
diagnostics
Release 0.6.0

Timo Lesterhuis

Aug 22, 2019

CONTENTS

1 Introduction 3

2 Getting started 5

3 Advanced Usage 13

4 Changelog 15

5 Troubleshooting 17

6 FAQ 19

7 Contributing 21

8 API 23

9 Indices and tables 25

i

ii

diagnostics, Release 0.6.0

diagnostics is a Python module designed to make analysis of diagnostic data easier. It comes with a couple of clear
data-structures with automatic quality checks, easy Boolean logic operators and built-in bookkeeping. To top that off,
it’s built on numpy!

diagnostics is free to use (MIT license), open source (GitHub), works with python 3.5+ and is available for Linux,
OSX, and Windows.

CONTENTS 1

https://www.numpy.org
https://github.com/tim00w/diagnostics/blob/master/LICENSE
https://github.com/tim00w/diagnostics

diagnostics, Release 0.6.0

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This is the Introduction! more info will come soon.

1.1 Features

I’ll sum these up at some point

1.2 Why should I use diagnostics instead of X?

Because it’s way cooler, you know.

3

diagnostics, Release 0.6.0

4 Chapter 1. Introduction

CHAPTER

TWO

GETTING STARTED

Note: You can also try out this quickstart as a jupyter notebook on Binder!

2.1 Installation

To install diagnostics, please use the following command:

pip install pydiagnostics

Alternatively, you can clone the repository and use setup.py to install:

git clone https://github.com/tim00w/diagnostics.git
cd diagnostics
python setup.py install

2.2 Basic usage

2.2.1 TimeSeries

Diagnostic events are derived from from real occurances. For instance, your phone will probably generate a message
(event) if your battery is running low (percentage below threshold value). The diagnostics library has a TimeSerie
class that can capture these occurances.

For example, a TimeSerie representing your battery life, which drains 0.01% each second:

import numpy as np
import diagnostics as ds

battery_life = ds.TimeSerie(np.arange(100, 0, -0.01), fs=1)

the first argument is consists of a data array (both list() and numpy.array() are supported), and additionally
you can provide some keyword parameters. Here we’ve provided the sample frequency (fs) which is 1 Hz, because
we said our battery drains 0.01% each second. In this particular case we could’ve left fs out, since the default value
of fs is also 1.

Now that we’ve got our data, we can easily visualize this:

5

https://mybinder.org/v2/gh/tim00w/diagnostics/master?filepath=examples/example.ipynb

diagnostics, Release 0.6.0

battery_life.plot()

Which will show the following matplotlib figure:

There are other keyword parameters that we can use as well, such as t0 (start time of TimeSerie in posixtime or a
datetime object), and a name (default is an empty string).

from datetime import datetime

battery_life = ds.TimeSerie(np.arange(100, 0, -0.01),
fs=1,
t0=datetime(2019,1,1,8,5), # 2019-01-01 08:05
name='battery life')

Now we’ve got our battery life set to a specific (start-)datetime, and gave it a name. Both will come in handy later.

2.2.2 BooleanTimeSeries

Let’s be honest, the battery percentage of your phone does not really matter to you, unless it goes below a certain
threshold. Luckily for us, our TimeSerie can easily be converted to a BooleanTimeSerie, which only contains
boolean values of when the percentage reaches below 25%:

6 Chapter 2. Getting started

diagnostics, Release 0.6.0

battery_below25 = battery_life <= 25

battery_below25.plot(as_dt=True, show=True)

Now that’s easy! We can see that our battery goes below 25% around 10:10:

2.2.3 StateChangeArray

You could argue that our BooleanTimeSerie contains a lot of data points with the same value. I’d agree with you,
and therefore introduce a class that only keeps track of the changes in data points, the StateChangeArray:

battery_low_state = battery_below25.to_statechangearray()

Alternatively, we can create a StateChangeArray (or BooleanStateChangeArray, you can probably guess
the difference :smile:) from scratch:

s = ds.StateChangeArray([1, 4, 8, 0], t=[1,2,4,8], name='my state')
b = ds.BooleanStateChangeArray([True, False, True, False], t=[1,3,6,9], name='b')

s.plot(show=True)

2.2. Basic usage 7

diagnostics, Release 0.6.0

Both the data array as the values for time (t) can be list() or np.array(). When a list of datetime objects is
given, they are converted to posixtime. Otherwise, the input is considered as posixtime. For now it is not possible to
give a datetimearray as an input, but this wil be implemented in the near future.

