
diceroll Operations Manual
Release 3.1.0b

Shawn Driscoll

September 10, 2021

Contents

1 Introduction 3
1.1 Preface . 3
1.2 Requirements . 3
1.3 Installing Locally to Your Folder . 4
1.4 Installing as a Package . 5
1.5 Installing Automatically . 5

2 diceroll Tutorial 7
2.1 Rolling the Dice . 7

3 Using roll() in Your Own Code 11
3.1 For Simple Die Rolls . 11
3.2 For Probabilites . 12
3.3 For Repairing Game Code . 12
3.4 Encountering Errors . 13

4 Debugging diceroll 15

5 Alternate diceroll Distributions 17

6 Software Titles That Use diceroll 19

7 Designer’s Notes 21
7.1 In the Beginning . 21
7.2 Lessons Learned . 21
7.3 The Channel 1 . 22

8 diceroll Module 25

9 Glossary 27

10 Open Source 29
10.1 MIT License . 29
10.2 Contact . 29

11 FFE Agreement 31

12 About the Author 33

i

13 Indices and tables 35

Python Module Index 37

Index 39

ii

diceroll Operations Manual, Release 3.1.0b

diceroll 3.1 is easy-to-use open source die rolling software. Written in Classic Python 2.5 and using a variety of IDEs,
diceroll 3.1 supports many gaming and RPG die rolling conventions.

diceroll 3.1 also supports logging, error reporting, and debugging of rolls made.

The free-to-use source is available at its GitHub repository.

This documentation explains how to install and use the diceroll module for your gaming projects.

Download the PDF or the EPUB

The Traveller game in all forms is owned by Far Future Enterprises. Copyright 1977 - 2021 Far Future Enterprises.
Traveller is a registered trademark of Far Future Enterprises.

Contents 1

https://github.com/ShawnDriscoll/diceroll/
https://www.python.org/download/releases/2.5.4/
http://diceroll.readthedocs.io/en/latest/?badge=latest
https://readthedocs.org/projects/diceroll/downloads/pdf/latest
https://readthedocs.org/projects/diceroll/downloads/epub/latest

diceroll Operations Manual, Release 3.1.0b

2 Contents

CHAPTER 1

Introduction

1.1 Preface

Back during the release of diceroll 2.2, I wanted to learn something new in regards to Python. Even though I use 2.5.4,
there is still a lot about it that I have never delved into. Sphinx was something I had not really paid any mind to in the
past. It was yet another one of those need to know only things about Python. Some things I’d get around to learning
only when I had to, but only if it was part of something else that I had taken an interest in doing.

So somewhere in my discovering of PyMongo, I had been pointed to Sphinx and Jinja. They were both something
about document generation. And since I had just learned about Pandas and CSV, I was in a data retrieval mood still.

In a nutshell, Sphinx is an EXE (generated during its install from an egg of .py files, which is still magic to me, and
which took a great deal of time for me tracking down all the proper versions of requirements for it to even compile/run
in Classic Python 2.5.4) that generates documents. Nothing too fancy. Just simple documents that could be read
easily/quickly through any device using any viewer. And when I learned that Sphinx could read Python modules and
produce documents from their .__doc__ strings, I knew I just had to spend a couple days learning how all that stuff
happens.

So basically, my Python dice rolling module has its own operations manual now. And some rabbit holes are worth
their going into.

-Shawn

1.2 Requirements

• Microsoft Windows

diceroll has been tested on Windows versions: XP, 7, 8, and 10. It has not been tested on MacOS or
Linux.

• Classic Python 2.5

3

diceroll Operations Manual, Release 3.1.0b

diceroll was written using the C implementation of Classic Python version 2.5.4. Also known as
CPython. With some doing, this module could of course be re-written for Jython, PyPy, or Iron-
Python.

Older versions of Eclipse/PyDev, PyCharm, NetBeans, and IDLE all work fine for running this mod-
ule.

• colorama 0.2.7

Because CMD may have some colored text messages for debugging. The colorama code can be
removed if it is not needed, however.

• Your Game

diceroll is not a standalone program. It requires your game to make calls to it.

