

diecutter

diecutter is a web application around file generation:

	templates are the resources ;

	the most common operation is to POST data to templates in order to retrieve
generated files.

diecutter can render single files and directories. Directories are rendered
as archives.

Example

GET raw content of a template:

$ curl -X GET http://diecutter.io/api/greetings.txt
{{ greetings|default('Hello') }} {{ name }}!

POST data to the template and retrieve generated content:

$ curl -X POST -d name=world http://diecutter.io/api/greetings.txt
Hello world!

Project status

Although under active development, diecutter already works, so give it a
try! [http://diecutter.io].

Check milestones [https://github.com/diecutter/diecutter/issues/milestones]
and vision [https://diecutter.readthedocs.org/en/latest/about/vision.html]
for details about the future.

Also notice that diecutter is part of an ecosystem:

	piecutter [https://pypi.python.org/pypi/piecutter] is the core Python API. It provides stuff like template engines
or template loaders.

	diecutter implements a WSGI application and REST interface on top of
piecutter.

	diecutter-index [https://github.com/diecutter/diecutter-index] is a
proof-of-concept project for an online template registry.

	http://diecutter.io is the SAAS platform running diecutter ecosystem.

See also alternatives and related projects [https://diecutter.readthedocs.org/en/latest/about/alternatives.html] section in documentation.

Resources

	Online demo: http://diecutter.io

	Documentation: http://diecutter.readthedocs.org

	PyPI page: http://pypi.python.org/pypi/diecutter

	Bugtracker: https://github.com/diecutter/diecutter/issues

	Changelog: https://diecutter.readthedocs.org/en/latest/about/changelog.html

	Roadmap: https://github.com/diecutter/diecutter/issues/milestones

	Code repository: https://github.com/diecutter/diecutter

	Continuous integration: https://travis-ci.org/diecutter/diecutter

	IRC Channel: irc://irc.freenode.net/#diecutter

Contents

	Client howto
	General API information

	Files

	Directories

	Posting input context data

	Targeting template engines

	Variable-based output filenames

	Dynamic directory trees templates

	Server howto
	Install, configure, run

	Python API

	About diecutter
	Vision

	Alternatives and related projects

	License

	Authors and contributors

	Changelog

	Contributing to diecutter

	Demo

	Presentations

	FAQ

Indices and tables

	Index

	Module Index

	Search Page

Client howto

This section focus on usage of diecutter service API, i.e. usage of
diecutter from client’s point of view.

	General API information
	API version

	List supported engines

	Files
	GET

	POST

	PUT

	Directories
	PUT

	GET

	POST

	Posting input context data
	URL-encoded

	JSON

	INI

	curl tips

	Targeting template engines
	In query string

	Default engine

	diecutter-engine header in responses

	Supported engines

	Unsupported engines

	Variable-based output filenames

	Dynamic directory trees templates
	Use cases

	The template tree template

	Example

General API information

Here are features of diecutter API’s root endpoint, i.e. /.

Note

In the examples below, let’s communicate with a diecutter server using
Python requests [http://docs.python-requests.org].

This diecutter serves diecutter’s demo templates [https://github.com/diecutter/diecutter/tree/master/demo/templates].

The diecutter_url variable holds root URL of diecutter service, i.e.
something like http://diecutter.io/api/.

API version

diecutter root API endpoint returns an “hello” message and shows software
version:

>>> response = requests.get(diecutter_url)
>>> response.status_code
200
>>> print response.json()['diecutter']
Hello
>>> import diecutter
>>> response.json()['version'] == diecutter.__version__
True

List supported engines

Ask the diecutter server API index to get the list of engines:

>>> response = requests.get(diecutter_url)
>>> response.json()['engines']
[u'django', u'filename', u'jinja2']

Files

This document explains how to render single files using diecutter web API.
See also Directories about how to render multiple files at once.

[image: ../_images/overview-file.svg]Here is service’s API overview:

	GET: retrieve information about template, typically raw template content.

	POST: render single template file against data.

	PUT: upload template file from client to server.

	other HTTP verbs aren’t implemented yet.

Note

In the examples below, let’s communicate with a diecutter server using
Python requests [http://docs.python-requests.org].

This diecutter serves diecutter’s demo templates [https://github.com/diecutter/diecutter/tree/master/demo/templates].

The diecutter_url variable holds root URL of diecutter service, i.e.
something like http://diecutter.io/api/.

GET

Let’s work on file resource greetings.txt [https://github.com/diecutter/diecutter/tree/master/demo/templates/greetings.txt].

A GET request returns raw template content:

>>> response = requests.get(diecutter_url + 'greetings.txt')
>>> response.status_code
200
>>> print response.content
{{ greetings|default('Hello') }} {{ name }}!

Of course, if template does not exist, it returns a 404:

>>> response = requests.get(diecutter_url + 'i-do-not-exist.txt')
>>> response.status_code
404

POST

POST data to template resource in order to retrieve generated file:

>>> greetings_url = diecutter_url + 'greetings.txt'
>>> response = requests.post(greetings_url, data={'name': 'world'})
>>> response.status_code
200
>>> print response.content
Hello world!

>>> response = requests.post(greetings_url, {'greetings': u'Greetings',
... 'name': u'professor Falken'})
>>> print response.content
Greetings professor Falken!

