

    
      
          
            
  
didery.py Documentation

This project is meant to be used in tandem with didery [https://github.com/reputage/didery] servers.  It provides a python library and cli for communicating with didery servers.
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CLI

Command line interface that utilizes the didery.py library to communicate with didery servers



	Getting Started

	Example Config File

	Example Data File









          

      

      

    

  

    
      
          
            
  
Getting Started

You will need python 3.6 and libsodium installed to run didery.py. You
can find python 3.6 here [https://www.python.org/downloads/] and
libsodium here [https://download.libsodium.org/doc/installation/].
It is recommended that you also setup a python virtual environment as
shown
here [http://cewing.github.io/training.python_web/html/presentations/venv_intro.html].


Installation

To install didery.py start your virtual environment and run the command
below:

$ pip install -e didery.py/








Usage

To see the command line options use the command below:

$ didery --help





Usage: didery [OPTIONS] CONFIG

Options:
  -i, --incept      Send a key rotation history inception event.
  -u, --upload      Upload a new otp encrypted private key.
  -r, --rotate      Rotate public/private key pairs.
  -U, --update      Update otp encrypted private key.
  -R, --retrieve    Retrieve key rotation history.
  -d, --download    Download otp encrypted private key.
  -D, --delete      Delete rotation history.
  -m, --remove      Remove otp encrypted private key.
  -e, --events      Pull a record of all history rotation events for a
                    specified did.
  -v                Verbosity of console output. There are 5 verbosity levels
                    from '' to '-vvvv.'
  -M, --mute        Mute all console output except prompts.
  --data PATH       Path to the data file.
  --did TEXT        decentralized identifier(did).
  --save DIRECTORY  Directory to store generated key files in.
  --help            Show this message and exit.






Config File

The CLI requires a path to a json formatted config file with a list of
didery endpoints as shown below.

{
    "servers": ["http://localhost:8080", "http://localhost:8000"]
}





“servers” [list] required - A list of server address strings. This
must be supplied so the library knows what servers to broadcast and poll
from. To determine if there is a consensus on polling a 2/3 of the
servers must return matching responses.




Data File

For certain commands it is necessary to supply a data file. The file
should be json formatted and will contain either the rotation history or
the one time pad [https://en.wikipedia.org/wiki/One-time_pad](otp)
encrypted blob. The data file is required for the following options:

–upload

–rotate

The file should follow the format below for history data:

{
    "history": {
        "id": "did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
        "signer": 0,
        "signers":
        [
            "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
            "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148="
        ]
    }
}





“id” [string] required - Decentralized identifier
(DID) [https://w3c-ccg.github.io/did-spec/].

“signer” [integer] required - 0 based index into signers field.
Rotation events signer field will always be 1 or greater.

“signers” [list] required - List of all public keys. Must contain
at least two keys for –upload and 3 or more for –rotation.

The file should follow the format below for
otp [https://en.wikipedia.org/wiki/One-time_pad] data:

{
    "otp": {
        "blob": "AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw",
        "id": "did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE="
    }
}






“id” [string] required

- Decentralized identifier
(DID) [https://w3c-ccg.github.io/did-spec/].




“blob” [string] required

- otp [https://en.wikipedia.org/wiki/One-time_pad] encrypted
private keys.











          

      

      

    

  

    
      
          
            
  
Example Config File


config.json

{
    "servers": ["http://localhost:8080", "http://localhost:8000"]
}











          

      

      

    

  

    
      
          
            
  
Example Data File


data.json

{
    "history": {
        "id": "did:dad:LYyYqfpFLbRcqqah3ViCBPl-c0wW5qo7IpT9Fl13I4Q=",
        "signer": 1,
        "signers":
        [
            "LYyYqfpFLbRcqqah3ViCBPl-c0wW5qo7IpT9Fl13I4Q=",
            "CQPaPAhXN0zS0pP94ms1usKlCPUK1GBXBlCSlXMX02U=",
            "qofdqNFvYbi52ZzaVM9hB0i8hUNbUQRZkhpHFpyYcfU="
        ]
    },
    "otp": {
        "blob": "AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw",
        "id": "did:dad:LYyYqfpFLbRcqqah3ViCBPl-c0wW5qo7IpT9Fl13I4Q=",
        "sk": "ntyGO3FQIYjLTZZXTVNWU_HKkiBrnOzQvmkytuqDaGwtjJip-kUttFyqpqHdWIIE-X5zTBbmqjsilP0WXXcjhA==",
        "psk": "G5j_tFLUB6Ad08ZFOfNl36BBq6MJd8Q40dIIZa2XejMJA9o8CFc3TNLSk_3iazW6wqUI9QrUYFcGUJKVcxfTZQ==",
        "ppvk": "qofdqNFvYbi52ZzaVM9hB0i8hUNbUQRZkhpHFpyYcfU=",
        "ppsk": "KrUp_AowwQe6eEq-Qggt4wcKZ5x2fHSnZdzaZbH1mSaqh92o0W9huLnZnNpUz2EHSLyFQ1tRBFmSGkcWnJhx9Q=="
    }
}











          

      

      

    

  

    
      
          
            
  
Library

Python library for generating keys and broadcasting or polling didery servers.



	Getting Started

	didering.py

	generating.py

	historying.py

	history_eventing.py

	otping.py









          

      

      

    

  

    
      
          
            
  
Getting Started

You will need python 3.6 and libsodium installed to run didery.py. You
can find python 3.6 here [https://www.python.org/downloads/] and
libsodium here [https://download.libsodium.org/doc/installation/].


Installation

To install didery.py start your virtual environment and run the command
below:

$ pip install -e didery.py/








Importing

import diderypy.lib as lib

vk, sk, = lib.generating.keyGen()

print(vk)
print(sk)











          

      

      

    

  

    
      
          
            
  
didering.py

This module provides various
DID [https://w3c-ccg.github.io/did-spec/] generation and
manipulation functions for use with the didery server.


didering.didGen(vk, [method])

didGen accepts an EdDSA (Ed25519) key in the form of a byte string and
returns a DID.


vk (required)- 32 byte verifier/public key from EdDSA (Ed25519)
key

method (optional) - W3C did
method [https://w3c-ccg.github.io/did-spec/#specific-did-method-schemes]
string. Defaults to “dad”.



returns - W3C DID [https://w3c-ccg.github.io/did-spec/] string


Example

import diderypy.lib.didering as did


vk = b'\xfdv\xae\xeb\xe7\x08Q\xaf\xedY\xcf\x8b"\xfc\xa6\xeb\x1c@\x89}\xdb\xed\x16\xa5\xb6\x88\x18\xc8\x1a%O\x83'

# use the default method
did1 = did.didGen(vk)

# or you can specify a method like igo
did2 = did.didGen(vk, "igo")

print(did1)
print(did2)








Output

did:dad:_Xau6-cIUa_tWc-LIvym6xxAiX3b7RaltogYyBolT4M=
did:igo:_Xau6-cIUa_tWc-LIvym6xxAiX3b7RaltogYyBolT4M=










didering.didGen64(vk64u, [method]):

didGen accepts a url-file safe base64 key in the form of a string and
returns a DID.


vk64u (required)- base64 url-file safe verifier/public key from
EdDSA (Ed25519) key

method (optional) - W3C did
method [https://w3c-ccg.github.io/did-spec/#specific-did-method-schemes]
string. Defaults to “dad”



returns - W3C DID [https://w3c-ccg.github.io/did-spec/] string


Example

import diderypy.lib.didering as did


vk = "nxESHveBmK9RsEkgaZi-cNPvW0zO-ujOWEW7oKb7EYI="

# use the default method
did1 = did.didGen64(vk)

# or you can specify a method like igo
did2 = did.didGen64(vk, "igo")

print(did1)
print(did2)








Output

did:dad:nxESHveBmK9RsEkgaZi-cNPvW0zO-ujOWEW7oKb7EYI=
did:igo:nxESHveBmK9RsEkgaZi-cNPvW0zO-ujOWEW7oKb7EYI=










didering.extractDidParts(did):

extractDidParts parses and returns a tuple containing the prefix method
and key string contained in the supplied W3C
DID [https://w3c-ccg.github.io/did-spec/] string. If the supplied
string does not fit the pattern pre:method:keystr a ValueError is
raised.

did (required)- W3C DID [https://w3c-ccg.github.io/did-spec/]
string

returns - (pre, method, key string) a tuple containing the did
parts.


Example

import diderypy.lib.didering as did


did1 = "did:dad:nxESHveBmK9RsEkgaZi-cNPvW0zO-ujOWEW7oKb7EYI="
did2 = "did:igo:nxESHveBmK9RsEkgaZi-cNPvW0zO-ujOWEW7oKb7EYI="


result1 = did.extractDidParts(did1)
result2 = did.extractDidParts(did2)

print(result1)
print(result2)








Output

('did', 'dad', 'nxESHveBmK9RsEkgaZi-cNPvW0zO-ujOWEW7oKb7EYI=')
('did', 'igo', 'nxESHveBmK9RsEkgaZi-cNPvW0zO-ujOWEW7oKb7EYI=')










didering.validateDid(did, [method]):

validateDid accepts a W3C DID [https://w3c-ccg.github.io/did-spec/]
string and an optional method argument. It returns the DID as well as
the public/verifier key contained in the did. If the DID is invalid a
ValueError is raised.


did (required)- W3C
DID [https://w3c-ccg.github.io/did-spec/] string

method (optional) - W3C did
method [https://w3c-ccg.github.io/did-spec/#specific-did-method-schemes]
string. Defaults to “dad”



returns - Tuple with W3C
DID [https://w3c-ccg.github.io/did-spec/] string, and the did’s
verifier/public key


Example

import diderypy.lib.didering as did


did1 = "did:dad:nxESHveBmK9RsEkgaZi-cNPvW0zO-ujOWEW7oKb7EYI="
did2 = "did:igo:nxESHveBmK9RsEkgaZi-cNPvW0zO-ujOWEW7oKb7EYI="

# use the default method
result1 = did.validateDid(did1)

# or you can specify a method like igo
result2 = did.validateDid(did2, "igo")

print(result1)
print(result2)








Output

('did:dad:nxESHveBmK9RsEkgaZi-cNPvW0zO-ujOWEW7oKb7EYI=', 'nxESHveBmK9RsEkgaZi-cNPvW0zO-ujOWEW7oKb7EYI=')
('did:igo:nxESHveBmK9RsEkgaZi-cNPvW0zO-ujOWEW7oKb7EYI=', 'nxESHveBmK9RsEkgaZi-cNPvW0zO-ujOWEW7oKb7EYI=')













          

      

      

    

  

    
      
          
            
  
generating.py

This module provides various key generation and manipulation functions
for use with the didery server. Keys are generated using the python
libnacl library.


generating.keyToKey64u(key):

keyToKey64u allows you to convert a key from a byte string to a base64
url-file safe string.

key (required)- 32 byte string

returns - base64 url-file safe string


Example

import diderypy.lib.generating as gen


vk = b'\xfdv\xae\xeb\xe7\x08Q\xaf\xedY\xcf\x8b"\xfc\xa6\xeb\x1c@\x89}\xdb\xed\x16\xa5\xb6\x88\x18\xc8\x1a%O\x83'

# convert the key
key = gen.keyToKey64u(vk)

print(key)








Output

_Xau6-cIUa_tWc-LIvym6xxAiX3b7RaltogYyBolT4M=










generating.key64uToKey(key64u):

key64uToKey allows you to convert a base64 url-file safe key string to a
byte string

key64u (required)- base64 ulr-file safe string

returns - byte string


Example

import diderypy.lib.generating as gen


key64u = "nxESHveBmK9RsEkgaZi-cNPvW0zO-ujOWEW7oKb7EYI="

# convert the key
key = gen.key64uToKey(key64u)

print(key)








Output

b'\x9f\x11\x12\x1e\xf7\x81\x98\xafQ\xb0I i\x98\xbep\xd3\xef[L\xce\xfa\xe8\xceXE\xbb\xa0\xa6\xfb\x11\x82'










generating.keyGen(seed=None):

keyGen generates a url-file safe base64 public private key pair. If a
seed is not provided libnacl’s randombytes() function will be used to
generate a seed.

seed (optional)- The seed value used during key generation.

returns - url-file safe base64 verifier/public key, signing/private
key


Example

import libnacl
import diderypy.lib.generating as gen


seed = libnacl.randombytes(libnacl.crypto_sign_SEEDBYTES)

# generate key pair with custom seed
vk, sk, did = gen.keyGen(seed)
print(vk)
print(sk)
print(did)

# generate key pair with built in seed
vk, sk, did = gen.keyGen()
print(vk)
print(sk)
print(did)








Output

0RvCaAvHInLezCP97jaHoPokAGfP5LTpwAvcR4YqNxQ=
qNrFUd0pqLbTLIIo_xXpQFuKrqFJe45GO_dMt_OqPITRG8JoC8cict7MI_3uNoeg-iQAZ8_ktOnAC9xHhio3FA==
did:dad:0RvCaAvHInLezCP97jaHoPokAGfP5LTpwAvcR4YqNxQ=

0hZpSyBosXHj52TkceVdJoPGmGt26D5ErAEO0I5m-bg=
qNjuiN_MijfK8eIvJJ4mf7IRMh7noEK92KAUNXzNPPXSFmlLIGixcePnZORx5V0mg8aYa3boPkSsAQ7Qjmb5uA==
did:dad:0hZpSyBosXHj52TkceVdJoPGmGt26D5ErAEO0I5m-bg=










generating.historyGen(seed=None):

historyGen generates a new key history dictionary and returns the
history along with all generated keys. If a seed is not provided
libnacl’s randombytes() function will be used to generate a seed.

seed (optional)- The seed value used during key generation.

returns - - a history dictionary with an “id”, “signer” and
“signers” field - url-file safe base64 verifier/public key string -
url-file safe base64 signing/private key - url-file safe base64
pre-rotated verifier/public key - url-file safe base64 pre-rotated
signing/private key


Example

import libnacl
import diderypy.lib.generating as gen

seed = libnacl.randombytes(libnacl.crypto_sign_SEEDBYTES)

# generate key pair with custom seed
history, vk, sk, pvk, psk = gen.historyGen(seed)
print("History: {}".format(history))
print("public/verification key: \n{}".format(vk))
print("private/signing key: \n{}".format(sk))
print("pre-rotated public/verification key: \n{}".format(pvk))
print("pre-rotated private/signing key: \n{}".format(psk))

# generate key pair with built in seed
history, vk, sk, pvk, psk = gen.historyGen()
print("History: \n{}".format(history))
print("public/verification key: \n{}".format(vk))
print("private/signing key: \n{}".format(sk))
print("pre-rotated public/verification key: \n{}".format(pvk))
print("pre-rotated private/signing key: \n{}".format(psk))








Output

History: {
    'id': 'did:dad:i2ZGgZbsjw0SsZPJLis5sBjBl_FBO9cAk7tOdcCtMt0=',
    'signer': 0,
    'signers': [
        'i2ZGgZbsjw0SsZPJLis5sBjBl_FBO9cAk7tOdcCtMt0=',
        'i2ZGgZbsjw0SsZPJLis5sBjBl_FBO9cAk7tOdcCtMt0='
    ]
}

public/verification key:
i2ZGgZbsjw0SsZPJLis5sBjBl_FBO9cAk7tOdcCtMt0=

private/signing key:
SiMxYSaGTF2XHx648dqNAIfSOoRfQd-3SbE0sT7WE72LZkaBluyPDRKxk8kuKzmwGMGX8UE71wCTu051wK0y3Q==

pre-rotated public/verification key:
i2ZGgZbsjw0SsZPJLis5sBjBl_FBO9cAk7tOdcCtMt0=

pre-rotated private/signing key:
SiMxYSaGTF2XHx648dqNAIfSOoRfQd-3SbE0sT7WE72LZkaBluyPDRKxk8kuKzmwGMGX8UE71wCTu051wK0y3Q==



