

Welcome to diceware documentation

Version: 0.10

[image: Test Status] [https://github.com/ulif/diceware/actions/workflows/tests.yml]

	diceware
	Install

	Usage

	What is it good for?

	Is it secure?

	Security Traps

	Developer Install

	Credits

	Links

	License

	Sources of Randomness
	System Random

	Real Dice

	Bring Your Own Source (for developers)

	Configuration Files
	Option Names

	Config File Name and Path

	Option Values

	Wordlists
	Retired Wordlists

	Add Own Wordlists

	Plain Wordlists

	Numbered Wordlists

	PGP-signed Wordlists

	API
	diceware main module

	diceware.logger

	diceware.config

	diceware.wordlist

	diceware.random_sources

	Changes
	0.10 (2022-02-15)

	0.9.6 (2018-12-19)

	0.9.5 (2018-04-07)

	0.9.4 (2018-02-27)

	0.9.3 (2017-09-14)

	0.9.2 (2017-09-14)

	0.9.1 (2016-12-24)

	0.9 (2016-09-14)

	0.8 (2016-05-07)

	0.7.1 (2016-04-21)

	0.7 (2016-04-17)

	0.6.1 (2015-12-15)

	0.6 (2015-12-15)

	0.5 (2015-08-05)

	0.4 (2015-03-30)

	0.3.1 (2015-03-29)

	0.3 (2015-03-28)

	0.2 (2015-03-27)

	0.1 (2015-02-18)

Indices and tables

	Index

	Module Index

	Search Page

diceware

Passphrases to remember…

[image: Test Status] [https://github.com/ulif/diceware/actions/workflows/tests.yml] | documentation [https://diceware.readthedocs.io/] | sources [https://github.com/ulif/diceware] | issues [https://github.com/ulif/diceware/issues]

diceware is a passphrase generator following the proposals of
Arnold G. Reinhold on http://diceware.com . It generates passphrases
by concatenating words randomly picked from wordlists. For instance:

$ diceware
MyraPend93rdSixthEagleAid

The passphrase contains by default six words (with first char
capitalized) without any separator chars. Optionally you can let
diceware insert special chars into the passphrase.

diceware supports several sources of randomness (including real life
dice) and different wordlists (including cryptographically signed
ones).

Contents

	diceware

	Install

	Usage

	What is it good for?

	Is it secure?

	Security Traps

	Prefix Code

	Reduced Entropy

	Developer Install

	Documentation Install

	Creating the Man Page

	Credits

	Links

	License

Install

This Python package can be installed via pip [https://pip.pypa.io/en/latest/]:

$ pip install diceware

The exact way depends on your operating system.

Usage

Once installed, use --help to list all available options:

$ diceware --help
usage: diceware [-h] [-n NUM] [-c | --no-caps] [-s NUM] [-d DELIMITER]
 [-r SOURCE] [-w [NAME [NAME ...]]] [--dice-sides N] [-v]
 [--version]
 [INFILE]

Create a passphrase

positional arguments:
 INFILE Input wordlist. `-' will read from stdin.

optional arguments:
 -h, --help show this help message and exit
 -n NUM, --num NUM number of words to concatenate. Default: 6
 -c, --caps Capitalize words. This is the default.
 --no-caps Turn off capitalization.
 -s NUM, --specials NUM
 Insert NUM special chars into generated word.
 -d DELIMITER, --delimiter DELIMITER
 Separate words by DELIMITER. Empty string by default.
 -r SOURCE, --randomsource SOURCE
 Get randomness from this source. Possible values:
 `realdice', `system'. Default: system
 -w [NAME [NAME ...]], --wordlist [NAME [NAME ...]]
 Use words from this wordlist. Possible values: `de',
 `de_8k', `en_adjectives', `en_eff', `en_nouns',
 `en_securedrop', `pt-br'.
 Wordlists are stored in the folder displayed below.
 Default: en_eff
 -v, --verbose Be verbose. Use several times for increased verbosity.
 --version output version information and exit.

Arguments related to `realdice' randomsource:
 --dice-sides N Number of sides of dice. Default: 6

Wordlists are stored in <WORDLISTS-DIR>

With -n you can tell how many words are supposed to be picked for
your new passphrase:

$ diceware -n 1
Thud

$ diceware -n 2
KnitMargo

You can diceware additionally let generate special chars to replace
characters in the ‘normal’ passphrase. The number of special chars
generated can be determined with the -s option (default is zero):

$ diceware -s 2
Heroic%unkLon#DmLewJohns

Here "%" and "#" are the special chars.

Special chars are taken from the following list:

~!#$%^&*()-=+[]\{}:;\"'<>?/0123456789

Please note that several special chars might replace the same original
char, resulting in a passphrase with less special chars than requested.

With -d you can advise diceware to put a delimiter string
between the words generated:

$ diceware -d "_"
Wavy_Baden_400_Whelp_Quest_Macon

By default we use the empty string as delimiter, which is good for
copying via double click on Linux systems. But other delimiters might
make your passphrases more readable (and more secure, see
Security Traps below).

By default the single phrase words are capitalized, i.e. the first
char of each word is made uppercase. This does not necessarily give
better entropy (but protects against entropy loss due to non prefix
code [https://en.wikipedia.org/wiki/Prefix_code], see Security Traps below), and it might
improve phrase readability.

You can nevertheless disable caps with the --no-caps option:

$ diceware --no-caps
oceanblendbaronferrylistenvalet

This will leave the input words untouched (upper-case stays upper-case,
lower-case stays lower-case). It does not mean, that all output words will be
lower-case (except if all words of your wordlist are lowercase).

As the default lists of diceware contain only lower-case terms, here
--no-caps means in fact lower-case only output, which might be easier to
type on smart phones and similar.

diceware supports also different sources of randomness, which can be
chosen with the -r <SOURCENAME> or --randomsource <SOURCENAME>
option. Use the --help option to list all valid values for this
option.