Otherwise, no dice.

(Update: As of version 2.4, diceroll can be used at the CMD prompt.)

Warning: diceroll 3.1 will not work with Python 2.6+.

1.3 Installing Locally to Your Folder

4 Chapter 1. Introduction

diceroll Operations Manual, Release 3.1.0b

Installing diceroll 3.1 is as easy as always. Just copy diceroll.py into the same folder your code happens to be
in.

Then add this line at (or near) the top of your code:

from diceroll import roll

1.4 Installing as a Package

If your code setup is different, in that you like to keep your function modules in a folder separate from your main code,
you could copy diceroll.py into that folder.

Say you have a folder called game_utils, and assuming you have an __init__.py inside it, just copy
diceroll.py into your game_utils folder and add this line near the top of your code:

from game_utils.diceroll import roll

1.5 Installing Automatically

New in version 2.3

Extract diceroll_3.1.0b.zip and start a CMD window at the folder location of the setup.py file. At the
CMD prompt you can type:

setup.py install

or:

1.4. Installing as a Package 5

diceroll Operations Manual, Release 3.1.0b

python setup.py install

depending on if your computer knows how to open .py files or not.

Note: During the installation process, a Python25\Lib\site-packages\game_utils folder will be
created. It will contain __init__.py and diceroll.py if your Python doesn’t have setuptools in-
stalled. Otherwise, an .egg file called diceroll-3.1.0b-py2.5.egg will be created and copied into the
Python25\Lib\site-packages folder.

No matter the automated installation that your Python performed, importing will be the same:

from game_utils.diceroll import roll

Some ways to see if the diceroll module was installed correctly is by typing:

>>> print roll('info')
('3.1', 'roll(), release version 3.1.0b for Classic Python 2.5.4')
>>> print roll.__doc__

The dice types to roll are:
'4dF', 'D2', 'D3', 'D4', 'D6', 'D8', 'D09', 'D10',
'D12', 'D20', 'D30', 'D099', 'D100', 'D66', 'DD',
'FLUX', 'GOODFLUX', 'BADFLUX', 'BOON', 'BANE',
and also Traveller5's 1D thru 10D rolls

Some examples are:
roll('D6') or roll('1D6') -- roll one 6-sided die
roll('2D6') -- roll two 6-sided dice
roll('D09') -- roll a 10-sided die (0 - 9)
roll('D10') -- roll a 10-sided die (1 - 10)
roll('D099') -- roll a 100-sided die (0 - 99)
roll('D100') -- roll a 100-sided die (1 - 100)
roll('D66') -- roll for a D66 chart
roll('FLUX') -- a FLUX roll (-5 to 5)
roll('3D6+6') -- add +6 DM to roll
roll('4D4-4') -- add -4 DM to roll
roll('2DD+3') -- roll (2D6+3) x 10
roll('BOON') -- roll 3D6 and keep the higher two dice
roll('4D') -- make a Traveller5 4D roll
roll('4dF') -- make a FATE roll
roll('info') -- release version of program
An invalid roll will return a 0.

6 Chapter 1. Introduction

CHAPTER 2

diceroll Tutorial

2.1 Rolling the Dice

Once diceroll.py is installed and your code is able to import the module, its roll() function can be used right
away. This function returns an integer, by the way. So it can be used as any other integer would be used. But first, we
must give this function a value to work from.

roll(dice)

dice = a string of three ordered concatenated values:

number_of_dice + dice_type + dice_roll_modifier

As examples:
dice = ‘2’ + ‘D10’ + ‘-2’
dice = str(3) + ‘D6’ + ‘+2’
dice = ‘FLUX’

dice_roll_modifier must include a ‘+’ or ‘-’ with its value.

7

diceroll Operations Manual, Release 3.1.0b

Note that both number_of_dice and dice_roll_modifier are optional, and may not even be
used by some dice_type rolls.

Those of you that have used dice rolling programs before will notice that something is different. And that is, roll()
uses a string for its input:

>>> die1 = roll('1D6')
>>> die2 = roll('1d6')
>>> dice = '3D4+1'
>>> print die1, die2+4, roll(dice)
3, 6, 9

The return values from roll() are always integer.