History: {
    'id': 'did:dad:ognfYHtL5HLAQUox5jODI2L5R8O3coGsN3ZKEfrKRqc=',
    'signer': 0,
    'signers': [
        'ognfYHtL5HLAQUox5jODI2L5R8O3coGsN3ZKEfrKRqc=',
        'FuacQCdWImyzZwcMkIxKjoH1Kp_4SY6KsGWhc83fGrc='
    ]
}

public/verification key:
ognfYHtL5HLAQUox5jODI2L5R8O3coGsN3ZKEfrKRqc=

private/signing key:
0rmt38sxKXWwwMfhGzGmt5tCNcLOsW4_kYu5zULbGVeiCd9ge0vkcsBBSjHmM4MjYvlHw7dygaw3dkoR-spGpw==

pre-rotated public/verification key:
FuacQCdWImyzZwcMkIxKjoH1Kp_4SY6KsGWhc83fGrc=

pre-rotated private/signing key:
t9CMQT-u3VhAj7R-GuZ_UaScc_RGE7E-YgJxfIhMLAoW5pxAJ1YibLNnBwyQjEqOgfUqn_hJjoqwZaFzzd8atw==













          

      

      

    

  

    
      
          
            
  
historying.py

This module provides methods for asynchronously broadcasting and polling
multiple didery servers for rotation histories. In the event of polling
from the servers the methods will automatically check for a 2/3 majority
of matching responses.


historying.postHistory(data, sk, urls)

postHistory accepts a didery rotation history, a signing/private key,
and a list of urls and returns a dictionary of url, response key pairs


data (required)- rotation history as specified in the didery
documentation [https://github.com/reputage/didery/wiki/Public-API#add-rotation-history]

sk (required)- current signing key. base64 url-file safe
signing/private key from EdDSA (Ed25519) key pair

urls (required)- list of url strings to query




Example

import diderypy.lib.historying as hist
import diderypy.lib.generating as gen

# generate the rotation history
history, vk, sk, pvk, psk = gen.historyGen()

urls = ["http://localhost:8080", "http://localhost:8000"]

result = hist.postHistory(history, sk, urls)

print(result)








Output

{
    "http://localhost:8000": {
        "data": {
            "history": {
                "id": "did:dad:cF8UIyTkUYg-I0kW5VmOsvy69Usmwy4-VgNxaeM95W8=",
                "signer": 0,
                "signers": [
                    "cF8UIyTkUYg-I0kW5VmOsvy69Usmwy4-VgNxaeM95W8=",
                    "sPCgHd2yrudecNchcXXCHVybFr9HfXPIcTP0xddJBNY="
                ],
                "changed": "2018-07-16T19:52:39.115677+00:00"
            },
            "signatures": {
                "signer": "7J2kDoAd975cDwdczE6H-9HBqVPHl4mvQepsO1nhe1eH9rLZsHzv7Bd9uufmWGKEKbowMQROONSIiROMam7CDQ=="
            }
        },
        "http_status": 201
    },
    "http://localhost:8080": {
        "data": {
            "history": {
                "id": "did:dad:cF8UIyTkUYg-I0kW5VmOsvy69Usmwy4-VgNxaeM95W8=",
                "signer": 0,
                "signers": [
                    "cF8UIyTkUYg-I0kW5VmOsvy69Usmwy4-VgNxaeM95W8=",
                    "sPCgHd2yrudecNchcXXCHVybFr9HfXPIcTP0xddJBNY="
                ],
                "changed": "2018-07-16T19:52:39.115677+00:00"
            },
            "signatures": {
                "signer": "7J2kDoAd975cDwdczE6H-9HBqVPHl4mvQepsO1nhe1eH9rLZsHzv7Bd9uufmWGKEKbowMQROONSIiROMam7CDQ=="
            }
        },
        "http_status": 201
    }
}










historying.putHistory(data, sk, psk, urls)

putHistory sends a rotation event to the didery servers where they
verify and store the event. putHistory returns a dictionary of url,
response key pairs


data (required)- rotation history as specified in the didery
documentation [https://github.com/reputage/didery/wiki/Public-API#rotation-event]

sk (required)- current signing key. base64 url-file safe
signing/private key from EdDSA (Ed25519) key pair

psk (required)- pre rotated signing key. base64 url-file safe
signing/private key from EdDSA (Ed25519) key pair

urls (required)- list of url strings to query




Example

import diderypy.lib.historying as hist
import diderypy.lib.generating as gen

# rotation history must already exist before sending the put request
history, vk, sk, pvk, psk = gen.historyGen()

urls = ["http://localhost:8080", "http://localhost:8000"]

hist.postHistory(history, sk, urls)

# generate the new pre rotated key
new_pvk, new_psk, unneeded = gen.keyGen()

# add public key to history
history["signers"].append(new_pvk)

# update current signer
history["signer"] = 1

# send rotation event
result = hist.putHistory(history,sk, psk, urls)

print(result)








Output

{
    "http://localhost:8000": {
        "data": {
            "history": {
                "id": "did:dad:R_B11yIRNt19ty_Lvt8OpZuA0_Mgs1he6zPXyttl4V4=",
                "signer": 1,
                "signers": [
                    "R_B11yIRNt19ty_Lvt8OpZuA0_Mgs1he6zPXyttl4V4=",
                    "Qbf97bKWC2G5KYM0BSX4aMWiLx-Exh3FUf4E7k6i_AY=",
                    "DHowCo3BOUyxXfx9LhI9koSDI7IQwiM7aV4H7AZ6I_A="
                ],
                "changed": "2018-07-16T20:18:29.527613+00:00"
            },
            "signatures": {
                "signer": "edDONPBidBWn1gQWNIRjtKeURGAKlfH5aHm-Ib_9thqJfVAlqaS4wSl8Ru_nHNU04OEgO9-FtvxQq_NXxyGmBQ==",
                "rotation": "6hsvAoZmwzqZxegm6JeYpuFPTVQIL2g0NAiF-tkDdhnVBnMp2I5XC4iC7FPqsCbosTcl0Ddnaj8LkVKIzgTdCA=="
            }
        },
        "http_status": 200
    },
    "http://localhost:8080": {
        "data": {
            "history": {
                "id": "did:dad:R_B11yIRNt19ty_Lvt8OpZuA0_Mgs1he6zPXyttl4V4=",
                "signer": 1,
                "signers": [
                    "R_B11yIRNt19ty_Lvt8OpZuA0_Mgs1he6zPXyttl4V4=",
                    "Qbf97bKWC2G5KYM0BSX4aMWiLx-Exh3FUf4E7k6i_AY=",
                    "DHowCo3BOUyxXfx9LhI9koSDI7IQwiM7aV4H7AZ6I_A="
                ],
                "changed": "2018-07-16T20:18:29.527613+00:00"
            },
            "signatures": {
                "signer": "edDONPBidBWn1gQWNIRjtKeURGAKlfH5aHm-Ib_9thqJfVAlqaS4wSl8Ru_nHNU04OEgO9-FtvxQq_NXxyGmBQ==",
                "rotation": "6hsvAoZmwzqZxegm6JeYpuFPTVQIL2g0NAiF-tkDdhnVBnMp2I5XC4iC7FPqsCbosTcl0Ddnaj8LkVKIzgTdCA=="
            }
        },
        "http_status": 200
    }
}










historying.getHistory(did, urls)

getHistory accepts a W3C decentralized
identifier(DID [https://w3c-ccg.github.io/did-spec/]) string and a
list of urls to poll and returns a single rotation history if 2/3 of the
urls returned matching data. If less than 2/3 returned matching data
None is returned.


did (required)- W3C decentralized
identifier(DID [https://w3c-ccg.github.io/did-spec/]) string

urls (required)- list of url strings to query



returns - (dict, dict) containing the rotation history as shown on
the didery documentation and a results dict containing a short string
description for each url. The results dict can be used to determine what
urls failed.


Example

import diderypy.lib.historying as hist
import diderypy.lib.generating as gen

# generate the rotation history
history, vk, sk, pvk, psk = gen.historyGen()

urls = ["http://localhost:8080", "http://localhost:8000"]

# history must already exist to use getHistory
hist.postHistory(history, sk, urls)

did = history["id"]

data, results = hist.getHistory(did, urls)

if data is None:
    # Consensus could not be reached. Print results for each url
    for url, result in results.items():
        print("{}:\t{}".format(url, result))
else:
    print(data)








Output

{
    "history": {
        "id": "did:dad:g3Jr_qvnh4EERpl0ohu8HNz07gw4Im666Gz7KL81U5g=",
        "signer": 0,
        "signers": [
            "g3Jr_qvnh4EERpl0ohu8HNz07gw4Im666Gz7KL81U5g=",
            "M4t0cFPqWzg6uy2OjOZwhyNQ6rrZBO4DIO51o-Ax7wo="
        ],
        "changed": "2018-07-16T21:03:41.381008+00:00"
    },
    "signatures": {
        "signer": "TnC14l6ojngaVfmRJLqePT4YC22wgKgAd7GFDlyWswshC3G46_FNcMo4rSQxm-tIFgC2VWRXQt_C6wd_HO2qDQ=="
    }
}










historying.deleteHistory(did, sk, urls)

For GDPR compliance a delete method is provided. For security reasons
the data cannot be deleted without signing with the current key.


did (required)- W3C decentralized
identifier(DID [https://w3c-ccg.github.io/did-spec/]) string
sk (required)- current signing key. base64 url-file safe
signing/private key from EdDSA (Ed25519) key pair

urls (required)- list of url strings to query



returns - dict containing the rotation history that was deleted.


Example

import diderypy.lib.historying as hist
import diderypy.lib.generating as gen

# generate the rotation history
history, vk, sk, pvk, psk = gen.historyGen()

urls = ["http://localhost:8080", "http://localhost:8000"]

# history must already exist to use getHistory
hist.postHistory(history, sk, urls)

did = history["id"]

response = hist.deleteHistory(did, sk, urls)

print(response)








Output

{
    "http://localhost:8000": {
        "data": {
            "deleted": {
                "history": {
                    "id": "did:dad:7oW7Qev4Hz6md7ldniP_EZduufdsnP5NCGdh_7JipIg=",
                    "signer": 0,
                    "signers": [
                        "7oW7Qev4Hz6md7ldniP_EZduufdsnP5NCGdh_7JipIg=",
                        "KoFfNTrnqhCw2vdzXqFg_gUH-bdWfWSTQoaJnf5BZBg="
                    ],
                    "changed": "2018-08-21T20:43:22.359170+00:00"
                },
                "signatures": {
                    "signer": "FNV0Eiw7K79u0o7rBQFBzE8BHIf57CebdUxki-lbkYhb-7JgI9wJz0OOhnwCkWxQ_gKS4vZJTtoDW06uan-ICg=="
                }
            }
        },
        "http_status": 200
    },
    "http://localhost:8080": {
        "data": {
            "deleted": {
                "history": {
                    "id": "did:dad:7oW7Qev4Hz6md7ldniP_EZduufdsnP5NCGdh_7JipIg=",
                    "signer": 0,
                    "signers": [
                        "7oW7Qev4Hz6md7ldniP_EZduufdsnP5NCGdh_7JipIg=",
                        "KoFfNTrnqhCw2vdzXqFg_gUH-bdWfWSTQoaJnf5BZBg="
                    ],
                    "changed": "2018-08-21T20:43:22.359170+00:00"
                },
                "signatures": {
                    "signer": "FNV0Eiw7K79u0o7rBQFBzE8BHIf57CebdUxki-lbkYhb-7JgI9wJz0OOhnwCkWxQ_gKS4vZJTtoDW06uan-ICg=="
                }
            }
        },
        "http_status": 200
    }
}













          

      

      

    

  

    
      
          
            
  
history_eventing.py

This module provides methods for asynchronously polling multiple didery
servers for rotation history events. The methods will automatically
check for a 2/3 majority of matching responses from didery servers.


history_eventing.getHistoryEvents(did, urls)

getHistoryEvents accepts a W3C decentralized
identifier(DID [https://w3c-ccg.github.io/did-spec/]) string and a
list of urls to poll and returns all events for a rotation history. This
includes the inception event and all subsequent rotations events with
their corresponding signatures so you can verify that the data and the
current key are all valid. All data returned from the didery servers is
put through a consensus algorithm that requires a 2/3 majority of data
to match. If 2/3 of the urls returned matching data a single copy of the
data is returned. If a majority consensus cannot be found then None is
returned. The http request results are returned as a dict of key(url)
value(status) pairs.


did (required)- W3C decentralized
identifier(DID [https://w3c-ccg.github.io/did-spec/]) string

urls (required)- list of url strings to query



returns - (dict, dict) containing the events as shown in the output
section below and a results dict containing a short string description
for each url. The results dict can be used to determine what urls
failed.


Example

import diderypy.lib.history_eventing as events
import diderypy.lib.historying as hist
import diderypy.lib.generating as gen

# rotation history must already exist before sending the put request
history, vk, sk, pvk, psk = gen.historyGen()
did = history["id"]

urls = ["http://localhost:8080", "http://localhost:8000"]

hist.postHistory(history, sk, urls)

# generate the new pre rotated key
new_pvk, new_psk, unneeded = gen.keyGen()

# add public key to history
history["signers"].append(new_pvk)

# update current signer
history["signer"] = 1

# send rotation event
hist.putHistory(history,sk, psk, urls)

data, results = events.getHistoryEvents(did, urls)

if data is None:
    # Consensus could not be reached. Print results for each url
    for url, result in results.items():
        print("{}:\t{}".format(url, result))
else:
    print(data)








Output

{
    "events": {
        "1": {
            "history": {
                "id": "did:dad:l8jrnoFp-D1SUYZtrp-McD_L2lVmBdKI1LS3hJ6D0Fc=",
                "signer": 1,
                "signers": [
                    "l8jrnoFp-D1SUYZtrp-McD_L2lVmBdKI1LS3hJ6D0Fc=",
                    "HOTSwhtdXXPBYiqtzVz2yGUzipFPjuAuEALbe0FFwzc=",
                    "KSAHDoapdn1SW2WVbqlRac3UqJp7tgMRPdjtUEx8Drw="
                ],
                "changed": "2018-09-04T22:39:32.512473+00:00"
            },
            "signatures": {
                "signer": "9msgtbfjmCyaOkZgeW-q_N6bGUZGTZ-6z54fAf-juzhXgI0G8QfBk9P_Mzr832AdXjLus1QvOjNj-It_fnsVAw==",
                "rotation": "x7lA29AXGGDiDxSrPEBO4-hwQg2ILEk0XVvJyUM1OdSWl5agBjmFCch3_L8WtmtIUZGDzYRD3JZpXztISmF0CQ=="
            }
        },
        "0": {
            "history": {
                "id": "did:dad:l8jrnoFp-D1SUYZtrp-McD_L2lVmBdKI1LS3hJ6D0Fc=",
                "signer": 0,
                "signers": [
                    "l8jrnoFp-D1SUYZtrp-McD_L2lVmBdKI1LS3hJ6D0Fc=",
                    "HOTSwhtdXXPBYiqtzVz2yGUzipFPjuAuEALbe0FFwzc="
                ],
                "changed": "2018-09-04T22:39:32.483239+00:00"
            },
            "signatures": {
                "signer": "X76g8FU1nxTiJZFpbrLIpGFPMIcpQnQ4dwB7G_AR3ksb1BCVMajzCoe2J4fXfNolOvU7i8kW7m_p6X1ETtWtCQ=="
            }
        }
    }
}