By default we use the random.SystemRandom [https://docs.python.org/3.4/library/random.html#random.SystemRandom] class of standard Python
lib but you can also bring your own dice to create randomness:

$ diceware -r realdice --dice-sides 6
Please roll 5 dice (or a single dice 5 times).
Enter your 5 dice results, separated by spaces: 6 4 2 3 1
Please roll 5 dice (or a single dice 5 times).
Enter your 5 dice results, separated by spaces: 5 4 3 6 2
...
UnleveledSimilarlyBackboardMurkyOasisReplay

Normally dice have six sides. And this is also the default in
diceware if you do not use --dice-sides. But if you do, you can
tell how many sides (all) your dice have. More sides will lead to less
rolls required.

We support even sources of randomness from other packages. See the
documentation [https://diceware.readthedocs.io/] for more details.

diceware comes with an English wordlist provided by the EFF [https://eff.org/], which will be
used by default and contains 7776 (=6^5) different words. This list is
registered as en_eff.

Additionally diceware comes with an English wordlist provided by
@heartsucker [https://github.com/heartsucker/], which contains 8192 different words. This list is based off
the original diceware list written by Arnold G. Reinhold.

You can enable a certain (installed) wordlist with the -w option:

$ diceware --wordlist en_orig
YorkNodePrickEchoToriNiobe

See diceware --help for a list of all installed wordlists.

You can also build phrases from adjectives and nouns (yet in english only)
using the included en_adjectives and en_nouns lists. For that you specify
these two wordlists after each other:

$ diceware -n 1 -w en_adjectives en_nouns
TediousPerimeter

These adjective/noun phrases might be easier to memorize.

If you do not like the wordlists provided, you can use your own
one. Any INFILE provided will be parsed line by line and each line
considered a possible word. For instance:

$ echo -e "hi\nhello\n" > mywordlist.txt
$ diceware mywordlist.txt
HelloHelloHiHiHiHello

With dash (-) as filename you can pipe in wordlists:

$ echo -e "hi\nhello\n" | diceware -
HiHiHelloHiHiHello

In custom wordlists we take each line for a valid word and ignore
empty lines (i.e. lines containing whitespace characters only). Oh,
and we handle even PGP-signed wordlists.

You can set customized default values in a configuration file
.diceware.ini (note the leading dot) placed in your home
directory. This file could look like this:

[diceware]
num = 7
caps = off
specials = 2
delimiter = "MYDELIMITER"
randomsource = "system"
wordlist = "en_securedrop"

The options names have to match long argument names, as output by
--help. The values set must meet the requirements valid for
commandline usage. All options must be set within a section
[diceware].

What is it good for?

Normally, diceware passphrases are easier to remember than shorter
passwords constructed in more or less bizarre ways. But at the same
time diceware passphrases provide more entropy as xkcd [http://xkcd.com/] can show
with the famous ‘936’ proof [http://xkcd.com/936/]:

[image: _images/password_strength.png]
 [http://xkcd.com/936/]The standard english wordlist of this diceware implementation contains 7776 =
6^5 different english words. It is the official EFF [https://eff.org/] wordlist. compiled by
Joseph Bonneau [https://www.eff.org/about/staff/joseph-bonneau]. Therefore, picking a random word from this list gives an
entropy of nearly 12.9 bits. Picking six words means an entropy of 6 x 12.9 =
77.54 bits.

The special chars replacing chars of the originally created passphrase
give some more entropy (the more chars you have, the more additional
entropy), but not much. For instance, for a sixteen chars phrase you
have sixteen possibilities to place one of the 36 special chars. That
makes 36 x 16 possibilities or an entropy of about 9.17 you can add.
To get an entropy increase of at least 10 bits, you have to put a
special char in a phrase with at least 29 chars (while at the same
time an additional word would give you 13 bits of extra
entropy). Therefore you might think again about using special chars in
your passphrase.

Is it secure?

The security level provided by Diceware [http://diceware.com/] depends heavily on your
source of random. If the delivered randomness is good, then your
passphrases will be very strong. If instead someone can foresee the
numbers generated by a random number generator, your passphrases will
be surprisingly weak.

This Python implementation uses (by default) the
random.SystemRandom [https://docs.python.org/3.4/library/random.html#random.SystemRandom] source provided by Python. On Un*x systems it
accesses /dev/urandom. You might want to follow reports about
manipulated random number generators in operating systems closely.

The Python API of this package allows usage of other sources of
randomness when generating passphrases. This includes real dice. See
the -r option.

Security Traps

There are issues that might reduce the entropy of the passphrase
generated. One of them is the prefix code [https://en.wikipedia.org/wiki/Prefix_code] problem:

Prefix Code

If the wordlist contains, for example, the words:

"air", "airport", "portable", "able"

and we switched off caps and delimiter chars, then diceware might
generate a passphrase containing:

"airportable"

which could come from air-portable or airport-able. We cannot
tell and an attacker would have less combinations to guess.

To avoid that, you can leave caps enabled (the default), use any word
delimiter except the empty string or use the en_eff wordlist,
which was checked to be a prefix code [https://en.wikipedia.org/wiki/Prefix_code] (i.e. it does not contain
words that start with other words in the list). The pt-br is also a secure
prefix code [https://en.wikipedia.org/wiki/Prefix_code].

Each of these measures is sufficient to protect you against the
prefix code [https://en.wikipedia.org/wiki/Prefix_code] problem.

Reduced Entropy

Overall, diceware is a kind of mapping input values, dice throws for
instance, onto wordlist entries. We normally want each of the words in the
wordlist to be picked for passphrases with the same probability.

This, however, is not possible, if the number of wordlist entries is not a
power of dice sides. In that case we cut some words of the wordlist and inform
the user about the matter. Reducing the number of words this way makes it
easier for attackers to guess the phrase picked.

You can fix that problem by using longer wordlists.