New in version 2.2

Notice that the inputted string values can be upper or lower case.

The dice types to roll are:

D3, D4, D6, D8, D10, D12, D20, D30, D100, D66, DD, FLUX, GOODFLUX, and BADFLUX

New in version 2.3

Three additional dice types are now available:

BOON, BANE, and D2

Note: You may recognize some of these dice types from various tabletop role-playing games. Not all dice types are
covered by diceroll. However, more are planned for in future releases.

diceroll uses a simple standard when it comes to rolling various dice types.

Some examples are:

roll('D6') or roll('1D6') # roll one 6-sided die
roll('2D6') # roll two 6-sided dice
roll('D09') # roll a 10-sided die (0 - 9)
roll('D10') # roll a 10-sided die (1 - 10)
roll('D099') # roll a 100-sided die (0 - 99)
roll('D100') # roll a 100-sided die (1 - 100)
roll('D66') # roll for a D66 chart
roll('FLUX') # a FLUX roll (-5 to 5)
roll('3D6+6') # add +6 DM to roll
roll('4D4-4') # add -4 DM to roll
roll('2DD+3') # roll (2D6+3) x 10
roll('BOON') # roll 3D6 and keep the higher two dice
roll('4D') # make a Traveller5 4D roll
roll('4dF') # make a FATE roll

Deprecated in version 1.9.

D00 has been replaced with D100.

New in version 2.4

diceroll can now be used directly at a CMD prompt:

C:\>diceroll.py roll('2d6-2')

(continues on next page)

8 Chapter 2. diceroll Tutorial

diceroll Operations Manual, Release 3.1.0b

(continued from previous page)

Your 2D6-2 roll is 10.

C:\>diceroll.py 2d6-2

Your 2D6-2 roll is 7.

Note: Typing diceroll.py -h will provide some help.

New in release 2.4.1

A TEST roll that calculates percentages for 2D6 has been added:

>>> roll('test')
6x6 Roll Chart Test

1 2 3 4 5 6
1 262 296 250 292 292 241
2 270 315 299 236 279 261
3 295 274 288 274 291 295
4 273 284 279 276 249 273
5 293 280 291 276 280 283
6 270 276 282 272 273 280

6x6 Roll Chart Percentage
1 2 3 4 5 6

1 2.62% 5.66% 8.60% 11.38% 13.93% 16.23%
2 5.66% 8.60% 11.38% 13.93% 16.23% 13.95%
3 8.60% 11.38% 13.93% 16.23% 13.95% 11.02%
4 11.38% 13.93% 16.23% 13.95% 11.02% 8.25%
5 13.93% 16.23% 13.95% 11.02% 8.25% 5.56%
6 16.23% 13.95% 11.02% 8.25% 5.56% 2.80%

The roll will return a list of percentages for 2-12 rolled.

New in release 2.4.2

D09 rolls will generate a range of 0 - 9.

New in release 2.4.3

D99 rolls will generate a range of 0 - 99.

Fixed in release 2.4.7

Minor fixes with input spacing, and logging any negative dice rolled.

New in version 3.0

D2 rolls now generate a range of 0 - 1. The 4dF roll type for FATE has been added.

New in version 3.1

1D thru 10D rolls for Traveller5 have been added. Now with DM support.

2.1. Rolling the Dice 9

diceroll Operations Manual, Release 3.1.0b

10 Chapter 2. diceroll Tutorial

CHAPTER 3

Using roll() in Your Own Code

3.1 For Simple Die Rolls

Sample Outputting of Die Rolls:

import the roll() module
from diceroll import roll

enter the roll type to be made
number_of_dice = raw_input('Number of dice to roll? ')
dice_type = raw_input('Dice type? ')
dice_roll_modifier = raw_input('DM? ')

make sure that there is a plus or minus sign in the DM string
if dice_roll_modifier[0] <> '-' and dice_roll_modifier[0] <> '+':

dice_roll_modifier = '+' + dice_roll_modifier

concatenate the values for the dice string
dice = number_of_dice + dice_type + dice_roll_modifier

