the health check. This is described above.

Behavior of Crashing Applications

As with the DEAs/Health Manager, Diego restarts crashed applications. There are a handful of differences:

	Diego does not keep crashed containers around.

	Diego stops restarting crashed applications eventually.

Why?

Diego does not keep crashed containers around:

With the advent of loggregator the need to keep crashed containers around (e.g. to fetch logs) is substantially reduced.

However, because Diego supports health checks it will be possible to identify containers that have “stuck” applications. In that context having access to the container could help debug the broken application. Once Diego enables SSH support we will consider allowing containers with unhealthy (but still running) applications to stick around (for an hour or so) to allow users to access and debug the stuck processes.

Diego stops restarting crashed applications eventually:

Our experience with large installations of CF is that there are a sizable number of applications that repeatedly crash and never fail to stay up. (e.g. poorly written hello world applications). These place a strain on the installation and consume unnecessary resources. Diego attempts to restart these applications for approximately 2 days but then gives up on them.

Workarounds

None

Future Plans

Diego’s restart policy is currently static. There are plans to make it configurable on a space-by-space level. This is discussed at length on vcap-dev [https://groups.google.com/a/cloudfoundry.org/forum/#%21topic/vcap-dev/tJTIkoD8__o/discussion] with stories beginning here [https://www.pivotaltracker.com/story/show/87479698].

Environment Variable Interpolation

Diego does not interpolate environment variables (i.e. referring to one environment variable in another via $ will not work). We’d like to see if this is, in fact, an issue for people. If you have trouble because of this please reach out on cf-dev and we can look into workarounds/fixes.

File Permission Modes

Diego does its best to preserve the permissions modes set on files it copies into its containers. This behavior is in contrast to the DEAs, which blindly change the permission modes of all the application files to 0744 when staging and running an app. The Cloud Controller and CF CLI are now also introducing changes to respect the permission modes of the CF user’s files during cf push.

In most cases, this change in behavior will not affect how your application runs, as the buildpack itself is responsible for constructing or supplying the executable file with the correct permissions. If you are pushing a pre-built binary or other executable artifact and specifying the start command to run it directly, though, you should now make sure that the execute bit is set on the executable artifact. Likewise, if your application depends on the permissions modes of its other files, those modes should be set correctly on the local files before they are pushed.

Because of the differences in permission-mode behavior between Windows and Linux, when a developer pushes an app from a Windows workstation, the CF CLI will not specify the permission modes, and they will default to 0744. As the vast majority the feedback we have received about these permission-mode differences has resulted from executable permissions not being set, we expect that this behavior will still resolve most of these issues.

Mixed Instances

With the DEAs it is currently possible to create end up with instances that are configured differently from other instances of an application. For example, it is possible to modify the start command then scale an application up. The new instances will have the new start command whereas the old ones will not.

This is bad.

Should an old instance need to restart it will restart with the new start command! This is almost certainly not what you intended!

Diego does not allow this behavior.

Why?

Diego is actually very opinionated about what can change about a running application. Currently, only routes and the number of instances can be modified without restarting the application. Any other changes (e.g., changes to environment variables, start commands, and bound services) necessarily require a restart.

Diego does not orchestrate this restart for you - it leaves it to the user to bring up new instances and bring down old instances. This is the safest way to correctly and safely transition applications between configurations without causing downtime.

Workarounds

Always use a green-blue deploy strategy when modifying anything about a running application. If you’d like some instances of an application to have different configuration than other instances you should, instead, stage and deploy two different applications.

Alternatively you can use the INSTANCE_INDEX environment variable to dynamically change your application’s behavior based on its instance number. This is not recommended.

Future plans

None

Application log lines

For instance index N of an app running on the DEAs, the cf logs command
annotates its stdout and stderr log lines with [App/N]. On Diego, the
annotation is [APP/N], with capitalized ‘P’ characters.

A representative output of cf logs for the ‘Dora’ test app running on Diego is shown below:

$ cf logs dora
2016-03-24T01:32:15.06-0700 [APP/0] ERR [2016-03-24 08:32:15] INFO WEBrick 1.3.1
2016-03-24T01:32:15.06-0700 [APP/0] ERR [2016-03-24 08:32:15] INFO ruby 2.2.4 (2015-12-16) [x86_64-linux]
2016-03-24T01:32:15.06-0700 [APP/0] ERR [2016-03-24 08:32:15] INFO WEBrick::HTTPServer#start: pid=21 port=8080
2016-03-24T01:33:50.41-0700 [APP/0] OUT Dora started

Why?

All the other annotations for application-specific log output are in all caps,
such as API for Cloud Controller logs, STG for an app’s staging task,
RTR for routing log lines, and LGR for loggregator output. While some of
these are acronyms, some are not. The DEA-emitted App was inconsistent with
this convention, so on Diego it was changed to the more consistent APP.

Workarounds

This annotation cannot be changed by app developers or platform operators. If
you are relying on the presence of that annotation to identify application log
lines, consider relaxing the matching criterion to capture logs emitted from
instances running on either the DEAs or Diego.

Future plans

None.

Managing the Migration

This section is intended primarily for operators of Cloud Foundry: those tasked with deploying and managing a Cloud Foundry installation.