See also Targeting template engines about using specific template engines.

PUT

Use PUT to upload template from client to server:

>>> name = 'hello'
>>> server_side_name = os.path.join(diecutter_template_dir, name)
>>> os.path.exists(server_side_name)
False
>>> url = diecutter_url + name
>>> files = {'file': ('client-side-name', 'Hello {{ who }}\n')}
>>> response = requests.put(url, files=files)
>>> response.status_code
201
>>> os.path.exists(server_side_name)
True
>>> print open(server_side_name).read()
Hello {{ who }}

Subdirectories are created on the fly:

>>> name = 'some/nested/directories/hello'
>>> server_side_name = os.path.join(diecutter_template_dir, name)
>>> os.path.exists(server_side_name)
False
>>> url = diecutter_url + name
>>> files = {'file': ('client-side-name', 'Hello {{ who }}\n')}
>>> response = requests.put(url, files=files)
>>> response.status_code
201
>>> os.path.exists(server_side_name)
True
>>> print open(server_side_name).read()
Hello {{ who }}

Warning

Sometimes, you don’t want users to be able to PUT files on your server.
That’s why diecutter service can be configured as “read only”.
In that case, it is up to you to manage files that live in diecutter’s
template directory (which is just a directory in the filesystem).

As an example, diecutter’s online demo is readonly, and templates are
synchronized with source code on project’s repository.

Directories

This document explains how to render directories (i.e. multiple files) using
diecutter web API.
See also Files about how to render single files.

[image: ../_images/overview-directory.svg]Here is service’s API overview:

	GET: list files in directory.

	POST: render templates in directory against context, as an archive.

	PUT: directories are automatically created when you PUT a file in it.

	other HTTP verbs aren’t implemented yet.

Note

In the examples below, let’s communicate with a diecutter server using
Python requests [http://docs.python-requests.org].

This diecutter serves diecutter’s demo templates [https://github.com/diecutter/diecutter/tree/master/demo/templates].

The diecutter_url variable holds root URL of diecutter service, i.e.
something like http://diecutter.io/api/.

PUT

In order to create a directory, PUT a file in it.

As an example, let’s create some “greetings” directory with “hello.txt” and
“goodbye.txt” inside:

>>> name = 'greetings/hello.txt'
>>> files = {'file': ('client-side-name', 'Hello {{ name }}\n')}
>>> response = requests.put(diecutter_url + name, files=files)
>>> response.status_code
201
>>> name = 'greetings/goodbye.txt'
>>> files = {'file': ('client-side-name', 'Goodbye {{ name }}\n')}
>>> response = requests.put(diecutter_url + name, files=files)
>>> response.status_code
201

There is currently no way to create an empty directory. And no way to upload
multiple files at once.

GET

GET lists files in directory, recursively:

>>> response = requests.get(diecutter_url + 'greetings/')
>>> response.status_code
200
>>> print response.content
goodbye.txt
hello.txt

Notice that, if you don’t set the trailing slash, you get the same list with
folder name as prefix:

>>> response = requests.get(diecutter_url + 'greetings')
>>> response.status_code
200
>>> print response.content
greetings/goodbye.txt
greetings/hello.txt

POST

POST renders directory against data, and the result is an archive.

>>> response = requests.post(
... diecutter_url + 'greetings/',
... data={'name': 'Remy'})
>>> response.status_code
200
>>> archive = tarfile.open(fileobj=StringIO(response.content))
>>> print archive.getnames()
['goodbye.txt', 'hello.txt']
>>> print archive.extractfile('hello.txt').read()
Hello Remy
>>> print archive.extractfile('goodbye.txt').read()
Goodbye Remy

By default, archives are in tar.gz format. See accept header below for
alternatives.

Rendering only parts of a directory

You can render only parts of a directory! It means you can render
sub-directories or single files:

>>> response = requests.post(
... diecutter_url + 'greetings/hello.txt',
... data={'name': 'world'})
>>> print response.content
Hello world

This is because diecutter handles templates just as files and directories,
in any filesystem it can read. If it can read a directory or a file, they can
be used as a template, and so can be the sub-directories and files. diecutter
does not need you to register templates, it only needs to be able to read the
“filesystem” (repositories are kind of filesystems too) holding templates.

Dynamic trees

By default, all files in directory are rendered, and the context data does not
vary. See Dynamic directory trees templates if you need to dynamically alter the list of
files or the context data.

Trailing slash

Like with GET, the trailing slash affects filenames: without trailing slash,
filenames are prefixed with directory name.

