
DI-Sensors Documentation

Dexter Industries

Jan 23, 2020

CONTENTS:

1 About DI-Sensors 3
1.1 Who we are and what we do. 3
1.2 What’s this documentation about. 3

2 Getting Started 5
2.1 Buying our sensors . 5
2.2 What I can use the sensors with . 7
2.3 How to install the DI-Sensors . 8

3 Examples 9
3.1 Using the Distance Sensor . 9
3.2 Using the Light and Color Sensor . 11
3.3 Temperature Humidity and Pressure Sensor . 12
3.4 Using the IMU Sensor . 12
3.5 Using the Line Follower . 14
3.6 Using Mutexes . 16

4 On Library & Hardware 19
4.1 Requirements . 19
4.2 Hardware interface . 19
4.3 Library Structure . 20

5 API DI-Sensors - Basic 27
5.1 EasyDistanceSensor . 27
5.2 EasyLightColorSensor . 28
5.3 EasyIMUSensor . 30
5.4 EasyTHPSsensor . 32
5.5 EasyLineFollower . 33

6 API DI-Sensors - Advanced 37
6.1 DistanceSensor . 37
6.2 LightColorSensor . 38
6.3 InertialMeasurementUnit . 39
6.4 TempHumPress . 41
6.5 LineFollower . 42
6.6 More . 43

7 Developer’s Guide 45
7.1 Our collaborators . 45

8 Frequently Asked Questions 47

i

9 Indices and tables 49

Index 51

ii

DI-Sensors Documentation

CONTENTS: 1

DI-Sensors Documentation

2 CONTENTS:

CHAPTER

ONE

ABOUT DI-SENSORS

1.1 Who we are and what we do.

Dexter Industries is an American educational robotics company that develops robot kits that make programming ac-
cessible for everyone.

1.2 What’s this documentation about.

The documentation details how to use the sensors that Dexter Industries produces and maintains - that’s where the DI
acronym comes from. All the source code for these sensors has been written in Python. Within this documentation,
you will find instructions on:

• How to get started with the DI-Sensors - in general it refers to how to install them on your Raspberry Pi.

• How to get going with the examples found in our repository. In the DI_Sensors repository, you can find all the
source code for our sensors and example programs.

• How to use our DI-Sensors - we offer a thorough API on the sensors we have.

3

https://www.dexterindustries.com
https://www.dexterindustries.com
https://github.com/DexterInd/DI_Sensors.git

DI-Sensors Documentation

4 Chapter 1. About DI-Sensors

CHAPTER

TWO

GETTING STARTED

2.1 Buying our sensors

In order to run code found in this documentation, you need to head over to our online shop and get yourself one of the
following sensors:

• The DI IMU Sensor.

• The DI Light and Color Sensor.

• The DI Temperature Humidity Pressure Sensor.

• The DI Distance Sensor.

• The DI Line Follower Sensor, aka the black line follower.

5

https://www.dexterindustries.com/shop/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/light-color-sensor/
https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/
https://www.dexterindustries.com/shop/distance-sensor/
https://www.dexterindustries.com/shop/line-follower-sensor/

DI-Sensors Documentation

Also, apart from these sensors, the red line follower is also supported. It is the predecessor to the Line Follower
Sensor. This is what it looks like:

6 Chapter 2. Getting Started

https://www.dexterindustries.com/shop/line-follower-sensor/
https://www.dexterindustries.com/shop/line-follower-sensor/

DI-Sensors Documentation

2.2 What I can use the sensors with

All these sensors can be used along the following platforms:

• The BrickPi3.

– Github project here.

• The GoPiGo3.

– Github project here.

– Documentation for the GoPiGo3 can be found here.

• The GoPiGo.

– Github project here.

– Predecessor of the GoPiGo3.

• The GrovePi.

– Github project here.

– Platform for collecting data from the environment through the use of sensors.

• The PivotPi.

– Github project here.

– Board to connect to a bunch of servos.

2.2. What I can use the sensors with 7

https://www.dexterindustries.com/shop/brickpi-starter-kit/
https://github.com/DexterInd/BrickPi3.git
https://www.dexterindustries.com/shop/gopigo3-robot-base-kit/
https://github.com/DexterInd/GoPiGo3.git
https://www.dexterindustries.com/shop/gopigo3-robot-base-kit/
http://gopigo3.readthedocs.io
https://github.com/DexterInd/GoPiGo.git
https://www.dexterindustries.com/shop/gopigo3-robot-base-kit/
https://www.dexterindustries.com/shop/grovepi-starter-kit-raspberry-pi/
https://github.com/DexterInd/GrovePi.git
https://www.dexterindustries.com/product/pivotpi-board/
https://github.com/DexterInd/PivotPi.git

DI-Sensors Documentation

2.3 How to install the DI-Sensors

In order to install the DI-Sensors package you need to open up a terminal on your Raspberry Pi and type in the
following command:

curl -kL dexterindustries.com/update_sensors | bash

Enter the command and follow the instructions given, if provided. This command can also be used for updating the
package with the latest changes.

To find more about our source code, please visit the DI_Sensors repository on GitHub.

8 Chapter 2. Getting Started

https://github.com/DexterInd/DI_Sensors.git

CHAPTER

THREE

EXAMPLES

This chapter revolves around the following python classes:

• di_sensors.inertial_measurement_unit.InertialMeasurementUnit

• di_sensors.easy_light_color_sensor.EasyLightColorSensor

• di_sensors.easy_temp_hum_press.EasyTHPSensor

• di_sensors.distance_sensor.DistanceSensor

• di_sensors.easy_distance_sensor.EasyDistanceSensor

Please make sure you have followed all the instructions found in Getting Started before jumping into these example
programs. In all these examples, you will be required to use one of the 4 documented sensors and optionally, a
GoPiGo3.

3.1 Using the Distance Sensor

3.1.1 Basic Example

Before going to the more advanced example program of using the Distance Sensor, we’re going to give an example of
the easiest way to read from the sensor.

The following code snippet reads values off of the Distance Sensor and prints them iteratively in the console. As you’ll
see, this is far easier than the following examples, which are more complex to use, but have a more granular control
over the device.

In this example program, connect the Distance Sensor to an I2C port on whichever platform (GoPiGo3, GrovePi or
BrickPi3) and then run the following script.

import the modules
from di_sensors.easy_distance_sensor import EasyDistanceSensor
from time import sleep

instantiate the distance object
my_sensor = EasyDistanceSensor()

and read the sensor iteratively
while True:

read_distance = my_sensor.read()
print("distance from object: {} cm".format(read_distance))

sleep(0.1)

9

https://www.dexterindustries.com/shop/gopigo-advanced-starter-kit/
https://www.dexterindustries.com/shop/distance-sensor/
https://www.dexterindustries.com/shop/distance-sensor/
https://www.dexterindustries.com/shop/distance-sensor/
https://www.dexterindustries.com/gopigo3/
https://www.dexterindustries.com/grovepi/
https://www.dexterindustries.com/brickpi/

DI-Sensors Documentation

The source file for this example program can be found here on github

3.1.2 Continuous-mode

Again, just like in the previous example program, connect the Distance Sensor to an I2C port on whichever platform
before running the following script.

The advantage of this script over the ones in the following and previous sections is that the time taken for reading
the distance can be fine-tuned by the user - for instance, it can be made to run as fast as possible (to see how fast it
can read see the API of DistanceSensor) or it can be made to go very slow. Each fine-tune has its benefits and
disadvantages, so the user has to experiment with the sensor and determine what setting suits him best.

import time
from di_sensors.distance_sensor import DistanceSensor

print("Example program for reading a Dexter Industries Distance Sensor on an I2C port.
→˓")

establish communication with the DistanceSensor
ds = DistanceSensor()

set the sensor in fast-polling-mode
ds.start_continuous()

while True:
read the distance in millimeters
read_distance = ds.read_range_continuous()
print("distance from object: {} mm".format(read_distance))

The source code for this example program can be found here on github.

3.1.3 Single-mode

In this third example, we have the same physical arrangement as in the second one, the only difference being in how
we communicate with the sensor. This time, we take single-shot readings, which for the user is simpler than having to
tune the distance sensor first and then read off of it. The only disadvantage is that there’s no fine-control over how fast
the sensor is making the readings.

import time
from di_sensors.distance_sensor import DistanceSensor

print("Example program for reading a Dexter Industries Distance Sensor on an I2C port.
→˓")

ds = DistanceSensor()

while True:
read the distance as a single-shot sample
read_distance = ds.read_range_single()
print("distance from object: {} mm".format(read_distance))

The source code for this example program can be found here on github.

10 Chapter 3. Examples

https://github.com/DexterInd/DI_Sensors/blob/master/Python/Examples/EasyDistanceSensor.py
https://www.dexterindustries.com/shop/distance-sensor/
https://github.com/DexterInd/DI_Sensors/blob/master/Python/Examples/DistanceSensorContinuous.py
https://github.com/DexterInd/DI_Sensors/blob/master/Python/Examples/DistanceSensorSingleShot.py

DI-Sensors Documentation

3.1.4 Console Output

All 3 example scripts described in this chapter should have a console output similar to what we have next.

distance from object: 419 mm
distance from object: 454 mm
distance from object: 452 mm
distance from object: 490 mm
distance from object: 501 mm
distance from object: 8190 mm
distance from object: 1650 mm
distance from object: 1678 mm
distance from object: 1638 mm
distance from object: 1600 mm

3.2 Using the Light and Color Sensor

In this short section, we get to see how one can read data off of the Light and Color Sensor without having to fine-tune
the sensor or to deal with hard-to-understand concepts. Before anything else, connect the Light and Color Sensor to
an I2C port on whichever platform (be it a GoPiGo3, GrovePi or a BrickPi3) and then run the following script.

The source file for this example program can be found here on github.

from time import sleep
from di_sensors.easy_light_color_sensor import EasyLightColorSensor

print("Example program for reading a Dexter Industries Light Color Sensor on an I2C
→˓port.")

my_lcs = EasyLightColorSensor(led_state = True)

while True:
Read the R, G, B, C color values
red, green, blue, clear = my_lcs.safe_raw_colors()

Print the values
print("Red: {:5.3f} Green: {:5.3f} Blue: {:5.3f} Clear: {:5.3f}".format(red,

→˓green, blue, clear))

sleep(0.02)

Here’s how the output of the script should look like:

Example program for reading a Dexter Industries Light Color Sensor on an I2C port.
Red: 0.004 Green: 0.004 Blue: 0.004 Clear: 0.013
Red: 0.005 Green: 0.004 Blue: 0.004 Clear: 0.013
Red: 0.005 Green: 0.005 Blue: 0.004 Clear: 0.014
Red: 0.005 Green: 0.005 Blue: 0.004 Clear: 0.015
Red: 0.005 Green: 0.005 Blue: 0.004 Clear: 0.014
Red: 0.005 Green: 0.005 Blue: 0.004 Clear: 0.014
Red: 0.006 Green: 0.005 Blue: 0.005 Clear: 0.015

3.2. Using the Light and Color Sensor 11

https://www.dexterindustries.com/shop/light-color-sensor/
https://www.dexterindustries.com/shop/light-color-sensor/
https://www.dexterindustries.com/gopigo3/
https://www.dexterindustries.com/grovepi/
https://www.dexterindustries.com/brickpi/
https://github.com/DexterInd/DI_Sensors/blob/master/Python/Examples/EasyLightColorSensor.py

DI-Sensors Documentation

3.3 Temperature Humidity and Pressure Sensor

In order to run this example program, connect the Temperature Humidity and Pressure Sensor to an I2C port on
whichever platform (GoPiGo3, GrovePi or BrickPi3) and then run the following script.