          

      

      

    

  

    
      
          
            
  
otping.py

This module provides methods for asynchronously broadcasting and polling
multiple didery servers for one time
pad(otp [https://en.wikipedia.org/wiki/One-time_pad]) encrypted
blobs. In the event of polling from the servers the methods will
automatically check for a 2/3 majority of matching responses.


otping.postOtpBlob(data, sk, urls)

postOtpBlob accepts otp blob dict, a signing/private key, and a list of
urls and returns a dictionary of url, response key pairs


data (required)- otp encrypted blob data as specified in the
didery
documentation [https://github.com/reputage/didery/wiki/Public-API#add-otp-encrypted-key]

sk (required)- signing key associated with the public key in the
accompanying did. base64 url-file safe signing/private key from EdDSA
(Ed25519) key pair

urls (required)- list of url strings to query




Example

import diderypy.lib.otping as otp
import diderypy.lib.generating as gen

# generate a did for the data
vk, sk, did = gen.keyGen()

data = {
    "id": did,
    "blob": "AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw"
}

urls = ["http://localhost:8080", "http://localhost:8000"]

result = otp.postOtpBlob(data, sk, urls)

print(result)








Output

{
    "http://localhost:8000": {
        "data": {
            "otp_data": {
                "id": "did:dad:V7A6qo1D8VG7ZXF2h1vVeANPHrcmljPgpBNb2c4g2wA=",
                "blob": "AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw",
                "changed": "2018-07-16T21:16:50.056107+00:00"
            },
            "signatures": {
                "signer": "b1M0f78dfMWYBpDaM7sQujmGh1HWlcLjTW7BTrIyCoXBXsrOltEXa_K--Sblox1BCoBpSZ8k0uvN0j88P12DAQ=="
            }
        },
        "http_status": 201
    },
    "http://localhost:8080": {
        "data": {
            "otp_data": {
                "id": "did:dad:V7A6qo1D8VG7ZXF2h1vVeANPHrcmljPgpBNb2c4g2wA=",
                "blob": "AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw",
                "changed": "2018-07-16T21:16:50.056107+00:00"
            },
            "signatures": {
                "signer": "b1M0f78dfMWYBpDaM7sQujmGh1HWlcLjTW7BTrIyCoXBXsrOltEXa_K--Sblox1BCoBpSZ8k0uvN0j88P12DAQ=="
            }
        },
        "http_status": 201
    }
}










otping.putOtpBlob(data, sk, urls)

putOtpBlob sends an updated otp encrypted blob to the didery servers.
putOtpBlob returns a dictionary of url, response key pairs


data (required)- otp encrypted blob data as specified in the
didery
documentation [https://github.com/reputage/didery/wiki/Public-API#add-otp-encrypted-key]

sk (required)- current signing key. base64 url-file safe
signing/private key from EdDSA (Ed25519) key pair

urls (required)- list of url strings to query




Example

import diderypy.lib.otping as otp
import diderypy.lib.generating as gen

# make sure there is already data on the server for our did
vk, sk, did = gen.keyGen()

data = {
    "id": did,
    "blob": "AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw"
}

urls = ["http://localhost:8080", "http://localhost:8000"]

otp.postOtpBlob(data, sk, urls)

# Update data on the server
data["blob"] = "OtjioHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw"

result = otp.putOtpBlob(data, sk, urls)

print(result)








Output

{
    "http://localhost:8000": {
        "data": {
            "otp_data": {
                "id": "did:dad:Hz3XqAcXUPhiGH_OH65DfBVikYyT8A27Oe6X203Ktp8=",
                "blob": "OtjioHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw",
                "changed": "2018-07-16T21:27:53.028815+00:00"
            },
            "signatures": {
                "signer": "-UgO0QssuQbhOKPJxB4JCqfWho1lwUh018C0Rxkk2ZI_PDJKqPNfS9DwUNV1JbYeZMpO-RC-zhOdgWKxjr1dBg=="
            }
        },
        "http_status": 200
    },
    "http://localhost:8080": {
        "data": {
            "otp_data": {
                "id": "did:dad:Hz3XqAcXUPhiGH_OH65DfBVikYyT8A27Oe6X203Ktp8=",
                "blob": "OtjioHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw",
                "changed": "2018-07-16T21:27:53.028815+00:00"
            },
            "signatures": {
                "signer": "-UgO0QssuQbhOKPJxB4JCqfWho1lwUh018C0Rxkk2ZI_PDJKqPNfS9DwUNV1JbYeZMpO-RC-zhOdgWKxjr1dBg=="
            }
        },
        "http_status": 200
    }
}










otping.getOtpBlob(did, urls)

getOtpBlob accepts a W3C decentralized
identifier(DID [https://w3c-ccg.github.io/did-spec/]) string and a
list of urls to poll. getOtpBlob returns a single otp blob if 2/3 of the
urls returned matching data. If less than 2/3 returned matching data
None is returned.


did (required)- W3C decentralized
identifier(DID [https://w3c-ccg.github.io/did-spec/]) string

urls (required)- list of url strings to query



returns - (dict, dict) containing the otp encrypted blob as shown on
the didery documentation and a results dict containing a short string
description for each url. The results dict can be used to determine what
urls failed and why.


Example

import diderypy.lib.otping as otp
import diderypy.lib.generating as gen

# generate a did for the data
vk, sk, did = gen.keyGen()

data = {
    "id": did,
    "blob": "AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw"
}

urls = ["http://localhost:8080", "http://localhost:8000"]

# data must already exist for getOtpBlob to work
otp.postOtpBlob(data, sk, urls)

# retrieve the otp data
data, results = otp.getOtpBlob(did, urls)

if data is None:
    # Consensus could not be reached. Print results for each url
    for url, result in results.items():
        print("{}:\t{}".format(url, result))
else:
    print(data)








Output

{
    "otp_data": {
        "id": "did:dad:xe5I8KgW7OkeZ6x5oHtfx5NQyJWOnoFZ_djOZr0dGz0=",
        "blob": "AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw", "changed": "2018-07-16T21:38:04.899640+00:00"
    },
    "signatures": {
        "signer": "Az-qzuaOu1xelHU9quxPMZynZZAdc1BzqUchmJVIPUsFB7QdLBnHB_CXNdGK6okkDaCaxXCsyk4icQBW_dqLDA=="
    }
}










historying.removeOtpBlob(did, sk, urls)

For GDPR compliance a delete method is provided. For security reasons
the data cannot be deleted without signing with the signing key
associated with the public key in the did.


did (required)- W3C decentralized
identifier(DID [https://w3c-ccg.github.io/did-spec/]) string
sk (required)- current signing key. base64 url-file safe
signing/private key from EdDSA (Ed25519) key pair

urls (required)- list of url strings to query



returns - dict containing the one time pad encrypted keys that were
deleted.


Example

import diderypy.lib.otping as otp
import diderypy.lib.generating as gen

# generate a did for the data
vk, sk, did = gen.keyGen()

data = {
    "id": did,
    "blob": "AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw"
}

urls = ["http://localhost:8080", "http://localhost:8000"]

# data must already exist for getOtpBlob to work
otp.postOtpBlob(data, sk, urls)

# delete the otp encrypted data
response = otp.removeOtpBlob(did, sk, urls)

print(response)








Output

{
    "http://localhost:8000": {
        "data": {
            "deleted": {
                "otp_data": {
                    "id": "did:dad:pq4ovXgMGYILIfW9Vx55-ebugLWA-7Ii6qLnPUjZVFk=",
                    "blob": "AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw",
                    "changed": "2018-08-02T21:45:30.795185+00:00"
                },
                "signatures": {
                    "signer": "9ZIRyzBh9WkVaksQoUlBRB_Zrlg8kjcepjcOvPTSjj784uYVGusWiDkSq3nOyTp78v_eHEbzDEKFw6WscN6uAw=="
                }
            }
        },
        "http_status": 200
    },
    "http://localhost:8080": {
        "data": {
            "deleted": {
                "otp_data": {
                    "id": "did:dad:pq4ovXgMGYILIfW9Vx55-ebugLWA-7Ii6qLnPUjZVFk=",
                    "blob": "AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw",
                    "changed": "2018-08-02T21:45:30.795185+00:00"
                },
                "signatures": {
                    "signer": "9ZIRyzBh9WkVaksQoUlBRB_Zrlg8kjcepjcOvPTSjj784uYVGusWiDkSq3nOyTp78v_eHEbzDEKFw6WscN6uAw=="
                }
            }
        },
        "http_status": 200
    }
}
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Abstract

This paper proposes a new class of data called decentralized autonomic
data (DAD). The term decentralized means that the governance of the
data may not reside with a single party. A related concept is that the
trust in the data provenance is diffuse in nature. Central to the
approach is leveraging the emerging
*DID* [https://w3c-ccg.github.io/did-spec/] (decentralized
identifier) standard. The term autonomic means self-managing or
self-regulating. In the context of data, we crystalize the meaning of
self-managing to include cryptographic techniques for maintaining data
provenance that make the data self-identifying, self-certifying, and
self-securing. Implied thereby is the use of cryptographic keys and
signatures to provide a root of trust for data integrity and to maintain
that trust over transformation of that data, e.g. provenance. Thus key
management must be a first order property of DADs. This includes key
reproduction, rotation, and recovery. The pre-rotation and hybrid
recovery methods presented herein are somewhat novel.

The motivating use of DAD is to provide provenance for streaming data
that is generated and processed in a distributed manner with
decentralized governance. Streaming data are typically measurements that
are collected and aggregated to form higher level constructs.
Applications include analytics and instrumentation of distributed web or
internet of things (IoT) applications. Of particular interest is the use
of DADs in self-sovereign reputation systems. A DAD seeks to maintain a
provenance chain for data undergoing various processing stages that
follows diffuse trust security principles including signed at rest and
in motion.

Streaming data applications may impose significant performance demands
on the processing of the associated data. Consequently one major goal is
to use efficient mechanisms for providing the autonomic properties. This
means finding minimally sufficient means for managing keys and
cryptographic integrity.

Importantly this paper provides detailed descriptions of the minimally
sufficient means for key reproduction, rotation, and recovery for DID
leveraged DADS.




Overview

A decentralized autonomic data (DAD) item is associated with a
decentralized identifier,
(DID [https://w3c-ccg.github.io/did-spec/]). This paper does not
provided a detailed definition of DIDs but does describe how DIDs are
used by a DAD. The DID syntax specification is a modification of
standard URL syntax per
RFC-3986 [https://www.ietf.org/rfc/rfc3986.txt]. As such, it
benefits from familiarity, which is a boon to adoption. One of the
features of a DID is that it is a self certifying identifier in that a
DID includes either a public key or a fingerprint of a public key from a
cryptographic public/private key pair. Thereby a signature created with
the private key can be verified using the public key provided by the
DID. The inclusion of the public part of a cyptographic key pair in the
DID give the DID other desirable properties. These include universal
uniqueness and pseuodnynmity. Because a cryptographic key pair is
generated from a large random number there is an infinitessimal chance
that any two DIDs are the same (collision resistance). Another way to
describe a DID is that it is a cryptonym, a cryptographically derived
pseudonym.

Associated with a DID is a DID Document (DDO). The DDO provides
meta-data about the DID that can be used to manage the DID as well as
discover services affiliated with the DID. Typically the DDO is meant to
be provided by some service. The DID/DDO model is not a good match for
streaming data especially if a new DID/DDO pair would need to be created
for each new DAD item. But a DID/DDO is a good match when used as the
root or master identifier from which an identifier for the DAD is
derived. This derived identifier is called a derived DID or DDID.
Thus only one DID/DDO paring is required to manage a large number of
DADs where each DAD may have a unique DDID. The syntax for a DDID is
identical for a DID. The difference is that only one DDO with meta-data
is needed for the root DID and all the DAD items carry any additional
DAD-specific meta-data, thus making them self-contained (autonomic).


DID Syntax

A DID or DDID has the following required syntax:

did:method:idstring

The method is some short string that namespaces the DID and provides
for unique behavior in the associated method specification. In this
paper we will use the method dad.

The idstring must be universally unique. The idstring can have
multiple colon “:” separated parts, thus allowing for namespacing. In
this document the first part of the idstring is linked to the public
member of a cryptographic key pair that is defined by the method. In
this paper we will use a 44-character Base64 URL-File safe encoding as
per RFC-4648 [https://tools.ietf.org/html/rfc4648], with one
trailing pad byte of the 32-byte public verification key for an EdDSA
(Ed25519) signing key pair. Unless otherwise specified Base64 in this
document refers to the URL-File safe version of Base64. The URL-File
safe version of Base64 encoding replaces plus “+” with minus “-” and
slash “” with underscore “_”.

As an example a DID using this format would be as follows:

did:dad:Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=





An example DID with namespaced idstring follows:

did:dad:Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=:blue





A DID may have optional parts including a path, query, or fragment.
These use the same syntax as a URL, that is, the path is delimited with
slashes, /, the query with a question mark, ?, and the fragment with
a pound sign, #. When the path part is provided then the query applies
to the resource referenced by the path and the fragment refers to an
element in the document referenced by the path. An example follows:

did:dad:Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=/mom?who=me#blue





In contrast, when the path part is missing but either the query or
fragment part is provided then the query and/or fragment parts have
special meaning. A query without a path means the the query is an
operation on either the DID itself or the DID document (DDO). Likewise
when a fragment is provided then the fragment is referencing an elemet
of the DDO. An example of a DID without a path but with a query follows:

did:dad:Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=?who=me





As will be described later, a query part on a DID expression without a
path part will enable the generation of DDIDs (derived DIDs)




Minimal DAD

A minimal DAD (decentralized autonomic data) item is a data item that
contains a DID or DDID that helps uniquely identify that data item or
affiliated data stream. In this paper JSON is used to represent
serialized DAD items but other formats could be used instead. An example
minimal trivial DAD is provided below. It is trivial because there is no
data payload.

{
    "id": "did:dad:Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148="
}





To ensure data integrity (i.e. that the data has not been tampered with)
a signature that is verifiable as being generated by the private key
associated with the public key in the id field value is appended to
the DAD item. This signature verifies that the DAD item was created by
the holder of the associated private key The DAD item is both
self-identifing and self-certifying because the identifier value given
by the id field is included in the signed data and is verifiable
against the private key associated with the public key obtained from the
associated DID in the id field. In the example below is a trivial DAD
with an appended signature. The signature is separated from the JSON
serialization with characters that may not appear in the JSON.

{
    "id": "did:dad:Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148="
}
\r\n\r\n
u72j9aKHgz99f0K8pSkMnyqwvEr_3rpS_z2034L99sTWrMIIJGQPbVuIJ1cupo6cfIf_KCB5ecVRYoFRzAPnAQ==





An example DAD with a payload follows:

{
    "id": "did:dad:Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
    "data":
    {
        "name": "John Smith",
        "nation": "USA"
    }
}
\r\n\r\n
u72j9aKHgz99f0K8pSkMnyqwvEr_3rpS_z2034L99sTWrMIIJGQPbVuIJ1cupo6cfIf_KCB5ecVRYoFRzAPnAQ==





While the simple DADs given in the examples above are minimally
self-identifying and self-certifying, they do not provide support for
other self-management properties such as key management. In other words,
because each DID (Decentralized Identifer) references a public signing
key with its associated private key, it needs to be managed as a key not
just as an identifier. The following sections will introduce the core
key-management properties and the associated meta-data that a DAD needs
in order to support those properties.






Key Management

The three main key management operations are:


	Reproduction


	Rotation


	Recovery




We call these the essential three R’s of key management.