Developer Install

Developers want to fork me on github [http://github.com/ulif/diceware/]:

$ git clone https://github.com/ulif/diceware.git

We recommend to create and activate a virtualenv [https://virtualenv.pypa.io/] first:

$ cd diceware/
$ virtualenv -p /usr/bin/python3.8 py38
$ source py38/bin/activate
(py38) $

We support Python versions 2.7, 3.4 to 3.9, and pypy.

Now you can create the devel environment:

(py38) $ python setup.py dev

This will fetch test packages (py.test [https://pytest.org/]). You should be able to run
tests now:

(py38) $ py.test

If you have also different Python versions installed you can use tox [https://tox.testrun.org/]
for using them all for testing:

(py38) $ pip install tox # only once
(py38) $ tox

Should run tests in all supported Python versions.

Documentation Install

The docs can be generated with Sphinx [https://sphinx-doc.org/]. The needed packages are
installed via:

(py38) $ python setup.py docs

To create HTML you have to go to the docs/ directory and use the
prepared Makefile:

(py38) $ cd docs/
(py38) $ make

This should generate the docs in docs/_build/html/.

Creating the Man Page

We provide a ReStructuredTexT [http://docutils.sourceforge.net/rst.html] template to create a man page. When the
documentation engine is installed (Sphinx [https://sphinx-doc.org/], see above), then you can create a
manpage doing:

(py38) $ rst2man.py docs/manpage.rst > diceware.1

The template is mainly provided to ease the job of Debian maintainers.
Currently, it is not automatically updated. Dates, authors, synopsis, etc. have
to be updated manually. Information in the manpage may therefore be wrong,
outdated, or simply misleading.

Credits

Arnold G. Reinhold deserves all merits for the working parts of
Diceware [http://diceware.com/]. The non-working parts are certainly my fault.

People that helped spotting bugs, providing solutions, etc.:

	Conor Schaefer (conorsch) [https://github.com/conorsch]

	Rodolfo Gouveia suggested to activate the --delimiter option.

	@drebs [https://github.com/drebs] provided patches and discussion for different sources of
randomness and the excellent pt-br wordlist. @drebs [https://github.com/drebs] also initiated
and performed the packaging of diceware for the Debian [https://www.debian.org/] platform. Many
kudos for this work! @drebs [https://github.com/drebs] is also the official Debian maintainer of the
diceware package.

	@heartsucker [https://github.com/heartsucker/] hand-compiled and added a new english wordlist.

	dwcoder [https://github.com/dwcoder] revealed and fixed bugs
#19, #21, #23. Also showed sound knowledge of (theoretical)
entropy. A pleasure to work with.

	George V. Reilly [https://github.com/georgevreilly] pointed to new
EFF wordlists.

	lieryan [https://github.com/lieryan] brought up the prefix
code [https://en.wikipedia.org/wiki/Prefix_code] problem.

	LogosOfJ [https://github.com/LogosOfJ] discovered and fixed
serious realdice source of randomness problem.

	Bhavin Gandhi [https://github.com/bhavin192] fixed the confusing error
message when an invalid input filename is given.

	Simon Fondrie-Teitler [https://github.com/simonft] contributed a
machine-readable copyright file, with improvements from @anarcat [https://github.com/anarcat]

	Doug Muth [https://github.com/dmuth] fixed formatting in docs.

Many thanks to all of them!

Links

	The Diceware [http://diceware.com/] home page. Reading definitely recommended!

	fork me on github [http://github.com/ulif/diceware/]

External Wordlists:

	Diceware standard list [http://world.std.com/~reinhold/diceware.wordlist.asc] by Arnold G. Reinhold.

	Diceware8k list [http://world.std.com/~reinhold/diceware8k.txt] by Arnold G. Reinhold.

	Diceware SecureDrop list [https://github.com/heartsucker/diceware] by @heartsucker [https://github.com/heartsucker/].

	EFF large list [https://www.eff.org/files/2016/07/18/eff_large_wordlist.txt] provided by EFF [https://eff.org/].

	English adjectives and nouns lists [https://github.com/NaturalLanguagePasswords/system] provided by NaturalLanguagePasswords [https://github.com/NaturalLanguagePasswords].

License

This Python implementation of Diceware, (C) 2015-2022 Uli Fouquet, is
licensed under the GPL v3+. See file LICENSE for details.

“Diceware” is a trademark of Arnold G Reinhold, used with permission.

The copyright for the Diceware8k list [http://world.std.com/~reinhold/diceware8k.txt] is owned by Arnold G Reinhold. The
copyright for the Diceware SecureDrop list [https://github.com/heartsucker/diceware] are owned by @heartsucker [https://github.com/heartsucker/].
Copyright for the EFF large list [https://www.eff.org/files/2016/07/18/eff_large_wordlist.txt] by Joseph Bonneau [https://www.eff.org/about/staff/joseph-bonneau] and EFF [https://eff.org/]. Copyright
for the brazilian portuguese list by @drebs [https://github.com/drebs]. Copyright for the english
adjective and noun lists by NaturalLanguagePasswords [https://github.com/NaturalLanguagePasswords]. See file COPYRIGHT for
details.

Sources of Randomness

The security of your passphrase depends naturally heavily on the
source of randomness you use. If the source is good, it is really hard
to predict your passphrase. If it is bad, your passphrase might be
surprisingly easy to guess. diceware does not provide own
pseudo-random number generators or similar. Instead we let you choose
yourself the source of randomness you trust.

diceware supports different sources of randomness, which can be
chosen with the -r <SOURCENAME> or --randomsource <SOURCENAME>
option.

Use the --help option to list all valid values for the
--randomsource option.

Python-developers can provide their own source of randomness. If their
package is installed together with diceware (and their source is
registered correctly), diceware will offer their source as valid
option.