The source file for this example program can be found here on github.

from time import sleep
from di_sensors.easy_temp_hum_press import EasyTHPSensor

print("Example program for reading a Dexter Industries Temperature Humidity Pressure
→˓Sensor on an I2C port.")

my_thp = EasyTHPSensor()

while True:
Read the temperature
temp = my_thp.safe_celsius()

Read the relative humidity
hum = my_thp.safe_humidity()

Read the pressure
press = my_thp.safe_pressure()

Print the values
print("Temperature: {:5.3f} Humidity: {:5.3f} Pressure: {:5.3f}".format(temp, hum,

→˓ press))

sleep(0.02)

The console output of this script should look like:

Example program for reading a Dexter Industries Temperature Humidity Pressure Sensor
→˓on an I2C port.
Temperature: 28.139 Humidity: 48.687 Pressure: 101122.691
Temperature: 28.141 Humidity: 48.698 Pressure: 101122.840
Temperature: 28.145 Humidity: 48.385 Pressure: 101122.900
Temperature: 28.151 Humidity: 48.715 Pressure: 101122.889
Temperature: 28.157 Humidity: 48.436 Pressure: 101122.607
Temperature: 28.163 Humidity: 48.464 Pressure: 101122.836
Temperature: 28.171 Humidity: 48.674 Pressure: 101123.085
Temperature: 28.180 Humidity: 48.120 Pressure: 101123.114

3.4 Using the IMU Sensor

In order to run this example program, we need to have a GoPiGo3 because bus "GPG3_AD1" is used in this case and
it’s specific to the GoPiGo3 platform. The "GPG3_AD1" bus translates to port "AD1" on the GoPiGo3, so the IMU
Sensor has to be connected to port "AD1".

We could have gone with the default "RPI_1SW" bus so it can be used on any platform, but since this is an example,
we might as-well show how it’s being done with a GoPiGo3.

The source file for this example program can be found here on github.

12 Chapter 3. Examples

https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/
https://www.dexterindustries.com/gopigo3/
https://www.dexterindustries.com/grovepi/
https://www.dexterindustries.com/brickpi/
https://github.com/DexterInd/DI_Sensors/blob/master/Python/Examples/EasyTempHumPress.py
https://www.dexterindustries.com/gopigo3/
https://www.dexterindustries.com/gopigo3/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/gopigo3/
https://github.com/DexterInd/DI_Sensors/blob/master/Python/Examples/IMUSensor.py

DI-Sensors Documentation

import time
from di_sensors.inertial_measurement_unit import InertialMeasurementUnit

print("Example program for reading a Dexter Industries IMU Sensor on a GoPiGo3 AD1
→˓port.")

imu = InertialMeasurementUnit(bus = "GPG3_AD1")

while True:
Read the magnetometer, gyroscope, accelerometer, euler, and temperature values
mag = imu.read_magnetometer()
gyro = imu.read_gyroscope()
accel = imu.read_accelerometer()
euler = imu.read_euler()
temp = imu.read_temperature()

string_to_print = "Magnetometer X: {:.1f} Y: {:.1f} Z: {:.1f} " \
"Gyroscope X: {:.1f} Y: {:.1f} Z: {:.1f} " \
"Accelerometer X: {:.1f} Y: {:.1f} Z: {:.1f} " \
"Euler Heading: {:.1f} Roll: {:.1f} Pitch: {:.1f} " \
"Temperature: {:.1f}C".format(mag[0], mag[1], mag[2],

gyro[0], gyro[1], gyro[2],
accel[0], accel[1], accel[2],
euler[0], euler[1], euler[2],
temp)

print(string_to_print)

time.sleep(0.1)

The console output of this script should look like:

Example program for reading a Dexter Industries IMU Sensor on a GoPiGo3 AD1 port.
Magnetometer X: 0.0 Y: 0.0 Z: 0.0 Gyroscope X: 54.9 Y: -25.4 Z: 8.8 Accelerometer
→˓X: 9.8 Y: 9.5 Z: -3.5 Euler Heading: 0.0 Roll: 0.0 Pitch: 0.0 Temperature: 31.0C
Magnetometer X: -44.2 Y: 12.2 Z: 15.8 Gyroscope X: -38.6 Y: 12.4 Z: -116.7
→˓Accelerometer X: -1.2 Y: 4.0 Z: -7.4 Euler Heading: 354.7 Roll: 6.3 Pitch: 13.6
→˓Temperature: 31.0C
Magnetometer X: -44.6 Y: 15.2 Z: 18.6 Gyroscope X: -11.7 Y: 5.0 Z: 18.5
→˓Accelerometer X: 6.5 Y: 7.0 Z: -1.4 Euler Heading: 354.2 Roll: 6.2 Pitch: 12.6
→˓Temperature: 31.0C
Magnetometer X: -47.9 Y: 14.5 Z: 17.8 Gyroscope X: 17.1 Y: -23.1 Z: 43.0
→˓Accelerometer X: 6.6 Y: 7.1 Z: -2.2 Euler Heading: 350.6 Roll: 8.3 Pitch: 13.2
→˓Temperature: 31.0C
Magnetometer X: -30.5 Y: 11.0 Z: 13.0 Gyroscope X: -8.6 Y: -2.1 Z: -0.1
→˓Accelerometer X: 6.2 Y: 5.7 Z: -3.5 Euler Heading: 2.7 Roll: 8.8 Pitch: 12.6
→˓Temperature: 31.0C
Magnetometer X: -33.2 Y: 10.4 Z: 15.2 Gyroscope X: -87.0 Y: -29.6 Z: 141.0
→˓Accelerometer X: 9.1 Y: 4.8 Z: -1.9 Euler Heading: 332.2 Roll: 15.8 Pitch: 2.1
→˓Temperature: 31.0C

3.4. Using the IMU Sensor 13

DI-Sensors Documentation

3.5 Using the Line Follower

3.5.1 Reading the Sensor

In order to run this example program, we need to have a GoPiGo3 because bus "GPG3_AD1" is used in this case and
it’s specific to the GoPiGo3 platform. The "GPG3_AD1" bus translates to port "AD1" on the GoPiGo3, so the Line
Follower Sensor has to be connected to port "AD1".

The default "RPI_1SW" bus could have been used, but since this is an example, let’s do it with a GoPiGo3.

This is the exact same scenario as the one in IMU sensor example.

The source file for this example program can be found here on github.

import time
from di_sensors import line_follower

print("Example program for reading a Dexter Industries Line Follower sensor on GPG3
→˓AD1 port")

lf = line_follower.LineFollower(bus = "GPG3_AD1")

'''
cd ~/Dexter/DI_Sensors/Python
sudo python setup.py install

python ~/Dexter/DI_Sensors/Python/Examples/LineFollower.py

'''

print("Manufacturer : %s" % lf.get_manufacturer())
print("Name : %s" % lf.get_board())
print("Firmware Version : %d" % lf.get_version_firmware())

while True:
Read the line sensors values
values = lf.read_sensors()
str = ""
for v in range(len(values)):

str += "%.3f " % values[v]
print(str)

time.sleep(0.1)

The console output of this script should look like:

Example program for reading a Dexter Industries Line Follower sensor on GPG3 AD1 port
Manufacturer : Dexter Industries
Name : Line Follower
Firmware Version : 1
0.031 0.044 0.051 0.038 0.033 0.017
0.035 0.054 0.063 0.051 0.048 0.026
0.048 0.065 0.075 0.061 0.059 0.034
0.047 0.065 0.076 0.063 0.064 0.040
0.063 0.080 0.096 0.091 0.091 0.071
0.070 0.087 0.104 0.103 0.107 0.087
0.070 0.088 0.107 0.103 0.108 0.090

(continues on next page)

14 Chapter 3. Examples

https://www.dexterindustries.com/gopigo3/
https://www.dexterindustries.com/gopigo3/
https://www.dexterindustries.com/shop/line-follower-sensor
https://www.dexterindustries.com/shop/line-follower-sensor
https://www.dexterindustries.com/gopigo3/
https://github.com/DexterInd/DI_Sensors/blob/master/Python/Examples/LineFollower.py

DI-Sensors Documentation

(continued from previous page)

0.120 0.090 0.115 0.121 0.128 0.116
0.283 0.089 0.121 0.141 0.177 0.196
0.383 0.109 0.155 0.206 0.299 0.404
0.454 0.159 0.185 0.250 0.396 0.340
0.287 0.338 0.111 0.115 0.132 0.137
0.443 0.208 0.268 0.132 0.109 0.079
0.285 0.484 0.259 0.167 0.095 0.057
0.589 0.200 0.268 0.176 0.091 0.051
0.695 0.158 0.180 0.359 0.219 0.157
0.625 0.095 0.152 0.369 0.227 0.069
0.398 0.098 0.127 0.383 0.372 0.081
0.698 0.111 0.128 0.720 0.902 0.193
0.297 0.124 0.138 0.447 0.843 0.187
0.104 0.146 0.180 0.392 0.960 0.291
0.096 0.132 0.158 0.319 0.945 0.299
0.094 0.128 0.152 0.376 0.935 0.249
0.084 0.114 0.144 0.710 0.716 0.143
0.065 0.095 0.567 0.617 0.149 0.157
0.061 0.298 0.331 0.096 0.109 0.117
0.275 0.239 0.102 0.112 0.144 0.170

3.5.2 Basic Line Follower Controller

The simplest way to make the GoPiGo3 follow a line with the Line Follower Sensor is by having a controller that can
output 3 different states: one for the left, one for the center when it’s properly aligned and another one for the right.
When the line that the robot is following is on the left side, then command the robot to go to the left, otherwise go to
the right.

That simple! Now, let’s see how that code looks like. The following example was done for the GoPiGo3 but it can
easily be adapted for any other robot that has motors.

import easygopigo3 as easy
from di_sensors.easy_line_follower import EasyLineFollower

gpg = easy.EasyGoPiGo3()
my_linefollower = EasyLineFollower()

gpg.forward()
while not my_linefollower.position() == "black":

line_pos = my_linefollower.position()
if line_pos == 'center':

gpg.forward()
elif line_pos == 'left':

gpg.left()
elif line_pos == 'right':

gpg.right()
gpg.stop()

When running this in reality, the result is going to be choppy, so if you need a better control of the robot’s trajectory,
go on and check the next section.