Key Reproduction

Key reproduction is all about managing the creation of new or derived
keys. Each new DID requires a new public/private key pair. The private
keys must be kept in a secured location. One reason to create unique
public/private key pairs for each pair-wise relationship is to minimize
the risk of exposure to exploits from the repeated use of a given key
pair. Another reason to create unique key pairs for each interaction
between parties is as a means for maintaining privacy through
pseudonymity. This is discussed in more detail below. Minimizing the
number of private keys that must be securely preserved for a given
number of public keys simplifies management and reduces both expense and
risk of exposure. To reiterate, there are two key-storage issues, one is
storing public keys and the other is securely storing private keys. An
exploit that captures a store of public keys may mean a loss of privacy
because the expoiter can now correlate activity associated with those
public keys. An exploit that captures a store of private keys means that
the exploiter many now be able to use those private keys to take control
of any associated resources. Consequently, one wants to avoid storing
private keys as much as possible.


Privacy and Confidentiality

One desirable feature of a DAD is that it be privacy preserving. A
simplified definition of privacy is that if two parties are
participating in an exchange of data in a given context then the parties
should not be linked to other interactions with other parties in other
contexts. A simplified definition of confidentiality is that the content
of the data exchanged is not disclosed to a third party. Confidentiality
is usually obtained by encrypting the data. This paper does not
specifically cover encryption but in general the mechanisms for managing
encryption keys are very similar to those for managing signing keys.

An exchange can be private but not confidential, confidential but not
private, both, or neither. A minimally sufficent means for preserving
privacy is to use a DID as a pseudonymous identifier of each party to
the exchange. A pseudonynm is a manufactured alias (e.g. identifier)
that is under the control of its creator and that is used to identify a
given interaction but is not linkable to other interactions by its
owner. The ability of a third party to correlate an entity’s behavior
across contexts is reduced when the entity uses a unique DID for each
context. Although there are more sophisticated methods for preserving
privacy such as zero-knowledge proofs, the goal here is to use methods
that are compatible with the performance demands of streaming data.

As mentioned above, the problem with using unique pseudonyms/cryptonyms
for each exchange is that a large number of such identifiers may need to
be maintained. Fortunately hierachically derived keychains provide a way
to manage these cryptonyms with a reasonable level of effort.




Hierachical Deterministic Key Generation

As previously mentioned, reproduction has to do with the generation of
new keys. One way to accomplish this is with a deterministic procedure
for generating new public/private keys pairs where the private keys may
be reproduced securely from some public information without having to be
stored. A hierarchically deterministic (HD) key-generation algorithm
does this by using a master or root private key and then generating new
key pairs using a deterministic key-derivation algorithm. A derived key
is expressed as a branch in a tree of parent/child keys. Each public key
includes the path to its location in the tree. The private key for a
given public key in the tree can be securely regenerated using the root
private key and the key path, also called a chain code. Only one private
key, the root, needs to be stored.

The
BIP-32 [https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki]
specification, for example, uses an indexed path representation for its
HD chain code, such as, “0/1/2/0”. The BIP-32 algorithm needs a master
or root key pair and a chain code for each derived key. Then only the
master key pair needs to be saved and only the master private key needs
to be kept securely secret. The other private keys can be reproduced on
the fly given the key generation algorithm and the chain code. An
extended public key would include the chain code in its representation
so that the associated private key can be derived by the holder of the
master private key any time the extended public key is presented. This
is the procedure for hardened keys.

The query part of the DID syntax may be used to represent an HD chain
code or HD key path for an HD key that is derived from a root DID. This
provides an economical way to specify derived DIDs (DDIDs) that are used
to identify DADS. An example follows:

did:dad:Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=?chain=0\1\2





This expression above discloses the root public DID as well as the key
derivation path or chain via the query part. For the sake of brevity
this will be call an extended DID. The actual derived DDID is create by
applying the HD algorithm such as:

did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=





Thus a database of DDIDs could be indexed by DDID expressions with each
value being the extended DID. Looking up the extended DID allows the
holder to recreate on the fly the associated private key for the DDID
without ever having to store the private key. This might look like the
following:

{
    "did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=": "did:dad:Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=?chain=0\1\2",
   ...
}





Or given that the same DID method is used throughout:

{
    "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=?chain=0\1\2",
   ...
}





The namespacing of the DID idstring also provides information that could
be used to help formulate an HD path to generate a DDID. The following
example shows two different DDIDs using the same public key and the same
chain code but with a different extended idstring.

did:dad:Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=:blue?chain=0/1
did:dad:Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=:red?chain=0/1





Some refinements to this approach may be useful. One is the granularity
of DDID allocation. A unique DDID could be used for each unique DAD or a
unique DDID could be used for each unique destination party that is
receiving a data stream. In this case each DAD would need an additional
identifier to disambiguate each DAD sent to the same party. This can be
provided with an additional field or by using the DID path part to
provide a sequence number. This is shown in the following example:

did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=/10057





The associated DAD is as follows:

{
    "id": "did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=/10057",
    "data":
    {
        "temp": 50,
        "time": "12:15:35"
    }
}
\r\n\r\n
u72j9aKHgz99f0K8pSkMnyqwvEr_3rpS_z2034L99sTWrMIIJGQPbVuIJ1cupo6cfIf_KCB5ecVRYoFRzAPnAQ==








Change Detection

Stale DAD items must often be detectable to prevent replay attacks. A
later re-transmission of an old copy of the DAD item must not supercede
a newer copy. Using a sequence number or some other identifier could
provide change detection. Another way to provide change detection is for
the DAD item to include a changed field whose value is monotonically
increasing and changes every time the data is changed. The souce of the
data can enforce that the changed field value is monotonically
increasing. Typical approaches include a monotonically increasing
date-time stamp or sequence number. Any older data items resent or
replayed would have older date-time stamps or lower sequence numbers and
would thus be detectable as stale.

Below is an example of an non-trivial data item that has a changed
field for change detection.

{
    "id": "did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=/10057",
    "changed" : "2000-01-01T00:00:00+00:00",
    "data":
    {
        "temp": 50,
        "time": "12:15:35"
    }
}
\r\n\r\n
u72j9aKHgz99f0K8pSkMnyqwvEr_3rpS_z2034L99sTWrMIIJGQPbVuIJ1cupo6cfIf_KCB5ecVRYoFRzAPnAQ==





Change detection prevents replay attacks in the following manner. A
second party receives DAD updates that are each signed by the associated
private key. Each update has a monitonically increasing changed field.
The source signer controls the contents of the data wrapped by the
signature. Therefore the signer controls any changed field. A consistent
signer will use a monotonically increasing changed value whenever the
data wrapped by the signature is changed. Thus a malicious third party
cannot replay earlier instances of the DAD wrapped by a valid signature
to the orginal second party because the second party knows to discard
any receptions that have older changed fields than the latest one they
have already received.




On the Fly DDIDS in DADs

One important use case for DDIDs in DADs is to identify data that is
received from a source that is not providing identifying information
with the data. The receiver then creates an associated DID and DDIDs to
identify the data. At some later point the receiver may be able to link
this data with some other identifying information or the source may
“claim” this data by supplying identifying information. In this case the
DDIDs are private to the receiver but can later be used to credibly
provenance the internal use of the data. This may be extremely
beneficial when shared amongst the entities in the processing chain as a
way to manage the entailed proliferation of keys that may all be claimed
later as a hierarchial group. The DIDs and associated derivation
operations for DDIDS may be shared amongst a group of more-or-less
trusted entities that are involved in the processing chain.




Public Derivation

Another important used case for DDIDS in DADS is to avoid storing even
the DDID with its derivation chain. This may be an issue when a client
wishes to communicate with a potenially very large number of public
services. Each public service would be a new pairing with a unique DDID.
If the derivation algorithm for an HD-Key DDID could use the public key
or public DID of the public service to generate the DDID then the client
need not store the actual DDID but can recover the DDID by using the
public DID of the server to re-derive the associated DDID. This can be
done by creating a hash of the root DID private key and the remote
server public DID to create the seed used to generate the DDID for the
DAD. This also means that the DDIDs or chain codes do not have to be
included in the keys preserved by a key-recovery system.






Key Rotation

The simplest approach to key rotation is to revoke and replace the key
in one operation. In some cases revocation without replacement is
warranted. But this is the same as revoking and then replacing with a
null key. Key rotation without revocation usually poses a security risk
so it is not needed. Hence we simplify key management to include
revocation as a subset of rotation.

Key rotation is necessary because keys used for signing (and/or
encryption) may suffer increased risk of becoming compromised due to
continued use over time, may be vulnerable to brute force attack merely
due to advances in computing technology over time, or may become
compromised due to misuse or a specific exploit. Periodically rotating
the key bounds the risk of compromise resulting from exposure over time.
The more difficult problem to solve is secure rotation after a specific
exploit may have already occurred. In this case, the receiving party may
recieve a valid signed rotation operation from the exploiter prior to
the orignal holding entity sending a valid rotation operation. The
receiver may erroneously accept a rotation operation that transfers
control of the data to the exploiter. A subsequent rotation operation
from the original holder would either create a conflict or a race
condition for the receiver.

Although there are several ways to solve the early rotation exploit
problem described above, the goal is to find the minimally sufficient
means for preventing that exploit that is compatible with the demands of
streaming data applications for which DADs are well suited.


Basic Pre-rotation

A complication with DADs is that there are two types of keys being used:
the keys for the root DIDs and the keys for the derived DIDS (DDIDS).
Generating a derived key pair requires using the private root key. The
process for pre-rotating the root DID is described first, followed by
the additional measures for DDID pre-rotation.

The approach presented here is to pre-rotate the DID key and declare the
pre-rotation at the inception of the DID. This pre-rotation is declared
at initialization. This may be done with an inception event. A later
rotation operation event creates the next pre-rotated key thus
propogating a new set of current key and pre-rotated key.

Shown below is an example inception-event data structure with a signing
key in the signer field and a pre-rotated next signing key in the
ensuer field. The signature is generated using the signer key.

Example inception event:

{
    "id": "did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
    "changed" : "2000-01-01T00:00:00+00:00",
    "signer": "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
    "ensuer": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148="
}
\r\n\r\n
u72j9aKHgz99f0K8pSkMnyqwvEr_3rpS_z2034L99sTWrMIIJGQPbVuIJ1cupo6cfIf_KCB5ecVRYoFRzAPnAQ==





A useful convention would be that if a signer field is not provided then
the signer is given by the id field.

{
    "id": "did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
    "changed" : "2000-01-01T00:00:00+00:00",
    "ensuer": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148="
}
\r\n\r\n
u72j9aKHgz99f0K8pSkMnyqwvEr_3rpS_z2034L99sTWrMIIJGQPbVuIJ1cupo6cfIf_KCB5ecVRYoFRzAPnAQ==





When rotation occurs sometime later, the rotation operation atomically
indicates that the key in the signer field is to be replaced with the
pre-declared rotation key in the ensuer field and also declares the
next rotation key to be placed in the ensuer field. One way to keep
track of this is to provide three keys in the rotation event, the former
signer in a new erster field, the former ensuer in the signer
field and a new pre-rotated key in the ensuer field. The rotation
operation has two signatures. The first signature is created with the
former signer key (now erster field). The second signature with the
former ensuer key (now signer field). This establishes provenance of
the rotation operation.

Example rotation event:

{
    "id": "did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
    "changed" : "2000-01-01T00:00:00+00:00",
    "erster": "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
    "signer": "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
    "ensuer": "dZ74MLZXD-1QHoa73w9pQ9GroAvxqFi2RTZWlkC0raY="
}
\r\n\r\n
jc3ZXMA5GuypGWFEsxrGVOBmKDtd0J34UKZyTIYUMohoMYirR8AgH5O28PSHyUB-UlwfWaJlibIPUmZVPTG1DA==
\r\n\r\n
efIU4jplMtZzjgaWc85gLjJpmmay6QoFvApMuinHn67UkQZ2it17ZPebYFvmCEKcd0weWQONaTO-ajwQxJe2DA==





Instead of three fields in the structure a list or tuple of three fields
could be used where the order corresponds to
[erster, signer, ensuer].

In order to verify provenance over multiple rotation operations, the
receiver needs to be able to replay the history of rotation operations.

The pre-rotation approach has some useful features. For many exploits,
the likelihood of exploit is a function of exposure to continued
monitoring or probing. Narrowly resticting the opportunity for exploits
in terms of time, place, and method, especially if the time and place is
a one-time event, makes exploits extremely difficult. The exploiter has
to either predict the time and place of the event or has to have
continuous universal monitoring of all events. By declaring the
pre-rotation at the inception event of the associated DAD, the window
for exploits is as narrow as possible. Pre-rotation does not require any
additional keys or special purpose keys for rotation. This makes the
approach self-contained. Because the rotation-operation event requires
two signatures, one using the current key and the other using the
pre-rotated key, an exploiter would have to exploit both keys. This is
extremely difficult because the only times the private side of the
pre-rotated key is used are (1) at its creation in order to make the
associated public key, and (2) at the later signing of the rotation
operation event. This minimizes the times and places to a narrow sample.




Listed Rotation Key Structure

Another approach to declaring rotation events is to provide the full
rotation history in the rotation operation and/or to use a list
structure for providing the keys. In many cases, rotations are a rare
event so the number of entries in the rotation history would be small.
In the associated data structure a list of all the signers both former
and future to date is provided in the signers field. The current
signer is indicated by an index into the list in the signer field. The
list index is zero based. The pre-rotated next signer or ensuer is the
following entry in the signers list. A rotation event then changes the
signer field index, which implies that the former signer (erster) is
the previous entry and the next pre-rotated signer (ensuer) is the
subsequent entry after the signer index. This is shown in the following
examples.

Example pre-rotated inception event with list structure for signing
keys:

{
    "id": "did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
    "changed" : "2000-01-01T00:00:00+00:00",
    "signer": 0,
    "signers":
    [
        "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
        "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
    ]
}
\r\n\r\n
jc3ZXMA5GuypGWFEsxrGVOBmKDtd0J34UKZyTIYUMohoMYirR8AgH5O28PSHyUB-UlwfWaJlibIPUmZVPTG1DA==





The signature above is with key at index = signer = 0.

Example rotation event with list structure for signing keys:

{
    "id": "did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
    "changed" : "2000-01-01T00:00:00+00:00",
    "signer": 1,
    "signers":
    [
        "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
        "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
        "dZ74MLZXD-1QHoa73w9pQ9GroAvxqFi2RTZWlkC0raY="
    ]
}
\r\n\r\n
jc3ZXMA5GuypGWFEsxrGVOBmKDtd0J34UKZyTIYUMohoMYirR8AgH5O28PSHyUB-UlwfWaJlibIPUmZVPTG1DA==
\r\n\r\n
efIU4jplMtZzjgaWc85gLjJpmmay6QoFvApMuinHn67UkQZ2it17ZPebYFvmCEKcd0weWQONaTO-ajwQxJe2DA==





The first signature is with key at index = signer - 1 = 0. The second
signature is with key at index = signer = 1.

A subsequent rotation would add another key to the signers list and
increment the signer index as follows:

{
    "id": "did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
    "changed" : "2000-01-01T00:00:00+00:00",
    "signer": 2,
    "signers":
    [
        "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
        "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=",
        "dZ74MLZXD-1QHoa73w9pQ9GroAvxqFi2RTZWlkC0raY=",
        "3syVH2woCpOvPF0SD9Z0bu_OxNe2ZgxKjTQ961LlMnA="
    ]
}
\r\n\r\n
AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCg==
\r\n\r\n
o9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw==








Multi-signature Pre-rotation

The list structure enables the declaration of several pre-rotations in
advance by providing several future pre-rotation keys in the inception
event. A rotation event then could include several rotations at once.
Each rotation event would require a signature per each of the multiple
rotations in the event thus allowing for multi-signature inception and
rotations. If each key is from a different entity, then the rotation
would require multiple entities to agree. Thus a DAD could be
multi-signature and support multi-signature rotations. In this case the
signer field would be a list of indices into the signers list. This
approach could be further extended to support an M-of-N signature scheme
where any M-of-N signatures are required to incept or rotate where M <
N, and M, N are integers. The total number of keys in the list is a
multiple of N. The following examples provide an inception and rotation
event for a two signature pre-rotation. A namespaced key with a
colon-separated idstring, as per the DID syntax, could be used to allow
for signers using a different DID method or for namespacing within a
given DID method.