(continues on next page)

11

diceroll Operations Manual, Release 3.1.0b

(continued from previous page)

print
print 'Rolling', dice

do 20 rolls
for i in range(20):

print 'You rolled a %d' % roll(dice)

3.2 For Probabilites

Sample Task Resolution:

import the roll() module
from diceroll import roll

Enter your character's chances to succeed at a task
skilled = raw_input('Is your character trained for the task ([y]/n)? ')
if skilled == 'n':

die_mod = -3
else:

print "Enter your character's skill level"
die_mod = int(raw_input('(0 to 4)? '))

print 'Enter the difficulty of the task'
difficulty = int(raw_input('(Impossible: -6 to Easy: +6)? '))

The player must roll an 8 or higher for their character to succeed
dice_roll = roll('2D6') + die_mod + difficulty
print
print 'You rolled:', dice_roll
if dice_roll >= 8:

print 'Your character succeeds with the task.'
if dice_roll - 8 >= 6:

print 'Your character saved everyone.'
else:

print 'Your character fails at the task.'
if dice_roll - 8 < -3:

print 'Your character becomes injured.'
if dice_roll - 8 < -6:

print 'Your character died from injuries!'

3.3 For Repairing Game Code

Often times, game code will be downloaded or found that contains incorrect randint() calls for rolling two 6-sided
dice. A line such as:

world_size = randint(2, 12) - 2

Easily becomes:

world_size = roll('2d6') - 2

12 Chapter 3. Using roll() in Your Own Code

diceroll Operations Manual, Release 3.1.0b

3.4 Encountering Errors

Entering an invalid string for roll() will return an error message, as well as a value of 0 from the function:

print roll('3d1')

Error: ** DICE ERROR! ‘3D1’ is unknown **

0

3.4. Encountering Errors 13

diceroll Operations Manual, Release 3.1.0b

14 Chapter 3. Using roll() in Your Own Code

CHAPTER 4

Debugging diceroll

diceroll 3.1 keeps a log file of any dice rolls made during its last run. You will find diceroll.log in the Logs
folder it creates if one isn’t there already. In the file you will see mentions of dice being rolled. diceroll uses a default
logging mode of INFO which isn’t that verbose.

diceroll_log.setLevel(logging.INFO)

Your INFO logging will output as:

. . . INFO diceroll - Logging started.

. . . INFO diceroll - roll() v3.1 started, and running. . .

. . . INFO diceroll - 3D4 = 3D4+0 = 10

Changing diceroll’s logging mode to DEBUG will record debugging messages in the Logs\diceroll.log file.

diceroll_log.setLevel(logging.DEBUG)

Your DEBUG logging will output as:

. . . INFO diceroll - Logging started.

. . . INFO diceroll - roll() v3.1 started, and running. . .

. . . DEBUG diceroll - Asked to roll 3D4:

15

diceroll Operations Manual, Release 3.1.0b

. . . DEBUG diceroll - Using three 4-sided dice. . .

. . . DEBUG diceroll - Rolled a 4

. . . DEBUG diceroll - Rolled a 2

. . . DEBUG diceroll - Rolled a 2

. . . INFO diceroll - 3D4 = 3D4+0 = 8

Note: Running diceroll in DEBUG mode may create a log file that will be too huge to open. A program of yours left
running for a long period of time could create millions of lines of recorded log entries. Fortunately, diceroll.log
is reset each time your program is run. Also, any errors encountered will be recorded as ERROR in the log file, no
matter which logging mode you’ve chosen to use.

If your own code has logging enabled for it, be sure to let diceroll know by changing your_code_name_here to
the name of the program you’re calling roll() from.

log = logging.getLogger('your_code_name_here.diceroll')

16 Chapter 4. Debugging diceroll

CHAPTER 5

Alternate diceroll Distributions

Often times, the diceroll module is found in other formats. You may already have a copy of diceroll that was dis-
tributed with another program you’re using.

Besides its common .py format, diceroll can be found in a .pyd format as well. This format is packaged as a dynamic
link library, and will work the same way as the .py format. The format is typically bundled with the software that
was designed for using it.

