
dictlearn Documentation
Release 0.0.0

Per Magne

Sep 09, 2018

Contents:

1 Getting Started 1
1.1 Overview . 1
1.2 Installation . 1
1.3 Next steps . 2

2 Dictionary learning tutorial 3
2.1 Training . 4

3 High-Level Algorithms 11
3.1 Training . 11
3.2 Denoise . 12
3.3 Inpaint . 14
3.4 Structure Detection . 16

4 Sparse Coding 17
4.1 ℓ0-regularization . 17
4.2 ℓ1-regularization . 19
4.3 References . 21

5 Optimize 23
5.1 Standard algorithms . 23
5.2 Masked data . 25
5.3 References . 26

6 Preprocessing 27

7 Working with VTK 31
7.1 Installing . 31

8 Examples 35
8.1 Vessel Enhancement . 35
8.2 Denoise . 36
8.3 Inpaint . 37

9 Indices and tables 41

i

ii

CHAPTER 1

Getting Started

1.1 Overview

dictlearn is a module for signal and image processing. This tool include easy-to-use algorithms for denoising, inpaint-
ing, feature enhancement and detection, and image segmentation. Additionally, this tool has some methods designed
specifically for medical image processing, among these are vessel segmentation and denoising of large 3D images.

• Multiple algorithms for dictionary learning and sparse coding

• Accelerated with Cython and C

• Built on numpy, scipy and scikit-learn

This module is a part of a masters thesis in applied mathematics, which can be read here.

1.2 Installation

Clone the repository:

$ git clone git@github.com:permfl/dictlearn.git

1.2.1 Linux/OSX

Install dependencies with:

$ pip install -r requirements.txt

Make sure scipy and numpy are linked with BLAS/lapack. See the installation guides for numpy and scipy for more
details.

Then install the library with:

1

https://www.duo.uio.no/bitstream/handle/10852/63309/master-florvaag.pdf
https://docs.scipy.org/doc/numpy-1.10.1/user/install.html
https://www.scipy.org/install.html

dictlearn Documentation, Release 0.0.0

$ python setup.py install

1.2.2 Windows

Using Anaconda is strongly recommended. The PyWavelet package in requirement.txt are not listed in anaconda
package repository. Comment out this dependency with #, then install dependencies with conda install:

$ conda install --file requirements.txt
$ pip install PyWavelets

Then install the library with:

$ python setup.py install

Cython not compiling on Windows

Make sure you have the Microsoft C++ compiler. Download the compiler for python 2.7: https://www.
microsoft.com/en-us/download/details.aspx?id=44266

For python 3 you need Build Tools for Visual Studio 2017 : https://www.visualstudio.com/
downloads/#build-tools-for-visual-studio-2017

See here if downloading the above compiler doesn’t fix the problem.

1.3 Next steps

See the examples, or the dictionary learning tutorial

2 Chapter 1. Getting Started

https://www.continuum.io/
https://www.microsoft.com/en-us/download/details.aspx?id=44266
https://www.microsoft.com/en-us/download/details.aspx?id=44266
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://www.visualstudio.com/downloads/#build-tools-for-visual-studio-2017
https://github.com/cython/cython/wiki/InstallingOnWindows

CHAPTER 2

Dictionary learning tutorial

Simply put dictionary learning is the method of learning a matrix, called a dictionary, such that we can write a signal
as a linear combination of as few columns from the matrix as possible.

When using dictionary learning for images we take advantage of the property that natural images can be represented in
a sparse way. This means that if we have a set of basic image features any image can be written as a linear combination
of only a few basic features. The matrix we call a dictionary is such a set. Each column of the dictionary is one basic
image features. In the litterature these feature vectors are called atoms.

We don’t work on full images directly, but small image patches. An image patch is simply a small square from the
image, and when working with dictionary learning we normally extract all overlapping image patches. If we want to
work on patches of size (8, 8) we start at image[0, 0] and extraxt the first patch patches[:, 0] = image[0:8, 0:8].flatten()
the second patch will be patches[:, 1] = image[0:8, 1:9].flatten(). The inverse transformation, from image patches to
image is done adding each patch to its origination? location in the image and then averaging all values for overlapping
pixels.

>>> import dictlearn as dl
>>> image = dl.imread('examples/images/house.png')
>>> image_patches = dl.Patches(image, 8)
>>> matrix = image_patches.patches
>>> matrix.shape
(64, 62001)

With dictionary learning we want to find a dictionary, D, and a vector with coefficients for the linear combinations, y.
The vector of an image patches we’ll denote by x. Then our goal is to find D and y such that the error ‖x −Dy‖2 is
small. Before we said: .. any image can be written as a linear combination of only a few basic features. This means
y has to be sparse such that we only use a few of the available atoms in the dictionary. We could try to minimize
the error above and hope we get a sparse y, but the would almost certainly not work. Something that does work is to
add regularization. Regularization is a way to control how the terms we’re minimizing over behaves. In our case we
need a type of regularization that is small when y is sparse and large otherwise. We’ll use ℓ0-regularization, and the
minimization problem becomes

𝑎𝑟𝑔 𝑚𝑖𝑛
D, y

1

2
‖x−Dy‖22 + 𝜆‖y‖0

3

dictlearn Documentation, Release 0.0.0

Almost always we’ll have have thousands of training signals that each should be represented with a sparse vector. To
make this easier we are going to organize our training data as columns in a big matrix X with the shape (signal_size,
n_signals). Then we have the dictionary which is denoted by D. The shape of the dictionary is (signal_size, n_atoms).
Finally we have the sparse representation which is the matrix A with shape (n_atoms, n_signals), where each column
is the representation for the corresponding signal (column i X). Now almost all the important parts are introduced and
we can look at the definition of the learning problem.

𝑚𝑖𝑛
D∈𝒞, A

1

2
‖X−DA‖2𝐹 + 𝜆Ψ(A)

What this definition says is that we need to the dictionary and sparse representation that minimizes the two terms. The
first term measure the error between the real signals X and the reconstructed signals DA. This first term is essentially
the least squares problem. ‖.‖𝐹 is the Frobenius norm

The second term is the interesting part. This is the regularization. With regularization we can alter the way the matrix
A behaves during the minimization. Since we want a sparse representation A, the function Ψ needs to be chosen such
that the minimization above “prefers” A to be sparse. We need Ψ to be a sparsity inducing function. In this package
two different functions are used. The first is the ℓ0- norm which counts the number of nonzero entries. The other is
the ℓ1-norm, this is the sum of the absolute values. When using ℓ0-norm we say the problem is ℓ0- regularized, ℓ1 -
regularized in the other case.

2.1 Training

The functions found in Optimize are used to train the dictionary. All of these algorithms work in two stages: (1) sparse
coding with the current dictionary then (2) using the sparse codes update the dictionary such that the new dictionary
will better approximate the image.

To start training we first need an initial guess for the dictionary. This can be pretty much anything as long as the
columns are normalized, but some choices give faster convergence than others. One good dictionary is the one created
using the Discrete Cosine Transform basis functions.

import dictlearn as dl
dictionary = dl.dct_dict(256, 8) # dl.dct_dict(n_atoms, patch_size)

The DCT dictionary looks like

dl.visualize_dictionary(dictionary, 16, 16)

4 Chapter 2. Dictionary learning tutorial

https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)

dictlearn Documentation, Release 0.0.0

Each box is one atom. The atoms are reshaped into the shape of the image patches for better visualization.

