

Welcome to dh-virtualenv’s documentation!

Overview

dh-virtualenv is a tool that aims to combine Debian packaging with
self-contained Python software deployment in a pre-built virtualenv.
To do this, the project extends debhelper’s build sequence by providing
the new dh_virtualenv command.

This new command effectively replaces the following commands in the default sequence:

	dh_auto_install

	dh_python2

	dh_pycentral

	dh_pysupport

In the debhelper build sequence, dh_virtualenv is inserted right after dh_perl.

Reading Guide

	Getting Started helps you to set up your build machine and then package your first simple project.

	Packaging Guide explains all available features in more detail.

	The Packaging Cookbook demonstrates specific features and tricks needed for packaging more challenging projects.

	The Trouble-Shooting Guide explains some typical errors you might enounter, and their solution.

	To take a look into complete projects, see Real-World Projects Show-Case.

	API / Code Reference has a short overview of the implementation and links to the source code.

	Finally, the Changelog provides a history of releases with their new features and fixes.

Contents of this Manual

	Getting Started
	Step 1: Install dh-virtualenv

	Step 2: Set up Debian packaging

	Step 3: Build your project

	Packaging Guide
	Simple usecase

	Environment variables

	Command line options

	Advanced usage

	pbuilder and dh-virtualenv

	Experimental buildsystem support

	Packaging Cookbook
	Building Packages for Python3

	Making executables available

	Handling binary wheels

	Adding Node.js to your virtualenv

	Multi-platform builds in Docker

	Cross-packaging for ARM targets

	Trouble-Shooting Guide
	Installing on older Debian releases

	Fixing package building problems

	Fixing package installation problems

	Real-World Projects Show-Case
	debianized-sentry

	debianized-jupyterhub

	configsite

	API / Code Reference
	dh_virtualenv package

	Changelog
	1.1

	1.0

	0.11

	0.10

	0.9

	0.8

	0.7

	0.6

Indices and Tables

	Index

	Module Index

	Search Page

Getting Started

This tutorial will guide you through setting up your first project
using dh-virtualenv. Having some knowledge on how Debian packages
work might help, but it is not a mandatory requirement when working
on simple projects.

You also need some basic build tools, so you should install these packages:

sudo apt-get install build-essential debhelper devscripts equivs

These are only required on the build host, not the target hosts you later install the built packages on.

Step 1: Install dh-virtualenv

In order to use it, you need to install dh-virtualenv as a debhelper add-on
on the build host. For Debian and Ubuntu, there are pre-built packages for
the 1.0 version available – note that some of this info might get outdated over time,
so take extra care to check the version numbers you’re actually getting.

The following paragraphs describe the various installation options,
including building from source when your specific environment provides
no packages or only older versions.
Using pre-1.0 versions might be possible, but you don’t get all features described in this document,
and not all projects using dh-virtualenv might work with older versions
(check their documentation).

To install on Jessie (Debian stable) from their package repositories [https://packages.debian.org/source/sid/dh-virtualenv], use these commands:

echo "deb http://ftp.debian.org/debian jessie-backports main" \
 | sudo tee /etc/apt/sources.list.d/jessie-backports.list >/dev/null
sudo apt-get update -qq
sudo apt-get install -t jessie-backports dh-virtualenv

Note that only jessie-backports offers the 1.0 version.
Newer versions (Stretch and Sid) provide 1.0 out-of-the-box.

In the official Ubuntu repositories [http://packages.ubuntu.com/search?keywords=dh-virtualenv], Zesty provides a package
that works on older releases too. So on Zesty use a standard apt-get install,
and on older releases do this:

(cd /tmp && curl -LO "http://mirrors.kernel.org/ubuntu/pool/universe/d/dh-virtualenv/dh-virtualenv_1.0-1_all.deb")
sudo dpkg -i /tmp/dh-virtualenv_1.0-1_all.deb

Another option to check out for Ubuntu is this PPA [https://launchpad.net/~spotify-jyrki/+archive/ubuntu/dh-virtualenv], maintained by the author.