>>> response = requests.post(
... diecutter_url + 'greetings',
... data={'name': 'Remy'})
>>> archive = tarfile.open(fileobj=StringIO(response.content))
>>> print archive.getnames()
['greetings/goodbye.txt', 'greetings/hello.txt']

In the archive, dates reflect generation time:

>>> time_floor = int(time.time()) # Time before generation.
>>> response = requests.post(
... diecutter_url + 'greetings/',
... data={'name': 'Remy'})
>>> archive = tarfile.open(fileobj=StringIO(response.content))
>>> time_ceil = time.time() # Time after generation.
>>> info = archive.getmember('hello.txt')
>>> info.mtime != 0
True
>>> info.mtime >= time_floor
True
>>> info.mtime <= time_ceil
True

accept header

By default, diecutter returns TAR.GZ archives. You can get the content as a
ZIP archive using the HTTP accept header:

>>> response = requests.post(
... diecutter_url + 'greetings/',
... data={'name': 'Remy'},
... headers={'accept': 'application/zip'})
>>> import zipfile
>>> zip_filename = os.path.join(diecutter_template_dir, 'response.zip')
>>> open(zip_filename, 'w').write(response.content)
>>> zipfile.is_zipfile(zip_filename) # File is actually a ZIP.
True
>>> archive = zipfile.ZipFile(zip_filename)
>>> archive.testzip() is None # ZIP integrity is OK.
True
>>> print archive.namelist()
['goodbye.txt', 'hello.txt']
>>> print archive.read('hello.txt')
Hello Remy

Supported archive formats

You can see all supported “accept” headers by requesting an unknown mime
type:

$ curl -X POST --header "accept:fake/mime-type" -d name="world" http://localhost:8106/greetings
406 Not Acceptable

The server could not comply with the request since it is either malformed or
otherwise incorrect.

Supported mime types: */*, application/gzip, application/x-gzip,
application/zip

Posting input context data

When you perform POST requests on resources, you provide context data, i.e.
variables and values.

Diecutter has builtin support for the following input content-types:

	application/x-www-form-urlencoded [http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1] [1]: the default when you perform POST
requests with wget or curl ;

	application/json [http://json.org/] [2]: JSON encoded data ;

	text/plain: INI-style plain text files [https://en.wikipedia.org/wiki/INI_file] [3].

Diecutter expects data to be provided as the body of the request.
“multipart/form-data” requests aren’t supported currently.

URL-encoded

Default (implicit application/x-www-form-urlencoded content type).
curl -X POST -d 'who=world' http://localhost:8106/hello

Explicit "application/x-www-form-urlencoded" content-type.
curl -X POST -d 'who=world' -H "Content-Type: application/x-www-form-urlencoded" http://localhost:8106/hello

JSON

curl -X POST -d '{"who": "world"}' -H "Content-Type: application/json" http://localhost:8106/hello

INI

Flat.
curl -X POST -d 'who=world' -H "Content-Type: text/plain" http://localhost:8106/hello

With sections.
cat > input.ini <<EOF
hello = world
[foo]
bar = baz
EOF
curl -X POST --data-binary '@input.ini' -H "Content-Type: text/plain" http://localhost:8106/foo

curl tips

	Pass content of a file using @.

	Pass content from standard input using @-.

	When posting JSON or INI, use --data-binary.

References

	[1]	http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1

	[2]	http://json.org/

	[3]	https://en.wikipedia.org/wiki/INI_file

Targeting template engines

diecutter supports several template engines. This section explains how
diecutter chooses the engine for a given template.

As a summary, diecutter follows the scenario below:

	engine in query string;

	default engine.

Notice that diecutter sets a diecutter-engine header in responses.

Note

In the examples below, let’s communicate with a diecutter server using
Python requests [http://docs.python-requests.org].

This diecutter serves diecutter’s demo templates [https://github.com/diecutter/diecutter/tree/master/demo/templates].

The diecutter_url variable holds root URL of diecutter service, i.e.
something like http://diecutter.io/api/.

In query string

If the HTTP request has a known engine in query string, then diecutter
uses it to render the template. Here is an example using jinja2:

>>> greetings_url = diecutter_url + 'greetings.txt?engine=jinja2'
>>> response = requests.post(greetings_url, {'name': 'world'})
>>> print response.text
Hello world!
>>> print response.headers['Diecutter-Engine']
jinja2

Here is an example using django:

>>> greetings_url = diecutter_url + 'greetings-django.txt?engine=django'
>>> response = requests.post(greetings_url, {'name': 'world'})
>>> print response.text
Hello world!

>>> print response.headers['Diecutter-Engine']
django

If you try to use an unknown template engine, then you get a 406:

>>> greetings_url = diecutter_url + 'greetings.txt?engine=unknown'
>>> response = requests.post(greetings_url, {'name': 'world'})
>>> response.status_code
406

Default engine

In case no specific engine was resolved for the current request, diecutter
fallbacks to default engines. Default engines are setup in configuration:

	diecutter.engine is the default engine used to render files;

	diecutter.filename_engine is the default engine used to render filenames.

The configuration itself defaults to jinja2.

>>> greetings_url = diecutter_url + 'greetings.txt'
>>> response = requests.post(greetings_url, {'name': 'world'})
>>> print response.text
Hello world!
>>> print response.headers['Diecutter-Engine']
jinja2

diecutter-engine header in responses

diecutter sets the value of used engine as Diecutter-Engine header.

>>> greetings_url = diecutter_url + 'greetings.txt'
>>> response = requests.post(greetings_url, {'name': 'world'})
>>> print response.headers['Diecutter-Engine']
jinja2

Supported engines

Ask the diecutter server API index to get the list of engines:

>>> response = requests.get(diecutter_url)
>>> response.json()['engines']
[u'django', u'filename', u'jinja2']

Unsupported engines

diecutter returns a HTTP 406 error code in case an unsupported template
engine was asked:

>>> greetings_url = diecutter_url + 'greetings.txt?engine=unknown'
>>> response = requests.post(greetings_url, {'name': 'world'})
>>> response.status_code
406

Variable-based output filenames

This document explains how to render dynamic filenames.