A random dictionary can also be used. dl.random_dictionary(rows, columns) samples from a uniform
distribution. This looks like

import dictlearn as dl
dictionary = dl.random_dictionary(64, 256)
dl.visualize_dictionary(dictionary, 16, 16)

2.1. Training 5

dictlearn Documentation, Release 0.0.0

The DCT dictionary will give very good results with no training. But training the dictionary will always give better
results. In High-Level Algorithms a set of high level interfaces are given to train a dictionary, and other methods
(denoise, inpaint, . . .). Low level functions are found in Optimize. The easiest way to use an image to train a dictionary
is to use the class ImageTrainer.

trainer = dl.ImageTrainer('examples/images/lena512.png', patch_size=8)
trainer.dictionary = dictionary
trainer.train(iters=100, n_nonzero=8, n_threads=4, verbose=True)

dl.visualize_dictionary(trainer.dictionary, 16, 16)

After training the random dictionary above for 100 iterations it now looks like

6 Chapter 2. Dictionary learning tutorial

dictlearn Documentation, Release 0.0.0

The low level methods in Optimize can also be used. Training the DCT dictionary for 50 iterations will look like:

import dictlearn as dl

image = dl.imread('examples/images/lena512.png').astype(float)
image_patches = dl.Patches(image, 8) # Creates 8x8 image patches
dictionary = dl.dct_dict(256, 8) # Initial dictionary
dictionary = dl.ksvd(image_patches, dictionary, 50, n_nonzero=8,

n_threads=4, verbose=True)

dl.visualize_dictionary(dictionary, 16, 16)

2.1. Training 7

dictlearn Documentation, Release 0.0.0

2.1.1 Denoise

Here we’ll show how to denoise a grayscale (colors in future release) image using patch-based denoising. First, import
the library

import dictlearn as dl

Then you can open an image and create an instance of the denoising class:

denoiser = dl.Denoise('path/to/noisy_image.png', patch_size=8, method='online')

The denoise class handles both training the dictionary and denoising the image (source:
dictlearn/algorithms.py:Denoise). The first parameter is the image data, this can be a path, image as a numpy
array or an instance of preprocess.Patches. The second is the size of one dimension in the image patches. As the
patches are squares the total patch size in this case is 64, 8*8. The patch size will impact the blurriness of the denoised
image, bigger patches gives more blur. More on this later. The third argument is the training algorithm. The choices
are {‘online’, ‘batch’, ‘ksvd’}. Online training uses [ODL](#), while batch and ksvd both uses [K-SVD](#). The
difference between the last two is that batch uses an additional step with Orthogonal-MP after training to denoise the
image, while ksvd uses the sparse coefficients from training to denoise the image.

To train the dictionary, call the train method

denoiser.train()

8 Chapter 2. Dictionary learning tutorial

dictlearn Documentation, Release 0.0.0

Calling train without arguments like this will give good results for most cases. If you’re using method=’ksvd’, train
require the argument sigma - the noise variance. You can pass the following keyword arguments to fine tune the
training

• iters: Number of training iterations. 15 for batch or ksvd and 5000 for online are good starting points

• n_atoms: Number of atoms (columns) in the dictionary. Optimally you want your sparse code to use all the
atoms. A good default value is 2*total_patch_size. The complexity of the training algorithms with respect to
the number of atoms is linear.

• n_nonzero: Number of coefficients to use for sparse coding. Has to be atleast one, and cannot be larger than
the number of atoms. Check complexity OMP-Batch. If you’re using too many coefficients you might end up
capturing the noise in the trained dictionary.

• fill in the rest

Finally, denoise the image:

denoised_image = denoiser.denoise(sigma=20, n_threads=4)

Image still has a lot of noise, what to do? Try the following, the points has decreasing impact on the denoised
image 1. Higher sigma 2. Bigger patches 3. Fewer n_nonzero coeffs 4. Fewer atoms 5. More iterations

Image is very blurry, what to do? Follow the points above, but do the opposite. Ie. point one: Higher sigma -
you do lower sigma.

Full example

import dictlearn as dl
import matplotlib.pyplot as plt
from scipy import misc

Set default pyplot colormat
plt.rcParams['image.cmap'] = 'bone'

clean = misc.imread('images/lena512.png').astype(float)
noisy = misc.imread('images/lena_noisy512.png').astype(float)

denoiser = dl.Denoise(noisy, patch_size=10, method='batch')
denoiser.train(iters=40, n_nonzero=1, n_atoms=256, n_threads=4)
denoised = denoiser.denoise(sigma=33, n_threads=4)

plt.subplot(131)
plt.imshow(clean)
plt.axis('off')
plt.title('Clean')

plt.subplot(132)
plt.imshow(noisy)
plt.axis('off')
plt.title('Noisy, psnr = {}'.format(dl.utils.psnr(clean, noisy, 255)))

plt.subplot(133)
plt.imshow(denoised)
plt.axis('off')
plt.title('Denoised, psnr = {}'.format(dl.utils.psnr(clean, denosied, 255)))
plt.show()

2.1. Training 9

dictlearn Documentation, Release 0.0.0

2.1.2 Inpaint

Mask

2.1.3 Upscaling

Train two dictionaries

2.1.4 Compression

Distribute compressed sparse codes along with the dictionary

10 Chapter 2. Dictionary learning tutorial

CHAPTER 3

High-Level Algorithms

High level interfaces to the different algorithms and methods. Using algorithms from optimize we get denoising,
inpainting etc

3.1 Training

class dictlearn.algorithms.Trainer(signals, method=’online’, regularization=’l0’)

Parameters

• signals – Training data, shape (n_features, n_samples)

• method – Training algorithm, ‘online’ or ‘batch’

• regularization – ‘l0’ or ‘l1’, ‘l0’ is faster, but ‘l1’ can sometimes be more accurate

train(dictionary=None, n_atoms=None, iters=None, n_nonzero=10, tolerance=0, n_threads=1, ver-
bose=False, **kwargs)

Train a dictionary on training signals using ‘Online Dictionary Learning (ODL)’ or ‘K-SVD’.

Both methods update the dictionary once very iteration. ODL will find the sparse coding on one signal
and then update the dictionary using a variant of block coordinate-descent with momentum. K-SVD will
sparse code all signals before doing the dictionary update, thus every iteration of K-SVD is a lot slower.
Both produces similar results given the same running time

Parameters

• dictionary – Optional. Dictionary, ndarray with shape (signal_size, n_atoms)

• n_atoms – Number of dictionary atoms, default 2*signal_size

• iters – Training iterations, default 10 if ‘batch’, 1000 for ‘online’

• n_nonzero – Max number of nonzero coefficients in sparse codes. Default 10

• tolerance – Sparse coding tolerance. Adds coefficients to the sparse approximation
until the tolerance is achieved, or all coefficients are active

11

dictlearn Documentation, Release 0.0.0

• n_threads – Number of threads to use. Default 1

• verbose – Print progress if True. Default False

class dictlearn.algorithms.ImageTrainer(image, patch_size=8, method=’online’, regulariza-
tion=’l0’)

Parameters

• image – Train dictionary on this image (data). Can be a path to image, numpy array,
dl.Patches or dl.Patches3D. If path or numpy array then dl.Patches are created. If the image
is to large for keeping all image patches in memory pass dl.Patches3D instance

• patch_size – Size of image patches

• method – Method for training, ‘online’, or ‘batch’

• regularization – Regularization to use, ‘l0’ or ‘l1’

train(dictionary=None, n_atoms=None, iters=None, n_nonzero=10, tolerance=0, n_threads=1, ver-
bose=False, **kwargs)

Train a dictionary on training signals using ‘Online Dictionary Learning (ODL)’ or ‘K-SVD’.

Both methods update the dictionary once very iteration. ODL will find the sparse coding on one signal
and then update the dictionary using a variant of block coordinate-descent with momentum. K-SVD will
sparse code all signals before doing the dictionary update, thus every iteration of K-SVD is a lot slower.
Both produces similar results given the same running time

Parameters

• dictionary – Optional. Dictionary, ndarray with shape (signal_size, n_atoms)

• n_atoms – Number of dictionary atoms, default 2*signal_size

• iters – Training iterations, default 10 if ‘batch’, 1000 for ‘online’

• n_nonzero – Max number of nonzero coefficients in sparse codes. Default 10

• tolerance – Sparse coding tolerance. Adds coefficients to the sparse approximation
until the tolerance is achieved, or all coefficients are active

• n_threads – Number of threads to use. Default 1

• verbose – Print progress if True. Default False

3.2 Denoise

class dictlearn.algorithms.Denoise(image, patch_size=8, method=’online’, regulariza-
tion=’l0’)

Image Denoising with Dictionary Learning

Train a dictionary on the noisy image, then denoise using sparse coding. If method = ‘ksvd’ a dictionary is
learned using K-SVD and the image is denoised using the sparse coefficients from the last training iteration. If
method = ‘batch’ or ‘online’ an additional sparse coding step is used to compute the sparse codes for denoising.