System Random

By default diceware uses the Python standard lib
random.SystemRandom [https://docs.python.org/3/library/random.html#random.SystemRandom] class to retrieve randomness. This class
calls an OS-specific source of randomness that returns data normally
unpredictable enough for our purposes. The quality of randomness
therefore depends on the quality of your OS implementation.

As a user you can enforce the use of this source of randomness with
the -r system option.

Please note that the Raspberry Pi is said to provide a hardware random
number generator that delivers “real randomness”. One has to enable it
system-wide to make it the active source of randomness on a Raspberry
Pi. If done properly, also randomSystemRandom (and hence
diceware) should use good quality random numbers.

Real Dice

diceware also supports real dice as source of randomness. You can
pick this source of randomness with the -r realdice option.:

$ diceware -r realdice
Warning: entropy is reduced!
Please roll 5 dice (or a single dice 5 times).
What number shows dice number 1? 1
What number shows dice number 2? 2
What number shows dice number 3? 3
What number shows dice number 4? 4
What number shows dice number 5? 5
Warning: entropy is reduced!
Please roll 5 dice (or a single dice 5 times).
What number shows dice number 1? 2
What number shows dice number 2? 3
What number shows dice number 3? 3
What number shows dice number 4? 5
What number shows dice number 5? 1

...

What number shows dice number 5? 3
AnyDogmaShrikeSageSableHoar

If you see a warning “entropy is reduced!”, this means that not the
whole range of the wordlist you use can be put to account. Instead we
use (in case of 5 rolls) the first 6^5 words only. If you use a
wordlist with 6^n elements (for instance the original list with 7776
elements of Mr. Rheinhold), you will not get this warning.

Currently we support only 6-sided dice.

Bring Your Own Source (for developers)

diceware uses Python entry-points for looking up sources of
randomness. That means you can write your own source of randomness in
Python, register it in your own package and once both, your package
and diceware are installed together on a system, your source of
randomness will be offered and used by diceware (if the user selects
it).

To build your own source of randomness you have to provide a class
with a constructor that accepts a single options object. Furthermore
a source of randomness has to provide a choice(sequence) method. It
comes down to something like that:

class MySourceOfRandomness(object):
 "Tell about your source..."
 def __init__(self, options):
 # initialize, etc.

 def choice(sequence):
 # return one of the elements in `sequence`

The choice() method will be called for each word of the passphrase
and for each special char. Please do not make assumptions about the
sequence passed to choice. It will be a list of “somethings” and be
indexable.

If your source is ready, you can register it in the setup.py of
your package like this:

setup.py

...

setup(

 ...

 entry_points={
 'diceware_random_sources': [
 'mysrc = mypkg.sources:MySourceOfRandomness',
 # add more sources of randomness here...
],
 }
)

Here we assume that you defined MySourceOfRandomness in a package
mypkg and a module called sources.

Once this package is installed, you can run diceware like this:

$ diceware -r mysrc

and your source of randomness will be used.

Configuration Files

You can use configuration files to persistently override built-in
defaults and make your custom settings the default.

diceware configuration files follow simple .ini-style and look
like this:

[diceware]
num = 3
caps = off
specials = 2
delimiter = "MYDELIMITER"
randomsource = system
wordlist = "en"
dice_sides = 6

These settings would mean that by default phrases with three words
(instead six) would be created. Commandline options, however, override
config file settings. So, with the settings above:

$ diceware
Duma7YDELIMITER56MYDE^IMITERJock

we will get three-word phrases while with:

$ diceware --delimiter=FOO
AmuseFOO]us(FOO18th

we will override the config file setting for delimiter. Other
settings from config file are still valid.

Option Names

The options names have to match long argument names, as output with
--help. The values set must meet the requirements valid for
commandline usage.

You can use all or only some (or none) of the above options. Please
note that other entries, providing unknown option names, are
ignored. That means that also typos might lead to ignored entries.

Please note, that all options must be set within a section
[diceware].

Config File Name and Path

Currently, we look for configuration files only in the calling users’
home directory. The file must be called:

.diceware.ini

(please note the leading dot). If such a file is missing, build-in
defaults apply.

Option Values

The option values set can be strings, integers, or boolean
values.

diceware accepts yes, no, 1, 0, true, false,
on, and off as boolean values.

Some options require their setting to be taken from a fixed set of
names/values, for instance the randomsource option. You can
normally get the allowed values from calling diceware --help.

String-based options (like delimiter) accept values enclosed in
quotes to allow whitespace-only values.

If some value cannot be parsed, an exception is raised.

Wordlists

The passphrases generated by diceware naturally depend on the set of
words used, the wordlists.

diceware comes with some wordlists out-of-the-box, that might be a
good choice for usual private use.

Warning

We do not use the diceware standard wordlist [http://world.std.com/~reinhold/diceware.wordlist.asc],
but the long EFF wordlist [https://www.eff.org/files/2016/07/18/eff_large_wordlist.txt] (see below), because it is more secure
and more comfortable to use.

 API

API

diceware code is geared towards commandline usage. You can, however,
use it from Python. The API docs are here to assist you with that.

For using diceware in your own, setuptools-based Python project,
you can add it as an install requirement in setup.py of your
project:

from setuptools import setup
...
setup(
 name="myproject",
 # ...
 install_requires=[
 # packages we depend on...
 'setuptools',
 'diceware',
 # ...
],
 # ...
)

Of course there are other ways to make diceware available.

diceware main module

diceware – rememberable passphrases

	
diceware.SPECIAL_CHARS = '~!#$%^&*()-=+[]\\{}:;"\'<>?/0123456789'

	Special chars inserted on demand

	
diceware.get_passphrase(options=None)

	Get a diceware passphrase.

options is a set of arguments as provided by
argparse.OptionParser.parse_args().

The passphrase returned will contain options.num words delimited by
options.delimiter and options.specials special chars.

For the passphrase generation we will use the random source
registered under the name options.randomsource (something like
“system” or “dice”).

If options.caps is True, all words will be caps.