When rendering a directory, it is sometimes useful to use variables in the
filenames to output.

Tip

This is useless for single files, since most clients allow you to choose the
name of the output file.

Note

In the examples below, let’s communicate with a diecutter server using
Python requests [http://docs.python-requests.org].

This diecutter serves diecutter’s demo templates [https://github.com/diecutter/diecutter/tree/master/demo/templates].

The diecutter_url variable holds root URL of diecutter service, i.e.
something like http://diecutter.io/api/.

When rendering directories, templates having +variable+ in the filename
will be resolved against the context data:

>>> url = diecutter_url + 'simple-tree/'
>>> response = requests.get(url)
>>> print response.content
+name+.txt
>>> response = requests.post(url, {'name': 'demo'})
>>> archive = tarfile.open(fileobj=StringIO(response.content))
>>> print archive.getnames()
['demo.txt']

Tip

The “variable-based filenames” feature is meant for simple cases. If you
need advanced things for filenames, use the dynamic trees feature.

Notice that “variable-based filenames” behaviour is disabled when using the
dynamic trees.

Dynamic directory trees templates

Directory trees can be computed from templates.

Thus you can use all features of template engines to render filenames, select
templates or even alter context.

Note

In the examples below, let’s communicate with a diecutter server using
Python requests [http://docs.python-requests.org].

This diecutter serves diecutter’s demo templates [https://github.com/diecutter/diecutter/tree/master/demo/templates].

The diecutter_url variable holds root URL of diecutter service, i.e.
something like http://diecutter.io/api/.

Use cases

While rendering a directory...

	skip some files based on variables ;

	render a single template several times with different output filenames ;

	alter template context data for some templates ;

	use loops, conditions... and all template-engine features...

The template tree template

When you POST to a directory, diecutter looks for special ”.directory-tree”
template in that directory. If present, it renders ”.directory-tree” against
context, decodes JSON, then iterates over items to actually render the
directory.

Except when rendering a directory resource, ”.directory-tree” template is a
normal template resource file. Manage it as any other template file.

Example

Let’s explain this feature with an example...

Let’s work on directory resource dynamic-tree/.

>>> dynamic_tree_url = diecutter_url + 'dynamic-tree/'

It’s a directory. So GET lists the templates it contains:

>>> response = requests.get(dynamic_tree_url)
>>> print response.content
.directory-tree
greeter.txt

greeter.txt is a template, with nothing special:

>>> response = requests.get(dynamic_tree_url + 'greeter.txt')
>>> print response.content
{{ greeter|default('Hello') }} {{ name|default('world') }}!

directory-tree is a also a template, with a special name:

>>> response = requests.get(dynamic_tree_url + '.directory-tree')
>>> print response.content
[
 {% for greeter in greeting_list|default(['hello', 'goodbye']) %}
 {
 "template": "greeter.txt",
 "filename": "{{ greeter }}.txt",
 "context": {"greeter": "{{ greeter }}"}
 }{% if not loop.last %},{% endif %}
 {% endfor %}
]

directory-tree template renders as a list of templates, in JSON:

>>> response = requests.post(dynamic_tree_url + '.directory-tree',
... {'greeting_list': [u'bonjour', u'bonsoir']})
>>> print response.content
[

 {
 "template": "greeter.txt",
 "filename": "bonjour.txt",
 "context": {"greeter": "bonjour"}
 },

 {
 "template": "greeter.txt",
 "filename": "bonsoir.txt",
 "context": {"greeter": "bonsoir"}
 }

]

JSON-encoded list items are dictionaries with the following keys:

	“template”: relative path to a template, i.e. content to be rendered ;

	“filename”: filename to return to the client ;

	“context”: optional dictionary of context overrides.

When rendering a directory, diecutter first computes the tree of templates
in the directory. By default, it just reads the filesystem. But if there is a
.directory-tree file, then this special file is rendered first, and the
result is used as the list of templates to render.

So, when you render the directory, you generate the files according to the
generated directory-tree template:

>>> response = requests.post(dynamic_tree_url,
... {'name': u'Remy',
... 'greeting_list': [u'bonjour', u'bonsoir']})
>>> archive = tarfile.open(fileobj=StringIO(response.content), mode='r:gz')
>>> print '\n'.join(archive.getnames())
bonjour.txt
bonsoir.txt
>>> print archive.extractfile('bonjour.txt').read()
bonjour Remy!
>>> print archive.extractfile('bonsoir.txt').read()
bonsoir Remy!
>>> archive.close()

Here, the greeter.txt template has been rendered several times, with
different context data.

Server howto

This section explains how to setup, configure and run a diecutter server.

	Install, configure, run
	Prerequisites

	Install

	Configure

	Run

	Check

Install, configure, run

This project is open-source, published under BSD license.
See License for details.

If you want to install a development environment, you should go to
Contributing to diecutter documentation.

Prerequisites

	Python [http://python.org] [1] version 2.7.

Install

Install “diecutter” package with your favorite tool. As an example with pip [https://pypi.python.org/pypi/pip/] [2]:

pip install diecutter

Configure

Use diecutter’s online demo [http://diecutter.io/] [3] to generate your local diecutter configuration:

Adapt "YOUR_TEMPLATE_DIR"!
wget -O diecutter.ini --post-data "template_dir=YOUR_TEMPLATE_DIR" http://diecutter.io/api/diecutter.ini

diecutter.service

Python path to service class that implements diecutter API.
Default is diecutter.local.LocalService.