3.5. Using the Line Follower 15

https://www.dexterindustries.com/shop/line-follower-sensor

DI-Sensors Documentation

3.5.3 PID-Based Controller

Also, doing something more advanced with the line follower is possible by using the EasyLineFollower class.
With an object of such type, a estimated position of the black line can be returned and then feed this estimate into a
PID controller. Consequently, a robot (such as the GoPiGo3) can be precisely controlled.

from di_sensors.easy_line_follower import EasyLineFollower
from time import time, sleep

setpoint = 0.5
integralArea = 0.0
previousError = 0.0
motorBaseSpeed = 300
loopTime = 1.0 / 100

Kp = 0.0 # a value suitable for this component
Ki = 0.0 # ditto
Kd = 0.0 # ditto as above

lf = EasyLineFollower()

while True:
start = time()
pos, out_of_line = lf.read_sensors('weighted-avg')
error = pos - setpoint

integralArea += error
correction = Kp * error + Ki * integralArea + Kd * (previousError - error)
previousError = error

motorA = motorBaseSpeed + correction
motorB = motorBaseSpeed - correction

code for actuating the robot to follow the line
using the previously computed values for each motor

to make it run at certain frequency
end = time()
alreadySpent = end - start
remainingTime = loopTime - alreadySpent
if remainingTime > 0:

sleep(remainingTime)

With something like the above code, you can make a pretty reliable control system for the line follower.

3.6 Using Mutexes

In this section, we are showing how handy mutexes are when we’re trying to access the same resource (a device, for
instance a Distance Sensor) simultaneously from multiple threads. All Easy classes are thread-safe - what one has to
do is to activate the use of mutexes by passing a boolean parameter to each of the classes’ constructor.

In the following example program, 2 threads are accessing the resource of an EasyDistanceSensor object.
use_mutex parameter is set to True so that the resource can be accessed from multiple threads/processes (this
is what we would call a thread-safe class). Each of these 2 threads run for runtime seconds - we didn’t make it so
one can stop the program while it’s running, because that would have been more complex.

16 Chapter 3. Examples

https://www.dexterindustries.com/shop/distance-sensor/

DI-Sensors Documentation

Without the mutex mechanism, accessing the same resource from multiple processes/threads would not be possible.

do the import stuff
from di_sensors.easy_distance_sensor import EasyDistanceSensor
from time import time, sleep
from threading import Thread, Event, get_ident

instantiate the distance object
my_sensor = EasyDistanceSensor(use_mutex = True)
start_time = time()
runtime = 2.0
create an event object for triggering the "shutdown" of each thread
stop_event = Event()

target function for each thread
def readingSensor():

while not stop_event.is_set():
thread_id = get_ident()
distance = my_sensor.read()
print("Thread ID = {} with distance value = {}".format(thread_id, distance))
sleep(0.001)

create an object for each thread
thread1 = Thread(target = readingSensor)
thread2 = Thread(target = readingSensor)

and then start them
thread1.start()
thread2.start()

let it run for [runtime] seconds
while time() - start_time <= runtime:

sleep(0.1)

and then set the stop event variable
stop_event.set()

and wait both threads to end
thread1.join()
thread2.join()

Important: There was no need to use mutexes in the above example, but for the sake of an example, it is a good
thing. The idea is that CPython’s implementation has what it’s called a GIL (Global Interpreter Lock) and this only
allows one thread to run at once, which is a skewed way of envisioning how threads work, but it’s the reality in Python
still. Ideally, a thread can run concurrently with another one. You can read more on the Global Interpreter Lock here.

Still, the implementation we have with mutexes proves to be useful when one wants to launch multiple processes at a
time - at that moment, we can talk of true concurrency. This can happen when multiple instances of Python scripts are
launched and when each process tries to access the same resource as the other one.

The output on the console should look like this - the thread IDs don’t mean anything and they are merely just a number
used to identify threads.

Thread ID = 1883501680 with distance value = 44
Thread ID = 1873802352 with distance value = 44
Thread ID = 1873802352 with distance value = 44

(continues on next page)

3.6. Using Mutexes 17

https://docs.python.org/3/glossary.html#term-global-interpreter-lock

DI-Sensors Documentation

(continued from previous page)

Thread ID = 1883501680 with distance value = 44
Thread ID = 1873802352 with distance value = 46
Thread ID = 1883501680 with distance value = 46
Thread ID = 1873802352 with distance value = 45
Thread ID = 1883501680 with distance value = 45
Thread ID = 1883501680 with distance value = 44
Thread ID = 1873802352 with distance value = 44
Thread ID = 1883501680 with distance value = 45
Thread ID = 1873802352 with distance value = 45

18 Chapter 3. Examples

CHAPTER

FOUR

ON LIBRARY & HARDWARE

4.1 Requirements

Before you check the API for the DI-Sensors, please make sure you have the DI-Sensors package installed. You
can do this by checking with pip by typing the following command.

pip show DI-Sensors

Or you can check by trying to import the package in a Python console the following way:

import di_sensors

If there’s nothing to be shown when pip show-ing or you get an import error on the di_sensors package, then
please check the Getting Started section and follow the instructions.

4.2 Hardware interface

Instantiating the 4 sensors in Python is a matter of choosing the right bus. Thus, there are 4 buses to choose from,
depending on the context:

• The "RPI_1SW" bus - this can be used along all 5 platforms we have (the GoPiGo3, GoPiGo, BrickPi3,
GrovePi & PivotPi). This bus corresponds to the "I2C" port.

• The "RPI_1" bus - this bus can be used along all 5 platforms we have (the GoPiGo3, GoPiGo, BrickPi3,
GrovePi & PivotPi). Does not correspond to the "I2C" port.

• The "GPG3_AD1"/"GPG3_AD2" buses - these buses can only be used on the GoPiGo3 platform. The advan-
tage of using these ones is that the interface between the Raspberry Pi and the sensor is more stable. These buses
correspond to the "AD1" and "AD2" ports of the GoPiGo3.

Important: These notations for ports ("RPI_1SW", "RPI_1", "GPG3_AD1" and "GPG3_AD2") are only re-
quired for classes that don’t start with the Easy word, specifically for:

• DistanceSensor

• InertialMeasurementUnitSensor

• LightColorSensor

• TempHumPress

If you choose to use a sensor library that starts with the Easy word, you can use the same notations as those used and
mentioned in the GoPiGo3’s documentation, such as:

19

https://gopigo3.readthedocs.io/en/master/api-basic/structure.html#hardware-ports-section

DI-Sensors Documentation

• "I2C" instead of "RPI_1SW".

• "AD1/AD2" instead of "GPG3_AD1/GPG3_AD2".

Also, you may notice that for the "I2C" port we only support the "RPI_1SW", which is a software implementation
for the I2C so that the hardware one can be avoided. The problem with the hardware implementation (the "RPI_1"
bus) is that it’s riddled with bugs and if you don’t want your application to crash, use the software implemented one.
The software implemented driver for the I2C is as fast the HW one and it doesn’t take much CPU time at all.

For seeing where the "AD1"/"AD2" are located on the GoPiGo3, please check the GoPiGo3’s documentation.

4.3 Library Structure

4.3.1 Classes Short-List

The classes that are more likely to be of interest are graphically displayed shortly after this. In this graphic you can
also notice inheritance links between different classes. We can notice 3 groups of classes:

• Those that start with the Easy word in them and are easier to use and may provide some high-level functionali-
ties.

• Those that don’t start with the Easy word and yet are related to those that are. These are generally intented for
power users.

• Those that look like they might represent a model number (that belong to modules such as di_sensors.
VL53L0X, di_sensors.BME280, etc). These are intented for those who want to extend the functionalities
of our library and are not documented here.

20 Chapter 4. On Library & Hardware

https://gopigo3.readthedocs.io/en/master/api-basic/structure.html#hardware-ports-section

DI-Sensors Documentation

di_sensors.BME280.BME280

di_sensors.BNO055.BNO055

di_sensors.PCA9570.PCA9570

di_sensors.TCS34725.TCS34725

di_sensors.VL53L0X.VL53L0X

di_sensors.distance_sensor.DistanceSensor di_sensors.easy_distance_sensor.EasyDistanceSensor

di_sensors.easy_inertial_measurement_unit.EasyIMUSensordi_sensors.inertial_measurement_unit.InertialMeasurementUnit

di_sensors.easy_light_color_sensor.EasyLightColorSensordi_sensors.light_color_sensor.LightColorSensor

di_sensors.easy_line_follower.EasyLineFollower

di_sensors.easy_temp_hum_press.EasyTHPSensordi_sensors.temp_hum_press.TempHumPress

di_sensors.line_follower.LineFollower

di_sensors.line_follower.LineFollowerRed

Note: Since this is an interactive graphic, you can click on the displayed classes and it’ll take you to the documentation
of a given class, if provided.

4.3.2 Functions Short-List

Here’s a short summary of all classes and methods. There’s a list going on for each class. We first start off by listing
the Easy classes/methods and then we end up showing the classes/methods for power users. In this short summary,
we’re not covering the low-level classes that are not even documented in this documentation.

Easy - TempHumPress

di_sensors.easy_temp_hum_press.
EasyTHPSensor([. . .])

Class for interfacing with the Temperature Humidity
Pressure Sensor.

di_sensors.easy_temp_hum_press.
EasyTHPSensor.__init__([. . .])

Constructor for initializing link with the Temperature
Humidity Pressure Sensor.

di_sensors.easy_temp_hum_press.
EasyTHPSensor.safe_celsius()

Read temperature in Celsius degrees.

di_sensors.easy_temp_hum_press.
EasyTHPSensor.safe_fahrenheit()

Read temperature in Fahrenheit degrees.

di_sensors.easy_temp_hum_press.
EasyTHPSensor.safe_pressure()

Read the air pressure in pascals.

Continued on next page

4.3. Library Structure 21

https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/
https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/
https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/
https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/

DI-Sensors Documentation

Table 1 – continued from previous page
di_sensors.easy_temp_hum_press.
EasyTHPSensor.safe_humidity()

Read the relative humidity as a percentage.

Easy - Light & Color

di_sensors.easy_light_color_sensor.
EasyLightColorSensor([. . .])

Class for interfacing with the Light Color Sensor.

di_sensors.easy_light_color_sensor.
EasyLightColorSensor.__init__([. . .])

Constructor for initializing a link to the Light Color Sen-
sor.

di_sensors.easy_light_color_sensor.
EasyLightColorSensor.
translate_to_hsv(. . .)

Standard algorithm to switch from one color system
(RGB) to another (HSV).

di_sensors.easy_light_color_sensor.
EasyLightColorSensor.
safe_raw_colors()

Returns the color as read by the Light Color Sensor.

di_sensors.easy_light_color_sensor.
EasyLightColorSensor.safe_rgb()

Detect the RGB color off of the Light Color Sensor.

di_sensors.easy_light_color_sensor.
EasyLightColorSensor.
guess_color_hsv(. . .)

Determines which color in_color parameter is closest to
in the known_colors list.

Easy - Distance

di_sensors.easy_distance_sensor.
EasyDistanceSensor([. . .])