Warning: The .pyd format can only be imported and will not execute at a CMD prompt.

17

diceroll Operations Manual, Release 3.1.0b

18 Chapter 5. Alternate diceroll Distributions

CHAPTER 6

Software Titles That Use diceroll

Here is a sample list of software titles using diceroll:

Feral-Ghoul-FSM

Imperial CharGen

Py25_Traveller_CharGen_Tutorial

PyQt4-Dice-App

TravCalc

Traveller-NPC-LITE

Traveller-RPG-Skill-Check

Traveller-RPG-Tools

19

diceroll Operations Manual, Release 3.1.0b

20 Chapter 6. Software Titles That Use diceroll

CHAPTER 7

Designer’s Notes

7.1 In the Beginning

One of the first things I do when learning a new language is to discovery how it generates random numbers. Older
computer languages from the ’70s had their own built-in random number generators. Technically, they were pseudo-
random number generators. But technically, I wanted to program my Star Trek games anyway no matter what they
were called.

In the ’80s, I would discover that not all computer languages came with random number generators built in. Many
didn’t have such a thing unless some external software library was installed. Both FORTRAN and C couldn’t do
random anything out of the box. A math library had to be picked from the many that were out there. And if none were
available, a computer class on campus was available to teach you how to program your own random number generator
from scratch.

By the ’90s, random number generators were pretty much standardized as for as how accurately random they were.
And they were included in standard libraries for various languages. By the time Python was being developed, the C
language used to write Python had very robust random number generators. And because Python was written in C, it
just made sense for it to make use of C libraries.

For those that are curious, diceroll uses the random.randint() module that comes with CPython. There are
stronger random generators out there now, with NumPy being one of them. But at the time of designing diceroll,
I didn’t quite understand how-all NumPy worked, or what version of it to install. And for rolling dice, the built-in
random number generator would be just fine.

7.2 Lessons Learned

In the past, when I needed a random number from 1 to say 6 (see 6-sided dice), I would use INT(RND(1)*6) + 1.
And I would be used to doing it that way for probably 15 years or so, because that is how most BASIC languages did
things. Other languages like C required me to whip out the 80286 System Developer’s 3-ring binder to find out how
srand() and rand() worked, and under what circumstances.

Fast-forward 20 years, and I’m learning CPython without knowing the difference between a CPython or an RPython
or any other Python out there. I figured Python was the same all over, even though I had a feeling Linux did things

21

diceroll Operations Manual, Release 3.1.0b

differently because of its filepath naming and OS commands. And of course, the first thing I had to try was Python’s
random module, as well as its ugly-looking randint().

Right away I noticed the way Python “loaded” modules was going to be a learning experience. I hadn’t really pro-
grammed anything huge since my TANDY Color Computer 3 days running OS-9 Level II and programming in BA-
SIC09 (https://en.wikipedia.org/wiki/BASIC09). Python would reveal different ways of importing modules the more
I read about them, and the more code I poured over.

I would soon find that:

import random

print random.randint(1, 6) # roll a 6-sided die

Was the same thing as:

from random import randint

print randint(1, 6) # roll a 6-sided die

Which looked a bit cleaner. But I was debating if I wanted to use randint() at all in my normal coding.

So while I was learning how to write my own functions, as well as how to go about importing them, I came up with
an idea for diceroll. It would included a roll() function, and a die_rolls() function as a “side effect.” Even
though die_rolls() had no error-checking, roll() would call it after doing its own error-checking.

I was trying to avoid using:

from diceroll import die_rolls

print die_rolls(6, 2) # roll two 6-sided dice

For my dice rolls, I wanted something more readable. Something like:

from diceroll import roll

print roll('2D6') # roll two 6-sided dice

It was almost less typing, which I thought was great because I was going to be typing this function a lot for a Python
project I had in mind. And it would be a lot easier to spot what kind of rolls were being made in my code. And the
simple addition or subtraction of DMs to such a roll was making the function more appealing:

print roll('2D6+3') # roll two 6-sided dice and add a DM of +3 to it

7.3 The Channel 1

diceroll was written years ago. The code is used by both my TravCalc and TravGen apps, and gets looked at by
GitHub visitors who google-by now and again. But not many programmers will use the code because of the simple
fact that Python is now version 3.6+ something. So diceroll, along with a slew of other pre-Python 2.6 era modules,
are the Channel 1 stations in the room that no TV can possibly watch.