Builtin services are:

	diecutter.local.LocalService

	diecutter.github.GithubService

diecutter.engine

Code of the default engine to use to render files.
Default is jinja2.

diecutter.filename_engine

Code of the default engine to use to render filenames.
Default is filename.

diecutter.engine.*

Mapping between engine codes and Python path to the template engine class.
Defaults:

	django: piecutter.engines.django:DjangoEngine

	filename: piecutter.engines.filename:FilenameEngine

	jinja2: piecutter.engines.jinja:Jinja2Engine

Note

diecutter itself does not implement engines. Engines are implemented as
part of piecutter [https://piecutter.readthedocs.org].

Run

pserve (paster’s server) should have been installed automatically as part
of diecutter’s dependencies. Use it to run the service:

pserve diecutter.ini --reload

Check

Check it works:

curl http://localhost:8106

You should get an “hello” with diecutter’s version.

References

	[1]	http://python.org

	[2]	https://pypi.python.org/pypi/pip/

	[3]	http://diecutter.io/

Python API

diecutter is written in Python [http://python.org] [1]. Here are some tips about diecutter‘s
internals:

	diecutter is built on top of a third-party project called piecutter [https://pypi.python.org/pypi/piecutter] [2].
piecutter provides things such as template engines and template loaders.
In most cases, i.e. except you explicitely need diecutter‘s WSGI layer,
have a look at piecutter‘s Python API.

	diecutter provides a WSGI layer and a REST API on top of piecutter.

Note

At the moment, authors put efforts in piecutter‘s API, because it is more
general purpose than diecutter‘s. That said, if you have an use case for
diecutter API, let us know [https://github.com/diecutter/diecutter/issues]! Feedback, reviews and
contributions are welcome ;)

Notes & references

	[1]	http://python.org

	[2]	https://pypi.python.org/pypi/piecutter

About diecutter

This section is about the diecutter project itself.

	Vision
	API

	Server software

	Framework

	SAAS platform

	Alternatives and related projects
	diecutter ecosystem

	paster create

	collective.generic.webbuilder

	Cookiecutter

	Voodoo

	And...

	Puppet, Chef and other provisioners

	License

	Authors and contributors

	Changelog
	0.7.1 (2014-07-10)

	0.7 (2014-07-10)

	0.6 (2014-04-13)

	0.5 (2013-07-19)

	0.4 (2013-07-17)

	0.3 (2013-04-16)

	0.2 (2013-02-22)

	0.1 (2013-01-29)

Vision

Diecutter is about file generation. Its primary goal is to provide an easy way
to render templates against data.

Some leitmotivs:

	focus on file generation.

	in most use cases, don’t bother users with software installation and
configuration.

	when users have specific needs, they can easily setup a custom service.

API

API design drives diecutter’s development.

Server software

Diecutter provides a default implementation of the service, built with Python.

Framework

Diecutter is a framework.
It must provide material that makes it easy to connect to other tools and easy
to extend.

SAAS platform

Diecutter is developed with SAAS in mind.
The online demo is a draft.

Alternatives and related projects

This document presents other projects that provide similar or complementary
functionalities. It focuses on differences with diecutter.

Note

This document reflects diecutter‘s authors point of view, which is,
inherently, a partial one. Contact authors if you feel
something is wrong.

diecutter ecosystem

diecutter is part of an ecosystem:

	piecutter [https://pypi.python.org/pypi/piecutter/] [1] is the core Python API. It provides stuff like template engines
or template loaders.

	diecutter implements a WSGI application and REST interface on top of
piecutter.

	diecutter-index [https://github.com/diecutter/diecutter-index] is a
proof-of-concept project for an online template registry.

	http://diecutter.io is the SAAS platform running diecutter ecosystem.

	diecutter organization on Github [https://github.com/diecutter] has been
created to manage every related projects in a single place.

paster create

PasteScript [https://pypi.python.org/pypi/PasteScript/] [2] provides a paster create command to generate files from
templates.

diecutter‘s authors tried PasteScript, and found it too complicated for most
use cases. They felt that the more they generated files with PasteScript, the
more they spent time on PasteScript‘s specific stuff. With diecutter, they
tried to focus on using templates to generate files.

Let’s highlight some differences between PasteScript and diecutter:

	PasteScript
	diecutter

	paster create is a command.
Runs on local machine.
You need PasteScript installed on
every computer (or project) where
you use templates.
	Diecutter is a web service. You can
use a shared diecutter server, but
it is also easy to deploy on a local
machine.

	You have to register templates:

	create template class
(Cheetah’s Template),

	update template package’s entry
points (setup.py),

	update your environment
(setup.py install).

	You PUT files just like in a
filesystem.

	You distribute templates in Python
packages.
	You carry templates (folders and
files) as you like. No packaging.

	Can collect input data via
interactive shell prompts.
	No builtin client (that’s part of
the Vision).
Listing variables isn’t implemented
yet (that’s part of the plans).

	You declare sets of templates. You
can’t render only some part of it,
you have to render the whole set.
	You can render a directory as a set,
but you can also render any single
part of it, individually.