Class for the Distance Sensor device.

di_sensors.easy_distance_sensor.
EasyDistanceSensor.__init__([. . .])

Creates a EasyDistanceSensor object which can
be used for interfacing with a distance sensor.

di_sensors.easy_distance_sensor.
EasyDistanceSensor.read_mm()

Reads the distance in millimeters.

di_sensors.easy_distance_sensor.
EasyDistanceSensor.read()

Reads the distance in centimeters.

di_sensors.easy_distance_sensor.
EasyDistanceSensor.read_inches()

Reads the distance in inches.

Easy - IMU

di_sensors.easy_inertial_measurement_unit.
EasyIMUSensor([. . .])

Class for interfacing with the InertialMeasurementUnit
Sensor.

di_sensors.easy_inertial_measurement_unit.
EasyIMUSensor.__init__([. . .])

Constructor for initializing link with the InertialMea-
surementUnit Sensor.

di_sensors.easy_inertial_measurement_unit.
EasyIMUSensor.reconfig_bus()

Use this method when the InertialMeasurementUnit
Sensor becomes unresponsive but it’s still plugged into
the board.

di_sensors.easy_inertial_measurement_unit.
EasyIMUSensor.safe_calibrate()

Once called, the method returns when the magnetometer
of the InertialMeasurementUnit Sensor gets fully cali-
brated.

Continued on next page

22 Chapter 4. On Library & Hardware

https://www.dexterindustries.com/shop/light-color-sensor/
https://www.dexterindustries.com/shop/light-color-sensor/
https://www.dexterindustries.com/shop/light-color-sensor/
https://www.dexterindustries.com/shop/light-color-sensor/
https://www.dexterindustries.com/shop/light-color-sensor/
https://www.dexterindustries.com/shop/distance-sensor/
https://www.dexterindustries.com/shop/distance-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/

DI-Sensors Documentation

Table 4 – continued from previous page
di_sensors.easy_inertial_measurement_unit.
EasyIMUSensor.safe_calibration_status()

Returns the calibration level of the magnetometer of the
InertialMeasurementUnit Sensor.

di_sensors.easy_inertial_measurement_unit.
EasyIMUSensor.convert_heading(. . .)

This method takes in a heading in degrees and return the
name of the corresponding heading.

di_sensors.easy_inertial_measurement_unit.
EasyIMUSensor.safe_read_euler()

Read the absolute orientation.

di_sensors.easy_inertial_measurement_unit.
EasyIMUSensor.safe_read_magnetometer()

Read the magnetometer values.

di_sensors.easy_inertial_measurement_unit.
EasyIMUSensor.safe_north_point()

Determines the heading of the north point.

Easy - Line Follower

di_sensors.easy_line_follower.
EasyLineFollower([. . .])

Higher-level of abstraction class for either the
LineFollower or LineFollowerRed.

di_sensors.easy_line_follower.
EasyLineFollower.__init__([. . .])

Initialize a class to interface with either the
LineFollower or the LineFollowerRed.

di_sensors.easy_line_follower.
EasyLineFollower.set_calibration(color)

Calibrate the sensor for the given color and save the
values to file.

di_sensors.easy_line_follower.
EasyLineFollower.get_calibration(color)

Read the calibration values from the disk for the given
color.

di_sensors.easy_line_follower.
EasyLineFollower.read([. . .])

Read the sensors’ values from either line follower.

di_sensors.easy_line_follower.
EasyLineFollower.position_01()

Same as calling read() method like
read("bivariate").

di_sensors.easy_line_follower.
EasyLineFollower.position_bw()

Same as calling read() method like
read("bivariate-str").

di_sensors.easy_line_follower.
EasyLineFollower.position()

Returns a string telling to which side the black line that
we’re following is located.

di_sensors.easy_line_follower.
EasyLineFollower.position_val()

Same as calling read() method like
read("weighted-avg").

TempHumPress

di_sensors.temp_hum_press.
TempHumPress([bus])

Class for interfacing with the Temperature Humidity
Pressure Sensor.

di_sensors.temp_hum_press.
TempHumPress.__init__([bus])

Constructor for initializing link with the Temperature
Humidity Pressure Sensor.

di_sensors.temp_hum_press.
TempHumPress.get_temperature_celsius()

Read temperature in Celsius degrees.

di_sensors.temp_hum_press.
TempHumPress.get_temperature_fahrenheit()

Read temperature in Fahrenheit degrees.

di_sensors.temp_hum_press.
TempHumPress.get_pressure()

Read the air pressure in pascals.

di_sensors.temp_hum_press.
TempHumPress.get_humidity()

Read the relative humidity as a percentage.

di_sensors.temp_hum_press.
TempHumPress.get_humidity()

Read the relative humidity as a percentage.

4.3. Library Structure 23

https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/
https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/
https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/
https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/

DI-Sensors Documentation

Light & Color

di_sensors.light_color_sensor.
LightColorSensor([. . .])

Class for interfacing with the Light Color Sensor.

di_sensors.light_color_sensor.
LightColorSensor.__init__([. . .])

Constructor for initializing a link to the Light Color Sen-
sor.

di_sensors.light_color_sensor.
LightColorSensor.set_led(value)

Set the LED state.

di_sensors.light_color_sensor.
LightColorSensor.get_raw_colors([delay])

Read the sensor values.

Distance

di_sensors.distance_sensor.
DistanceSensor([bus])

Class for interfacing with the Distance Sensor.

di_sensors.distance_sensor.
DistanceSensor.__init__([bus])

Constructor for initializing a DistanceSensor
class.

di_sensors.distance_sensor.
DistanceSensor.start_continuous([. . .])

Start taking continuous measurements.

di_sensors.distance_sensor.
DistanceSensor.read_range_continuous()

Read the detected range while the sensor is taking con-
tinuous measurements at the set rate.

di_sensors.distance_sensor.
DistanceSensor.read_range_single([. . .])

Read the detected range with a single measurement.

di_sensors.distance_sensor.
DistanceSensor.timeout_occurred()

Checks if a timeout has occurred on the
read_range_continuous() method.

IMU

di_sensors.inertial_measurement_unit.
InertialMeasurementUnit([bus])

Class for interfacing with the InertialMeasurementUnit
Sensor.

di_sensors.inertial_measurement_unit.
InertialMeasurementUnit.__init__([bus])

Constructor for initializing link with the InertialMea-
surementUnit Sensor.

di_sensors.inertial_measurement_unit.
InertialMeasurementUnit.read_euler()

Read the absolute orientation.

di_sensors.inertial_measurement_unit.
InertialMeasurementUnit.
read_magnetometer()

Read the magnetometer values.

di_sensors.inertial_measurement_unit.
InertialMeasurementUnit.
read_gyroscope()

Read the angular velocity of the gyroscope.

di_sensors.inertial_measurement_unit.
InertialMeasurementUnit.
read_accelerometer()

Read the accelerometer.

di_sensors.inertial_measurement_unit.
InertialMeasurementUnit.
read_linear_acceleration()

Read the linear acceleration - that is, the acceleration
from movement and without the gravitational accelera-
tion in it.

Continued on next page

24 Chapter 4. On Library & Hardware

https://www.dexterindustries.com/shop/light-color-sensor/
https://www.dexterindustries.com/shop/light-color-sensor/
https://www.dexterindustries.com/shop/light-color-sensor/
https://www.dexterindustries.com/shop/distance-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/

DI-Sensors Documentation

Table 9 – continued from previous page
di_sensors.inertial_measurement_unit.
InertialMeasurementUnit.
read_gravity()

Read the gravitational acceleration.

di_sensors.inertial_measurement_unit.
InertialMeasurementUnit.
read_quaternion()

Read the quaternion values.

di_sensors.inertial_measurement_unit.
InertialMeasurementUnit.
read_temperature()

Read the temperature in Celsius degrees.

Line Follower Black/Red

di_sensors.line_follower.
LineFollower([bus])

Class for interfacing with the Line Follower Sensor
(black board).

di_sensors.line_follower.
LineFollower.__init__([bus])

Constructor for initializing an object to interface with
the Line Follower Sensor (black board).

di_sensors.line_follower.
LineFollower.read_sensors()

Read the line follower’s values.

di_sensors.line_follower.
LineFollower.get_manufacturer()

Read the manufacturer of the Line Follower Sensor
(black board)’s.

di_sensors.line_follower.
LineFollower.get_board()

Read the board name of the Line Follower Sensor (black
board).

di_sensors.line_follower.
LineFollower.get_version_firmware()

Get the firmware version currently residing on the Line
Follower Sensor (black board).

di_sensors.line_follower.
LineFollowerRed([bus])

Class for interfacing with the depreciated Line Follower
Sensor (red board).

di_sensors.line_follower.
LineFollowerRed.__init__([bus])

Constructor for initializing an object to interface with
the depreciated Line Follower Sensor (red board).

di_sensors.line_follower.
LineFollowerRed.read_sensors()

Read the line follower’s values.

4.3. Library Structure 25

https://www.dexterindustries.com/shop/line-follower-sensor/
https://www.dexterindustries.com/shop/line-follower-sensor/
https://www.dexterindustries.com/shop/line-follower-sensor/
https://www.dexterindustries.com/shop/line-follower-sensor/
https://www.dexterindustries.com/shop/line-follower-sensor/
https://www.dexterindustries.com/shop/line-follower-sensor/
https://www.dexterindustries.com/shop/line-follower-sensor/
https://www.dexterindustries.com/shop/line-follower-sensor/
https://www.dexterindustries.com/shop/line-follower-sensor/
https://www.dexterindustries.com/product/line-follower-for-gopigo/
https://www.dexterindustries.com/product/line-follower-for-gopigo/
https://www.dexterindustries.com/product/line-follower-for-gopigo/

DI-Sensors Documentation

26 Chapter 4. On Library & Hardware

CHAPTER

FIVE

API DI-SENSORS - BASIC

5.1 EasyDistanceSensor

class di_sensors.easy_distance_sensor.EasyDistanceSensor(port='I2C',
use_mutex=False)

Bases: di_sensors.distance_sensor.DistanceSensor

Class for the Distance Sensor device.

This class compared to DistanceSensor uses mutexes that allows a given object to be accessed simultane-
ously from multiple threads/processes. Apart from this difference, there may also be functions that are more
user-friendly than the latter.

__init__(port='I2C', use_mutex=False)
Creates a EasyDistanceSensor object which can be used for interfacing with a distance sensor.

Parameters

• bus = "I2C" (string) – the bus for the sensor. For the GoPiGo3, options also in-
clude "GPG3_AD1" and "GPG3_AD2".

• use_mutex = False (bool) – When using multiple threads/processes that access
the same resource/device, mutexes should be enabled. Check the hardware specs for more
information about the ports.

Raises OSError – When the distance sensor is not connected to the designated bus/port, where
in this case it must be "I2C". Most probably, this means the distance sensor is not connected
at all.

To see where the ports are located on the GoPiGo3 robot, please take a look at the following diagram:
Hardware Ports.

read_mm()
Reads the distance in millimeters.

Returns Distance from target in millimeters.