Both adaptive and static denoising is supported.

Example adaptive denoise:

>>> denoiser = Denoise('noisy/image.png', 12)
>>> denoiser.train(iters=5000, n_nonzero=2, n_atoms=256)
>>> cleaned = denoiser.denoise(sigma=30)

12 Chapter 3. High-Level Algorithms

dictlearn Documentation, Release 0.0.0

Example pre-trained (static) dictionary:

>>> import numpy as np
>>> dictionary = np.load('dictionary.npy')
>>> denoiser = Denoise('noisy/image.png', 12)
>>> denoiser.dictionary = dictionary
>>> denoiser.train() # Optional training
>>> cleaned = denoiser.denoise(sigma=30)

The size of the image patches and sigma in denoise() will have a large effect on the denoised image. If either are
too large the image will look blurry, if too low the difference between the original noisy image and the denoised
image will be small. A patch size in [8, 12] is usually a good choice for most images. If the image has very
small details then a smaller patch size might be needed. If the structures in the image are large and smooth,
larger patches can produce better results.

The value of sigma is highly dependent on the image and its scale. If the image is in [0, 1] then 0 <= sigma <=
1. An image in [0, 255] gives sigma in [0, 255].

Parameters

• image – Noisy image. Can be a path to image, numpy array, dl.Patches or dl.Patches3D.
If path or numpy array then dl.Patches are created. If the image is to large for keeping all
image patches in memory pass dl.Patches3D instance

• patch_size – Size of image patches

• method – Method for training, ‘online’, ‘batch’ or ‘ksvd’

• regularization – Regularization to use, ‘l0’ or ‘l1’

denoise(sigma=20, n_threads=1, noise_gain=1.15)
Denoise the image

Sigma is the parameter that has the largest effect on the final result. For the best results sigma should be
close to the variance of the noise. If the difference between the original and the denoised image is small
sigma is probably too low. If the denoised image is very blurry then sigma is too large.

Blurry image? Reduce sigma

Noisy image? Increase sigma

Parameters

• sigma – Noise variance

• n_threads – Number of threads. Default 1

• noise_gain – Average number of nonzero coefficients in sparse approximation. De-
fault 1.15, which has been shown to give good results.

Returns Reconstructed and denoised image

train(dictionary=None, n_atoms=None, iters=None, n_nonzero=10, tolerance=0, n_threads=1, ver-
bose=False, **kwargs)

Train a dictionary on training signals using ‘Online Dictionary Learning (ODL)’ or ‘K-SVD’.

Both methods update the dictionary once very iteration. ODL will find the sparse coding on one signal
and then update the dictionary using a variant of block coordinate-descent with momentum. K-SVD will
sparse code all signals before doing the dictionary update, thus every iteration of K-SVD is a lot slower.
Both produces similar results given the same running time

Parameters

• dictionary – Optional. Dictionary, ndarray with shape (signal_size, n_atoms)

3.2. Denoise 13

dictlearn Documentation, Release 0.0.0

• n_atoms – Number of dictionary atoms, default 2*signal_size

• iters – Training iterations, default 10 if ‘batch’, 1000 for ‘online’

• n_nonzero – Max number of nonzero coefficients in sparse codes. Default 10

• tolerance – Sparse coding tolerance. Adds coefficients to the sparse approximation
until the tolerance is achieved, or all coefficients are active

• n_threads – Number of threads to use. Default 1

• verbose – Print progress if True. Default False

3.3 Inpaint

class dictlearn.algorithms.Inpaint(image, mask, patch_size=8, method=’online’)
Image inpainting

Fill in missing areas of an image, or remove unwanted objects. Works very well if the missing areas are fairly
small, and smaller than the image patches. If the missing areas are large use TextureSynthesis

>>> import dictlearn as dl
>>> import numpy as np
>>> image imread('some/img.png')
>>> # Mask with 60% of pixels marked missing
>>> mask = np.random.rand(*image.shape) < 0.6
>>> corrupted = image * mask
>>> # Plot corrupted
>>> inp = Inpaint(corrupted, mask)
>>> reconstructed = inp.train().inpaint()

Parameters

• image – Corrupted image

• mask – Binary mask for image. Pixels in mask marked 0 is will be inpainted. locations
marked 1 is kept as is.

• patch_size – Size of image patches. Default 8

• method – Inpainting method. ‘online’ or ‘itkrmm’.

inpaint(n_nonzero=20, group_size=60, search_space=20, stride=4, callback=None, tol=0, ver-
bose=False)

Parameters

• n_nonzero – Number of nonzero coefficients for reconstruction

• group_size – Size of group for ‘online’ inpaint. Finds the ‘group_size’ most similar
image patches and trains a dictionary on this group

• search_space – How far from the current pixel (i, j) to search for similar patches. Will
search all pixels (i - s, j - s) to (i + s, j + s), s = search_space.

• stride – Distance between image patches

• callback – Callback function for online inpaint. Called with two arguments

1. the current reconstruction and

2. current iteration

14 Chapter 3. High-Level Algorithms

dictlearn Documentation, Release 0.0.0

• tol – For method = ‘itkrmm’, tolerance for sparse coding reconstruction. Set this the
same way as sigma in denoise, to also denoise the image if needed. If the image is noise
free, use n_nonzero

• verbose – Print progress

Returns Inpainted image

train(**kwargs)
Train a dictionary on training signals using ‘Online Dictionary Learning (ODL)’ or ‘K-SVD’.

Both methods update the dictionary once very iteration. ODL will find the sparse coding on one signal
and then update the dictionary using a variant of block coordinate-descent with momentum. K-SVD will
sparse code all signals before doing the dictionary update, thus every iteration of K-SVD is a lot slower.
Both produces similar results given the same running time

Parameters

• dictionary – Optional. Dictionary, ndarray with shape (signal_size, n_atoms)

• n_atoms – Number of dictionary atoms, default 2*signal_size

• iters – Training iterations, default 10 if ‘batch’, 1000 for ‘online’

• n_nonzero – Max number of nonzero coefficients in sparse codes. Default 10

• tolerance – Sparse coding tolerance. Adds coefficients to the sparse approximation
until the tolerance is achieved, or all coefficients are active

• n_threads – Number of threads to use. Default 1

• verbose – Print progress if True. Default False

class dictlearn.algorithms.TextureSynthesis(image, mask, patch_size=8,
method=’online’)

Inpaint by texture synthesis

For each missing pixel we create an image patch centered at this pixel, and search the image for the most similar
patch. Then the missing pixel is replaced with the center pixel in the most similar patch. Repeat until all pixels
are filled.

denoise(sigma=20, n_threads=1, noise_gain=1.15)
Denoise the image

Sigma is the parameter that has the largest effect on the final result. For the best results sigma should be
close to the variance of the noise. If the difference between the original and the denoised image is small
sigma is probably too low. If the denoised image is very blurry then sigma is too large.

Blurry image? Reduce sigma

Noisy image? Increase sigma

Parameters

• sigma – Noise variance

• n_threads – Number of threads. Default 1

• noise_gain – Average number of nonzero coefficients in sparse approximation. De-
fault 1.15, which has been shown to give good results.

Returns Reconstructed and denoised image

inpaint(max_iters=None, verbose=False)

Parameters

3.3. Inpaint 15

dictlearn Documentation, Release 0.0.0

• max_iters – If None, run until the entire image is filled. Otherwise stop after
‘max_iters’ iterations

• verbose – Print progress

train(**kwargs)
Train a dictionary on training signals using ‘Online Dictionary Learning (ODL)’ or ‘K-SVD’.