Example of a pre-rotated two-signature inception event with list
structure for signing keys where “blue” indicates one source and
“red” indicates another source:

{
    "id": "did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
    "changed" : "2000-01-01T00:00:00+00:00",
    "signer": [0,1],
    "signers":
    [
        "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=:blue",
        "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=:red",
        "dZ74MLZXD-1QHoa73w9pQ9GroAvxqFi2RTZWlkC0raY=:blue",
        "3syVH2woCpOvPF0SD9Z0bu_OxNe2ZgxKjTQ961LlMnA=:red"
    ]
}
\r\n\r\n
AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCg==
\r\n\r\n
o9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw==





The signatures above are generated with the keys at indices 0 and 1 in
the signers list respectively.

Example of a two-signature rotation event with list structure for
signing keys where “blue” indicates one source and “red” indicates
another source:

{
    "id": "did:dad:Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=",
    "changed" : "2000-01-01T00:00:00+00:00",
    "signer": [2,3],
    "signers":
    [
        "Qt27fThWoNZsa88VrTkep6H-4HA8tr54sHON1vWl6FE=:blue",
        "Xq5YqaL6L48pf0fu7IUhL0JRaU2_RxFP0AL43wYn148=:red",
        "dZ74MLZXD-1QHoa73w9pQ9GroAvxqFi2RTZWlkC0raY=:blue",
        "3syVH2woCpOvPF0SD9Z0bu_OxNe2ZgxKjTQ961LlMnA=:red"
        "rTkep6H-4HA8tr54sHON1vWl6FEQt27fThWoNZsa88V=:blue",
        "7IUhL0JRaU2_RxFP0AL43wYn148Xq5YqaL6L48pf0fu=:red",
    ]
}
\r\n\r\n
AeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiIGpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCg==
\r\n\r\n
o9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dw==
\r\n\r\n
GpVNJQQoYKBYrPPxAoIc1i5SHCIDS8KFFgf8i0tDq8XGizaCgAeYbsHot0pmdWAcgTo5sD8iAuSQAfnH5U6wiI==
\r\n\r\n
8z_4D-7s3CcYmuoWAh6NVtYaf_GWw_2sCrHBAA2mAEsml3thLmu50Dwo9yjuKHHNJZFi0QD9K6Vpt6fP0XgXlj==





The signatures above are generated with the keys at indices 0 through 3
in the signers list respectively.




Collective Signatures

This multi-signature scheme suffers from the significant increase in the
length of the attached signature block. One way to ameliorate this
“bloat” is to use collective multi-signatures. A collective signature
has the property that its length is not a multiple of the number of
signatures it holds. Typically the maximum length of a collective
signature is about double the length of a non-collective signature and
does not increase significantly as more signatures are added to the
collective. There is a draft IETF standard for collective signatures
CoSi [https://tools.ietf.org/id/draft-ford-cfrg-cosi-00.html] that
might be useful for multi-signature rotation. Some useful references are
here project [https://github.com/dedis/cothority/wiki/CoSi],
paper [https://arxiv.org/pdf/1503.08768.pdf],
slides [http://dedis.cs.yale.edu/dissent/pres/160524-sp-cosi.pdf].
Collective signatures are a type of Schnorr multi-signature or Schnorr
threshold signature.




DDID Pre-rotation

The complication for DDIDs (Derived DIDs) is that each DAD stream for
each pairing of sender and receiver may have a unique DDID. Rotation of
the root DID also requires rotating the DDIDs. The same pre-rotation
approach, however, can be used for the DDIDs. At the inception event the
root key and pre-rotation root keys are created. These keys are then
used to created a set of DDIDS and pre-rotated derived keys using the
root and pre-rotated root keys respectively. This does not significantly
change the exploit vulnerability as the inception event is still one
event. Although the pre-rotated root DID key is used to create a set of
pre-rotated derived keys, it does not signicantly increase its exposure.
Each rotation event then involves rotating the root DID key and all the
DDID keys. The important consideration is that the number of DDIDs in
the set must be determined in advance in order to create all the
pre-rotated derived keys at one time. This can be managed by creating
extra DDIDs and pre-rotated derived keys at the inception event. Only
the public half of each of the key pairs need to be stored.

In contrast, creating additional DDIDs with pre-rotated keys at a later
time requires using the pre-rotated root private key. This increases the
exposure of that private key to exploits and makes it less secure for
pre-rotation. When the set of pre-rotated DDIDs is consumed, a
rotation-operation event may be triggered, thereby rotating the existing
DDIDs and then allowing additional DDIDs to be created.

Alternatively if the pre-rotated set of DDIDs is consumed then a new
DDID tree may be created with a unique new pre-rotated root key. This
would create a hierachy of groups of pre-rotated DDIDs and derived keys.

Moreover, when the re-establishment and re-initialization of a DAD
stream is not a high-cost or high-risk endeavor then instead of
pre-rotating the DDIDs, only pre-rotate the root DID and just close down
the current DAD stream and re-establish with a new DDID created by the
pre-rotated key as part of the rotation event.

Finally if the exposure of the root DID is insignificant compared the
exposure of the DDIDs then another approach to DDID pre-rotation could
be employed. This requires a trade-off between convenience and privacy.
A group of receivers could all have knowledge of the root public DID key
and its pre-rotated public DID key for their unique DDIDs. This means
that the members of the group could leak correlation information about
the group via the shared root DID. However each member of the group
could still maintain security via its unique DDID. In this case the root
private DID is used to derive both the inception DDID and the
pre-rotated derived key of each member. The individual members could
then undergo DDID key rotation but only using the root DID not its
pre-rotated key. In the rare event that the root DID needs to be rotated
then each of the DDID members performs a double rotation within a
rotation event. The first rotation rotates to the pre-rotated key
generated using the original root DID, the second rotation is to a new
set of derived and pre-rotated derived keys, each generated using the
new pre-rotated root key. The first derived key in the pair is the new
signer key, the second is the new pre-rotated signer key. A receiver
must have knowledge of the root DID and pre-rotated root key in order to
verify that the second rotation is not a forgery. This approach enables
the organization and managment of DDIDs in heirarchical groups where the
members of each group know about their group-root DID but that
group-root DID could be a DDID of a higher level group and so on. Lower
level groups only know about thier group root DID, but not any sibling
groups so it can’t leak information about sibling or parent groups only
child groups.




Replayability

The constraint on pre-rotation is that the receiving party be able to
replay the rotation events to ensure that it did not miss a rotation.
This replay allows the receiver to verify the provenance chain of
rotations. The question then is what are minimally sufficient means for
enabling this replay capability?

There are two use cases for providing this replay capability. The first
case is for online one-to-one or pairwise interactions and the other
case is for offline one-to-one or equivalently one-to-many or public
interactions.

In the one-to-one case, there is the sender of a DAD stream and the
reciever of the stream. The initiation of the stream would involve
exchanging keys for pairwise communication and would also include the
establishment of the DDID used for the DAD items sent. The first DAD
sent would include the DDID for the DAD as will as the pre-rotated DDID.
This is the inception event. The receiver then merely needs to maintain
a running log of DAD items that contain rotation events. As long as
reliable communications are used between the sender and receiver, then
the receiver can ensure that it has observed all rotation events by
keeping its log and no imposter can later send an undetectable forged
inception or rotation event. If the reciever loses its history then it
must re-establish its communications channel and re-initialize.
Alternatively the sender could maintain a copy of the inception and
rotation event history and then provide it to the receiver upon request.
The receiver would cache this history for speedier lookup. An imposter
attempting to send an earlier forged inception event would be
unsuccessful because only the first inception event is considered valid.

In the one-to-many, public, or offline case, the rotation history is
maintained by a service. While a decentralized distributed consensus
blockchain ledger could provide this service it is not the minimally
sufficient means of providing this capability. The minimally sufficient
means is a redundant immutable event log of inception and rotation
events indexed by the DDID associated with the DAD for the given DAD
stream. The constraint is that a sufficient majority of the log hosts
must be non-faulty at any point in time. This includes Byzantine faults.
Is is also assumed that the sender communicates with the hosts using a
reliable end-to-end signed protocol. The sender broadcasts the inception
event to all the redundant hosts that provide copies of the log. These
hosts are called Replicants. Then either the Replicants respond to the
sender with a confirmation that the event is written to their log or the
sender reads the log to verify. The event history is indexed by the
DDID. Each Replicant timestamps and signs each entry in each event
history. Each Replicant only allows one and only one inception event per
event history. Attempts by imposters to forge an earlier inception event
would be denied by honest Replicants. The sender can then verify that a
sufficient majority of the Replicants have captured each event and have
consistent event histories. Subsequent rotation events are redundantly
appended to the DDID indexed log in the same way. The receiver can then
broadcast a query to the Replicants and verify via their responses that
a sufficient majority of the Replicants have the same DDID indexed event
log. This eanbles both offline and one-to-many event streams.

This approach is more scalable than using a distributed consensus ledger
because the Replicants do not need to communicate with each other. The
inter-host agreement of the members of a distributed consensus pool is
usually the limiting factor in scalablity. Morever a given receiver
could be completely responsible for providing the immutable log service
for its own data stream with the sender. Each receiver could choose to
implement a different level of reliability. Loss of the event log means
that the sender and receiver have to re-initialize and re-establish the
DAD stream. Alternatively the sender could be responsible for providing
a set of Replicants and make the event log available to the receiver
upon request.






Key Recovery

Key recovery is about providing a secure way of recovering a lost
private key. The important consideration here is that the recovery
mechanism be compatible with streaming data applications as per DADs.
Keys recovery tends to be a rare occurrence so performance demands may
be less constraining. Nonetheless, finding the minimally sufficient
means for key recovery is still the goal. Moreover, to be secure the
private key needs to be kept secret. Because cryptographic keys are long
strings of numbers they are extremely hard to remember, this means that
typically private keys are stored some place besides a person’s memory
and are therefore subject to being lost or stolen.

If it is required or at least desirable that the DAD stream not be
reinitialized due to the loss of the rotation-event history then a
key-recovery mechanism would also need to provide recovery of the
key-rotation history. To restate, it is not enough to just recover the
original root DID but every rotated root DID must be recovered as well.
Given that typically rotations happen rarely, the rotation-event history
should be small in size and not pose a storage-size problem for
recovery. Thus key recovery for DADs needs to at least recover the
original root key and any rotations.

DDIDs can be regenerated from the root DID given the HD-derivation code.
In the case where the the DDID stream may not be easily reestablished
but must resume given the latest rotated DDID then the HD chain code
must also be preserved and recovered. If the number of DDIDs is very
large then the storage requirements for chain codes may also be large
relative to the storage requirement for key recovery. The DID root
public key and DDID derivation chain codes do not expose the private
keys. However, although disclosing the root public key and chain code
for a DDID is not a security risk, it could be a privacy risk. A third
party could correlate data streams from the associated DDIDs should the
root public key used by multiple DDIDs be exposed. One way to address
this is to encrypt the chain codes with an encryption key derived from
the root signing key. The chain codes can then be stored outside of the
core recovery system. The worst case exploit then is a loss of privacy
should the encryption be broken but not a loss of control of the
resources owned by the private key.

When the DDID for communicating with a public service is derived from
the public key of a server then the client does not need to preserve and
recover the HD chain code. Instead it can regenerate the DDID using a
hash of the root private DID and the public DID of the server. A
complication occurs when the root private key has been rotated and the
server was not made aware of the rotation. The client can still recover
the current root DID used by the server using a trial and error approach
by going through the list of rotated root DIDs, generating the
associated DDID or derived key, verifying if the server will accept it,
and if not incrementing to the next rotated root. Eventually the client
will discover the last rotated DDID or derived key recognized by the
serve. As a result the client can recover the appropriate DDID or
derived key for a given service without having to preserve anything but
the history of rotated root DIDs. This approach may provide meaningful
storage savings when the number of external services is large.


Cryptographic Strength




Information Theoretic Security and Perfect Security

With respect to DAD, key recovery deals with the recovery of the
private half of signing and/or encryption keys in public/private key
pairs. Given that once an adversary has the private key, security is
completely broken, the cryptosystems used to backup and recover private
keys needs to be as secure as is practically possible. The highest level
of crypto-graphic secruity is called information-theoretic
security [https://en.wikipedia.org/wiki/Information-theoretic_security].
A cryptosystem that has this level of security cannot be broken
algorithimically even if the adversary has nearly unlimited computing
power including quantum computing. It must be broken by brute force if
at all. Brute force means that in order to guarantee success the
adversary must search every combination of key or seed. A special case
of information-theoretic security is called perfect
security [https://en.wikipedia.org/wiki/Information-theoretic_security].
Perfect security means that the cipher text provides no information
about the key. There are two well-known cryptosystems that can exhibit
perfect sercurity. One is *secret sharing or
splitting* [https://en.wikipedia.org/wiki/Secret_sharing] (see also
ss [http://users.telenet.be/d.rijmenants/en/secretsplitting.htm]).
The other is a *one-time
pad* [https://en.wikipedia.org/wiki/One-time_pad] (see also
otp [http://users.telenet.be/d.rijmenants/en/onetimepad.htm].
Correct implementation of either/or a combination of these two
approaches is appropriate for private-key recovery.




Sufficient Cryptographic Strength to Withstand a Brute-force Attack

For cryptosystems with perfect security, the fundamental parameter is
the number of bits of entropy needed to resist any practical brute force
attack. In other words, when a large random number is used as a seed/key
to a cryptosystem that has perfect security, the question to be answered
is how large does the random number need to be to withstand a brute
force attack? In Shannon information theory the entropy of a message is
measured in bits. The randomness of a number or message can measured by
the number of bits of entropy in the number. A cryptographic quality
random number will have as many bits of entropy as the number of bits in
the number. Assuming conventional non-quantum computers, the convention
wisdom is that, for systems with information theoretic or perfect
security, the seed/key needs to have on the order of 128 bits (16 bytes)
to practically withstand any brute force attack. For other cryptosystems
that do not have perfect security the size of the seed/key may need to
be much larger.

Theoretically, quantum computers, using Grover’s
Algorithm [https://en.wikipedia.org/wiki/Grover%27s_algorithm] might
be able to brute force a 2N random number with only 2N/2 trials. Thus
once quantum computers exists the size of N might need to increase from
128 to 256.

An N-bit long base-2 random number has 2N different possible values.
Given that with perfect security no other information is available to an
attacker, the attacker may need to try every possible value before
finding the correct one. Thus the number of attempts that the attacker
would have to test may be as much as 2N-1. Given available computing
power, one can estimate if 128 is a large enought N to make brute force
attack impractical.

Let’s suppose that the adversary has access to supercomputers. Current
supercomputers can perform on the order of one quadrillion operations
per second. Individual CPU cores can only perform about 4 billion
operatons per second but a supercomputer will employ many cores in
parallel. A quadrillion is approximately 250 = 1,125,899,906,842,624.
Suppose somehow an adversary had a million (220 = 1,048,576) super
computers to employ in parallel. The adversary could then try 250 * 220
= 270 values per second (assuming that each try only took one
operation). There are about 3600 * 24 * 365 = 313,536,000 =
2log2313536000=224.91 ~= 225 seconds in a year. Thus this set of a
million super computers could try 250+20+25 = 295 values per year. For a
128-bit random number this means that the adversary would need on the
order of 2128-95 = 233 = 8,589,934,592 years to find the right value.
This assumes that the value of breaking the cryptosystem is worth the
expense of that much computing power. Consequently, a cryptosystem with
perfect security and 128 bits of cryptographic strength is practically
impossible to break.