For all other systems you have to build and install the tool yourself.
Steps to do that, after you have cloned the repository, are:

sudo apt-get install devscripts python-virtualenv python-sphinx python-sphinx-rtd-theme git equivs # Install needed packages
git clone https://github.com/spotify/dh-virtualenv.git # Clone Git repository
cd dh-virtualenv # Move into the repository
sudo mk-build-deps -ri # This will install build dependencies
dpkg-buildpackage -us -uc -b # Build the *dh-virtualenv* package

and finally, install it (you might have to solve some
dependencies when doing this):
sudo dpkg -i ../dh-virtualenv_<version>.deb

Step 2: Set up Debian packaging

Grab your favourite Python project you want to use dh-virtualenv
with and set it up. Only requirement is that your project has a
somewhat sane setup.py and requirements listed in a
requirements.txt file. Note however that defining any requirements
is not mandatory.

Next you need to define the Debian packaging for your software. To do
this, create a directory called debian in the project root.

To be able to build a debian package, a few files are needed. First, we
need to define the compatibility level of the project. For this, do:

echo "9" > debian/compat

The 9 is a magic number for latest compatibility level, but we don’t
need to worry about that. Next we need a file that tells what our
project is about, a file called control. Enter a following
debian/control file:

Source: my-awesome-python-software
Section: python
Priority: extra
Maintainer: Matt Maintainer <matt@example.com>
Build-Depends: debhelper (>= 9), python, dh-virtualenv (>= 0.8)
Standards-Version: 3.9.5

Package: my-awesome-python-software
Architecture: any
Pre-Depends: dpkg (>= 1.16.1), python2.7 | python2.6, ${misc:Pre-Depends}
Depends: ${misc:Depends}
Description: really neat package!
 second line can contain extra information about it.

The control file is used to define the build dependencies, so if you
are building a package that requires for example lxml, make sure
you define libxml2-dev in Build-Depends etc.

Depends in the lower section is used to define run-time dependencies.
Following the example above, in case of lxml you would add libxml2
in to the Depends field.

To help keeping your installed virtualenv in sync with the host’s Python
interpreter in case of updates, create a file named
debian/«pkgname».triggers, where «pkgname» is what you
named your package in the control file. It triggers a special script
whenever the Python binary changes; don’t worry, that script is provided
by dh-virtualenv automatically.

«pkgname».triggers

Register interest in Python interpreter changes (Python 2 for now); and
don't make the Python package dependent on the virtualenv package
processing (noawait)
interest-noawait /usr/bin/python2.6
interest-noawait /usr/bin/python2.7

Also provide a symbolic trigger for all dh-virtualenv packages
interest dh-virtualenv-interpreter-update

Note that if you provide a custom postinst script with your package,
then don’t forget to put the #DEBHELPER# marker into it, else the trigger
script will be missing.

Next, we need a changelog file. It is basically a documentation of
changes in your package plus the source for version number for Debian
package builder. Here’s a short sample changelog to be entered in
debian/changelog:

my-awesome-python-software (0.1-1) unstable; urgency=low

 * Initial public release

 -- Matt Maintainer <matt@example.com> Fri, 01 Nov 2013 17:00:00 +0200

You don’t need to create this file by hand, a handy tool called
dch exists for entering new changelog entries.

Now, last bit is left, which is the debian/rules file. This file
is basically a Makefile that Debian uses to build the package. Content
for that is fairly straightforward:

#!/usr/bin/make -f

%:
 dh $@ --with python-virtualenv

And there we go, debianization of your new package is ready!

Step 3: Build your project

Now you can just build your project by running dpkg-buildpackage -us
-uc. Enjoy your newly baked dh-virtualenv backed project! ☺

Packaging Guide

Building packages with dh-virtualenv is relatively easy to start with,
but it also supports lot of customization to match your specific needs.

By default, dh-virtualenv installs your packages under
/opt/venvs/«packagename». The package name is provided by
the debian/control file.