Both methods update the dictionary once very iteration. ODL will find the sparse coding on one signal
and then update the dictionary using a variant of block coordinate-descent with momentum. K-SVD will
sparse code all signals before doing the dictionary update, thus every iteration of K-SVD is a lot slower.
Both produces similar results given the same running time

Parameters

• dictionary – Optional. Dictionary, ndarray with shape (signal_size, n_atoms)

• n_atoms – Number of dictionary atoms, default 2*signal_size

• iters – Training iterations, default 10 if ‘batch’, 1000 for ‘online’

• n_nonzero – Max number of nonzero coefficients in sparse codes. Default 10

• tolerance – Sparse coding tolerance. Adds coefficients to the sparse approximation
until the tolerance is achieved, or all coefficients are active

• n_threads – Number of threads to use. Default 1

• verbose – Print progress if True. Default False

3.4 Structure Detection

dictlearn.detection.smallest_cluster(features, n_clusters, verbose=False)
Extract the smallest cluster of samples for the data ‘features’.

See examples/vessel_enhancement.py

Parameters

• features – array of features, shape (n_samples, n_features)

• n_clusters – Number of features

• verbose –

Returns Prediction vector of shape (n_samples,) where prediction[i] == True if features i belongs
to the smallest cluster and prediction[i] == False if belongs to any other cluster

16 Chapter 3. High-Level Algorithms

CHAPTER 4

Sparse Coding

The goal of these algorithms is to find a sparse coefficient matrix (or vector) for some signals given a dictionary of
signal features.

The two norms are defined as:

‖x‖0 = #{x𝑖 ̸= 0 : ∀x𝑖 ∈ x}

‖x‖1 =
∑︀

𝑖 |𝑥𝑖|

Thus the two problem formulations are:

𝑎̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑎

1

2
‖𝑥−𝐷𝑎‖2𝐹 + 𝜆 ‖𝑎‖0

𝑎̂ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑎

1

2
‖𝑥−𝐷𝑎‖2𝐹 + 𝜆 ‖𝑎‖1

With signal 𝑥, dictionary 𝐷, and 𝑎̂ the sparse coefficients

4.1 ℓ0-regularization

dictlearn.sparse.omp_batch(signals, dictionary, n_nonzero=10, tol=0, n_threads=1)
Batch Orthogonal Matching Pursuit. A more effective version than omp_cholesky if the number of signals is
high. Saves time and calculations by doing some pre-computations. See [2] for details

>>> import dictlearn as dl
>>> image = dl.imread('some/image.png')
>>> dictionary = dl.load_dictionary('some-dictionary')
>>> image_patches = dl.Patches(image, 8)
>>> sparse_codes = dl.omp_batch(image_patches, dictionary, n_nonzero=4)
>>> sparse_approx = dictionary.dot(sparse_codes)

Parameters

17

dictlearn Documentation, Release 0.0.0

• signals – Signals to encode. numpy.ndarray shape (signal_size, n_signals) or
dictlearn.preprocess.Patches

• dictionary – ndarray, shape (signal_size, n_atoms)

• n_nonzero – Default 10. Max number of nonzero coeffs for sparse codes

• tol – Default 0. Add nonzero coeffs until norm(signal - dict*sparse_code)
< tol

• n_threads – Default 1. Number of threads to use.

Returns Sparse codes, shape (n_atoms, n_signals)

dictlearn.sparse.omp_cholesky(signals, dictionary, n_nonzero=10, tol=0, n_threads=1)
Cholesky Orthogonal Matching pursuits. Use omp_batch if many signals need to be sparse coded. See [2] for
details

>>> import dictlearn as dl
>>> image = dl.imread('some/image.png')
>>> dictionary = dl.load_dictionary('some-dictionary')
>>> image_patches = dl.Patches(image, 8)
>>> sparse_codes = dl.omp_cholesky(image_patches, dictionary, n_nonzero=4)
>>> sparse_approx = dictionary.dot(sparse_codes)

Parameters

• signals – Signals to sparse code, shape (signal_size,) or (signal_size, n_signals)

• dictionary – ndarray, shape (signal_size, n_atoms)

• n_nonzero – Default 10. Max number of nonzero coeffs for sparse codes

• tol – Default 0. Add nonzero coeffs until norm(signal - dict*sparse_code) < tol

• n_threads – Default 1. Number of threads to use.

Returns Sparse codes, shape (n_atoms, n_signals)

dictlearn.sparse.omp_mask(signals, masks, dictionary, n_nonzero=None, tol=1e-06, n_threads=1,
verbose=False)

Orthogonal Matching Pursuit for masked data. Tries to reconstruct the full set of signals, by
ignoring data points signals[i, j] where mask[i, j] == 0.

>>> import dictlearn as dl
>>> broken_image = dl.imread('some-broken-image')
>>> mask = dl.imread('mask-for-some-image')
>>> # Create patches from broken_image and mask + get dictionary
>>> sparse_codes = dl.omp_mask(broken_image, mask, dictionary)
>>> reconstructed_image_patches = dictionary.dot(sparse_codes)

Parameters

• signals – Corrupted signals, shape (size, n_signals)

• masks – Masks, shape (size, n_signals). masks[:, i] is the mask for signals[:, i]

• dictionary – Trained dictionary, shape (size, n_atoms)

• n_nonzero – Default None. Max number of nonzero coeffs to use

18 Chapter 4. Sparse Coding

dictlearn Documentation, Release 0.0.0

• tol – Default 1e-6. Stop if signal approximation is within the accuracy. Overwrites
n_nonzero

• n_threads – Not used

• verbose – Default False. Print progress

Returns Sparse approximation to signals, shape (n_atoms, n_signals)

dictlearn.sparse.iterative_hard_thresholding(signal, dictionary, iters, step_size, initial,
n_nonzero=None, penalty=None)

If penalty make sure sqrt(2*penalty) is not bigger than all elements in initial_a, if that’s the case the solution is
just the zero vector

Requires tuning of the hyper parameters step_size, initial_a and penalty. optimize.omp_cholesky may be a better
choice.

If reg_param is supplied this solves:

min 0.5*||signal - D*alpha||_2^2 + reg_param||alpha||_0

If n_nonzero is supplied then the following is solved for alpha

min || signal - D*alpha||_2^2 such that ||alpha||_0 <= n_nonzero

Parameters

• signal – Signal in R^m

• dictionary – Dictionary (D) in R^(m,p)

• iters – Number of iterations

• step_size – Step size for gradient descent step

• initial – Initial sparse coefficients. Need ||initial_a||_0 <= nonzero if n_nonzero not
None

• n_nonzero – Sparsity target

• penalty – Penalty parameter

Returns Sparse decomposition of signal

4.2 ℓ1-regularization

dictlearn.sparse.lars(signals, dictionary, n_nonzero=0, alpha=0, lars_params=None, **kwargs)
“Homotopy” algorithm for solving the Lasso

argmin 0.5*||X - DA||_2^2 + r*||A||_1

for all r.

This algorithm is supposedly the most accurate for l1 regularization.