2.2.4 Comparing TimeSeries and StateChangeArrays

There are more classes besides TimeSeries and StateChangearrays, each with their own advantages and disadvan-
tages. The power of this module lies in clear transformations from one class to another (we’ve already shown the
TimeSerie.to_statechangearray() method), and the comparison of multiple classes.

To start with TimeSeries, if two (or more) have the same array_length, t0 and fs, we can easily do calculations with
them!

create two TimeSerie objects that we'll combine
a = ds.TimeSerie(np.sin(np.linspace(0, 2*np.pi, 100)), t0=0, fs=1, name='a')
b = ds.TimeSerie(np.sin(2* np.linspace(0, 2*np.pi, 100)), t0=0, fs=1, name='b')

It's this easy!
c = a + b

8 Chapter 2. Getting started

diagnostics, Release 0.6.0

We're interested in the more extreme values, lets create TimeSeries for these:
d = c <= -1
e = c >= 1

we'll name them to keep our bookkeeping up to date
d.name = 'c <= -1'
e.name = 'c >= 1'

and find when one of the above conditions is True!
f = d | e

when performing boolean operators ('~', '^', '&', '|'), the library
does it's own bookkeeping:
print(f.name)
f.plot(show=True)

2.2. Basic usage 9

diagnostics, Release 0.6.0

Comparing StateChangeArrays would normally be a bit tricky, since the data is most likely non-linearly spaced. This
means that we can’t just perform vectorized boolean operations, but we’ll need to combine both data values as well as
their respective points in time.

Luckily for us, the StateChangeArray has this functionality built in:

a = ds.StateChangeArray([True, False, True, False], t=[2,4,6,8], name='a')
b = ds.StateChangeArray([True, False, True, False], t=[3,5,7,9], name='b')

c = a | b
d = a & b
e = ~a
f = a ^ a
g = a ^ e

a.plot(other=b)
c.plot(other=d)

10 Chapter 2. Getting started

diagnostics, Release 0.6.0

2.2. Basic usage 11

diagnostics, Release 0.6.0

That’s pretty great right?

Note: plotting is still an experimental feature, and the API/implementation might change in the near future.

2.2.5 Reports & Events

WIP

2.3 What to read next

I’m not sure either, and I’m the one that has to write it first!

12 Chapter 2. Getting started

CHAPTER

THREE

ADVANCED USAGE

For now there are no advanced usages! It’s an easy library :)

13

diagnostics, Release 0.6.0

14 Chapter 3. Advanced Usage

CHAPTER

FOUR

CHANGELOG

Everything is still rapidly changing, after a 1.0 release this will become important

WIP

15

diagnostics, Release 0.6.0

16 Chapter 4. Changelog

CHAPTER

FIVE

TROUBLESHOOTING

Honestly, what can go wrong?

17

diagnostics, Release 0.6.0

18 Chapter 5. Troubleshooting

CHAPTER

SIX

FAQ

Ask away!

19

diagnostics, Release 0.6.0

20 Chapter 6. FAQ

CHAPTER

SEVEN

CONTRIBUTING

For now, just yours truly!

21

diagnostics, Release 0.6.0

22 Chapter 7. Contributing

CHAPTER

EIGHT

API

More will be added soon!

23

diagnostics, Release 0.6.0

24 Chapter 8. API

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

25

	Introduction
	Getting started
	Advanced Usage
	Changelog
	Troubleshooting
	FAQ
	Contributing
	API
	Indices and tables