Recovery Methods

Fundamentally key recovery involves shifting the burden of remembering a
cryptographic key made of a long random string of numbers to some other
task that is less onerous.


Physical Security

One approach to recovery is to shift the burden of recovery from
remembering a private key or keys to protecting physical copies of the
keys. This is called physical security. Recovery first involves creating
a hard copy of the key(s) such as a printed piece of paper or a “hard”
electronic wallet and then hiding the hard copy. The memory task now
becomes remembering where the hard copy was hidden. The security of the
approach is now based on the physical security of the hidden location
(under the bed, in the safety deposit box, in a hole in the backyard).
The assumption is that remembering where something is hidden is assumed
to be relatively reliable. Most important is that physical security is
not vulnerable to remote attacks over the internet nor computational
attacks where the attacker can employ resources and time to break a key.
The attacker must have physical access and may be physically at risk. A
weakness of this approach is that recovery may take time. Moreover if
the person with the knowledge of the key location is incapacitated then
recovery may be impossible unless the location of hard copy or another
hard copy is shared with someone else, thus exposing a vulnerability.
One way to address this is to use a legal mechanism such as power of
attorney, a will, or another guardian who is authorized to reveal the
hard copy given predefined circumstances. This can be ameliorated by
using tamper-resistant envelopes and physical access logs to increase
the risk of discovery. In any event physical recovery is useful as a
backup to non-physical security recovery methods but may be too
inconvenient as the primary form of recovery for the managers of
streaming data applications. In general physical security may be a good
backup for any of the other recovery methods.




Mnemonics

A mnemonic is a device or technique to aid human memory. The memory task
in this case is to remember a 128-bit random number as a key or seed.
This is further complicated for DAD recovery as it is not sufficient to
just recover a single private key but instead requires the recovery of
the whole key rotation history. One way to accomplish this is to use a
128-bit random number as a seed to a system that hides and recovers the
whole rotation history. This will be discussed in more detail below. One
well-known mnemonic is to use a phrase of random words from a word list.
The user can create a story or imaginery visualation of a situation in
which the words are all represented. An example would be the words,
blue cat house eat pudding. Visualizing and rehearsing a fantastic
situation that includes objects and actions corresponding to the words
makes is much easier to remember.

The DiceWare [http://world.std.com/~reinhold/diceware.html](see
also wk [https://en.wikipedia.org/wiki/Diceware] and
pp [https://en.wikipedia.org/wiki/Diceware] approach consists of a
word list of 7776 words that are selected at random (using dice). The
user must remember the words and their order to form a phrase that can
be used to generate a random number. The EFF has produced modified
versions of the word list (EFF word
list [https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases])
that have beneficial properties. Given a total of 7776 words, then each
randomly selected word is one of 7776 choices, which provides log2(7776)
= 12.9 bits of entropy per word. To get a 128 bits of entroy the phrase
would need to include ten words. This is pretty long for a mnemonic but
not impractical as long as the user is willing to do some rehearsal.
More problematic is recovering not just one key but multiple keys from a
key rotation history.




Secret Sharing

Another approach is to shift the task of recovery to other parties. This
can be done securely using a secret
sharing [https://en.wikipedia.org/wiki/Secret_sharing] or “splitting”
approach. The secret information is split into what are sometimes called
shards. Each shard is then shared with another party called a shard
holder. Later the shards are collected and combined to reproduce the
secret. The shard holders must either keep the shard secret or if they
are going to store it online they need to encrypt the shard and must
then remember their encryption key. As mentioned above, secret sharing
may have perfect security. This means that storing encrypted copies of
the shards online may still be perfectly secure as long as an adversay
cannot correlate the shards as belonging to the same secret information.
If correlation does occur then the security is limited to the type of
encryption and might be more vulnerable to exploits.

In order to recover the secret information the user must interact with
the shard holders to get them to provide their shard; that is, the
recovery is multi-party interactive. The user then combines the shards
to reconstitute the shared secret. This interaction may take time and
may not be reliable. A useful variation on this approach is called
threshold or Shamir
sharing [https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing]
where only a subset of all the shards is needed to reconstitute the
secret. For example an M of N threshold secret sharing (M < N) algorithm
would share shards with N parties. Any combination of a subset of M
parties can reconstitute the secret. This allows some of the parties to
not be available or to lose their shard and still have successful
recovery. Typically, to maintain secrecy the N parties do not know of
each other.

Although the security properties of Secret sharing make it an attractive
approach for key recovery, secret sharing can be complicated, especially
because it requires interaction with multiple parties. The secret owner
must recall who the N parties are or at least M non-faulty parties. In
an organizational setting, however, there may be a designated group of
individuals who know about and hold the shards and have a policy for
circumstances under which they can share the shards.




One-time Pad

As mentioned previously, the *one-time pad*
(OTP) [https://en.wikipedia.org/wiki/One-time_pad] (see also
otp [http://users.telenet.be/d.rijmenants/en/onetimepad.htm]) may
exhibit perfect security. The OTP is a venerable cyphersystem that has
the advantage that it can be used manually without a computer. Basically
a long string of random characters forms the pad. Someone can use the
pad to encrypt a plain-text message. The procedure is to combine each
plain-text character in order with the corresponding character from the
pad. The combination is typically performed using modulo addition of the
two characters but can be performed with a bitwise XOR. Because
characters from the pad may only be used once, the pad must be at least
as long as the plain-text message. The one time use of a random string
of characters from the pad is what gives the system its perfect security
property. If two parties wish to exchange multiple messages, then the
pad must be at least as long as the sum of the length of all the
messages. The main disadvantage of a one-time pad is that the two
parties must each obtain a copy of the same pad. This is less of a
disadvantage for key recovery because the the encrypted message (keys)
does not need to be exchanged with another for decryption but are
decrypted by the self-same party so only one copy of the pad is needed.

Suppose for example, a OTP is used to encrypt the key or key history.
Given that the adversary does not have access to the OTP then the
encryption has perfect secrecy which means that the only viable attack
is via brute force. If the encrypted key or key history is at least 128
bits long then brute force is practicaly impossible. Consequently the
OTP encrypted key history could be safely stored in a public immutable
database. The remaining problem is management of the OTP. Using an OTP
to encrypt the key history just creates a new problem, that of securing
the OTP itself. But the main advantage of a OTP over secret sharing
described above for key recovery is that a OTP approach is
non-multi-party interactive. It can be self-contained which is
advantageous in data streaming applications.

One common but weaker variant of the OTP is the book cyper. In this
variant the OTP is a book. Because the characters in a book are not a
random string there is some degree of correlation between characters
that makes it less than perfectly secure. Thus two parties who each have
a copy of the same book (same edition) can use the characters in the
book as the OTP to encrypt messages without ever having to exchange
copies of the book. Essentially using a book as OTP is an example of
hiding the OTP in plain sight. An adversary would have to guess that a
book was being used as a one-time pad and then figure out which book.
For key recovery, the key owner merely needs to remember which book and
edition. Should the book used by the key owner be lost, the key owner
can get another copy from a bookstore.

The book cypher is an interesting example due to the combination of
simplicity, the use of existing but readily available sources of
information, and the ability to hide the OTP as book in plain sight.
This has the advantage that the only the title and edition of a book
need to be remembered thus making light demand on human memory. The
primary disadvantage of the book cypher is that the text is not random
and its difficult to calculate how many bits of entropy are lost for a
given book.




Hybrid Key Recovery Method

One of the main attractions of using a one-time pad (OTP) for key
recovery, in contrast to secret sharing, is that it is non-multi-party
interactive. A hybrid approach that makes a beneficial trade-off is to
use a mnemonic merely to generate a seed for a cryptographic strength
psuedorandom number generator (CSPRNG). The seed is then used via the
CSPRNG to generate a OTP that is then used to encrypt the key-rotation
history. The cryptographic strength of the OTP is now governed by the
length of the seed not the length of the pad. But key-rotation histories
are relatively short compared to the period of CSPRNG so a strong enough
seed (128 bits of entrophy) would still be sufficient for this task.

The PRNG algorithm must be of cryptographic quality otherwise it could
become a source of vulnerability. A recent advancement in CSPRNG
algorithms is a chaotic iteration psuedorandom number generators
(CIPRNG) [http://ieeexplore.ieee.org/document/6040161/]. These are
of cryptographic quality have extremely high statistical randomness.
They pass both the NIST and DieHard tests for PRNG with periods on the
order of 109 opt [https://arxiv.org/abs/1706.08773]. The basic
concept is a chaotic finite state machine
cfsm [https://arxiv.org/abs/1708.04963]. Unfortunately there do not
yet appear to be any open source implementations of this algorithm. A
more practial CSPRNG that could be used to generate a OTP from a seed is
the libsodium randombytes_buf_deterministic function. This uses
ChaCha20 under the hood.

The advantage of this hybrid approach is that the key recovery memory
task is now limited to merely recovering the seed that would then be
used to reproduce the OTP that would then be used in turn to decrypt the
key history. This approach does not require multi-party interaction like
secret sharing as the seed is directly recovered by the owner via a
mnemonic device, not from others. This hybrid approach still benefits
from the properties of the OTP for encryption so that the key-rotation
history can be encrypted and stored online for recovery.

What remains then is the selection of a mnemonic for generating the
seed. It may be difficult for a single mnemonic to provide a random
source of seed material at the required strength of 128 bits.
Concatenating several sources of mnemonically derived seed material,
however, could produce the required strength. This is akin to the
DiceWare approach to passphrase generation. One problem with
concatenation of seed material is that the order of concatenation must
also be remembered. One way to avoid having to remember the order when
combining multiple sources of seed material is to use the simple version
of secret
splitting [http://users.telenet.be/d.rijmenants/en/secretsplitting.htm].
In this form of secret splitting, the secret is divided into shards and
each shard is XORed together to recover the secret. In this case the
secret is the seed and each shard contributes a certain amount of
entropy to the final seed. This allows a mnemonic for each shard that
may have much less than the required 128 bits of entropy but the
combination of shards could have the required entropy and the order of
the shards is not important. A non-ordered combination loses some
cryptographic strength because the number of possibilties is no longer
merely the multiple of the independant possibilities from each shard
(permutations) but is instead the number of combinations of the shards.

Suppose that there are four shards that each contribute 35 bits of
entropy or in other words each shard is randomly chosen from 235
possibilities. Then the combined number of possibilities is 235 taken
four at a time. The exact formula for the combination of N things taken
K at a time is given by: N!/(K!*(N-K)!) Computing factorials for
very large numbers is a computationally intensive task. For the sake of
analysis an approximation is sufficient. A lower bound on the number of
combinations of N things taken K at a time is (N/K)K (see
bounds [https://pdfs.semanticscholar.org/e0e7/03e1bbc914e563afb72480d7f915df79b834.pdf]).
The bits of cryptographic strength of the combination of four shards
each with 35 bits is where N = 235 and K = 4. Using the approximation
gives the number of possiblities to be at least (235/22)4 = 233*4=2132.
This corresponds to 132 bits of entropy, which is greater than the
required 128.

The one remaining challenge then is to find good mnemonically
recoverable sources of random seed material. One feature that makes the
The book cypher was attractive because it took advantage of information
that was highly available but hidden in plain sight and whose source was
easy to remember (a book title). The problem with books is that the
content is not highly random so it in itself is not a good source of
seed material. In other words, the challenge is to find sources of
information for seed material that have much higher degree entropy than
a book but are still easy to remember. More specifically this means
finding sources of highly random seed material that are highly available
(thus do not require additional infrastructure to backup) but are also
essentially hidden in plain sight and easy to recall via a mnemonic
device. What follows are several viable sources of mnemonically
recoverable sources of random seed material.




DiceWare Seed Recovery

The DiceWare approach can be repurposed to provide a mnemonic source of
seed material. These can be used to recover the seed for the one-time
pad used to encrypt the key-rotation history. Ten randomly selected
words from a DiceWare-compatible wordlist could be used to generate the
seed for the one-time pad. Ten randomly selected words in order provide
the required 128 bits of entropy (recall that each DiceWare word
provides 12.9 bits of entropy). The order of the words is important.
Each word would be hashed using SHA-2 or Blake to generate a 16-byte
string. The seed is created by concatenating the hashes in the defined
order. Once the seed for the OTP is generated, the rest of the recovery
method follows the process described above for generating the OTP using
a CSPRNG and then using that to encrypt/decrypt the key rotation
history. The mnemonic load for this method is the recall the order of
ten words from the DiceWare or EFF wordlist. This has a large mnemonic
load so it would require some rehearsal and might not be very practical.
In addition to the mnemonic at least a physical backup of the ten words
should also be created. The physical backup of the ten words could be
split into parts to make it more secure. If practical, a multi-party
threshold secret sharing backup could also be created.




GitHub Seed Recovery

Github.com stores versioned code repositories. The associated git
utility automatically calculates a 160 it (20 byte) SHA-1 hash of each
commit to a repository. These hashes are easily readable from the
GitHub.com web site. Several Github commit hashes can be used to create
the seed to generate the OTP for encrypting the key rotation history. In
order to recover a commit hash one must remember the project and
repository name, and the date of the commit. If there are multiple
commits on the same date then one must also remember which commit, like
the last or the first. This is not an onerous memory task but not a
trivial one.

There are over 80 million GitHub repositories. A reasonable estimate of
the average number of commits per repository is over 1000. This means
that there are about 80,000,000 * 1,000 = 80,000,000,000 = 236.22
possibilities to choose from. If a repository/commit is selected
randomly then the number of bits of entropy represented by a single
choice is about 36. To get 128 bits of security one would need to
randomly select four repository/commits. A permutation of 4 gives
4(36) = 144 bits of entropy. Remembering the order of the four
repositories adds another memory task. If instead the four choices were
combined using the simple version of secret splitting described above,
where each shard is XORed together to recover the secret, then the
number of random possibilities is reduced to the number of combinations
of 80,000,000,000 items taken four at a time. As previously described,
the lower bound on the number of combinations of *N* things taken *K
at a time is (N/K)K. In this case K = 4 and N = 236. This gives the
number of possibilities to be (236/22)4 = 234*4=2136. This corresponds
to 136 bits of entropy which is still greater than the required 128.

The GitHub.com based recovery mechanism can be summarized as follows:
Randomly choose four GitHub.com repository commits. For each commit, the
pairing of a project name, repository name and commit date must be
remembered and/or backed up using a hardware backup. Generate a seed by
XORing together the 20-byte commit SHA-1 commit hash from each of the
four repositories. Use this seed with a deterministic CSPRNG to generate
a one-time pad of length at least as long as the key rotation history.
Encrypt the key rotation history by bitwise XORing each byte in the
history with the corresponding byte from the one-time pad. Securely
discard the one-time pad. Store the encrypted key-rotation history in a
highly available database. This encrypted history should be impervious
to attack so it can be stored online. When recovery is required,
remember the four project/repository/commit-date pairings or restore
from a hardware backup. Use the pairings to lookup the SHA-1 commit
hashes from GitHub.com for each. Then recreate the seed by XORing the
four commit hashes. Use the seed and the same CRPRNG to regenerate the
one-time pad. Retrieve the key history from the database. Use the
one-time pad to bitwise XOR each byte of the saved encrypted key history
to unencrypt it. The key history is now recovered.