This is terribly slow, and not very accurate. ~20x slower than OMP. Find this strange as OMP solves a NP-Hard
problem and this a convex

Parameters

• signals – Signals to encode. Shape (signal_size, n_signals) or (signal_size,)

• dictionary – Dictionary, shape (signal_size, n_atoms)

4.2. ℓ1-regularization 19

dictlearn Documentation, Release 0.0.0

• n_nonzero – Number of nonzero coefficients to use

• alpha – Regularization parameter. Overwrites n_nonzero

• lars_params – See sklearn.linear_models.LassoLars docs

• kwargs – Not used. Just to make calling API for all regularization algorithms the same

Returns Sparse codes, shape (n_atoms, n_signals) or (n_atoms,)

dictlearn.sparse.lasso(signals, dictionary, alpha, lasso_params=None, **kwargs)

Parameters

• signals – Signals to encode, shape (signal_size,) or (signal_size, n_signals)

• dictionary – Dictionary, shape (signal_size, n_atoms)

• alpha – Regularization parameter. <~0.9 yields more accurate results than OMP, but
slower

• lasso_params – Other parameters. See sklearn.linear_model.Lasso

• kwargs – Not used, just for making calling compatible with other sparse coding methods

Returns Sparse codes, shape (n_atoms,) or (n_atoms, n_signals)

dictlearn.sparse.iterative_soft_thresholding(signal, dictionary, initial,
reg_param=None, n_nonzero=None,
step_size=0.1, iters=10)

l1 reg using iterative soft thresholding

if regularization parameter is given solve:

min_a 1/2 * || x - D*alpha||_2^2 + reg_param*||alpha||_1

if number of nonzero is given solve:

min_a ||signal - D*alpha||_2^2 such that ||alpha||_1 <= n_nonzero

This method requires tuning of the initial value for alpha, step_size and iters/res_param.

Parameters

• signal – Signal, shape (signal_size,)

• dictionary – Dictionary, shape (signal_size, n_atoms)

• initial – Initial sparse codes, shape (n_atoms,)

• reg_param – Regularization parameter

• n_nonzero – Max number of nonzero coeffs

• step_size – Gradient descent step size

• iters – Number of iterations

Returns Sparse codes, shape (n_atoms,)

dictlearn.sparse.l1_ball(vector, target)

Create sparse approximation of ‘vector’ by projecting onto to l1-ball keeping at most ‘target’ coeffi-
cients active

Parameters

• vector – Vector to project to sparse

• target – Max number of nonzero coefficients

20 Chapter 4. Sparse Coding

dictlearn Documentation, Release 0.0.0

Returns Sparse vector, same shape as ‘vector’

4.3 References

[1] Rubinstein, Ron, Michael Zibulevsky, and Michael Elad. “Efficient implementation of the K-SVD algorithm using
batch orthogonal matching pursuit.” Cs Technion 40.8 (2008): 1-15.

4.3. References 21

dictlearn Documentation, Release 0.0.0

22 Chapter 4. Sparse Coding

CHAPTER 5

Optimize

Optimization methods for learning dictionaries.

5.1 Standard algorithms

Algorithms for training on complete data (ie. when you don’t need to mask your data). These are the algorithms
needed for most use cases.

dictlearn.optimize.ksvd(signals, dictionary, iters, n_nonzero=0, omp_tol=0, tol=0, verbose=False,
n_threads=1, retcodes=False)

Iterative batch algorithm [1, 2] for fitting a dictionary D to a set of signals X. Each iteration consists of two
stages:

1. Fix D. Find sparse codes A such that X is approx equal DA

2. Fix the sparse codes. Find D_new such that norm(X - D_new*A) < norm(X - DA)

Need one of (or both) n_nonzero and omp_tol different from zero. If n_nonzero > 0 and omp_tol
== 0 then KSVD finds an approximate solution to:

𝑚𝑖𝑛
D,A

‖X−DA‖2𝐹 such that ‖A‖0 ≤ 𝑛_𝑛𝑜𝑛𝑧𝑒𝑟𝑜

If omp_tol is not None then KSVD finds an approximate solution to:

𝑎𝑟𝑔𝑚𝑖𝑛
D,A

‖A‖0 such that ‖X−DA‖2𝐹 ≤ 𝑜𝑚𝑝_𝑡𝑜𝑙

>>> import dictlearn as dl
>>> from numpy import linalg as LA
>>> image = dl.Patches(dl.imread('some-image'), 8).patches
>>> dictionary = dl.random_dictionary(8*8, 128)
>>> sparse_1 = dl.omp_batch(image, dictionary, 10)
>>> new_dict, _ = dl.ksvd(image, dictionary, 20, 10)
>>> err_initial = LA.norm(image - dictionary.dot(sparse_1))

(continues on next page)

23

dictlearn Documentation, Release 0.0.0

(continued from previous page)

>>> sparse_2 = dl.omp_batch(image, new_dict, 10)
>>> err_trained = LA.norm(image - new_dict.dot(sparse_2))
>>> assert err_trained < err_initial

Parameters

• signals – Training signals. One signal per column numpy.ndarray of shape (signal_size,
n_signals)

• dictionary – Initial dictionary, shape (signal_size, n_atoms)

• iters – Max number of iterations

• n_nonzero – Default 0. Max nonzero coefficients in sparse decomposition

• omp_tol – Default 0. Tolerance of sparse approximation. Overrides n_nonzero

• tol – Default 0. Stop learning if norm(signals - dictionary.
dot(sparse_codes) < tol

• verbose – Print progress

• n_threads – Default 1. Number of threads to use for sparse coding.

• retcodes – Return sparse codes from last iteration

Returns dictionary[, sparse decomposition if retcodes = True]

dictlearn.optimize.odl(signals, dictionary, iters=1000, n_nonzero=10, tol=0, verbose=False,
batch_size=1, n_threads=1, seed=None)

Online dictionary learning algorithm

This algorithm sparsely encode one training signal at the time and updates the dictionary given this
signal. The number if iterations also determines how many of the training signals are used. If the
number of iterations is less than the number of signals, then iters signals is drawn at random. If
iters is equal to the number of signals all signals are used in a random order.

The dictionary atoms are updated using block-coordinate descent. See [4] for details

Parameters

• signals – Training signals. One signal per column numpy.ndarray of shape (signal_size,
n_signals)

• dictionary – Initial dictionary, shape (signal_size, n_atoms)

• iters – Default 1000. Number of training iterations to use. This is also equal to the
number of signals used in training.

• n_nonzero – Default 10. Max nonzero coefficients in sparse decomposition

• tol – Default 0. Tolerance of sparse approximation. Overrides n_nonzero

• verbose – Print progress

• batch_size – The number of signals to use for each dictionary update

• seed – Seed the drawing of random signals

Returns Trained and improved dictionary

24 Chapter 5. Optimize

dictlearn Documentation, Release 0.0.0

dictlearn.optimize.mod(signals, dictionary, n_nonzero, iters, n_threads=1)
Method of optimal directions

The first alternate minimization algorithm [3] for dictionary learning.

1. Find sparse codes A given signals X and dictionary D

2. Update D given the new A by approximately solving for D in X = DA. That is D = X*pinv(A), with pinv(A)
= A.T*(A*A.T)^-1

Parameters

• signals – Training signals

• dictionary – Initial dictionary

• n_nonzero – Sparsity target for signal approximation

• iters – Number of dictionary update iterations

• n_threads – Default 1. Number of threads to use for sparse coding step

Returns New dictionary

5.2 Masked data

Use these algorithms when you need to explicitly mark which data points to use and which to discard/ignore. All
masks should have the same shape as the training data, with values [0, 1]. A data point is ignored if 0.

dictlearn.optimize.itkrmm(signals, masks, dictionary, n_nonzero, iters, low_rank=None, ver-
bose=False)

Train a dictionary from corrupted image patches.

Need signals and masks of same shape. Data point signals[i, j] is used if the corresponding point in
the mask, masks[i, j] == True. All points signals[i, j] with masks[i, j] == False are
ignored.

See [5] for details.

Parameters

• signals – Corrupted image patches, shape (patch_size, n_patches)

• masks – Binary mask for signals, same shape as signal.

• dictionary – Initial dictionary (patch_size, n_atoms)

• n_nonzero – Number of nonzero coeffs to use for training

• iters – Max number of iterations

• low_rank – Matrix of low rank components, shape (patch_size, n_low_rank)

• verbose – Print progress

Returns Dictionary. Shape (patch_size, n_atoms + n_low_rank)

dictlearn.optimize.reconstruct_low_rank(signals, masks, n_low_rank, initial=None,
iters=10)

Reconstruct low rank components from image patches, by ITKrMM.