	Templates are Python classes.
That allows developers to implement
various tasks in hooks.
	Uses only templates.
Even to dynamically generate
folders.

	Asks you whether to ovewrite files
in output directory, and even shows
you the diff!
	That’s not a job for diecutter.
You can do that (better) with Git,
Mercurial and many other tools.

	Uses Cheetah [http://www.cheetahtemplate.org/] [3] template engine.
	Supports several template engines,
such as Jinja [http://jinja.pocoo.org/] [4] and Django [http://docs.djangoproject.com] [5].
Cheetah [http://www.cheetahtemplate.org/] [3] is in the plans.

	Not only about generating files.
PasteScript is a big project that
does several things.
	Focuses on generating files.

collective.generic.webbuilder

collective.generic.webbuilder [https://pypi.python.org/pypi/collective.generic.webbuilder/] [6] is a file generation service, built on top of
paster create. It is a web interface to paster create.

Thus, some differences are directly related to paster create, such as you
define sets of templates, or have to register templates
(collective.generic.webbuilder uses ZCML [http://docs.zope.org/zope.component/zcml.html] [7]).

Collective.generic.webbuilder inspired diecutter.

Diecutter’s authors felt that collective.generic.webbuilder is a tool made by
paster users, for paster users. Mostly developers. With diecutter, they tried
to make things easy for most users, but flexible for users who have specific
needs.

Cookiecutter

cookiecutter [https://pypi.python.org/pypi/cookiecutter] [8] provides command line tools to generate files using templates.

Here are some differences with diecutter:

	cookiecutter
	diecutter

	Provides command line interface.
	Provides WSGI application and REST
API. Use things like curl if you
like a CLI.

	You need it installed on your
machine.
	You just need a web client.

	Easily develop templates on your
machine.
	To develop templates, you need to
install and run a local diecutter.

	Reads templates from Github.
	Reads templates from Github,
anywhere in the repository.

	One template per repository.
Repository is dedicated to templates
	Unlimited number of templates per
repository. Templates are just files
and directories in a filesystem.

	Supports Bitbucket too.
	No support for Bitbucket at the
moment. Help is welcome ;)

	A “cookiecutter” is a set of
templates. Renders everything.
	Renders directories or any part of
it (sub-directories, single files).

	In templates, variables are like
{{ cookiecutter.YOUR_VARIABLE }}
so templates are tied to
cookiecutter.
	No prefix for variables. Works with
templates not made for diecutter.

	Python API.
	Python API lives in piecutter [https://pypi.python.org/pypi/piecutter/] [1].

	Shell is the user interface.
	HTML forms provide a nice,
human-readable and highly
customizable user interface.

	Only Jinja2. No plans for other
template engines.
	Supports several template engines.
Could support even non-Python
engines.

Voodoo

See https://pypi.python.org/pypi/Voodoo

And...

See also projects listed as cookiecutter alternatives [http://cookiecutter.readthedocs.org/en/latest/readme.html#similar-projects] [9].

Puppet, Chef and other provisioners

Provisioning tools, such as Puppet, Chef or Salt (just to name a few), use
templates to generate configuration. They also do many other things.

Diecutter only deals with templates and file generation.

Templates and file generation aren’t only a matter of provisioning. There are
many situations where you need templates, and where provisioners would be
overkill.

Diecutter also tries to make it easier to migrate from one provisioner to
another. Provisioners are often tied to one template engine, one layout and
one deployment process. Those items differ from one provisioner to another.
With diecutter, which supports several template engines, you could
easily use the same templates whatever the provisioner or deployment procedure.

References

	[1]	(1, 2) https://pypi.python.org/pypi/piecutter/

	[2]	https://pypi.python.org/pypi/PasteScript/

	[3]	(1, 2) http://www.cheetahtemplate.org/

	[4]	http://jinja.pocoo.org/

	[5]	http://docs.djangoproject.com

	[6]	https://pypi.python.org/pypi/collective.generic.webbuilder/

	[7]	http://docs.zope.org/zope.component/zcml.html

	[8]	https://pypi.python.org/pypi/cookiecutter

	[9]	http://cookiecutter.readthedocs.org/en/latest/readme.html#similar-projects

License

Copyright (c) 2012, Rémy Hubscher, Benoît Bryon. See Authors and contributors.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the diecutter software nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Authors and contributors

	Benoît Bryon <benoit@marmelune.net>

	Rémy Hubscher <remy.hubscher@novapost.fr>

	Korantin Auguste <contact@palkeo.com>

Changelog

This document describes changes between each past release. For information
about future releases, check milestones [https://github.com/diecutter/diecutter/issues/milestones] [1] and Vision.

0.7.1 (2014-07-10)

Bugfix release.

	Bug #112 - Fixed Sphinx configuration, fixed builds on readthedocs.org.

0.7 (2014-07-10)

Added support for multiple template engines, reviewed documentation.

	Feature #77 - One diecutter server can support multiple template engines:
	The client can ask diecutter to use a specific engine with engine
in query string.

	The list of supported engines in displayed in API index.

	Supported engines and their implementation can be configured server-side.

	Feature #104 - Get in touch via IRC: #diecutter on freenode.

	Bug #103 - README is rendered as HTML on PyPI (was plain reStructuredText).