If options.infile, a file descriptor, is given, it will be used
instead of a ‘built-in’ wordlist. options.infile must be open for
reading.

	
diceware.get_random_sources()

	Get a dictionary of all entry points called diceware_random_source.

Returns a dictionary with names mapped to callables registered as
entry_point`s for the ``diceware_randomsource` group.

Callables should accept options when called and return something
that provides a choice(sequence) method that works like the
respective method in the standard Python lib random module.

	
diceware.handle_options(args)

	Handle commandline options.

	
diceware.insert_special_char(word, specials='~!#$%^&*()-=+[]\\{}:;"\'<>?/0123456789', rnd=None)

	Insert a char out of specials into word.

rnd, if passed in, will be used as a (pseudo) random number
generator. We use .choice() only.

Returns the modified word.

	
diceware.main(args=None)

	Main programme.

Called when diceware script is called.

args is a list of command line arguments to process. If no such
args are given, we use sys.argv.

	
diceware.print_version()

	Output current version and other infos.

diceware.logger

logging – output status and other data.

The logger provided in this module is meant to be used by other
components for messages to users.

It is named “ulif.openoffice” and can, as a singleton, be retrieved by
calling standard lib logging.getLogger(“ulif.diceware”).

By default it provides a logging.NullHandler as libraries normally
do. Other components might add other handlers.

	
diceware.logger.configure(verbosity=None)

	Configure global diceware logger.

verbosity sets the diceware logger verbosity. 0 enables info
mode, while all numbers > 2 enable debug mode.

If no verbosity is given, we leave the logging level untouched.

	
diceware.logger.logger = <logging.Logger object>

	Logger that can be used for all diceware related messages.

diceware.config

config – diceware configuration

diceware is configurable via commandline, configuration files and
direct API calls.

	
diceware.config.RE_WLIST_NAME = <_sre.SRE_Pattern object>

	valid wordlist names

	
diceware.config.get_config_dict(path_list=None, defaults_dict={'caps': True, 'delimiter': '', 'dice_sides': 6, 'num': 6, 'randomsource': 'system', 'specials': 0, 'verbose': 0, 'wordlist': ['en_eff']}, section='diceware')

	Get config values found in files from path_list.

Read files in path_list config files and return option values from
section section as regular dictionary.

We only accept values for which a default exists in
defaults_dict. If defaults_dict is None we use
OPTIONS_DEFAULTS.

Values are interpolated to have same value type as same-named values
from defaults_dict if they are integers or boolean.

String/text values are stripped from preceding/trailing quotes
(single and double).

	
diceware.config.get_configparser(path_list=None)

	Parse path_list for config values.

If no list is given we use valid_locations().

Return a list of paths read and a config parser instance.

	
diceware.config.string_to_wlist_list(text)

	Split string into list of valid wordlist names.

	
diceware.config.valid_locations()

	The list of valid paths we look up for config files.

diceware.wordlist

wordlist.py – special handling of wordlists.

	
diceware.wordlist.MAX_IN_MEM_SIZE = 20971520

	Maximum in-memory file size in bytes (20 MB).

This value is used when creating temporary files replacing
unseekable input streams. If an input file is larger, we write to
disk.

	
diceware.wordlist.RE_NUMBERED_WORDLIST_ENTRY = <_sre.SRE_Pattern object>

	A regular expression matching numbered entries in wordlists.

	
diceware.wordlist.RE_VALID_WORDLIST_FILENAME = <_sre.SRE_Pattern object>

	A regular expression describing valid wordlist file names.

	
diceware.wordlist.RE_WORDLIST_NAME = <_sre.SRE_Pattern object>

	A regular expression matching allowed wordlist names. We
allow names that cannot easily mess up filesystems.

	
class diceware.wordlist.WordList(path)

	A word list contains words for building passphrases.

path is the path of the wordlist file. With single dash (-) as path,
we read from sys.stdin.

In case input comes from stdin, we write the input stream into a file if
the content length is larger than MAX_IN_MEM_SIZE. Otherwise, the
wordlist is kept in memory.

Wordlist files are expected to contain words, one word per line. Empty
lines are ignored, also whitespaces before or trailing a line are
stripped. If a “word” contains inner whitespaces, then these are
preserved.

The input file can be a signed wordlist. Signed wordlists are expected to
be ordinary lists of words but with ASCII armored signatures (as described
in RFC 4880).

In case of signed wordlists the signature headers/footers are stripped and
the contained list of words is read.

WordList are generators. That means, that you can retrieve the words of a
wordlist by iterating over an instance of WordList.

	
is_signed()

	check, whether this file is cryptographically signed.

This operation is expensive and resets the file descriptor to
the beginning of file.

	
refine_entry(entry)

	Apply modifications to form a proper wordlist entry.

Refining means: strip() entry remove escape-dashes (if this is
a signed wordlist) and extract the term if it is preceded by
numbers.

	
diceware.wordlist.get_wordlist_names()

	Get a all names of wordlists stored locally.

	
diceware.wordlist.get_wordlist_path(name)

	Get path to a wordlist file for a wordlist named name.

The name string must not contain special chars beside -,
_, regular chars A-Z (upper or lower case) or
numbers. Invalid names raise a ValueError.

If a path with the given name (names are not filenames here) does
not exist, None is returned.

	
diceware.wordlist.get_wordlists_dir()

	Get the directory in which word lists are stored.

diceware.random_sources

Sources of randomness.

Please register all sources as entry point in setup.py. Look out for
“SystemRandomSource” for an example.

For developers of interfaces to other sources of randomness: Currently,
you can extend diceware random sources by registering a class, that
provides a suitable __init__(self, options) and a choice(self,
sequence) method. Optionally, you can also provide a classmethod
called update_arparse that will get the possibility to update the
argparser.ArgumentParser used by diceware.