Low rank components or atoms capture low rank signal features. In the case where signals are image patches
low rank atoms can capture average intensities and low variance features in the image. When these are included

5.2. Masked data 25

dictlearn Documentation, Release 0.0.0

in a dictionary most of the signals will use at least one of the low rank atoms leaving the normal atoms to
represent more specific image features

Parameters

• signals – Image patches

• masks – Masks for image patches

• n_low_rank – Number of low rank components to reconstruct

• initial – Initial low rank dictionary, shape (signals.shape[0], n_low_rank)

• iters – Number of iterations for each component

Returns Low rank dictionary, shape (signals.shape[0], n_low_rank)

5.3 References

[1] M. Aharon, M. Elad, and A. Bruckstein, “The K-SVD: An algorithm for designing of overcomplete dic-
tionaries for sparse representation,” IEEE Trans. on Signal Processing, vol. 54, no. 11, pp. 4311–4322,
2006.

[2] Rubinstein, Ron, Michael Zibulevsky, and Michael Elad. “Efficient implementation of the K-SVD
algorithm using batch orthogonal matching pursuit.” Cs Technion 40.8 (2008): 1-15.

[3] Engan, Kjersti, Sven Ole Aase, and J. Hakon Husoy. “Method of optimal directions for frame design.”
Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on.
Vol. 5. IEEE, 1999.

[4] Mairal, Julien, et al. “Online dictionary learning for sparse coding.” Proceedings of the 26th annual
international conference on machine learning. ACM, 2009.

[5] Naumova, Valeriya, and Karin Schnass. “Dictionary learning from incomplete data.” arXiv preprint
arXiv:1701.03655 (2017).

26 Chapter 5. Optimize

CHAPTER 6

Preprocessing

class dictlearn.preprocess.Patches(image, size, stride=1, max_patches=None, random=None,
order=’C’)

REMOVE_MEAN = 'remove_mean'
Generate and reconstruct image patches

Parameters

• image – ndarray, 2D or 3D

• size – Patch size, since all patches are square (cube) this is just the size of the first
dimension. Ie 8 for (8, 8) patches

• stride – Stride/distance between patches in image. Can be int or list type. If int then
the stride is the same in every dimension. If list then each stride[i] denotes the stride on
axis i. Patches cannot be reconstructed if the stride in one dimension is larger the than the
patch size in the same dimension. Ie. stride[i] > size[i] for any i

• max_patches – Maximum number of patches

• random – True for taking patches from random locations in image. Overwritten if
max_patches=None

• order – C or F for C or FORTRAN order on underlying data

check_batch_size_or_raise(batch_size)
Check if there’s enough memory to store ‘batch_size’ patches. Raise MemoryError if not

generator(batch_size, callback=False)
Create and reconstruct a batch iteratively.

If Patches.patches is too large to keep all in memory use this. Only ‘batch_size’ patches are generated.
This requires approximately ‘batch_size’ times less memory. If batch_size is 100 and Patches.patches need
100 memories then this need only one memory.

>>> import numpy as np
>>> volume = np.load('some_image.npy')

(continues on next page)

27

dictlearn Documentation, Release 0.0.0

(continued from previous page)

>>> size, stride = [10, 10, 10], [1, 1, 1]
>>> patches = Patches(volume, size, stride)
>>> for batch in patches.generator(100):
>>> # Handle batch
>>> assert batch.shape[1] == 100
>>> assert batch.shape[0] == 1000, 'Can fail at last batch, see stride'

One matrix of size (patch_size, batch_size) is created per iteration. This generator return (batch, callback)
with batch a numpy array of shape (patch_size, batch_size) and callback(batch) reconstruct the part of the
volume which contains the given batch. It is required that the argument to callback has shape identical to
the batch returned

This can be used if Patches3D.create() requires too much memory. The amount of memory required by
this method is batch_size*size[0]*size[1]*size[2]*volume.dtype.itemsize bytes

>>> import numpy as np
>>> volume = np.load('some_image_volume.npy')
>>> size, stride = [10, 10, 10], [1, 1, 1]
>>> patches = Patches(volume, size, stride)
>>> for batch, reconstruct in patches.generator(100, callback=True):
>>> # Handle batch, here we do nothing
>>> reconstruct(batch)
>>> assert np.array_equal(volume, patches.reconstructed)

Parameters

• batch_size – Size of batches. The last batch can be smaller if n_patches % batch_size
!= 0

• callback – If True a callback function ‘callback(batch)’ is returned such the the image
can be partially reconstructed

Returns Generator

n_patches

Returns Number of patches

patches

Returns Image patches, shape (size[0]*size[1]*. . . , n_patches)

reconstruct(new_patches, save=False)
Reconstruct the image with new_patches. Overlapping regions are averaged. The reconstructed patches
are not saved by default

self.patches are the same object before and after this method is called, as long as save=False

Parameters

• new_patches – ndarray (patch_size, n_patches). Patches returned from
Patches.patches

• save – Overwrite current patches with new_patches

Returns Reconstructed image

remove_mean(add_back=True)
Remove the mean from every patch, this is automatically added back if the image is reconstructed

Parameters add_back – Automatically add back the mean to patches on reconstruction

28 Chapter 6. Preprocessing

dictlearn Documentation, Release 0.0.0

shape
Shape of patch matrix, (patch_size, n_patches)

size
Size of patches

class dictlearn.preprocess.Patches3D(volume, size, stride)
Create and reconstruct image patches from 3D volume.

Parameters

• volume – 3D ndarray

• size – Size of image patches, (x, y, z)

• stride – Stride between each patch, (i, j, k). ‘volume’ cannot be reconstructed if i > x, j
> y or k > z

create_batch_and_reconstruct(batch_size)

Create and reconstruct a batch iteratively.

One matrix of ‘batch_size’ is created per iteration. This generator return (batch, callback) with
batch a numpy array of shape (n, batch_size) and callback(batch) reconstruct the part of the
volume which contains the given batch.

This can be used if Patches3D.create() requires too much memory. The amount of memory
required by this method is batch_size*size[0]*size[1]*size[2]*volume.dtype.itemsize bytes

>>> import numpy as np
>>> import dictlearn as dl
>>> dictionary = np.load('some_dictionary.npy')
>>> volume = np.load('some_image_volume.npy')
>>> size, stride = [1, 1, 1], [1, 1, 1]

>>> patches = Patches3D(volume, size, stride)
>>> for batch, reconstruct in patches.create_batch_and_
→˓reconstruct(100):
>>> new_batch = dl.omp_batch(batch, dictionary)
>>> reconstruct(new_batch)

>>> reconstructed_volume = patches.reconstructed

Parameters batch_size – Number of patches per batch.

Returns Generator, next() returns (batch, reconstruct(new_batch)

next_batch(batch_size)

Parameters batch_size – Number of image patches per batch

Returns Generator, next() returns a ndarray of shape (n, batch_size)

dictlearn.preprocess.center(data, dim=0, retmean=False, inplace=False)
Remove the mean at dim from every patch

Parameters

• data – ndarray, data to center

• dim – Dimension to calculate mean, default 0 (columns)

• retmean – Return mean if True

29

dictlearn Documentation, Release 0.0.0

• inplace – Change argument data directly if True, returns mean only

Returns Centered patches and mean if retmean is True. Or just mean if inplace is True

dictlearn.preprocess.normalize(patches, lim=0.2)
L2 normalization. If l2 norm of a patch is smaller than lim the the patch is divided element wise by lim

Parameters

• patches – ndarray, (size, n_patches)

• lim – Threshold for low intensity patches

Returns

30 Chapter 6. Preprocessing

CHAPTER 7

Working with VTK

The Visualization Toolkit (VTK) is an open-source, freely available software system for 3D computer graphics, im-
age processing, and visualization. It consists of a C++ class library and several interpreted interface layers including
Tcl/Tk, Java, and Python. VTK supports a wide variety of visualization algorithms including scalar, vector, tensor, tex-
ture, and volumetric methods, as well as advanced modeling techniques such as implicit modeling, polygon reduction,
mesh smoothing, cutting, contouring, and Delaunay triangulation. VTK has an extensive information visualization
framework and a suite of 3D interaction widgets. The toolkit supports parallel processing and integrates with vari-
ous databases on GUI toolkits such as Qt and Tk. VTK is cross-platform and runs on Linux, Windows, Mac, and
Unix platforms. VTK is part of Kitware’s collection of commercially supported open-source platforms for software
development.