	Refactoring #107 - Functional tests moved to Sphinx documentation.

	Refactoring #108 - diecutter no longer requires webtest and mock. They
are only required to run tests or building documentation. Removed
diecutter.tests from distributed package.

	Refactoring #110 - From demo, removed templates that are now maintained as
third-party projects: Django project, Python project and Sphinx
documentation.

	Features #81 and #87 - Reviewed documentation about alternatives and related
projects: added Voodoo and cookiecutter to alternatives ; highlighted
piecutter as the core Python API provider.

0.6 (2014-04-13)

Moved some parts of diecutter to external projects: core in piecutter, demo in
template index and standalone template repositories.

	Moved generic bits of diecutter’s core to third-party project ‘piecutter’.

	Bug #100 - Files in tar.gz archives have a valid modification time (was
epoch).

	Feature #97 - Refactored diecutter’s demo index, so that it references
templates from external repositories.

	Render archive filename using filename_engine.

	Added example configuration for cookiecutter and github.

	Improved contributor guide.

	Using tox to run tests. Development environment no longer uses zc.buildout.

0.5 (2013-07-19)

Proof of concept implementation of remote template loader and Django template
engine.

	Features #27 and #28 - Experimental support of remote templates, where
templates are hosted in Github public repositories.
The github service is published at http://diecutter.io/github. It accepts
URLs like
http://diecutter.io/github/<owner>/<project>/<revision>/<path/to/template/resource>

	Features #57 and #29 - Public online SAAS at http://diecutter.io

	Feature #66 - Introduced support of Django template engine. You can choose
the (unique) template engine with diecutter.template_engine configuration
directive. Default value is piecutter.engines.jinja:Jinja2Engine.

	Bug #60 - PyPI renders README as HTML (was plain text).

	Bug #65 - Contributor guide mentions dependency to virtualenv (was missing).

	Refactoring #68 - Code follows strict PEP8. Using flake8 in tests.

0.4 (2013-07-17)

New feature (tar.gz archives) and marketing (talks).

	Feature #4 - Added support of “accept” header for POST requests on
directories: accepted types are ZIP (application/zip) and TAR.GZ
(application/gzip).

	Feature #53 - GZIP is now the default archive format when rendering
directories. Use “diecutter.default_archive_type = application/zip” in
configuration file if you need ZIP format as a default.

	Refactoring #55 - Dropped support of Python 2.6. Tests are run against Python
2.7 only.

	Refactoring #20 - Render functions return generator ; moved response
composition (file/archive) into views via writers.

	Feature #46 - Added content of talks in documentation: AFPY event and
EuroPython 2013.

	Feature #58 - Highlighted roadmap and vision in README.

See also milestone 0.4 on bugtracker [https://github.com/diecutter/diecutter/issues?milestone=7&state=closed] [2].

0.3 (2013-04-16)

New features, documentation, bugfixes.

	Bug #44 - Accepted arrays in URL-encoded POST.

	Bug #40 - Setup CORS to allow AJAX requests on diecutter’s API.

	Refactoring #37 - Used Jinja’s environment.

	Bug #34 - Frozen buildout configuration file for development environment.

	Features #31 and #43 - Published diecutter’s demo online. Online API URL
changed.

	Feature #24 - Added Sphinx documentation template in diecutter’s demo.

	Feature #23 - Added diecutter’s Sphinx documentation.

	Feature #10 - Added dynamic tree template.

See also milestone 0.3 on bugtracker [https://github.com/diecutter/diecutter/issues?milestone=6&state=closed] [3].

0.2 (2013-02-22)

Maintenance release, implementation refactoring, tests.

	Refactoring #22 - Added tests.

	Bug #17 - Sort directories alphabetically.

	Bug #13 - Fixed “diecutter.readonly” which was always True.

See also milestone 0.2 on bugtracker [https://github.com/diecutter/diecutter/issues?milestone=2&state=closed] [4].

0.1 (2013-01-29)

Initial release.

	Bug #11 - On POST requests, handle empty content-type as
“application/x-www-form-urlencoded”.

	Feature #8 - Support INI files as input for POST requests.

	Feature #3 - Use a configuration file outside diecutter’s code.

	Feature #2 - If “readonly” option is True, forbid PUT requests.

	Feature #1 - Pass a “diecutter” context variable to templates, containing
data such as “diecutter.api_url”, “diecutter.version” and “diecutter.now”.

	Feature - Diecutter service renders directories as ZIP archives.

	Feature - Diecutter service renders files.

See also milestone 0.1 on bugtracker [https://github.com/diecutter/diecutter/issues?milestone=1&state=closed] [5].

Notes & references

	[1]	https://github.com/diecutter/diecutter/issues/milestones

	[2]	https://github.com/diecutter/diecutter/issues?milestone=7&state=closed

	[3]	https://github.com/diecutter/diecutter/issues?milestone=6&state=closed

	[4]	https://github.com/diecutter/diecutter/issues?milestone=2&state=closed

	[5]	https://github.com/diecutter/diecutter/issues?milestone=1&state=closed

Contributing to diecutter

This document provides guidelines for people who want to contribute to the
project.