The memory load is four triples of a project name, a repository name,
and a date, or twelve items total, but the order of the triples is not
important. Given that typically each GitHub project has a small number
of repositories, merely remembering the project should make remembering
the repository much easier by going to the project page and looking at
the choices for repositories. The date is the hardest memory task. There
are several well known mnemonic techniques for remembering dates. In
addition to the mnemonic, a physical backup of the hashes should also be
created. The physical backup could be split into four parts to make it
more secure. If practical a threshold multi-party secrete sharing system
could provide additional backup.




FlickR.com Seed Recovery

The FlickR.com-based recovery mechanism is similar to the Github.com
based one. There are over 10 billion primary photos on FlickR. Each
primary photo may come in multiple resolutions. A given photo is
displyed on the FlickR.com web page using a low-resolution copy. This
displayed version can be scraped from the page. The Flickr.com website
does not provide hashes of the images, so one would have to scrape or
download an image and then calculate the hash after the fact. A viable
approach would be to use SHA-2 from the OpenSSL library or Blake from
the libsodium library. Ten billion is about 233.22 which corresponds to
about 33 bits of entropy when randomly selected. Four randomly selected
images are needed to get the required 128 bits of entropy, that is, 4 *
33 = 132. If we combine the hashes from four images by XORing (i.e.
simple secret splitting) then the number of choices becomes the
combinations of 10 billion things taken four at a time. As described
above, the lower bound on the number of combinations of N things taken
K at a time is (N/K)K. This gives the number of possibilities to be
(233/22)4 = 231*4=2124. This corresponds to 124 bits of entropy which
is close enough to the required 128. (24 = 16, which is not meaningfully
weaker as it would still take 500,000,000 years to break). The
proceedure for recovery is essentially the same as the GitHub example
above, once the hashes for each photo have been generated.

The mnemonic task is remembering four images. Humans are very good at
remembering images given a selection. The hard mnemonic task is
searching on FlickR for a given image using tags. It takes about four or
five tags to get the list of images to under 100 for a given tag set.
The mnemonic task is then to remember four sets of four to five tags
each, where the tags are not in any order. Remembering which photo is
helped by the fact that the tag set typically corresponds to features of
the photo. Moreover, images provide an opportunity to hide them in plain
sight. In addition to the mnemonic, a physical backup of the hashes
should also be created. The physical backup could be split into four
parts to make it more secure. If practical a threshold multi-party
secret sharing system could provide additional backup.




Geneological Database Seed Recovery


FamilySearch.org has over six billion genealogical records indexed by
name and life-event type, event date, and event place. There are seven
standard event types such as birth, death, marriage, census, military
service, immigration, and probate. A randomly selected record can be
recovered with a name and the event details of event type, date, and
place. With six billion records and seven event types there are over
42 billion choices. The number of bits of entropy for one randomly
selected record is log2(42,000,000,000) = 35.29. Suppose four records
are randomly selected. hTe OTP seed is created by XORing a SHA-2 or
Blake hash from each record where the hash is computed from the record
name and event details. This produces (235/22)4 = 233*4=2132
combinations which corresponds to 132 bits of entropy. This exceeds
the desired 128.

The mnemonic task is to remember the name, event type, event date, and
event place for four different records. The records can be in any
order. In addition to the mnemonic a physical backup of the hashes
should also be created. The physical backup could be split into four
parts to make it more secure. If practical a threshold multi-party
secrete sharing system could provide additional backup.






Google Maps Seed Recovery

The Google Maps database covers the entire globe with high resolution
imagery of the land area. The world’s land area is approximately
150,000,000 km2. It has been estimated that 90% of the landmass is
inhabited although only 10% is considered urban. Lightly populated areas
still have memorable identifiable features suitable for map based
mnemonics such as roads, fences, and buildings (farms, huts, etc). The
estimated inhabited surface area is 0.9 * 150,000,000 km2 =
135,000,0000 km2.

The resolution of Google Maps’ georeferenced satellite photos is given
in decimal degrees to six decimal places. For example, clicking on a map
gives the location in (degrees latitude, degrees longitude) as
(45.348807, -105.709547). Six decimal places is about one tenth of a
meter. This is too small to reliably reproduce merely by clicking on the
satellite view. Five decimal places is about one meter. This is big
enough that it can be reproduced reliably albeit carefully by clicking
on the satellite view. A conservative approach would be four decimal
places which is about 10 meters. This is easily large enough that it is
trivial to reproduce reliably by clicking on the satellite view.

A resolution of approximately one square dekameter (10m)2 or 4 decimal
places per location gives a total of 135,000,000 * 10,000 =
1,350,000,000,000 = 240.3 unique locations. When selected randomly this
corresponds to over 40 bits of entropy per location. A resolution of a
square meter per (1m)2 or 5 decimal places per location gives a total of
135,000,000 * 1,000,000 = 135,000,000,000,000 = 246.94 unique
locations. When selected randomly this corresponds to over 46 bits of
entropy per location.

At a resolution of a square dekameter four randomly chosen locations are
needed to reach over 128 bits of entropy, (4 * 40.3 = 160.9). At a
square meter resolution only three randomly chosen locations are needed
to reach over 128 bits of entropy, (3 * 46.94 = 140.82.

When locations are combined using a secret splitting approach, the total
number of combined unique locations in combination is reduced. As
described above, a lower bound on the number of combinations of N
things taken K at a time is (N/K)K. At the square dekameter
resolution, K = 4 and N = 240. This gives the number of possibilities to
be (240/22)4 = 2384=2152. This corresponds to 152 bits of entropy
which is greater than the required 128. At the square meter resolution,
K = 3 and N = 246. This gives the number of possibilities to be
(246/21.59)3 = 244.413 ~= 2133. This corresponds to 133 bits of
entropy which is still greater than the required 128.

Consequently with Google Maps either three or four unique locations are
needed to achieve the desired cryptographic strength for seed
generation. Memorable locations could include the corner of a building
or or a doorway or roofline or road intersection or fenceline
intersection or pole. The mnemonic load for a site is the address of the
site. Because humans are adept at remembering locations visually by
familiarity with the surroundings, exact addresses may not be needed.
Merely enough of an address to move the view within the neighborhood of
a location may be enough. Once in the neighborhood, terminal navigation
may be performed via visual interaction with the Maps app.
Alternatively, landmarks, business or other nearby features could be
used as the search parameters. In addition the user has to remember what
exact feature of the structure is used for the location.






Recovery Summary

All of the hybrid recovery methods allow for rapid recovery that does
not require multi-party interaction. They all depend on a non-trival but
not onerous mnemonics for rapid recovery but may fall back to a physical
or threshold secret sharing multi-party interactive copy for slower
recovery. Rapid recovery using the online databases (GitHub.com ,
FlickR.com, FamilySearch.org, or Google maps) depends on the
availability of the databases maintained by the corresponding entities.
In each case, should one of the selected records be deleted then the
only recourse would be one of the backups.

In order to achieve the required 128 bits of security, the DiceWare
approach requires recalling 10 words in order, whereas the GitHub.com,
Flickr.com, FamilySearch.org and Google maps (at 1 dekameter) approaches
require recalling four records. All five methods could be mixed. Using a
mixture adds some security (more choices) but not enough to reduce the
number of records required. Alternatively, at one meter resolution the
Google maps approach only needs three records. The Google maps approach
(either four locations or three locations) may have the lightest memory
load because the exploits the high human capacity for visual-geospatial
recall.

The secret splitting used to combine records could be augmented to use a
threshhold scheme to make it more resilient to record loss but at the
cost of needing more than records.

If multi-party interactive recovery is acceptable then using threshold
secret sharing could be a better approach. Even when multi-pary
interactive is not the preferred approach it could be another backup in
addition the a physical backup.

This novel hybrid approach combines multiple cryptographic techiques to
provide a viable non-multi-party interactive rapid key recovery method
that is well suited to data streaming applications. It combines hiding
in plain site, mnemonics, DiceWare-like selection, secret splitting,
CSPRNG, and one-time pads. The method is a practical trade-off between
the features of the different approaches.




Virtual World Game as Hierarchically Deterministic Seed Mnemonic

Looking to the future, it would be possible to create a mnemonic-seed
generating mobile or desktop application that is completely
self-contained and does not require any external online databases for
random key material. Humans have an innate ability to remember complex
visual geo-spatially related information such as is encountered in
everyday life when walking from one place to another without getting
lost. Humans are particularly adept at remembering how to retrace the
path they followed on a journey through a city, or countryside. Humans
are also adept at remembering when the memory is associated with
familiar spacial surroundings. The well known method of
loci [https://en.wikipedia.org/wiki/Method_of_loci], more commonly
known as the memory palace mnemonic, associates a sequence of items to
be remembered with locations in one’s house or other familiar structure.
When a spatial mnemonic is enhanced with what is called [elaborative
encoding] (https://en.wikipedia.org/wiki/Elaborative_encoding), that
is, adding visual, auditory or other sensory cues, it becomes
particularly powerful. Humans are also adept at
learning [https://pdfs.semanticscholar.org/ba69/4789dfa5cf5bce13ee77bca75ab0c19270ea.pdf]
complex mental models via hierarchical
decomposition [http://reasoninglab.psych.ucla.edu/KH%20pdfs/Penn,%20Holyoak,%20Povinelli.2008.pdf].
Various other mnemonic
devices [https://www.learningassistance.com/2006/january/mnemonics.html]
take advantage or combinations of familiar, spatial, hierarchical and
sensory cues to make the learning and recall task easier.

An application that exploited multiple mnemonic devices in combination
could minimize the memory load required to recover seed material. Indeed
games that involve recalling complex sequences of movement and action
within a simulated graphical world can be successfully played by young
children. This level of mnemonic capability in demonstrated by young
children when playing games like The Legend of
Zelda [https://en.wikipedia.org/wiki/The_Legend_of_Zelda]. What is
being proposed is a hierarchical deterministic seed mnemonic (HDSM) as a
type of hierachical spatial elaborative encoded mnemonic.

Lets call this hypothetical mnemonic seed generating game Quest for the
Mnemon Seed for lack of a better title. A notional description follows:
The game is based on a graphical virtual world map such as one might
encounter in an online role playing game. In the game, the user starts
at the entrance and is presented with a map of a locale such as a
village containing unique sites including buildings, parks, roads etc.
Each site within the locale has memorably unique visual features such as
floor plan, architectural style, period, color, material, flora, fauna,
characters, objects etc. The user then walks down roads and paths to get
to the different sites. Upon entry to a site the user is presented with
a choice of actions to perform such as picking up an object or
interacting with a character. Thus the process of selecting a site and
then selecting an action at the site constitues a choice. If the choice
is selected at random then it becomes the source of random seed
material. The mnemonic is remembering where the site is placed within
the locale and how to get there and then remember the action(s)
performed at the site. A sequence of site visits with actions then
provides an extended source of key material. Playing the game provides
rehearsal so that a specific set of actions can be recalled in order,
thereby recovering the seed.

The site options, both exterior and interior, such as location, layout,
style, material, color, etc, are specified as a data structure
represented as a sequence of bit fields. A single long string of bytes
such as might be generated with a deterministic hash can then be used to
generate a uniquely configured locale. A set of sites and actions can
also be encoded as a sequence of bit fields. A path through the locale
with visits and actions at each site can then be generated from a large
random number.

The game is then played in two modes. The first mode generates a random
seed and then rehearses the mnemonic for the random seed. The second
mode recovers the random seed with the mnemonic.

In the first, generative, mode, the user inputs a string that is the
customization phrase. The cryptographic strength of the customization
phrase is not important, it just allows the user to have a custom
configured locale that is compatible with the user preference. The
customization phrase is hashed (with Blake or Sha2) to generate a
sequence of bytes used to specify the local options. The locale is then
generated. A 2D or 3D display of the locale map is then presented to the
user. The game then uses a cryptographic class random number generator
to create the 128-bit random seed. This seed will be used to generate
the one-time pad for encrypting the key-rotation history. Using the seed
and a CSPRNG, a sequence of sites and actions is created
deterministically from the seed as the mnemonic. The user is then shown
on the map this mnemonic path through the locale. The user follows the
path through the locale, visiting each site in turn, where the user is
prompted to perform the selected action or actions. Once complete the
user continues to rehearse the mnemonic, only now the path is not shown.
The user must recall it from memory. If the user makes a wrong choice,
the game reminds the user with a prompt. Rehearsal repeats until the
user can successfully retrace the path and actions from memory without
any prompts. At this point the user has memorized the mnemonic and can
print out copies of the random seed for backup, use it for generating a
one-time encryption pad, and then instruct the application to forget the
random seed.

In the second, recovery, mode, the user inputs the customization phrase
to generate the locale map. The user then visits sites in turn and
performs actions at each site. The sequence of site visits and actions
deterministically regenerates a seed. When the user completes a sequence
the game displays the associated seed. If the user correctly replayed
the sequence then the user will recover the correct seed. If the user
does not, then the seed provided by the game will not be the one the
user was trying to recover.

Suppose that each locale contains 256 = 28 sites. This is comparable to
a small village of population about 1000. Randomly selecting a site then
provides 8 bits of entropy. Suppose that inside each site there are 8 =
23 spots, such as cupboard east wall, shelf north wall, barrel northeast
corner, etc. Random selection of a spot would provide 3 more bits of
entropy. Suppose that at each interior location the user has 2 = 21
choices of action such as, pick up hammer, drink vial of liquid, answer
question from inn keeper, etc. Random selection of an action would
provide another 1 bit of entropy. Suppose then that after completing the
first spot-action the user has to select another spot and make another
binary choice of action. The second spot-action provides yet another 4
bits of entropy. This given a total of 8 + 4 + 4 = 16 bits of entropy
per site-spot-action-spot-action sequence. To provide the total of 128 =
8 * 16 bits of entropy needed for the random seed requires that the
user visits 8 sites in order while selecting two successive actions at
each site.

Alternatively the game could provide some other mix of interior location
and interaction choices to get 8 bits of entropy. Suppose for example
that at each of the 256 sites there are 32 = 25 spots. Random selection
of a spot provides 5 bits of entropy. At each spot there are 8 = 23
action choices. Random action selection provides another 3 bits of
entropy. So each spot-action selection provides 5 + 3 = 8 bits of
entropy. If at each site the user must make 3 spot-action selections
then that provides a total of 3*8 = 24 bits of entropy. Thus each
site-spot-action-spot-action-spot-action combintion or site +
(spot-action) * 3 combination provides 32 = 8 + (3 * 8) bits of
entropy. A 128 = 4 * 32 bit seed can then be generated from only four
site-(spot-action)3 combinations, that is, 128 = 4 * (8 + (3 * 8)). An
area of research would be to find the optimal decomposition and
combination of site-spot-action sequences.

Either of the eight-site or four-site examples above are well within the
mnemonic capabilities of the general population given the dense
hierarchical geospatial sensory cues that such a graphical virtual game
world journey provides and would only take a few minutes to replay for
recovery. The app would run self contained on the user’s mobile device
or desktop computer and would make seed recovery fun. Any computing
device could be engaged to play the app so it would not require a
specific mobile device or computer and therefore loss of the user’s
mobile device would not impede seed recovery.

A variation of the game would be to allows some sites to have a portal
that transports the user to a new locale with a new unique map. The
configuration of the new locale is determined by a hash of the
site/action visit selections that were performed prior to entry of the
portal. This would add additional variety to the game and help
differentiate the mnemonics required for the create of multiple unique
seeds. This makes the game a recursively hierarchical deterministic seed
mnemonic (RHDSM).

This hierarchically deterministic seed mnuemonic (HDSM) could become a
standard feature for primary key recovery for any decentralized identity
based cryptographic system where the user must generate and manage their
private keys. Once users become familiar with this approach to key
recovery it could open the door to more rapid adoption of decentralized
approaches to online interactions where security is based on user
managed public/private key pairs.