7.1 Installing

VTK version 8.0.0 and later is available on PyPi for python versions 2.7, 3.4, 3.5 and 3.6

$ pip install vtk

On Windows only python 3.5 and 3.6 are supported. VTK can also be installed with anaconda. Available versions are
at https://anaconda.org/conda-forge/vtk/files.

If you want to build VTK yourself, download it from https://www.vtk.org. When building toggle the flag
VTK_WRAP_PYTHON to generate the wrapping files. Detailed instructions can bee seen here

7.1.1 Wrappers

Reading and writing VTK image files to and from numpy array requires a lot of boilerplate code. The classes below,
VTKImage and VTKInformation wraps reading and writing vti files, ie images of type vtkImageData. To
read an image, write: image = VTKImage.read('path.vti'). If image will be modified you have to save
its attributes: info = image.information().

VTKImage is a subclass of numpy.ndarray and can be used as any normal numpy array.

Finally the image can be written to disk

31

https://anaconda.org/conda-forge/vtk/files
https://www.vtk.org
http://ghoshbishakh.github.io/blog/blogpost/2016/07/13/building-vtk-with-python3-wrappers.html

dictlearn Documentation, Release 0.0.0

VTKImage.write_vti('new_path.vti', image, info)

class VTKImage
Numpy ndarray wrapper for VTK images. This class holds meta data about the image such that reading and
writing to file will keep the correct attributes

>>> import numpy as np
>>> import dictlearn as dl
>>> # volume is a numpy array
>>> volume = VTKImage.read('path/to/volume.vti')
>>> assert isinstance(volume, np.ndarray)
>>> prod = np.dot(volume[:10, :10], np.random.rand(10, 5))
>>> assert prod.shape == (10, 5)
>>> patches = dl.Patches(volume)
>>> patch_generator = patches.create_batch_and_reconstruct(10000):
>>> for batch, reconstruct in patch_generator:
>>> # Handle batch
>>> reconstruct(batch)

Write ‘patches.reconstructed’ to disk with the same attributes as ‘path/to/volume.vti’

>>> volume.write('path/to/volume_new.vti', patches.volume)

information(self)
Get image meta data. See VTKInformation

static from_array(array, info=None)
Create a VTKImage from a numpy array

static from_image_data(image_data, name=None)
Crate VTKImage from vtkImageData

Parameters

• image_data – vtk.vtkImageData instance

• name – Name of point array to extract. Defaults to array at index 0

Returns VTKImage

static read(path, name=None)
Read a vti image.

Parameters

• path – Path to file

• name – Name or index of array. If ‘name’ is None then array at index 0 is returned

Returns VTKImage instance

write(self, path, array=None)
Write data (array or self) to ‘vti’ file. This file is written with self.extent, self.origin, self.spacing and
self.dtype. If the instance is created with VTKImage.read() these attributes are copied from the read file,
otherwise the default values are used:

• extent = [0, self.dimensions[0] - 1, 0, self.dimensions[1] - 1, 0, self.dimensions[2] - 1]

• origin = [0, 0, 0]

• spacing = [1, 1, 1]

• dtype = np.float64

32 Chapter 7. Working with VTK

dictlearn Documentation, Release 0.0.0

Parameters

• path – Filename, where to save

• array – Optional, if array is None ‘self’ is written to file. If array is not None then array
is written to file

Returns True if writing successful

static write_vti(path, array, info=None, extent=None, origin=None, spacing=None,
use_array_type=True, name=’ImageScalars’)

Write ‘array’ to ‘path’ as vti file

Parameters

• path – Where to write

• array – Data to write, ndarray with array.ndim == 3

• info – Optional instance of VTKInformation, overwrites extent, origin and spacing.

• extent – Data extent, array like, len(extent) == 6. Default [0, array.shape[0] - 1,0,
array.shape[1] - 1, 0, array.shape[2] - 1]

• origin – Data origin, default [0, 0, 0]

• spacing – Spacing between voxels, default [1, 1, 1]

• use_array_type – Only used if info is not None. If this is False the image is saved
with the data type given by info, otherwise array.dtype is used

• name – Name of scalar array

Returns True if write successful

print(self)
Print image information

copy(self, order=’C’)
Return a copy of the image

Parameters order – {‘C’, ‘F’, ‘A’, ‘K’}, optional Controls the memory layout of the copy. ‘C’
means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise.
‘K’ means match the layout of a as closely as possible.

class VTKInformation(path=None, reader=None)
Holds image metadata

• datatype, VTK datatype, int

• bounds, bounds of the geometry, size 6

• center, center of the geometry, size 3

• dimensions, size of the geometry, size 6

• extent, six integers - give the index of the first and last point in each direction

• origin,

• spacing,

Parameters

• path – Path to vtk image

• reader – Instance of a vtk image reader

7.1. Installing 33

dictlearn Documentation, Release 0.0.0

vtp_to_vti(surface, information, invalue=1, outvalue=0, flip=None)
Convert a closed surface to ImageData using vtkPolyDataToImageStencil. All points on or inside the takes
‘invalue’ while all point outside the surface takes ‘outvalue’

Parameters

• surface – Path to surface file

• information – Information about the volume to create. Either an instance of VTKIn-
formation or path to a vti file. If this is a path to an image, its attributes are copied to the
converted image

• invalue – Value of points inside or of the surface

• outvalue – Value of points outside the surface.

• flip – Flip around an axis, options: ‘x’, ‘y’, ‘z’ or None to keep as is

Returns An instance of VTKImage

34 Chapter 7. Working with VTK

CHAPTER 8

Examples

8.1 Vessel Enhancement

import sys
import dictlearn as dl
import matplotlib.pyplot as plt

image = dl.imread('images/vessel.png')
patches = dl.Patches(image, size=4)
labels = dl.detection.smallest_cluster(patches.patches.T, 2, True)

Adjust alpha to change the weight for the enhanced image
if len(sys.argv) == 2:

alpha = float(sys.argv[1])
else:

alpha = 0.2

vessels = patches.patches * labels
new = alpha*patches.patches + (1 - alpha)*vessels
enhanced = patches.reconstruct(new)

plt.subplot(121)
plt.imshow(image)
plt.axis('off')
plt.title('Original Image')

plt.subplot(122)
plt.imshow(enhanced)
plt.axis('off')
plt.title('Enhanced')

plt.show()

35

dictlearn Documentation, Release 0.0.0

8.2 Denoise

import os
import matplotlib.pyplot as plt
import dictlearn as dl

base_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))

plt.rcParams['image.cmap'] = 'bone'

image1 = os.path.join(base_dir, 'images/lena_noisy512.png')
image2 = os.path.join(base_dir, 'images/lena512.png')
noisy_image = dl.imread(image1).astype(float)
clean_image = dl.imread(image2).astype(float)

denoise = dl.Denoise(noisy_image, patch_size=11, method='online')
method='batch' for ksvd

denoise.train(iters=1000, n_nonzero=10, n_atoms=256, n_threads=2, verbose=True)
denoised_odl = denoise.denoise(sigma=33, n_threads=2)

(continues on next page)

36 Chapter 8. Examples

dictlearn Documentation, Release 0.0.0

(continued from previous page)

denosied_ksvd = dl.ksvd_denoise(noisy_image, patch_size=11, n_atoms=256, sigma=33,
verbose=True, n_threads=4)

plt.subplot(221)
plt.imshow(clean_image)
plt.title('Original')
plt.axis('off')

plt.subplot(222)
plt.imshow(noisy_image)
plt.title('Noisy, psnr = {:2f}'.format(dl.utils.psnr(clean_image, noisy_image, 255)))
plt.axis('off')

plt.subplot(223)
plt.imshow(denoised_odl)
plt.title('ODL, psnr = {:.2f}'.format(dl.utils.psnr(clean_image, denoised_odl, 255)))
plt.axis('off')

plt.subplot(224)
plt.imshow(denosied_ksvd)
plt.title('K-SVD, psnr = {:.2f}'.format(dl.utils.psnr(clean_image, denosied_ksvd,
→˓255)))
plt.axis('off')
plt.show()