Return type int

Note:

1. Sensor’s range is 5-2300 millimeters.

2. When the values are out of the range, it returns 3000.

read()
Reads the distance in centimeters.

27

https://www.dexterindustries.com/shop/distance-sensor/
https://www.dexterindustries.com/shop/distance-sensor/
https://docs.python.org/3/library/functions.html#bool
https://www.dexterindustries.com/shop/gopigo3-robot-base-kit/
https://gopigo3.readthedocs.io/en/master/api-basic/structure.html#hardware-ports-section
https://docs.python.org/3/library/functions.html#int

DI-Sensors Documentation

Returns Distance from target in centimeters.

Return type int

Note:

1. Sensor’s range is 0-230 centimeters.

2. When the values are out of the range, it returns 300.

read_inches()
Reads the distance in inches.

Returns Distance from target in inches.

Return type float with one decimal

Note:

1. Sensor’s range is 0-90 inches.

2. Anything that’s bigger than 90 inches is returned when the sensor can’t detect any target/surface.

5.2 EasyLightColorSensor

class di_sensors.easy_light_color_sensor.EasyLightColorSensor(port='I2C',
led_state=False,
use_mutex=False)

Bases: di_sensors.light_color_sensor.LightColorSensor

Class for interfacing with the Light Color Sensor. This class compared to LightColorSensor uses mutexes
that allows a given object to be accessed simultaneously from multiple threads/processes. Apart from this
difference, there may also be functions that are more user-friendly than the latter.

known_colors = {'black': (0, 0, 0), 'blue': (0, 0, 255), 'cyan': (0, 255, 255), 'fuchsia': (255, 0, 255), 'green': (0, 255, 0), 'red': (255, 0, 0), 'white': (255, 255, 255), 'yellow': (255, 255, 0)}
The 8 colors that guess_color_hsv() method may return upon reading and interpreting a new set of
color values.

__init__(port='I2C', led_state=False, use_mutex=False)
Constructor for initializing a link to the Light Color Sensor.

Parameters

• port = "I2C" (str) – The port to which the distance sensor is connected to. Can also
be connected to ports "AD1" or "AD2" of the GoPiGo3. If you’re passing an invalid
port, then the sensor resorts to an "I2C" connection. Check the hardware specs for more
information about the ports.

• led_state = False (bool) – The LED state. If it’s set to True, then the LED will
turn on, otherwise the LED will stay off. By default, the LED is turned off.

• use_mutex = False (bool) – When using multiple threads/processes that access the
same resource/device, mutexes should be enabled.

Raises

• OSError – When the Light Color Sensor is not reachable.

28 Chapter 5. API DI-Sensors - Basic

https://docs.python.org/3/library/functions.html#int
https://www.dexterindustries.com/shop/light-color-sensor/
https://www.dexterindustries.com/shop/light-color-sensor/
https://docs.python.org/3/library/stdtypes.html#str
https://www.dexterindustries.com/shop/gopigo3-robot-base-kit/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://www.dexterindustries.com/shop/light-color-sensor/

DI-Sensors Documentation

• RuntimeError – When the chip ID is incorrect. This happens when we have a device
pointing to the same address, but it’s not a Light Color Sensor.

translate_to_hsv(in_color)
Standard algorithm to switch from one color system (RGB) to another (HSV).

Parameters in_color (tuple(float,float,float)) – The RGB tuple list that gets
translated to HSV system. The values of each element of the tuple is between 0 and 1.

Returns The translated HSV tuple list. Returned values are H(0-360), S(0-100), V(0-100).

Return type tuple(int, int, int)

Important: For finding out the differences between RGB (Red, Green, Blue) color scheme and HSV
(Hue, Saturation, Value) please check out this link.

safe_raw_colors()
Returns the color as read by the Light Color Sensor. The colors detected vary depending on the lighting
conditions of the nearby environment.

Returns The RGBA values from the sensor. RGBA = Red, Green, Blue, Alpha (or Clear). Range
of each element is between 0 and 1. -1 means an error occured.

Return type tuple(float,float,float,float)

safe_rgb()
Detect the RGB color off of the Light Color Sensor.

Returns The RGB color in 8-bit format.

Return type tuple(int,int,int)

calibrate(color)
Replace the HSV centroid for a given color with the sensor reading obtained from an example of that color
in the current lighting environment <color> can be one of black | white | red | green | blue | yellow | cyan |
fuschia

guess_color_hsv(in_color)
Determines which color in_color parameter is closest to in the known_colors list. This method uses
the euclidean algorithm for detecting the nearest center to it out of known_colors list. It does work
exactly the same as KNN (K-Nearest-Neighbors) algorithm, where K = 1.

Parameters in_color (tuple(float,float,float,float)) – A 4-element tuple list
for the Red, Green, Blue and Alpha channels. The elements are all valued between 0 and 1.

Returns The detected color in string format and then a 3-element tuple describing the color in
RGB format. The values of the RGB tuple are between 0 and 1.

Return type tuple(str,(float,float,float))

Important: For finding out the differences between RGB (Red, Green, Blue) color scheme and HSV
(Hue, Saturation, Value) please check out this link.

5.2. EasyLightColorSensor 29

https://www.dexterindustries.com/shop/light-color-sensor/
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.kirupa.com/design/little_about_color_hsv_rgb.htm
https://www.dexterindustries.com/shop/light-color-sensor/
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://www.dexterindustries.com/shop/light-color-sensor/
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://www.kirupa.com/design/little_about_color_hsv_rgb.htm

DI-Sensors Documentation

5.3 EasyIMUSensor

class di_sensors.easy_inertial_measurement_unit.EasyIMUSensor(port='AD1',
use_mutex=False)

Bases: di_sensors.inertial_measurement_unit.InertialMeasurementUnit

Class for interfacing with the InertialMeasurementUnit Sensor.

This class compared to InertialMeasurementUnit uses mutexes that allows a given object to be accessed
simultaneously from multiple threads/processes. Apart from this difference, there may also be functions that are
more user-friendly than the latter.

__init__(port='AD1', use_mutex=False)
Constructor for initializing link with the InertialMeasurementUnit Sensor.

Parameters

• port = "AD1" (str) – The port to which the IMU sensor gets connected to. Can
also be connected to port "AD2" of a GoPiGo3 robot or to any "I2C" port of any of
our platforms. If you’re passing an invalid port, then the sensor resorts to an "I2C"
connection. Check the hardware specs for more information about the ports.

• use_mutex = False (bool) – When using multiple threads/processes that access the
same resource/device, mutexes should be enabled.

Raises

• RuntimeError – When the chip ID is incorrect. This happens when we have a device
pointing to the same address, but it’s not a InertialMeasurementUnit Sensor.

• OSError – When the InertialMeasurementUnit Sensor is not reachable.

reconfig_bus()
Use this method when the InertialMeasurementUnit Sensor becomes unresponsive but it’s still plugged
into the board. There will be times when due to improper electrical contacts, the link between the sensor
and the board gets disrupted - using this method restablishes the connection.

Note: Sometimes the sensor won’t work just by calling this method - in this case, switching the port
will do the job. This is something that happens very rarely, so there’s no need to worry much about this
scenario.

safe_calibrate()
Once called, the method returns when the magnetometer of the InertialMeasurementUnit Sensor gets fully
calibrated. Rotate the sensor in the air to help the sensor calibrate faster.

Note: Also, this method is not used to trigger the process of calibrating the sensor (the IMU does that
automatically), but its purpose is to block a given script until the sensor reports it has fully calibrated.

If you wish to block your code until the sensor calibrates and still have control over your script, use
safe_calibration_status() method along with a while loop to continuously check it.

safe_calibration_status()
Returns the calibration level of the magnetometer of the InertialMeasurementUnit Sensor.

Returns Calibration level of the magnetometer. Range is 0-3 and -1 is returned when the sensor
can’t be accessed.

Return type int

30 Chapter 5. API DI-Sensors - Basic

https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://docs.python.org/3/library/stdtypes.html#str
https://www.dexterindustries.com/shop/gopigo3-robot-base-kit/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://docs.python.org/3/library/functions.html#int

DI-Sensors Documentation

convert_heading(in_heading)
This method takes in a heading in degrees and return the name of the corresponding heading. :param float
in_heading: the value in degree that needs to be converted to a string.

Returns The heading of the sensor as a string.

Return type str

The possible strings that can be returned are: "North", "North East", "East", "South East",
"South", "South West", "West", "North West", "North".

Note: First use safe_calibrate() or safe_calibration_status() methods to determine if
the magnetometer sensor is fully calibrated.

safe_read_euler()
Read the absolute orientation.

Returns Tuple of euler angles in degrees of heading, roll and pitch.

Return type (float,float,float)

Raises OSError – When the sensor is not reachable.

safe_read_accelerometer()
Read the acceleration in 3 axes.

Returns Tuple of x,y,z axes.

Return type (float,float,float)

Raises OSError – When the sensor is not reachable.

safe_read_magnetometer()
Read the magnetometer values.

Returns Tuple containing X, Y, Z values in micro-Teslas units. You can check the X, Y, Z axes
on the sensor itself.

Return type (float,float,float)

Note: In case of an exception occurring within this method, a tuple of 3 elements where all values are set
to 0 is returned.

safe_read_gyroscope()
Read the angular velocity of the gyroscope.

Returns The angular velocity as a tuple of X, Y, Z values in degrees/s. You can check the X, Y,
Z axes on the sensor itself.

Return type (float,float,float)

Note: In case of an exception occurring within this method, a tuple of 3 elements where all values are set
to 0 is returned.

safe_north_point()
Determines the heading of the north point. This function doesn’t take into account the declination.

Returns The heading of the north point measured in degrees. The north point is found at 0
degrees.

5.3. EasyIMUSensor 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

DI-Sensors Documentation

Return type int

Note: In case of an exception occurring within this method, 0 is returned.

5.4 EasyTHPSsensor

class di_sensors.easy_temp_hum_press.EasyTHPSensor(port='I2C', use_mutex=False)
Bases: di_sensors.temp_hum_press.TempHumPress

Class for interfacing with the Temperature Humidity Pressure Sensor.

This class compared to TempHumPress uses mutexes that allows a given object to be accessed simultaneously
from multiple threads/processes. Apart from this difference, there may also be functions that are more user-
friendly than the latter.

__init__(port='I2C', use_mutex=False)
Constructor for initializing link with the Temperature Humidity Pressure Sensor.

Parameters

• port = "I2C" (str) – The port to which the THP sensor is connected to. Can also
be connected to ports "AD1" or "AD2" of the GoPiGo3. If you’re passing an invalid
port, then the sensor resorts to an "I2C" connection. Check the hardware specs for more
information about the ports.

• use_mutex = False (bool) – When using multiple threads/processes that access the
same resource/device, mutexes should be enabled.

Raises OSError – When the sensor cannot be reached.

safe_celsius()
Read temperature in Celsius degrees.

Returns Temperature in Celsius degrees.

Return type float

Raises OSError – When the sensor cannot be reached.

safe_fahrenheit()
Read temperature in Fahrenheit degrees.