The Importance of Communication

Transitioning from one backend to another safely is a substantial undertaking. While the Diego team has worked hard to make Diego backward compatible with the DEAs a transition isn’t as simple as flipping a switch.

We expect that most operators will want to deploy Diego Cells alongside the DEAs for some period of time. This will give operators an opportunity to get familiar with Diego, and developers the opportunity to try their applications on Diego and submit feedback. The goal during this time is to build confidence in the new platform and to suss out any unanticipated incompatibilities and issues.

Navigating this transition effectively is more about human communication than it is about technology. We expect a typical transition plan might look something like this:

	Operators deploy a small set of Diego Cells alongside an existing DEA deployment.

	Operators advertise the presence of Diego with a subset of developers encouraging them to try pushing their applications (particularly staging/test versions) to Diego.

	After a cycle of feedback and monitoring operators might invite more developers to opt-in to Diego.

	With time, operators might inform all their developers that Diego will be replacing the DEAs at some point in the future. Operators would set a deadline for developers to opt-into Diego.

	When the deadline arrives, Operators can identify developers that have not opted into Diego and reach out to them.

	At some point if there are still stragglers that haven’t opted into Diego, Operators can revoke the ability of their developers to opt into/out off Diego and forcibly transition the remaining applications.

In this way the Operator can ensure that all applications are on Diego before performing a deploy that tears down all the DEAs. A more detailed timeline is outlined below.

The following sections describe the tools available to the Operator.

Auditing Applications

Operators can identify applications that are/are not targetting the Diego backend by querying the Cloud Controller API:

cf curl /v2/apps?q=diego:true

and

cf curl /v2/apps?q=diego:false

Controlling Access to the Diego Boolean

The cc.users_can_select_backend BOSH property controls whether or not none-admin users can modify the Diego boolean.

Setting the Default Backend

The cc.default_to_diego_backend BOSH property determines whether new applications run on Diego or the DEAs.

Forcibly Moving Applications

After auditing applications and identifying the set that are not running on Diego, operators can use the CC API to set the Diego boolean:

cf curl /v2/apps/APP_GUID -d '{"diego": true}' -X PUT

We recommend doing this in batches to monitor the load on the Diego backend as applications transition from the DEAs to Diego.

A Detailed Transition Timeline

Putting these APIs together we can paint a detailed picture of the transition plan outlined above. To make this concrete we’ll cook up an arbitrary transition date: in our example operators will be turning off the DEAs in Mid-September.

	June:

	Operators deploy Diego Cells alongside the DEAs

	Operators give users the ability to select which backend their applications run on (cc.users_can_select_backend=true)

	Operators set the default Backend to DEA (cc.default_to_diego_backend=false)

	Operators send an e-mail to a subset of developers, encouraging them to use the Diego CLI plugin to opt into Diego and provide feedback

	July:

	After a beta-period, operators send an e-mail to all developers that:

	Informs developers about Diego and includes (links to) instructions for transitioning to Diego

	Directs developers to provide feedback about Diego

	Informs developers that DEA support will be removed on September 1st

	Operators monitor Diego to ensure there are sufficient Cells to handle the load as Developers transition to Diego

	Operators also monitor the DEAs and reduce the number of DEAs as demand drops

	August:

	Operators audit all running applications and identify applications that are not running on Diego

	Operators e-mail developers that have not yet opted into Diego (this may occur several times leading up to the transition deadline)

	Operators set the default backend to Diego (cc.default_to_diego_backend=true)

	September:

	The public transition deadline has arrived

	Operators revoke the ability for users to select which backend their applications run on (cc.users_can_select_backend=false)

	Operators notify the remaining holdouts that their apps are going to be migrated to Diego

	Operators begin transitioning none-Diego apps to Diego

	Mid-September:

	Operators finish transitioning none-Diego apps to Diego

	Operators delete the DEAs, the transition is complete

SSH Access and Policy

Up-to-date documentation about the SSH features of Diego can be found in the CF Documentation:

	Developers accessing their applications and service instances over SSH shoud consult “Accessing Apps with SSH [http://docs.cloudfoundry.org/devguide/deploy-apps/ssh-apps.html]” and “Accessing Services with SSH [http://docs.cloudfoundry.org/devguide/deploy-apps/ssh-services.html]”.

	Operators configuring SSH access in their CF and Diego deployment manifests should consult “Configuring SSH Access [http://docs.cloudfoundry.org/running/config-ssh.html]”.

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/diego-overview.png
doppler

traffic-controller

logs &
metrics
traffic controller doppler fle-server metron-agent
foute-emitter
loggregator
ssh-proxy
app
cloud-controller o b
running
“
garden-runc
cloud
controller | co-uploader garden
bbs db ¥
" nsyno (eted/sal)
— tps -
I
i
—
< -
L ‘audtion}
tasks & e
consul-agent 5

(] “
—> P

gorouter routing route-emitter tauction |

table I i

>| auctioneer
gorouter route-emitter
Aactual i

A desired
routing
diego
cloud-foundry
buildpack- docker- windows-
Inigo vizzini CATS app-iifecycle app-iifecycle app-iifecycle
Integration Tests Diego Acceptance Tests GF Acceptance Tests
buider | launcher buider | launcher buider | launcher
neaith | diego neaith | diego neaith | diego
check | sshd check | sshd check | sshd

_static/comment-bright.png