8.3 Inpaint

import os
import numpy as np
import matplotlib.pyplot as plt
import dictlearn as dl

base_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))

plt.rcParams['image.cmap'] = 'bone'

house = os.path.join(base_dir, 'images/test/house.png')
lena = os.path.join(base_dir, 'images/test/lena.png')
text_mask = os.path.join(base_dir, 'images/test/TextMask256.png')

house = dl.imread(house).astype(float)
lena = dl.imread(lena).astype(float)
text_mask = dl.imread(text_mask).astype(bool)

keep = 0.3 # Keep 30% of the original data
random_mask = np.random.rand(*lena.shape) < keep

We now have two images, and two masks - we'll apply both masks to
both images and see how the structure of the image affect the result
plt.subplot(221)
plt.imshow(house)

(continues on next page)

8.3. Inpaint 37

dictlearn Documentation, Release 0.0.0

(continued from previous page)

plt.axis('off')

plt.subplot(222)
plt.imshow(lena)
plt.axis('off')

plt.subplot(223)
plt.imshow(text_mask)
plt.axis('off')

plt.subplot(224)
plt.imshow(random_mask)
plt.axis('off')
plt.figure()

Corrupt the images
house_text = house*text_mask
house_rnd = house*random_mask
lena_text = lena*text_mask
lena_rnd = lena*random_mask

plt.suptitle('Corrupted images')
plt.subplot(221)
plt.imshow(house_text)
plt.axis('off')

plt.subplot(222)
plt.imshow(lena_text)
plt.axis('off')

plt.subplot(223)
plt.imshow(house_rnd)
plt.axis('off')

plt.subplot(224)
plt.imshow(lena_rnd)
plt.axis('off')
plt.figure()

iters = 10

def create_callback(original_image):
def print_iter(image_estimate, iteration):

psnr = dl.utils.psnr(original_image, image_estimate, 255)
print('Iter %d, PSNR = %.2f' % (iteration + 1, psnr))

return print_iter

inpaint = dl.Inpaint(house_text, text_mask)
house_text_inpainted = inpaint.inpaint(callback=create_callback(house))

inpaint = dl.Inpaint(lena_text, text_mask)
lena_text_inpainted = inpaint.inpaint(callback=create_callback(lena))

inpaint = dl.Inpaint(house_rnd, random_mask)
(continues on next page)

38 Chapter 8. Examples

dictlearn Documentation, Release 0.0.0

(continued from previous page)

house_rnd_inpainted = inpaint.inpaint(callback=create_callback(house))

inpaint = dl.Inpaint(lena_rnd, random_mask)
lena_rnd_inpainted = inpaint.inpaint(callback=create_callback(lena))

plt.suptitle('Each of these are the cleaned version of img in same spot as prev plot')
plt.subplot(221)
plt.imshow(house_text_inpainted)
plt.title('PSNR = {:.3f}'.format(dl.utils.psnr(house, house_text_inpainted, 255)))
plt.axis('off')

plt.subplot(222)
plt.imshow(lena_text_inpainted)
plt.title('PSNR = {:.3f}'.format(dl.utils.psnr(lena, lena_text_inpainted, 255)))
plt.axis('off')

plt.subplot(223)
plt.imshow(house_rnd_inpainted)
plt.title('PSNR = {:.3f}'.format(dl.utils.psnr(house, house_rnd_inpainted, 255)))
plt.axis('off')

plt.subplot(224)
plt.imshow(lena_rnd_inpainted)
plt.title('PSNR = {:.3f}'.format(dl.utils.psnr(lena, lena_rnd_inpainted, 255)))
plt.axis('off')
plt.show()

8.3. Inpaint 39

dictlearn Documentation, Release 0.0.0

40 Chapter 8. Examples

CHAPTER 9

Indices and tables

• genindex

• search

41

dictlearn Documentation, Release 0.0.0

42 Chapter 9. Indices and tables

Index

C
center() (in module dictlearn.preprocess), 29
check_batch_size_or_raise()

(dictlearn.preprocess.Patches method), 27
copy() (VTKImage method), 33
create_batch_and_reconstruct()

(dictlearn.preprocess.Patches3D method),
29

D
Denoise (class in dictlearn.algorithms), 12
denoise() (dictlearn.algorithms.Denoise method), 13
denoise() (dictlearn.algorithms.TextureSynthesis

method), 15

F
from_array() (VTKImage static method), 32
from_image_data() (VTKImage static method), 32

G
generator() (dictlearn.preprocess.Patches method), 27

I
ImageTrainer (class in dictlearn.algorithms), 12
information() (VTKImage method), 32
Inpaint (class in dictlearn.algorithms), 14
inpaint() (dictlearn.algorithms.Inpaint method), 14
inpaint() (dictlearn.algorithms.TextureSynthesis method),

15
iterative_hard_thresholding() (in module

dictlearn.sparse), 19
iterative_soft_thresholding() (in module dictlearn.sparse),

20
itkrmm() (in module dictlearn.optimize), 25

K
ksvd() (in module dictlearn.optimize), 23

L
l1_ball() (in module dictlearn.sparse), 20
lars() (in module dictlearn.sparse), 19
lasso() (in module dictlearn.sparse), 20

M
mod() (in module dictlearn.optimize), 24

N
n_patches (dictlearn.preprocess.Patches attribute), 28
next_batch() (dictlearn.preprocess.Patches3D method),

29
normalize() (in module dictlearn.preprocess), 30

O
odl() (in module dictlearn.optimize), 24
omp_batch() (in module dictlearn.sparse), 17
omp_cholesky() (in module dictlearn.sparse), 18
omp_mask() (in module dictlearn.sparse), 18

P
Patches (class in dictlearn.preprocess), 27
patches (dictlearn.preprocess.Patches attribute), 28
Patches3D (class in dictlearn.preprocess), 29
print() (VTKImage method), 33

R
read() (VTKImage static method), 32
reconstruct() (dictlearn.preprocess.Patches method), 28
reconstruct_low_rank() (in module dictlearn.optimize),

25
REMOVE_MEAN (dictlearn.preprocess.Patches at-

tribute), 27
remove_mean() (dictlearn.preprocess.Patches method),

28

S
shape (dictlearn.preprocess.Patches attribute), 28
size (dictlearn.preprocess.Patches attribute), 29

43

dictlearn Documentation, Release 0.0.0

smallest_cluster() (in module dictlearn.detection), 16

T
TextureSynthesis (class in dictlearn.algorithms), 15
train() (dictlearn.algorithms.Denoise method), 13
train() (dictlearn.algorithms.ImageTrainer method), 12
train() (dictlearn.algorithms.Inpaint method), 15
train() (dictlearn.algorithms.TextureSynthesis method),

16
train() (dictlearn.algorithms.Trainer method), 11
Trainer (class in dictlearn.algorithms), 11

V
VTKImage (built-in class), 32
VTKInformation (built-in class), 33
vtp_to_vti() (built-in function), 34

W
write() (VTKImage method), 32
write_vti() (VTKImage static method), 33

44 Index

	Getting Started
	Overview
	Installation
	Next steps

	Dictionary learning tutorial
	Training

	High-Level Algorithms
	Training
	Denoise
	Inpaint
	Structure Detection

	Sparse Coding
	0-regularization
	1-regularization
	References

	Optimize
	Standard algorithms
	Masked data
	References

	Preprocessing
	Working with VTK
	Installing

	Examples
	Vessel Enhancement
	Denoise
	Inpaint

	Indices and tables