Returns Temperature in Fahrenheit degrees.

Return type float

Raises OSError – When the sensor cannot be reached.

safe_pressure()
Read the air pressure in pascals.

Returns The air pressure in pascals.

Return type float

Raises OSError – When the sensor cannot be reached.

safe_humidity()
Read the relative humidity as a percentage.

Returns Percentage of the relative humidity.

32 Chapter 5. API DI-Sensors - Basic

https://docs.python.org/3/library/functions.html#int
https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/
https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/
https://docs.python.org/3/library/stdtypes.html#str
https://www.dexterindustries.com/shop/gopigo3-robot-base-kit/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

DI-Sensors Documentation

Return type float

Raises OSError – When the sensor cannot be reached.

5.5 EasyLineFollower

class di_sensors.easy_line_follower.EasyLineFollower(port='I2C', sensor_id=-1,
calib_dir='/home/pi/Dexter/',
white_file='white_line.txt',
black_file='black_line.txt',
use_mutex=True)

Bases: object

Higher-level of abstraction class for either the LineFollower or LineFollowerRed.

__init__(port='I2C', sensor_id=-1, calib_dir='/home/pi/Dexter/', white_file='white_line.txt',
black_file='black_line.txt', use_mutex=True)

Initialize a class to interface with either the LineFollower or the LineFollowerRed.

Parameters

• port = "I2C" (str) – The port to which the line follower is connected. The "I2C"
port corresponds to "RPI_1SW" bus. Can also choose port "AD1"/"AD2" only if it’s
connected to the GoPiGo3 and the line follower sensor (black board) is used. To find out
more, check the hardware specs for more information about the ports.

• sensor_id = -1 (int) – -1 to automatically detect the connected line follower - this
is the default value. It can also set to 1 to only use it with the line follower (red board)
(LineFollowerRed) or to 2 for the line follower (black board) (LineFollower)1.

• calib_dir = "/home/pi/Dexter/" (str) – Directory where the calibration files
are saved. It already has a default value set.

• white_file = "white_line.txt" (str) – The name of the calibration file for
the white line.

• black_file = "black_line.txt" (str) – The name of the calibration file for
the black line.

• use_mutex = True (bool) – Whether to use a mutex on the sensor or not. Recom-
mended when the same sensor is called from multiple threads/processes. It’s meant for the
I2C line and does not protect the file I/O in multi-threaded applications.

Upon instantiating an object of this class, after detecting the line follower, the calibration values are read
and if they are not compatible with those required for the given line follower, default/generic calibration
values will be set for both colors computed by taking the average of the 2 extremes.

Important to keep in mind is that both line followers’ calibration files are incompatible, because one uses
5 sensors and the other one 6 - there are also, more factors to consider, such as the kind of sensors used in
the line follower, but for the most part, the incompatibility comes from the different number of sensors.

set_calibration(color, inplace=True)
Calibrate the sensor for the given color and save the values to file.

Parameters

• color (str) – Either "white" for calibrating white or "black" for black.

1 To see what module has been detected, check _sensor_id attribute. If it’s set to 0, then no line follower has been detected.

5.5. EasyLineFollower 33

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

DI-Sensors Documentation

• inplace = True (bool) – Apply the calibration values to this instantiated object too.
Use white_calibration and black_calibration attributes to access the cali-
bration values.

get_calibration(color, inplace=True)
Read the calibration values from the disk for the given color.

Parameters

• color (str) – Either "white" for reading the calibration values for white or "black"
for black.

• inplace = True (bool) – Apply the read values to this instantiated object too. Use
white_calibration black_calibration to access the calibration values.

Return type 5/6-element list depending on which line follower is used.

Returns The calibrated values for the given color.

Raises ValueError – When the read file is incompatible with what the line follower expects.
This can happen if a line follower has been calibrated and then switched with another one of
a different type (like going from the black -> red board or vice-versa).

read(representation='raw')
Read the sensors’ values from either line follower.

Parameters representation="raw" (str) – It’s set by-default to "raw" , but it can also
be "bivariate", "bivariate-str" or "weighted-avg".

Raises OSError – If the line follower sensor is not reachable.

Each of the line followers’ order of the sensors’ values is the same as the one in each read method of them
both: di_sensors.line_follower.LineFollower.read_sensors() and di_sensors.
line_follower.LineFollowerRed.read_sensors().

For representation="raw" For this, raw values are returned from the line follower sensor. Values
range between 0 and 1 and there can be 5 or 6 values returned depending on what line follower sensor
is used.

For representation="bivariate" In this case, a list with the length equal to the number of sen-
sors present on the given line follower is returned. Values are either 0 (for black) or 1 (for white). In
order to get good results, make sure the line follower is properly calibrated.

For representation="bivariate-str" Same as "bivariate" except that 0 is replaced with
letter b (for black) and 1 with w (for white).

For representation="weighted-avg" Returns a 2-element tuple. The first element is an esti-
mated position of the line.

The estimate is computed using a weighted average of each sensor value (regardless of which line
follower sensor is used), so that if the black line is on the left of the line follower, the returned
value will be in the 0.0-0.5 range and if it’s on the right, it’s in the 0.5-1.0 range, thus making 0.5
the center point of the black line. Keep in mind that the sensor’s orientation is determined by the
order of the returned sensor values and not by how the sensor is positioned on the robot. Check
read_sensors() and read_sensors() methods to see how the values are returned.

If the line follower sensor ends up on a surface with an homogeneous color (or shade of grey), the
returned value will circle around 0.5.

The 2nd element is an integer taking 3 values: 1 if the line follower only detects black, 2 if it only
detects white and 0 for the rest of cases.

34 Chapter 5. API DI-Sensors - Basic

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

DI-Sensors Documentation

position_01()
Same as calling read() method like read("bivariate").

Return type list(int)

Returns A list of 0s and 1s for each sensor of the line follower.

Raises Check read().

position_bw()
Same as calling read() method like read("bivariate-str").

Return type str

Returns A string with a bunch of "w" (for white) and "b" (for black) representing the detected
color on each sensor.

Raises Check read().

position()
Returns a string telling to which side the black line that we’re following is located.

Returns String that’s indicating the location of the black line.

Return type str

Raises Check read().

Important: It is assumed that with this method, the line follower is properly oriented on the GoPiGo. For
the red line follower, when looking forward, the left marking on the board is on the left and vice-versa for
the right marking. As for the black line follower, the wiggly white arrow on the board is pointed forward.

The strings this method can return are the following:

• "center" - when the line is found in the middle.

• "black" - when the line follower sensor only detects black surfaces.

• "white" - when the line follower sensor only detects white surfaces.

• "left" - when the black line is located on the left of the sensor.

• "right" - when the black line is located on the right of the sensor.

position_val()
Same as calling read() method like read("weighted-avg").

Return type int

Returns Range is between 0 and 30. When following a line the values will be between 0 and
10. For values smaller than 5, the black line is on the left of the robot, and for values bigger
than 5 but no more than 10 the line is to the right. 5 suggests the black line is in the middle.
It can also return 20 if it’s all black, or 30 for all white.

Raises Check read().

Warning: The Line Follower class was originally held in easysensors module of the GoPiGo3 library,
but has been moved here. The easygopigo3.EasyGoPiGo3.init_line_follower() method now re-
turns an object of the EasyLineFollower class instead of instantiating the original Line Follower class from
easysensors module.

5.5. EasyLineFollower 35

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://gopigo3.readthedocs.io/en/master/api-basic/easygopigo3.html#easygopigo3.EasyGoPiGo3.init_line_follower

DI-Sensors Documentation

In order to prevent breaking others’ code, we kept the support for the older methods that are soon-to-be-deprecated
in EasyLineFollower class. The mapping between the old methods and the new ones is as follows:

1. read_raw_sensors() <=> read()

2. read_binary() <=> position_01()

3. read_position() <=> position()

4. read_position_str() <=> position_bw()

5. get_white_calibration() <=> set_calibration() ("white")

6. get_black_calibration() <=> set_calibration() ("black")

36 Chapter 5. API DI-Sensors - Basic

CHAPTER

SIX

API DI-SENSORS - ADVANCED

6.1 DistanceSensor

class di_sensors.distance_sensor.DistanceSensor(bus='RPI_1SW')
Bases: object

Class for interfacing with the Distance Sensor.

__init__(bus='RPI_1SW')
Constructor for initializing a DistanceSensor class.

Parameters bus = "RPI_1SW" (str) – The bus to which the distance sensor is connected
to. By default, it’s set to bus "RPI_1SW". Check the hardware specs for more information
about the ports.

Raises OSError – When the distance sensor is not connected to the designated bus/port. Most
probably, this means the distance sensor is not connected at all.

start_continuous(period_ms=0)
Start taking continuous measurements. Once this method is called, then the
read_range_continuous() method should be called periodically, depending on the value
that was set to period_ms parameter.

Parameters period_ms = 0 (int) – The time between measurements. Can be set to any-
where between 20 ms and 5 secs.

Raises OSError – When it cannot communicate with the device.

The advantage of this method over the simple read_range_single() method is that this method
allows for faster reads. Therefore, this method should be used by those that want maximum performance
from the sensor.

Also, the greater the value set to period_ms, the higher is the accuracy of the distance sensor.

read_range_continuous()
Read the detected range while the sensor is taking continuous measurements at the set rate.

Returns The detected range of the sensor as measured in millimeters. The range can go up to
2.3 meters.

Return type int

Raises OSError – When the distance sensor is not reachable or when the
start_continuous() hasn’t been called before. This exception gets raised
also when the user is trying to poll data faster than how it was initially set with the
start_continuous() method.

37

https://docs.python.org/3/library/functions.html#object
https://www.dexterindustries.com/shop/distance-sensor/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DI-Sensors Documentation

Important: If this method is called in a shorter timeframe than the period that was set through
start_continuous(), an OSError exception is thrown.

There’s also a timeout on this method that’s set to 0.5 secs. Having this timeout set to 0.5 secs means that
the OSError gets thrown when the period_ms parameter of the start_continuous() method is
bigger than 500 ms.

read_range_single(safe_infinity=True)
Read the detected range with a single measurement. This is less precise/fast than its counterpart
read_range_continuous(), but it’s easier to use.

Parameters safe_infinity = True (boolean) – As sometimes the distance sensor re-
turns a small value when there’s nothing in front of it, we need to poll again and again to
confirm the presence of an obstacle. Setting safe_infinity to False will avoid that
extra polling.

Returns The detected range of the sensor as measured in millimeters. The range can go up to
2.3 meters.

Return type int

Raises OSError – When the distance sensor is not reachable.

timeout_occurred()
Checks if a timeout has occurred on the read_range_continuous() method.

Returns Whether a timeout has occurred or not.

Return type bool

6.2 LightColorSensor

class di_sensors.light_color_sensor.LightColorSensor(sensor_integration_time=0.0048,
sensor_gain=2,
led_state=False,
bus='RPI_1SW')

Bases: object

Class for interfacing with the Light Color Sensor.