Resources

	Code repository: https://github.com/diecutter/diecutter

	Bugtracker: https://github.com/diecutter/diecutter/issues

	Continuous integration: https://travis-ci.org/diecutter/diecutter

Create tickets

Please use the bugtracker [https://github.com/diecutter/diecutter/issues] [1] before starting some work:

	check if the bug or feature request has already been filed. It may have been
answered too!

	else create a new ticket.

	if you plan to contribute, tell us, so that we are given an opportunity to
give feedback as soon as possible.

	Then, in your commit messages, reference the ticket with some
refs #TICKET-ID syntax.

Use topic branches

	Work in branches.

	Prefix your branch with the ticket ID corresponding to the issue. As an
example, if you are working on ticket #23 which is about contribute
documentation, name your branch like 23-contribute-doc.

	If you work in a development branch and want to refresh it with changes from
master, please rebase [http://git-scm.com/book/en/Git-Branching-Rebasing] [2] or merge-based rebase [http://tech.novapost.fr/psycho-rebasing-en.html] [3], i.e. do not merge master.

Fork, clone

Clone diecutter repository (adapt to use your own fork):

git clone git@github.com:diecutter/diecutter.git
cd diecutter/

Setup a development environment

System requirements:

	Python [http://python.org] [4] version 2.7 (in a virtualenv [http://virtualenv.org] [5] if you like).

	make and wget to use the provided Makefile.

Execute:

git clone git@github.com:diecutter/diecutter.git
cd diecutter/

Usual actions

The Makefile is the reference card for usual actions in development
environment:

	Install development toolkit with pip [https://pypi.python.org/pypi/pip/] [6]: make develop.

	Run tests with tox [https://pypi.python.org/pypi/tox/] [7]: make test.

	Build documentation: make documentation. It builds Sphinx [https://pypi.python.org/pypi/Sphinx/] [8]
documentation in var/docs/html/index.html.

	Release diecutter project with zest.releaser [https://pypi.python.org/pypi/zest.releaser/] [9]: make release.

	Cleanup local repository: make clean, make distclean and
make maintainer-clean.

Notes & references

	[1]	https://github.com/diecutter/diecutter/issues

	[2]	http://git-scm.com/book/en/Git-Branching-Rebasing

	[3]	http://tech.novapost.fr/psycho-rebasing-en.html

	[4]	http://python.org

	[5]	http://virtualenv.org

	[6]	https://pypi.python.org/pypi/pip/

	[7]	https://pypi.python.org/pypi/tox/

	[8]	https://pypi.python.org/pypi/Sphinx/

	[9]	https://pypi.python.org/pypi/zest.releaser/

Demo

Let’s try diecutter!

Online SAAS

There is an online server hosting diecutter:

	index page: http://diecutter.io/

	demo templates API: http://diecutter.io/api/

	API using Github loader: http://diecutter.io/github/

In most cases, http://diecutter.io/ and Client howto reference should
be enough for you to discover diecutter.

In sourcecode

The demo/ directory in diecutter’s sourcecode [https://github.com/novagile/diecutter/] [1] contains templates in
templates/ folder. They are basically used for documentation
(doctests).

Feel free to use it as a sandbox.

Local demo server

Here are instructions to run diecutter‘s demo on your machine.

System requirements:

	Python [http://python.org] [2] version 2.7, available as python command.

Note

You may use Virtualenv [http://virtualenv.org] [3] to make sure the active python is the right
one.

	make and wget to use the provided Makefile.

Execute:

git clone git@github.com:diecutter/diecutter.git
cd diecutter/
make develop
make serve

The last command runs diecutter service on localhost, port 8106.
Check it at http://localhost:8106/

Tip

If you cannot execute the Makefile, read it and adapt the few
commands it contains to your needs.

Examples

Examples using the demo’s templates are explained in Client howto.

References

	[1]	https://github.com/novagile/diecutter/

	[2]	http://python.org

	[3]	http://virtualenv.org

Presentations

Here are some presentations about diecutter:

	Lightning talk, at an Afpy event, Paris, march 2013
(source)

	Poster, at EuroPython, Florence, july 2013
(source)

	Lightning talk, at Write The Docs, Budapest, march 2014
(source)

FAQ

Here are some frequently asked questions...

Why “diecutter” name?

A “die cutter” is a machine that cuts materials to produce shapes, from molds.

Here, the diecutter web service produces files from data and templates.

Does it replaces my web framework (Django) templates?

diecutter is not meant to replace web framework’s template engines!
Diecutter is meant to replace file generators for configuration or scaffolding
use cases.

Even if processes are really close, environment and needs aren’t.
As an example, diecutter service won’t be as efficient as web frameworks
internal templating systems.

So, even if, in theory, you could use diecutter as a template engine to render
pages of a website, it is discouraged.

Index

 _static/sphinx-quickstart-archive.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/sphinx-quickstart-form.png
Generate Sphinx documentation

Project name | writethedocs)

POST data to generate files

nav.xhtml

 Table of Contents

 		diecutter

 		Client howto

 		General API information

 		Files

 		Directories

 		Posting input context data

 		Targeting template engines

 		Variable-based output filenames

 		Dynamic directory trees templates

 		Server howto

 		Install, configure, run

 		Python API

 		About diecutter

 		Vision

 		Alternatives and related projects

 		License

 		Authors and contributors

 		Changelog

 		Contributing to diecutter

 		Demo

 		Presentations

 		FAQ

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