The __init__ method of your class will be called with options, a set
of options as parsed from the commandline. The initialization code can
use the options to determine further actions or ignore it. The
__init__ method is also the right place to ask users for one-time
infos you need. This includes infos like the number of sides of a dice,
an API key for random.org or other infos that should not change between
generating different words (but might change from one diceware call
to the next).

The choice method then, will get a sequence of chars, strings, or
numbers and should pick one of them based on the source of randomness
intended to be utilized by your code. If further user interaction is
required, choice might also ask users for input or similar. Typically,
choice is called once for each word and once for each special char to
generate.

If you want to manage own commandline options with your plugin, you can
implement a classmethod called update_argparser(parser) which gets
an argparse.ArgumentParser instance as argument (no pun intended).

Finally, to register the source, add some stanza in setup.py of your
project that looks like:

...
setup(
 # ...
 entry_points={
 # console scripts and other entry points...
 'diceware_random_sources': [
 'myrandom = mypkg.mymodule:MyRandomSource',
 'myothersrc = mypkg.mymodule:MyOtherSource',
],
 },
 # ...
)
...

Here the myrandom and myothersrc lines register random sources that
(if installed) diceware will find on startup and offer to users under
the name given. In the described case, users could do for instance:

diceware -r myrandom

and the random source defined in the given class would be used for
generating a passphrase.

	
class diceware.random_sources.RealDiceRandomSource(options)

	A source of randomness working with real dice.

	
choice(sequence)

	Pick one item out of sequence.

	
get_num_rolls(seq_len)

	Compute how many dice rolls we need to pick a value from a sequence

	
pre_check(num_rolls, sequence)

	Checks performed before picking an item of a sequence.

We make sure that num_rolls, the number of rolls, is in an
acceptable range and issue an hint about the procedure.

	
class diceware.random_sources.SystemRandomSource(options)

	A Random Source utilizing the standard Python SystemRandom call.

As time of writing, SystemRandom makes use of /dev/urandom to get
fairly useable random numbers.

This source is registered as entry_point in setup.py under the name
‘system’ in the diceware_random_sources group.

The constructor will be called with options at beginning of a
programme run if the user has chosen the respective source of
random.

The SystemRandomSource is the default source.

	
choice(sequence)

	Pick one item out of sequence.

The sequence will normally be a sequence of strings
(wordlist), special chars, or numbers.

Sequences can be (at least) lists, tuples and other types that
have a len. Generators do not have to be supported (and are
in fact not supported by this source).

This method should return one item of the sequence picked based on
the underlying source of randomness.

In the long run, the choice should return each sequence item
(i.e.: no items should be ‘unreachable’).

It should also cope with any length > 0 of sequence and not
break if a sequence is “too short” or “too long”. Empty
sequences, however, might raise exceptions.

 Changes

Changes

0.10 (2022-02-15)

	Officially support Python 3.8 and Python 3.9.

	Removed official support for pypy2, Python 2.6, and Python 3.3.

	Allow to specify several wordlists in order to create syntactical valid
phrases.

	Also added first wordlists with english adjectives/nouns to generate for
instance <adjective-noun> phrases that are easier to memorize.

	When using real dice, allow entering of several rolls at once. Patch from
Adin Hoyle.

	Added german wordlists.

	Added carefully compiled brazilian portugese wordlist. Kudos to @drebs.

	Removed original diceware wordlists temporarily, for containing bad terms (#85)

0.9.6 (2018-12-19)

	Officially support Python 3.7.

	Fixed #51: Fix to formatting of list in Wordlists section. Kudos to Doug
Muth [https://github.com/dmuth].

0.9.5 (2018-04-07)

	Fixed #28: use Debian-compliant, machine-readable copyright format. Kudos to
Simon Fondrie-Teitler [https://github.com/simonft] and @anarcat.

	Fixed #48: Clarify trademark status of diceware. Mr. Reinhold granted
permission to use the name ‘Diceware’ in this project and under the conditions
listed in the issue comments. Many thanks to him!

0.9.4 (2018-02-27)

	Set default logging level to ERROR (was: CRITICAL)

	Fixed #44: provide a short and readable file-not-found message (many thanks to
bhavin192 [https://github.com/bhavin192])

	Fixed #45: clean up logging handlers after test runs.

	Removed date-dependent tests from default test suite. Run py.test -m ''
or tox to run them.

0.9.3 (2017-09-14)

	Fix broken test.

0.9.2 (2017-09-14)

	Fixed #33. Make en_eff the new default wordlist. This results in slightly
decreased entropy per word (12.92 bits instead of 13.0), but provides prefix
code and better memorizable words. Thanks to @anarcat for the suggestion.

	Fixed #35. Make realdice source of randomness provide an equal distribution
of roll numbers even for sequences shorter than number of dice sides.

	Added a man page.

	Support Python 3.6.

	Import ConfigParser instead of SafeConfigParser if the latter is an alias
of the former.

	Fixed #37. Ensure file descriptors are closed properly.

	Fixed #38. Get wordlists dir by function (instead of const) to allow
reproducible builds. Kudos go to @drebs, again.

0.9.1 (2016-12-24)

	Fixed #32, in docs tell that --no-caps option does not generate
lower-case terms.

	Fixed #31, broken realdice source of randomness. argparse related bug,
Bug was discovered and fixed by @LogosOfJ, thanks a lot!

	Fixed #29. Tell about code prefix problem in README.

	Activated logging. Using verbose will result in additional output.

0.9 (2016-09-14)

	Added –dice-sides option to tell how many sides used dices
provide.

	Changed API interface of get_config_dict() to allow more flexible
handling of config files.

	Support different verbosity levels.

	Added new wordlist en_eff. It is a 7776-terms list provided by
the Electronic Frontier Foundation. See
https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases
for details. Thanks to George V. Reilly [https://github.com/georgevreilly] for hinting!

	Fixed #27. Allow dashes in numbered wordlists. Yet, these looked
like 1234 myterm. We now also accept 1-2-3-4 myterm.