__init__(sensor_integration_time=0.0048, sensor_gain=2, led_state=False, bus='RPI_1SW')
Constructor for initializing a link to the Light Color Sensor.

Parameters

• sensor_integration_time = 0.0048 (float) – Time in seconds for each
sample (aka the time needed to take a sample). Range is between 0.0024 and 0.6144
seconds. Use increments of 2.4 ms.

• sensor_gain = di_sensors.TCS34725.GAIN_16X (int) – The gain constant
of the sensor. Valid values are di_sensors.TCS34725.GAIN_1X, di_sensors.
TCS34725.GAIN_4X, di_sensors.TCS34725.GAIN_16X or di_sensors.
TCS34725.GAIN_60X.

• led_state = False (bool) – The LED state. If it’s set to True, then the LED will
turn on, otherwise the LED will stay off. By default, the LED is turned on.

38 Chapter 6. API DI-Sensors - Advanced

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://www.dexterindustries.com/shop/light-color-sensor/
https://www.dexterindustries.com/shop/light-color-sensor/
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

DI-Sensors Documentation

• bus = "RPI_1SW" (str) – The bus to which the distance sensor is connected to. By
default, it’s set to bus "RPI_1SW". Check the hardware specs for more information about
the ports.

Raises

• OSError – When the Light Color Sensor is not reachable.

• RuntimeError – When the chip ID is incorrect. This happens when we have a device
pointing to the same address, but it’s not a Light Color Sensor.

set_led(value, delay=True)
Set the LED state.

Parameters

• value (bool) – If set to True, then the LED turns on, otherwise it stays off.

• delay = True (bool) – When it’s set to True, the LED turns on after 2 *
time_to_take_sample seconds have passed. This ensures that the next read following the
LED change will be correct.

Raises OSError – When the Light Color Sensor is not reachable.

get_raw_colors(delay=True)
Read the sensor values.

Parameters delay = True (bool) – Delay for the time it takes to sample. If the delay is set
to be added, then we are ensured to get fresh values on every call. Used in conjuction with
the set_led() method.

Returns The RGBA values from the sensor. RGBA = Red, Green, Blue, Alpha (or Clear).

Return type (float,float,float,float) where the range of each element is between 0 and 1.

Raises OSError – If the Light Color Sensor can’t be reached.

6.3 InertialMeasurementUnit

class di_sensors.inertial_measurement_unit.InertialMeasurementUnit(bus='RPI_1SW')
Bases: object

Class for interfacing with the InertialMeasurementUnit Sensor.

BNO055.get_calibration_status()
Get calibration status of the InertialMeasurementUnit Sensor.

The moment the sensor is powered, this method should be called almost continuously until the sensor is
fully calibrated. For calibrating the sensor faster, it’s enough to hold the sensor for a couple of seconds on
each “face” of an imaginary cube.

For each component of the system, there is a number that says how much the component has been cali-
brated:

• System, 3 = fully calibrated, 0 = not calibrated.

• Gyroscope, 3 = fully calibrated, 0 = not calibrated.

• Accelerometer, 3 = fully calibrated, 0 = not calibrated.

• Magnetometer, 3 = fully calibrated, 0 = not calibrated.

6.3. InertialMeasurementUnit 39

https://docs.python.org/3/library/stdtypes.html#str
https://www.dexterindustries.com/shop/light-color-sensor/
https://www.dexterindustries.com/shop/light-color-sensor/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://www.dexterindustries.com/shop/light-color-sensor/
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://www.dexterindustries.com/shop/light-color-sensor/
https://docs.python.org/3/library/functions.html#object
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/

DI-Sensors Documentation

Returns A tuple where each member shows how much a component of the IMU is calibrated.
See the above description of the method.

Return type (int,int,int,int)

Raises OSError – When the InertialMeasurementUnit Sensor is not reachable.

Important: The sensor needs a new calibration each time it’s powered up.

__init__(bus='RPI_1SW')
Constructor for initializing link with the InertialMeasurementUnit Sensor.

Parameters bus = "RPI_1SW" (str) – The bus to which the distance sensor is connected
to. By default, it’s set to bus "RPI_1SW". Check the hardware specs for more information
about the ports.

Raises

• RuntimeError – When the chip ID is incorrect. This happens when we have a device
pointing to the same address, but it’s not a InertialMeasurementUnit Sensor.

• OSError – When the InertialMeasurementUnit Sensor is not reachable.

read_euler()
Read the absolute orientation.

Returns Tuple of euler angles in degrees of heading, roll and pitch.

Return type (float,float,float)

Raises OSError – When the sensor is not reachable.

read_magnetometer()
Read the magnetometer values.

Returns Tuple containing X, Y, Z values in micro-Teslas units. You can check the X, Y, Z axes
on the sensor itself.

Return type (float,float,float)

Raises OSError – When the sensor is not reachable.

read_gyroscope()
Read the angular velocity of the gyroscope.

Returns The angular velocity as a tuple of X, Y, Z values in degrees/s. You can check the X, Y,
Z axes on the sensor itself.

Return type (float,float,float)

Raises OSError – When the sensor is not reachable.

read_accelerometer()
Read the accelerometer.

Returns A tuple of X, Y, Z values in meters/(second^2) units. You can check the X, Y, Z axes
on the sensor itself.

Return type (float,float,float)

Raises OSError – When the sensor is not reachable.

40 Chapter 6. API DI-Sensors - Advanced

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://www.dexterindustries.com/shop/imu-sensor/
https://www.dexterindustries.com/shop/imu-sensor/
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

DI-Sensors Documentation

read_linear_acceleration()
Read the linear acceleration - that is, the acceleration from movement and without the gravitational accel-
eration in it.

Returns The linear acceleration as a tuple of X, Y, Z values measured in meters/(second^2) units.
You can check the X, Y, Z axes on the sensor itself.

Return type (float,float,float)

Raises OSError – When the sensor is not reachable.

read_gravity()
Read the gravitational acceleration.

Returns The gravitational acceleration as a tuple of X, Y, Z values in meters/(second^2) units.
You can check the X, Y, Z axes on the sensor itself.

Return type (float,float,float)

Raises OSError – When the sensor is not reachable.

read_quaternion()
Read the quaternion values.

Returns The current orientation as a tuple of X, Y, Z, W quaternion values.

Return type (float,float,float,float)

Raises OSError – When the sensor is not present.

read_temperature()
Read the temperature in Celsius degrees.

Returns Temperature in Celsius degrees.

Return type int

Raises OSError – When the sensor can’t be contacted.

6.4 TempHumPress

class di_sensors.temp_hum_press.TempHumPress(bus='RPI_1SW')
Bases: object

Class for interfacing with the Temperature Humidity Pressure Sensor.

__init__(bus='RPI_1SW')
Constructor for initializing link with the Temperature Humidity Pressure Sensor.

Parameters bus = "RPI_1SW" (str) – The bus to which the THP sensor is connected to.
By default, it’s set to bus "RPI_1SW". Check the hardware specs for more information
about the ports.

Raises OSError – When the sensor cannot be reached.

get_temperature_celsius()
Read temperature in Celsius degrees.

Returns Temperature in Celsius degrees.

Return type float

Raises OSError – When the sensor cannot be reached.

6.4. TempHumPress 41

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/
https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

DI-Sensors Documentation

get_temperature_fahrenheit()
Read temperature in Fahrenheit degrees.

Returns Temperature in Fahrenheit degrees.

Return type float

Raises OSError – When the sensor cannot be reached.

get_pressure()
Read the air pressure in pascals.

Returns The air pressure in pascals.

Return type float

Raises OSError – When the sensor cannot be reached.

get_humidity()
Read the relative humidity as a percentage.

Returns Percentage of the relative humidity.

Return type float

Raises OSError – When the sensor cannot be reached.

6.5 LineFollower

class di_sensors.line_follower.LineFollower(bus='RPI_1SW')
Bases: object

Class for interfacing with the Line Follower Sensor (black board).

Important: This sensor is the replacement for the red one LineFollowerRed, which is getting retired, but
we’ll still support it. The improvements of this one over the red one are:

1. Much faster poll rate - ~130 times a second vs the red one at ~60Hz.

2. More energy efficient - this one uses a minimum amount of power compared to the previous generation
which tended to get hot to touch.

3. Sensors are much more accurate and consistent over the red ones.

4. Reduced overhead on the I2C line.

__init__(bus='RPI_1SW')
Constructor for initializing an object to interface with the Line Follower Sensor (black board).

Parameters bus = "RPI_1SW" (str) – The bus to which the Line Follower Sensor (black
board) is connected to. By default, it’s set to "RPI_1SW". Check the hardware specs for
more information about the ports.

read_sensors()
Read the line follower’s values.

Returns A 6-element tuple with line sensors 1 through 6 (from left to right with the arrow
pointing forward) with values between 0 (black) and 1 (white).

Return type tuple

Raises OSError – When the Line Follower Sensor (black board) is not reachable.

42 Chapter 6. API DI-Sensors - Advanced

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://www.dexterindustries.com/shop/line-follower-sensor/
https://www.dexterindustries.com/shop/line-follower-sensor/
https://docs.python.org/3/library/stdtypes.html#str
https://www.dexterindustries.com/shop/line-follower-sensor/
https://www.dexterindustries.com/shop/line-follower-sensor/
https://docs.python.org/3/library/stdtypes.html#tuple
https://www.dexterindustries.com/shop/line-follower-sensor/

DI-Sensors Documentation

get_manufacturer()
Read the manufacturer of the Line Follower Sensor (black board)’s.

Returns The name of the manufacturer.

Return type str

Raises OSError – When the Line Follower Sensor (black board) is not reachable.

get_board()
Read the board name of the Line Follower Sensor (black board).

Returns The name of the board.

Return type str

Raises OSError – When the Line Follower Sensor (black board) is not reachable.

get_version_firmware()
Get the firmware version currently residing on the Line Follower Sensor (black board).

Returns The version of the firmware.

Return type str

Raises OSError – When the Line Follower Sensor (black board) is not reachable.

class di_sensors.line_follower.LineFollowerRed(bus='RPI_1SW')
Bases: object

Class for interfacing with the depreciated Line Follower Sensor (red board).

__init__(bus='RPI_1SW')
Constructor for initializing an object to interface with the depreciated Line Follower Sensor (red board).

Parameters bus = "RPI_1SW" (str) – The bus to which the depreciated Line Follower
Sensor (red board) is connected to. By default, it’s set to "RPI_1SW". Check the hardware
specs for more information about the ports.

read_sensors()
Read the line follower’s values.

Returns A 5-element tuple with the 1st element starting from the left of the sensor going to the
right of it (check the markings on the sensor) with values between 0 (for black) and 1 (for
white).

Return type tuple

Raises OSError – When the depreciated Line Follower Sensor (red board) is not reachable.

6.6 More . . .

If you wish to have a more granular control over the sensors’ functionalities, then you should check the following
submodules of the DI-Sensors package:

• di_sensors.BME280 - submodule for interfacing with the Temperature Humidity Pressure Sensor.

• di_sensors.BNO055 - submodule for interfacing with the InertialMeasurementUnit Sensor.