Summary

A new data type called a DAD for decentralized autonomic data has been
presented that is derived from decentralized identifiers, DIDs. DADs are
suitable for streaming applications. Methods for the three basic key
management operations, namely, reproduction, rotation, and recovery have
been presented that are compatible with DAD stream-data applications.
The pre-rotation and hybrid recovery methods presented in this paper
including the hierarchically deterministic seed mnuemonic (HDSM) are
somewhat novel. They all provide what could be considered minimally
sufficient means for key management operations.






Appendices


Support for DAD Signatures in HTTP

In web applications that use HTTP, the simplest most compatible way to
associate or attach a signature to an HTTP packet is to include it in a
custom HTTP header. Standad JSON parsers raise an error if there are
additional characters after a closing object bracket thus one cannot
simply append the signature after the JSON serialization in the message
body. Another approach would be to use a custom JSON parser that
guarantees a cononical representation of a JSON serialization (including
white space) and then wrap the data item and the signature in another
JSON object, where the signature and the data item are both field in the
wrapper object. This is more verbose and is not compatible with the vast
majority of web application framework tools for handling JSON serialized
message bodies. Thus it is non-trivial to include the signature in the
message body. Using a custome HTTP header is relatively easy and has the
advantage that is is compatible with the vast majority of existing web
frameworks.

A suggested header name is Signature header that provides one or more
signatures of the request/response body text.

The format of the custom Signature header follows the conventions of
RFC 7230 [https://tools.ietf.org/html/rfc7230]

Signature header has format:

Signature: headervalue

Headervalue:
  tag = "signature"
or
  tag = "signature"; tag = "signature"  ...

where tag is replaced with a unique string for each signature value





An example is shown below where one tag is the string signer and the
other tag is the string current.

Signature: signer="Y5xTb0_jTzZYrf5SSEK2f3LSLwIwhOX7GEj6YfRWmGViKAesa08UkNWukUkPGuKuu-EAH5U-sdFPPboBAsjRBw=="; current="Xhh6WWGJGgjU5V-e57gj4HcJ87LLOhQr2Sqg5VToTSg-SI1W3A8lgISxOjAI5pa2qnonyz3tpGvC2cmf1VTpBg=="





Where tag is the name of a field in the body of the request whose value
is a DID from which the public key for the signature can be obtained. If
the same tag appears multiple times then only the last occurrence is
used.

Each signature value is a doubly quoted string "" that contains the
actual signature in Base64 url safe format. But the signatures should
use an intelligent default cryptographic suite such as 64-byte Ed25519
signatures that have been encoded into BASE64 url-file safe format. The
encoded signatures are 88 characters in length and include two trailing
pad characters =.

An optional tag name = kind may be present to specify the
cryptographic suite and version of the signatures. The kind tag field
value specifies the type of signature. All signatures within the header
must be of the same kind.

Signature: signer="B0Qc72RP5IOodsQRQ_s4MKMNe0PIAqwjKsBl4b6lK9co2XPZHLmzQFHWzjA2PvxWso09cEkEHIeet5pjFhLUDg=="; did="B0Qc72RP5IOodsQRQ_s4MKMNe0PIAqwjKsBl4b6lK9co2XPZHLmzQFHWzjA2PvxWso09cEkEHIeet5pjFhLUDg=="; kind="ed25519:1.0"








Cryptographic Suite Representation

Best practices cryptography limits the options that user may choose from
for the various cryptographic operations, such as signing, encrypting,
and hashing to a suite of balanced and tuned set of protocols, one for
each operation. Each member of the set should be the one and only one
best suited to that operation. This prevents the user from making bad
choices. In most key-representation schemes each operation is completely
free to be specified independent of the others. This is a very bad idea.
Users should not be custom combining different protocols that are not
part of a best practices cypher suite. Each custom configuration may be
vunerable to potential attack vectors for exploit. The suggested
approach is to specify a cypher suite with a version. If an exploit is
discovered for a member of a suite and then fixed, the suite is updated
totally to a new version. The number of cypher suites should be
minimized to those essential for compatibility but no more. This
approach increases expressive power because only one element is needed
to specify a whole suite of operations instead of a different element
per operation.

See this
article [https://paragonie.com/blog/2017/03/jwt-json-web-tokens-is-bad-standard-that-everyone-should-avoid]
for a detailed explanation on how standards such as JOSE expose
vulnerabilities due to too much flexibility in how cryptographic
operations are specified.

Example cypher suites:

v1: Ed25519, X25519, XSalsa20poly1305, HMAC-SHA-512-256
v2: Ed448, X448, XChaCha20Poly1305, keyed BLAKE2b
v3: SPHINCS-256, SIDH, NORX64-4-1, keyed BLAKE2x








Canonical Data Serialization

Canonical data serialization means that there is a universally defined
way of serializing the data that is to be cyptographically signed.

The are few typical approaches to achieving data canonicalization. The
advantages of compatibility, flexibility, and modularity that come from
using a key/value store serialization such as JSON usually makes 1) the
preferred approach.


	Store the serialization and signature as a chunk.




The simplest is that the signer is the only entity that actually
serializes the data. All other users of the data only deserialize. This
simplifies the work to guarantee canonization. For example, JSON is the
typical data format used to serialize key:value or structured data. But
the JSON specifcation for ser/deser treats whitespace characters and the
order of appearance of keys as semantically unimportant. For a
dictionary (key:value) data structure the typical approach is to
represent it internally as a hash table. Most hash algorithms do not
store data ordered in any predictable way (Python and other languages
have support for Ordered Dicts or Ordered Hashes, which can be used to
partially ameliorate this problem). But from the perspective of
equivalence, key:value data structures are “dict” equal if they have the
same set of keys with the same values for each key. Thus deserialization
can produce uniform equivalent “dict equal” results from multiple but
differing serializations (that differ in whitespace and order of
appearance of fields). JSON only guarantees dict equivalent not
serialization equivalence. Unfortunately the signatures for the
differing but equivalent serializations will not match.

But in signed at rest data only the signer ever needs to serialize the
data. Indeed, only the signer may serialize the data because only the
signer has the private key. So deserialization and reserialization by
others is of limited value. The primary value appears to be either
schema completeness where signatures are included as fields in a wrapper
object or the ability to nest signatures or signed data with signatures.
Because it is simple to convert a JSON serialization to a coded
serializaiton such as Base64, nested coded JSON serialization without
canonicalization can be trivially supported. After expansion and
decoding, readers of the data can see the uncoded underlying data in a
schema complete representation.

The signer’s serialization is always canonical for the signature.
Users of the data merely need to use a “dict equal” deserialization
which is provided by any compliant JSON deserializer. So no additional
work is required to support it across multiple languages etc. If the
associated data also needs to be stored, unserialized then validation
and extraction of the data is performed by first verifying the signature
on the stored serialization and then deserializing it in memory.


	Implement perfectly canonical universally reproducibly serialization.




In this approach all implementations of the protocol or service use the
exact same serialization method that is canonical including white space
and field order so that they can reproduce the exact same serialization
that the original signer created when originally signing the data. This
is difficult to achieve with something like JSON across multiple
languages, platforms, and tool kits. It’s usually more work to implement
and more work to support because it usually means either using something
other than JSON for serialization or writing from scratch conformant
JSON implementations or at the very least having tight control of how
white space and order occurs and ensuring accross updates that this does
not change. Unfortunately many overly schematizied standards are based
on this approach. This approach typically breaks web application
frameworks.


	Use binary data structures




With binary data structures the canonical form is well defined but it is
also highly inflexible.




Relative Expressive Power

One way to measure and compare different knowledge representations is
called relative expressive power. In the physics world power is
defined as work done per unit time. It is a ratio. Expressive power is
similary defined as the ratio of meaning conveyed per dependency, where
dependency is something that must be kept track of or transmitted to
convey the meaningful information. Because dependencies are a measure of
complexity, relatively higher expressive power conveys more meaning
relatively more simply.


Intelligent Defaults

One approach to acheiving higher expressive power in a data
representation specification is the use of intelligent defaults. An
intelligent default assigns meaning to the absence of data. For example,
if there are several options for a given data item value such as the
type of a data item, an intelligent default would assign the type to a
predetermined default if no type is provided in the data. This provides
high expressive power as the type meaning is conveyed without the
transmission of any bytes to represent type.

Typically in any given knowledge representation application the relative
frequency of the appearance of optional values is not evenly
distributed, but follows a Pareto distribution. This means that if an
intelligent default (the Pareto optimal value) is specified as part of
the schema the average expressive power of data items will be increased.

A practical example of this is the RAET (Reliable Asynchronous Event
Transport) protocol header (see
RAET [https://github.com/RaetProtocol/raet]). Typically in protocols
the header has a fixed format binary representation for two reasons. The
first is that every packet includes the header, so a verbose header
reduces the payload capacity of each packet, thereby making the protocol
comsume more bandwidth. The second is that the header is used to
interpret the rest of the packet and therefore must be consistenly
parsable which is easier if the format is fixed. The problem with fixed
format headers is that they are not extensible. To make the extensible
usually means adding additional fields to the header to indicate the
presence of additional extended fields. RAET used an intelligent
default policy to achieve a completely flexible extensible header that
on average is the size of a non-extensible fixed format header. In RAET
the header is composed of a serialized list of key-value pairs where
each key is the field name of the associated field value. This makes it
easy to add new key-value pairs as needed to extend the protocol to
different uses and with different behavior. Unfortunately, transmitting
the keys makes the header much larger relative to a fixed format header
where the offset of the value in the header determines the associated
field. RAET overcomes this problem by defining a default value for each
key-value pair. When a header is generated on the transmit side, the
actual key-value pairs are compared against the default set. Any pair
where the value matches the default is not included in the list of
key-value pairs in the transmitted header. On the recieve side a default
header is created with every key value pair set to the default. The
received header’s key-value pairs are used to update the default header
with the non-defaulted values. Because the optional fields are seldomly
used by most packets the average header size is comparable to a fixed
format header. When viewing the header after expansion and update, all
the fields are present, so there is no hidden information. All the
meaning is apparently conveyed.

RAET header field defaults

PACKET_DEFAULTS = odict([
                            ('sh', DEFAULT_SRC_HOST),
                            ('sp', RAET_PORT),
                            ('dh', DEFAULT_DST_HOST),
                            ('dp', RAET_PORT),
                            ('ri', 'RAET'),
                            ('vn', 0),
                            ('pk', 0),
                            ('pl', 0),
                            ('hk', 0),
                            ('hl', 0),
                            ('se', 0),
                            ('de', 0),
                            ('cf', False),
                            ('bf', False),
                            ('nf', False),
                            ('df', False),
                            ('vf', False),
                            ('si', 0),
                            ('ti', 0),
                            ('tk', 0),
                            ('dt', 0),
                            ('oi', 0),
                            ('wf', False),
                            ('sn', 0),
                            ('sc', 1),
                            ('ml', 0),
                            ('sf', False),
                            ('af', False),
                            ('bk', 0),
                            ('ck', 0),
                            ('fk', 0),
                            ('fl', 0),
                            ('fg', '00'),
                      ])





Any key-value based schema standard specification may benefit from an
intelligent default policy to greatly increase the expressive power of
the schema. This becomes even more important where security is concerned
as the intelligent default might be the most secure set of options thus
helping the user be more secure and more expressive. Moreover expressive
power is about conveying meaning more simply which makes it easier to
implement and incentivizes adoption.




Essential vs. Optional Elements

Another related technique for increasing expressive power is to
distinguish between essential and optional elements in a given
representation. Any essential elements should be expressed as explicitly
as possible (when not defaulted); that is, it should not be looked up
and should either not be indirected or have minimal indirection.
External lookups are expensive. Moreover, hiding essential elements
behind multiple levels of indirection may make it harder to understand
the conveyed meaning (adding dependencies and hence complexity). An
important meaningful difference that should be apparent is whenever an
essential element is not set to a default value. This difference should
not be hidden behind indirection.
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models.consensing.py


ConsensusResult

ConsensusResult object is a container class for storing info about a
request and the status of a requests validation during the consensing
step. A list or dict of ConsensusResult objects will be returned by any
function running didery.py’s consensing algorithm.

class models.consensing.ConsensusResult(url,
validation_status, response=None, http_status=None)


url (required): url string that was queried

validation_status (required): integer value between 0 and 3

response (optional): dict or model containing response data from
the above url

http_status (optional): integer representing the http response
status from the request




Static Attributes

The ConsensusResult object has a few static attributes to identify the
result of the signature validation


TIMEOUT - The request timed out

VALID - The signatures were verified to be valid

ERROR - There was an error while making the request

FAILED - The signatures failed validation






Example Usage

from diderypy.models.consensing import ConsensusResult

# setup the result object
result = ConsensusResult("http://localhost:8080", ConsensusResult.VALID)

if result.validation_status == ConsensusResult.FAILED:
    print("Invalid Signature")
elif result.validation_status == ConsensusResult.TIMEOUT:
    print("Server could not be reached")
elif result.validation_status == ConsensusResult.ERROR:
    print("Error while contacting the server")
elif result.validation_status == ConsensusResult.VALID:
    print("Signatures are valid")

# Alternatively ConsensusResult overloads the __str__ and can give the same result as above
print()
print(str(result))








Output

Signatures are valid

http://localhost:8080:  Signature Validation Succeeded








Attributes

url - url string that was queried

validation_status - integer value between 0 and 3

response - dict or model containing response data from the above url

http_status - integer representing the http response status from
the request









          

      

      

    

  

    
      
          
            
  
Library Models

Python library for generating keys and broadcasting or polling didery servers.



	models.consensing.py

	responding.py









          

      

      

    

  

    
      
          
            
  
responding.py


DideryResponse

DideryResponse object is a container class for storing info about a HTTP
response.

class models.responding.DideryResponse(url, status, response)


url (required): url string that was queried

status (required): integer representing the http response status
from the request

response (optional): dict or model containing response data from
the above url




Attributes

url - url string that was queried

status - integer representing the http response status from the
request

response - dict or model containing response data from the above url






AbstractDideryData

AbstractDideryData object is an abstract parent class for storing
response data from didery servers.


Attributes

data - dict containing response data from didery servers

bdata - byte string version of response data

body - parsed data from data dict

bbody - byte string version of body data

vk - current verifier/public key stored in a url-file safe base64
string

did - W3C DID string

signature - url-file safe base64 signature string

valid - When this attribute is accessed the signature is verified
against the bbody data and a bool is returned.






HistoryData

HistoryData is a container class that implements the AbstractDideryData
class. It adds three additional attributes to the base class.

class models.responding.HistoryData(data)

data (required): dict returned from request to /history/ endpoint
on didery servers


Attributes

previous_vk - previous verifier/public key stored in a url-file
safe base64 string

signer_sig - url-file safe base64 signer signature string

rotation_sig - if a rotation signature was sent with the response
data it will contain a url-file safe base64 rotation signature string
otherwise None is returned.

valid - the valid attribute will verify both the signer and the
rotation signature if it was included with the data. If only one
signature is valid the attribute will be false.






OtpData

OtpData is a container class that implements the AbstractDideryData
class. It does not currently add any additional attributes or methods to
the base class.

class models.responding.HistoryData(data)

data (required): dict returned from request to /blob/ endpoint on
didery servers




responseFactory

responseFactory() implements the factory pattern to build objects for
history, otp, and events data based on the format of the data that is
passed to it.


url (required): url string that was queried

status (required): integer representing the http response status
from the request

response (optional): dict containing response data from the
above url



returns - DideryResponse object containing in it’s response field
either a HistoryData object, OtpData object, or a dict of HistoryData
objects depending on if you passed rotation history data, otp encrypted
blob data, or events data.
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