It really comes down to a philosophy. I waited on learning Python until a version was released where I could say,
“This is Python.” Or say, “This is what Python should be.” Something like that.

And for me, it was Classic Python 2.5.4 when I said such things. Python 2.6 books were showing up in stores. And
there were already differences being found between it and the Python that I was using. Python had become this huge
thing. And non-programmers were being attracted to it for their own reasons. And that was all fine. Python 2.7, 3.0,

22 Chapter 7. Designer’s Notes

https://en.wikipedia.org/wiki/BASIC09

diceroll Operations Manual, Release 3.1.0b

etc., were seeing lots of new talent joining their mix. They were taking Python to places it hadn’t been to. And more
and more people were doing Python because of it.

Python is trying to be all things to all programmers these days. And it has become less of Python in doing so. I am
not a functional programmer. Never have been. But a lot of people are. And Python now serves them very well. I’m
often told, “Python now does things this way.” But it is ways that I don’t see myself using.

People are altering diceroll so that it works in their Python, just as I am altering their uploaded code so that it works
in my Python. If I wanted my code to reach more people, of course I would have to program using the latest greatest
Python. But there is a certain individuality lost in doing that.

I believe the next great computer programming language will be the one that remains true to its nature/design as it
grows. And doesn’t split the party as it grows.

Shawn Driscoll
October 3rd, 2017
US, California

7.3. The Channel 1 23

diceroll Operations Manual, Release 3.1.0b

24 Chapter 7. Designer’s Notes

CHAPTER 8

diceroll Module

roll(number_of_dice + dice_type + dice_roll_modifier)

roll() accepts a string value made up of three concatenated values, then returns an integer.

String values comes from number_of_dice + dice_type + dice_roll_modifier

Some examples are:
‘2’ + ‘D10’ + ‘-2’
str(3) + ‘D6’ + ‘+2’
‘FLUX’

dice_roll_modifier must include a ‘+’ or ‘-’ with its value.

Note that both number_of_dice and dice_roll_modifier are optional, and may not even be
used by some dice_type rolls.

25

diceroll Operations Manual, Release 3.1.0b

26 Chapter 8. diceroll Module

CHAPTER 9

Glossary

80286 A CPU used by home computers in the mid-1980s.

BASIC09 A structured BASIC programming language dialect developed by Microware and Motorola for the then-
new Motorola 6809 CPU and released in 1980. It was the best computer programming language until Python
was invented.

CMD Command Prompt (CMD) is a command line interpreter program available in Windows 10, 8, 7, Vista, and XP.
Command Prompt is similar in appearance to MS-DOS.

concatenation String concatenation is the operation of joining character strings end-to-end. For example, the con-
catenation of “iron” and “man” is “ironman”.

C A computer programming language used to write a better computer programming language called Python.

CPython CPython is the default, most widely used implementation of the Python programming language. It is written
in C.

D100 A 100-sided die. A sphere, basically. Rolled with caution.

debug The process of finding and resolving of defects that prevent correct operation of computer software or a system.

dice Small throwable objects with multiple resting positions, used for generating random numbers. Dice are suitable
as gambling devices for games like craps and are also used in tabletop games.

diceroll A Python module available from this GitHub repository.

egg Eggs are to Pythons as Jars are to Java. Python eggs are a way of bundling additional information with a Python
project, that allows the project’s dependencies to be checked and satisfied at runtime, as well as allowing projects
to provide plugins for other projects. The most common format is the ‘.egg’ zipfile format, because it’s a
convenient one for distributing projects. All of the formats support including package-specific data, project-
wide metadata, C extensions, and Python code.

errors Bugs that need to be squashed.

FORTRAN A computer programming language used to play Star Trek games in the 1970s.

game An activity engaged in for diversion or amusement. For computer games, it means no sweating.