0.8 (2016-05-07)

	Closed #23. @dwcoder provided a fix that allows use of
whitespace-only values in diceware config files if they are enclosed
in quotes.

	Fixed #21. @dwcoder revealed and fixed (again!). This time –caps
and –no-caps settings did not work properly when set in CLI or in
.diceware.ini config file.

	Shortened real-dice randomness source.

	Added logger as common interface to send messages to users.

	New dependency: sphinx_rtd_theme for generating docs. This theme
was formerly a dependency of Sphinx.

0.7.1 (2016-04-21)

	Fixed #19. @dwcoder revealed and fixed a nasty bug in the real-dice
randomness-source. Thanks a lot!

0.7 (2016-04-17)

	Added sample .diceware.ini.

	Added new english wordlist en_securedrop. This is the new
default list. Thanks to heartsucker [https://github.com/heartsucker] who compiled and added the list.

	Remove support for Python 3.2. Several packages we depend on for testing
and sandboxing stopped Python 3.2 support. We follow them.

0.6.1 (2015-12-15)

	Minor doc changes: add separate config file docs.

	Fix docs: the default wordlist is named en. Some docs were not
up-to-date in that regard.

0.6 (2015-12-15)

	Officially support Python 3.5.

	Tests do not depend on pytest-cov, pytest-xdist anymore.

	Support configuration files. You can set different defaults in a
file called .diceware.ini in your home directory.

	Renamed wordlist en_8k to en as it serves as the default
for english passphrases.

0.5 (2015-08-05)

	New option -r, --randomsource. We support a pluggable system
to define alternative sources of randomness. Currently supported
sources: "system" (to retrieve randomness from standard library,
default) and realdice, which allows use of real dice.

	New option -w, --wordlist. We now provide several wordlists
for users to choose from. Own wordlists could already be fed to
diceware before. By default we still use the 8192 words list from
http://diceware.com.

	Rename SRC_DIR to WORDLISTS_DIR (reflecting what it stands for).

	Use also flake8 with tox.

	Pass options to get_passphrase() instead of a bunch of single args.

	Output wordlists dir in help output.

0.4 (2015-03-30)

	Add –delimiter option (thanks to Rodolfo Gouveia).

0.3.1 (2015-03-29)

	Turned former diceware module into a Python package. This is to
fix bug #1 Wordlists aren’t included during installation [https://github.com/ulif/diceware/issues/1], this time really.
Wordlists will from now on be stored inside the diceware package.
Again many thanks to conorsch [https://github.com/conorsch] who
digged deep into the matter and also came up with a very considerable
solution.

	Use readthedocs theme in docs.

0.3 (2015-03-28)

	Fix bug #1 Wordlists aren’t included during installation [https://github.com/ulif/diceware/issues/1] . Thanks to conorsch [https://github.com/conorsch]

	Add –version option.

0.2 (2015-03-27)

	Minor documentation changes.

	Updated copyright infos.

	Add support for custom wordlists.

0.1 (2015-02-18)

	Initial release.

 Python Module Index

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 diceware	

 	
 	
 diceware.config	

 	
 	
 diceware.logger	

 	
 	
 diceware.random_sources	

 	
 	
 diceware.wordlist	

 Index

Index

 C
 | D
 | G
 | H
 | I
 | L
 | M
 | P
 | R
 | S
 | V
 | W

C

 	
 	choice() (diceware.random_sources.RealDiceRandomSource method)

 	(diceware.random_sources.SystemRandomSource method)

 	
 	configure() (in module diceware.logger)

D

 	
 	diceware (module)

 	diceware.config (module)

 	
 	diceware.logger (module)

 	diceware.random_sources (module)

 	diceware.wordlist (module)

G

 	
 	get_config_dict() (in module diceware.config)

 	get_configparser() (in module diceware.config)

 	get_num_rolls() (diceware.random_sources.RealDiceRandomSource method)

 	get_passphrase() (in module diceware)

 	
 	get_random_sources() (in module diceware)

 	get_wordlist_names() (in module diceware.wordlist)

 	get_wordlist_path() (in module diceware.wordlist)

 	get_wordlists_dir() (in module diceware.wordlist)

H

 	
 	handle_options() (in module diceware)

I

 	
 	insert_special_char() (in module diceware)

 	
 	is_signed() (diceware.wordlist.WordList method)

L

 	
 	logger (in module diceware.logger)

M

 	
 	main() (in module diceware)

 	
 	MAX_IN_MEM_SIZE (in module diceware.wordlist)

P

 	
 	pre_check() (diceware.random_sources.RealDiceRandomSource method)

 	
 	print_version() (in module diceware)

R

 	
 	RE_NUMBERED_WORDLIST_ENTRY (in module diceware.wordlist)

 	RE_VALID_WORDLIST_FILENAME (in module diceware.wordlist)

 	RE_WLIST_NAME (in module diceware.config)

 	
 	RE_WORDLIST_NAME (in module diceware.wordlist)

 	RealDiceRandomSource (class in diceware.random_sources)

 	refine_entry() (diceware.wordlist.WordList method)

S

 	
 	SPECIAL_CHARS (in module diceware)

 	
 	string_to_wlist_list() (in module diceware.config)

 	SystemRandomSource (class in diceware.random_sources)

V

 	
 	valid_locations() (in module diceware.config)

W

 	
 	WordList (class in diceware.wordlist)

 synopsis

synopsis

diceware [OPTION]… [FILE]

description

diceware generates passphrases by concatenating words randomly picked from
wordlists. It supports also real dice for passphrase generation.

It is based on the proposals of Arnold G. Reinhold on http://diceware.com.

options

positional arguments:

	FILE

	optional input wordlist. '-' will read from stdin. Should contain one
word per line.

optional arguments:

	-h, --help

	show help message and exit

	-n NUM, --num NUM

	number of words to concatenate. Default 6

	-c, --caps

	Capitalize words. This is the default.