• di_sensors.TCS34725 - submodule for interfacing with the Light Color Sensor.

• di_sensors.VL53L0X - submodule for interfacing with the Distance Sensor.

6.6. More . . . 43

https://www.dexterindustries.com/shop/line-follower-sensor/
https://docs.python.org/3/library/stdtypes.html#str
https://www.dexterindustries.com/shop/line-follower-sensor/
https://www.dexterindustries.com/shop/line-follower-sensor/
https://docs.python.org/3/library/stdtypes.html#str
https://www.dexterindustries.com/shop/line-follower-sensor/
https://www.dexterindustries.com/shop/line-follower-sensor/
https://docs.python.org/3/library/stdtypes.html#str
https://www.dexterindustries.com/shop/line-follower-sensor/
https://docs.python.org/3/library/functions.html#object
https://www.dexterindustries.com/product/line-follower-for-gopigo/
https://www.dexterindustries.com/product/line-follower-for-gopigo/
https://docs.python.org/3/library/stdtypes.html#str
https://www.dexterindustries.com/product/line-follower-for-gopigo/
https://www.dexterindustries.com/product/line-follower-for-gopigo/
https://docs.python.org/3/library/stdtypes.html#tuple
https://www.dexterindustries.com/product/line-follower-for-gopigo/
https://github.com/DexterInd/DI_Sensors/blob/master/Python/di_sensors/BME280.py
https://www.dexterindustries.com/shop/temperature-humidity-pressure-sensor/
https://github.com/DexterInd/DI_Sensors/blob/master/Python/di_sensors/BNO055.py
https://www.dexterindustries.com/shop/imu-sensor/
https://github.com/DexterInd/DI_Sensors/blob/master/Python/di_sensors/TCS34725.py
https://www.dexterindustries.com/shop/light-color-sensor/
https://github.com/DexterInd/DI_Sensors/blob/master/Python/di_sensors/VL53L0X.py
https://www.dexterindustries.com/shop/distance-sensor/

DI-Sensors Documentation

All these submodules that are being referenced in this section were used for creating the DistanceSensor,
LightColorSensor, TempHumPress and the InertialMeasurementUnit classes.

44 Chapter 6. API DI-Sensors - Advanced

CHAPTER

SEVEN

DEVELOPER’S GUIDE

7.1 Our collaborators

The following collaborators are ordered alphabetically:

• John Cole - Github Account.

• Karan Nayan - Github Account.

• Matt Richardson - Github Account.

• Nicole Parrot - Github Account.

• Robert Lucian Chiriac - Github Account.

• Shoban Narayan - Github account.

45

https://github.com/johnisanerd/
https://github.com/karan259
https://github.com/mattallen37/
https://github.com/cleoqc/
https://github.com/RobertLucian/
https://github.com/shoban94

DI-Sensors Documentation

46 Chapter 7. Developer’s Guide

CHAPTER

EIGHT

FREQUENTLY ASKED QUESTIONS

For more questions, please head over to our Dexter Industries forum.

47

http://forum.dexterindustries.com/categories

DI-Sensors Documentation

48 Chapter 8. Frequently Asked Questions

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

49

DI-Sensors Documentation

50 Chapter 9. Indices and tables

INDEX

Symbols
__init__() (di_sensors.distance_sensor.DistanceSensor

method), 37
__init__() (di_sensors.easy_distance_sensor.EasyDistanceSensor

method), 27
__init__() (di_sensors.easy_inertial_measurement_unit.EasyIMUSensor

method), 30
__init__() (di_sensors.easy_light_color_sensor.EasyLightColorSensor

method), 28
__init__() (di_sensors.easy_line_follower.EasyLineFollower

method), 33
__init__() (di_sensors.easy_temp_hum_press.EasyTHPSensor

method), 32
__init__() (di_sensors.inertial_measurement_unit.InertialMeasurementUnit

method), 40
__init__() (di_sensors.light_color_sensor.LightColorSensor

method), 38
__init__() (di_sensors.line_follower.LineFollower

method), 42
__init__() (di_sensors.line_follower.LineFollowerRed

method), 43
__init__() (di_sensors.temp_hum_press.TempHumPress

method), 41

C
calibrate() (di_sensors.easy_light_color_sensor.EasyLightColorSensor

method), 29
convert_heading()

(di_sensors.easy_inertial_measurement_unit.EasyIMUSensor
method), 30

D
DistanceSensor (class in

di_sensors.distance_sensor), 37

E
EasyDistanceSensor (class in

di_sensors.easy_distance_sensor), 27
EasyIMUSensor (class in

di_sensors.easy_inertial_measurement_unit),
30

EasyLightColorSensor (class in
di_sensors.easy_light_color_sensor), 28

EasyLineFollower (class in
di_sensors.easy_line_follower), 33

EasyTHPSensor (class in
di_sensors.easy_temp_hum_press), 32

G
get_board() (di_sensors.line_follower.LineFollower

method), 43
get_calibration()

(di_sensors.easy_line_follower.EasyLineFollower
method), 34

get_calibration_status()
(di_sensors.BNO055.InertialMeasurementUnit.BNO055
method), 39

get_humidity() (di_sensors.temp_hum_press.TempHumPress
method), 42

get_manufacturer()
(di_sensors.line_follower.LineFollower
method), 42

get_pressure() (di_sensors.temp_hum_press.TempHumPress
method), 42

get_raw_colors() (di_sensors.light_color_sensor.LightColorSensor
method), 39

get_temperature_celsius()
(di_sensors.temp_hum_press.TempHumPress
method), 41

get_temperature_fahrenheit()
(di_sensors.temp_hum_press.TempHumPress
method), 41

get_version_firmware()
(di_sensors.line_follower.LineFollower
method), 43

guess_color_hsv()
(di_sensors.easy_light_color_sensor.EasyLightColorSensor
method), 29

I
InertialMeasurementUnit (class in

di_sensors.inertial_measurement_unit), 39

51

DI-Sensors Documentation

K
known_colors (di_sensors.easy_light_color_sensor.EasyLightColorSensor

attribute), 28

L
LightColorSensor (class in

di_sensors.light_color_sensor), 38
LineFollower (class in di_sensors.line_follower), 42
LineFollowerRed (class in

di_sensors.line_follower), 43

P
position() (di_sensors.easy_line_follower.EasyLineFollower

method), 35
position_01() (di_sensors.easy_line_follower.EasyLineFollower

method), 34
position_bw() (di_sensors.easy_line_follower.EasyLineFollower

method), 35
position_val() (di_sensors.easy_line_follower.EasyLineFollower

method), 35

R
read() (di_sensors.easy_distance_sensor.EasyDistanceSensor

method), 27
read() (di_sensors.easy_line_follower.EasyLineFollower

method), 34
read_accelerometer()

(di_sensors.inertial_measurement_unit.InertialMeasurementUnit
method), 40

read_euler() (di_sensors.inertial_measurement_unit.InertialMeasurementUnit
method), 40

read_gravity() (di_sensors.inertial_measurement_unit.InertialMeasurementUnit
method), 41

read_gyroscope() (di_sensors.inertial_measurement_unit.InertialMeasurementUnit
method), 40

read_inches() (di_sensors.easy_distance_sensor.EasyDistanceSensor
method), 28

read_linear_acceleration()
(di_sensors.inertial_measurement_unit.InertialMeasurementUnit
method), 40

read_magnetometer()
(di_sensors.inertial_measurement_unit.InertialMeasurementUnit
method), 40

read_mm() (di_sensors.easy_distance_sensor.EasyDistanceSensor
method), 27

read_quaternion()
(di_sensors.inertial_measurement_unit.InertialMeasurementUnit
method), 41

read_range_continuous()
(di_sensors.distance_sensor.DistanceSensor
method), 37

read_range_single()
(di_sensors.distance_sensor.DistanceSensor
method), 38

read_sensors() (di_sensors.line_follower.LineFollower
method), 42

read_sensors() (di_sensors.line_follower.LineFollowerRed
method), 43

read_temperature()
(di_sensors.inertial_measurement_unit.InertialMeasurementUnit
method), 41

reconfig_bus() (di_sensors.easy_inertial_measurement_unit.EasyIMUSensor
method), 30

S
safe_calibrate() (di_sensors.easy_inertial_measurement_unit.EasyIMUSensor

method), 30
safe_calibration_status()

(di_sensors.easy_inertial_measurement_unit.EasyIMUSensor
method), 30

safe_celsius() (di_sensors.easy_temp_hum_press.EasyTHPSensor
method), 32

safe_fahrenheit()
(di_sensors.easy_temp_hum_press.EasyTHPSensor
method), 32

safe_humidity() (di_sensors.easy_temp_hum_press.EasyTHPSensor
method), 32

safe_north_point()
(di_sensors.easy_inertial_measurement_unit.EasyIMUSensor
method), 31

safe_pressure() (di_sensors.easy_temp_hum_press.EasyTHPSensor
method), 32

safe_raw_colors()
(di_sensors.easy_light_color_sensor.EasyLightColorSensor
method), 29

safe_read_accelerometer()
(di_sensors.easy_inertial_measurement_unit.EasyIMUSensor
method), 31

safe_read_euler()
(di_sensors.easy_inertial_measurement_unit.EasyIMUSensor
method), 31

safe_read_gyroscope()
(di_sensors.easy_inertial_measurement_unit.EasyIMUSensor
method), 31

safe_read_magnetometer()
(di_sensors.easy_inertial_measurement_unit.EasyIMUSensor
method), 31

safe_rgb() (di_sensors.easy_light_color_sensor.EasyLightColorSensor
method), 29

set_calibration()
(di_sensors.easy_line_follower.EasyLineFollower
method), 33

set_led() (di_sensors.light_color_sensor.LightColorSensor
method), 39

start_continuous()
(di_sensors.distance_sensor.DistanceSensor
method), 37

52 Index

DI-Sensors Documentation

T
TempHumPress (class in di_sensors.temp_hum_press),

41
timeout_occurred()

(di_sensors.distance_sensor.DistanceSensor
method), 38

translate_to_hsv()
(di_sensors.easy_light_color_sensor.EasyLightColorSensor
method), 29

Index 53

	About DI-Sensors
	Who we are and what we do.
	What’s this documentation about.

	Getting Started
	Buying our sensors
	What I can use the sensors with
	How to install the DI-Sensors

	Examples
	Using the Distance Sensor
	Using the Light and Color Sensor
	Temperature Humidity and Pressure Sensor
	Using the IMU Sensor
	Using the Line Follower
	Using Mutexes

	On Library & Hardware
	Requirements
	Hardware interface
	Library Structure

	API DI-Sensors - Basic
	EasyDistanceSensor
	EasyLightColorSensor
	EasyIMUSensor
	EasyTHPSsensor
	EasyLineFollower

	API DI-Sensors - Advanced
	DistanceSensor
	LightColorSensor
	InertialMeasurementUnit
	TempHumPress
	LineFollower
	More …

	Developer’s Guide
	Our collaborators

	Frequently Asked Questions
	Indices and tables
	Index