27

https://github.com/ShawnDriscoll/diceroll/

diceroll Operations Manual, Release 3.1.0b

IDE An integrated development environment (IDE) is a software application that provides comprehensive facilities
to computer programmers for software development.

integer An integer is what is more commonly known as a whole number. It may be positive, negative, or the number
zero, but it must be whole.

log A log is a file that records events that occur as software runs. Logging is the act of keeping a log. In the simplest
case, messages are written to a single logfile.

module A module is a part of a program. Programs are composed of one or more independently developed modules
that are not combined until the program is linked.

no dice Used to refuse a request or indicate no chance of success.

Python 3.8+ A newfangled version of Python that’s different from what Classic Python 2.5 programmers are used to.

rabbit hole Used to refer to a bizarre, confusing, or nonsensical situation or environment, typically one from which
it is difficult to extricate oneself.

random The lack of pattern or predictability in events. A random sequence of events, symbols or steps has no
order and does not follow an intelligible pattern or combination. Individual random events are by definition
unpredictable, but in many cases the frequency of different outcomes over a large number of events (or “trials”)
is predictable.

Sphinx The Python software used to publish this operations manual.

string A string is a contiguous sequence of symbols or values, such as a character string (a sequence of characters) or
a binary digit string (a sequence of binary values).

your own code Your own code is a Python program that you have already written to make calls to the roll()
function.

28 Chapter 9. Glossary

CHAPTER 10

Open Source

10.1 MIT License

LICENSE AGREEMENT

Copyright (c) 2021, SHONNER CORPORATION

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

10.2 Contact

Questions? Please contact shawndriscoll@hotmail.com

29

mailto:shawndriscoll@hotmail.com

diceroll Operations Manual, Release 3.1.0b

30 Chapter 10. Open Source

CHAPTER 11

FFE Agreement

The Traveller game in all forms is owned by Far Future Enterprises. Copyright 1977 - 2021 Far Future Enterprises.
Traveller is a registered trademark of Far Future Enterprises.

31

diceroll Operations Manual, Release 3.1.0b

32 Chapter 11. FFE Agreement

CHAPTER 12

About the Author

Shawn Driscoll is an American artist. Computers are his main creation tool. His many hobbies are in sync with his
being a student of all sciences. Some of which are discussed in length on his YouTube channel.

33

https://www.youtube.com/user/ShawnDriscollCG

diceroll Operations Manual, Release 3.1.0b

34 Chapter 12. About the Author

CHAPTER 13

Indices and tables

• genindex

• search

35

diceroll Operations Manual, Release 3.1.0b

36 Chapter 13. Indices and tables

Python Module Index

d
diceroll, 25

37

diceroll Operations Manual, Release 3.1.0b

38 Python Module Index

Index

Numbers
80286, 27

B
BASIC09, 27

C
C, 27
CMD, 27
concatenation, 27
CPython, 27

D
D100, 27
debug, 27
dice, 27
diceroll, 27
diceroll (module), 25

E
egg, 27
errors, 27

F
FORTRAN, 27

G
game, 27

I
IDE, 28
integer, 28

L
log, 28

M
module, 28

N
no dice, 28

P
Python 3.8+, 28

R
rabbit hole, 28
random, 28
roll() (built-in function), 7
roll() (in module diceroll), 25

S
Sphinx, 28
string, 28

Y
your own code, 28

39

	Introduction
	Preface
	Requirements
	Installing Locally to Your Folder
	Installing as a Package
	Installing Automatically

	diceroll Tutorial
	Rolling the Dice

	Using roll() in Your Own Code
	For Simple Die Rolls
	For Probabilites
	For Repairing Game Code
	Encountering Errors

	Debugging diceroll
	Alternate diceroll Distributions
	Software Titles That Use diceroll
	Designer’s Notes
	In the Beginning
	Lessons Learned
	The Channel 1

	diceroll Module
	Glossary
	Open Source
	MIT License
	Contact

	FFE Agreement
	About the Author
	Indices and tables
	Python Module Index
	Index