	--no-caps

	Turn off capitalization.

	-s NUM, --specials NUM

	Insert NUM special chars into generated word.

	-d DELIMITER, --delimiter DELIMITER

	Separate words by DELIMITER. Empty string by default.

	-r SOURCE, --randomsource SOURCE

	Get randomness from this source. Possible values:
realdice, system. Default: system

	-w [NAME [NAME …]], --wordlist [NAME [NAME …]]

	Use words from this wordlist. Possible values: de, de_8k,
en_adjectives, en_eff, en_nouns, en_orig, en_securedrop. pt-br.
Default: en_eff

	-v, --verbose

	Be verbose. Use several times for increased verbosity.

	--version

	output version information and exit.

Arguments related to realdice randomsource:

	--dice-sides N

	Number of sides of dice. Default: 6

files

	~/.diceware.ini

	Your personal diceware configuration file.

diceware also comes with a set of wordlists. The path where these lists are
stored is showed with --help.

examples

	diceware

	Create a passphrase using defaults. Outputs something like
“WheelDyeHonkCanvasWitsPuck”

	diceware -d “-” -n 3

	Create a passphrase with three words, separated by dash (”-“). Results in
something like “Wheel-Dye-Honk”

	diceware --no-caps

	Create a passphrase without capital words. Creates something like
“wheel-dye-honk”.

	diceware -r realdice

	Use real dice to create a passphrase. The program will tell you what to do
(roll dice and tell what numbers appear) and in the end present a
passphrase.

	diceware -r realdice --dice-sides 20

	Use real dice, as shown above, but this time use dice with 20 faces,
instead of standard, 6-sided dice.

	diceware mywordlist.txt

	Create a passphrase with words from file “mywordlist.txt”. The file should
contain one word on each line.

	diceware -w en_securedrop -s 2

	Create a passphrase with two special chars spread over the generated
passphrase and containing words from wordlist “en_securedrop”. This is
one of the wordlists that come included with diceware. Creates something
like:
“PlayaBrigVer{SeesNe-tsGets”.

	diceware -w en_adjectives en_nouns -n 2

	Create two syntactically meaningful phrases, each one consisting of an
adjective and a noun. Results in something like:
“CruelAttendeesCleanCoffee”.

copyright

Copyright (C) 2015-2022 Uli Fouquet and contributors

This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.

diceware is a concept invented by Arnold G. Reinhold, Cambridge, Massachusetts
USA.

The Securedrop wordlist (file wordlists/wordlist_en_securedrop.asc) by
Heartsucker is licensed under the MIT license (see http://mit-license.org/).

The EFF wordlist (file wordlsts/wordlist_en_eff.txt) is licensed by the
Electronic Frontier Foundation under the Creative Commons CC-BY 3.0 US
license (see https://creativecommons.org/licenses/by/3.0/us/).

The copyright for the the Diceware SecureDrop list is owned by @heartsucker.
Copyright for the EFF large list by Joseph Bonneau and EFF. Copyright for
the brazilian portuguese list by @drebs. Copyright for the english adjective
and noun lists by NaturalLanguagePasswords.

“Diceware” is a trademark of Arnold G Reinhold, used with permission.

_static/ajax-loader.gif

_images/password_strength.png
[alalalalajalallslolalnlalalals

WAS IT TROMBONE? NG,

‘—v—“f‘r‘— T—

i

FOUR RANDOM
COMMON WORDS

DIFRCOLTY To GUESS:

HARD

UNCOMHON ORER TROUBADOR. AND ONE OF
(oL GIBBRS) i || 7€ 0s whsa zero?
BASE RO N e e oERE s (P
2= 3 Davs AT 2345 Wm\zlﬂ -
Tr‘@u b4d or &3 1000 GUESSES /sec.
T T o (s e ot e
CAPS? COMMON NOVERAL | | b i e ot
o SN cuion || © WSWTM DIFFICULTY To REMEMBER:
oos IFFICOLTY T0 GUESS : IFFi :
(100 ¢ P00 1 0 ok 1 70 pu‘i“”“r'm ! EASY HARD
R
~ Ut BITS OF ENTROPY
correct horse battery stople

DIFFICULTY To REMEMBER:
YOUVE ALREADY

MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to diceware documentation

 		
 diceware

 		
 Install

 		
 Usage

 		
 What is it good for?

 		
 Is it secure?

 		
 Security Traps

 		
 Prefix Code

 		
 Reduced Entropy

 		
 Developer Install

 		
 Documentation Install

 		
 Creating the Man Page

 		
 Credits

 		
 Links

 		
 License

 		
 Sources of Randomness

 		
 System Random

 		
 Real Dice

 		
 Bring Your Own Source (for developers)

 		
 Configuration Files

 		
 Option Names

 		
 Config File Name and Path

 		
 Option Values

 		
 Wordlists

 		
 Retired Wordlists

 		
 Add Own Wordlists

 		
 Plain Wordlists

 		
 Numbered Wordlists

 		
 PGP-signed Wordlists

 		
 API

 		
 diceware main module

 		
 diceware.logger

 		
 diceware.config

 		
 diceware.wordlist

 		
 diceware.random_sources

 		
 Changes

 		
 0.10 (2022-02-15)

 		
 0.9.6 (2018-12-19)

 		
 0.9.5 (2018-04-07)

 		
 0.9.4 (2018-02-27)

 		
 0.9.3 (2017-09-14)

 		
 0.9.2 (2017-09-14)

 		
 0.9.1 (2016-12-24)

 		
 0.9 (2016-09-14)

 		
 0.8 (2016-05-07)

 		
 0.7.1 (2016-04-21)

 		
 0.7 (2016-04-17)

 		
 0.6.1 (2015-12-15)

 		
 0.6 (2015-12-15)

 		
 0.5 (2015-08-05)

 		
 0.4 (2015-03-30)

 		
 0.3.1 (2015-03-29)