To use an alternative install prefix, add a line like the following
to the top of your debian/rules file.

export DH_VIRTUALENV_INSTALL_ROOT=«/your/custom/install/dir»

dh_virtualenv will now use the value of
DH_VIRTUALENV_INSTALL_ROOT instead of /opt/venvs
when it constructs the install path.

To use an install suffix other than the package name, call
dh_virtualenv using the --install-suffix command
line option. See Advanced usage for further information on passing
options.

Simple usecase

To signal debhelper to use dh-virtualenv for building your
package, you need to pass --with python-virtualenv to the debhelper
sequencer.

In a nutshell, the simplest debian/rules file to build using
dh-virtualenv looks like this:

#!/usr/bin/make -f

%:
 dh $@ --with python-virtualenv

However, the tool makes a few assumptions of your project’s structure:

	For installing requirements, you need to have a file called
requirements.txt in the root directory of your project. The
requirements file is not mandatory.

	The project must have a setup.py file in the root of the
project. dh_virtualenv will run setup.py install to add
your project to the virtualenv.

After these preparations, you can just build the package with your favorite tool!

Environment variables

Certain environment variables can be used to customise the behaviour
of the debhelper sequencer in addition to the standard debhelper
variables.

	
DH_VIRTUALENV_INSTALL_ROOT

	Define a custom root location to install your package(s). The
resulting location for a specific package will be
$DH_VIRTUALENV_INSTALL_ROOT/«<packagename»,
unless --install-suffix is also used to change «<packagename».

Command line options

To change its default behavior, the dh_virtualenv command accepts a
few command line options:

	
-p <package>, --package <package>

	Act on the package named <package>.

	
-N <package>, --no-package <package>

	Do not act on the specified package.

	
-v, --verbose

	Turn on verbose mode. This has a few effects: it sets the root logger
level to DEBUG, and passes the verbose flag to pip when
installing packages. This can also be provided using the standard
DH_VERBOSE environment variable.

	
--install-suffix <suffix>

	Override virtualenv installation suffix. The suffix is appended to
/opt/venvs, or the DH_VIRTUALENV_INSTALL_ROOT
environment variable if specified, to construct the installation
path.

	
--extra-index-url <url>

	Use extra index url <url> when running pip to install
packages. This can be provided multiple times to pass multiple URLs
to pip. A common use-case is enabling a private Python package repository.

	
--preinstall <package>

	Package to install before processing the requirements. This flag
can be used to provide a package that is installed by pip
before processing the requirements file. It is handy if you need to
install a custom setup script or other packages needed
to parse setup.py, and can be provided multiple times to
pass multiple packages for pre-install.

	
--extras <name>

	
New in version 1.1.

Name of extras defined in the main package (specifically its setup.py, in extras_require).
You can pass this multiple times to add different extra requirements.

	
--pip-tool <exename>

	Executable that will be used to install requirements after the
preinstall stage. Usually you’ll install this program by using the
--preinstall argument. The replacement is expected to be found
in the virtualenv’s bin/ directory.

	
--upgrade-pip

	
New in version 1.0.

Force upgrading to the latest available release of pip.
This is the first thing done in the pre-install stage,
and uses a separate pip call.

Options provided via --extra-pip-arg are ignored here,
because the default pip of your system might not support them
(since version 1.1).

Note: This can produce non-repeatable builds.

	
--index-url <URL>

	Base URL of the PyPI server. This flag can be used to pass in a
custom URL to a PyPI mirror. It’s useful if you have an
internal PyPI mirror, or you run a special instance that only
exposes selected packages of PyPI. If this is not provided, the
default will be whatever pip uses as default (usually the API of
https://pypi.org/).

	
--extra-pip-arg <PIP ARG>

	Extra arguments to pass to the pip executable. This is useful if
you need to change the behaviour of pip during the packaging process.
You can use this flag multiple times to pass in different pip flags.

As an example, adding --extra-pip-arg --no-compile in the call of a
override_dh_virtualenv rule in the debian/rules file will
disable the generation of *.pyc files.

	
--extra-virtualenv-arg <VIRTUALENV ARG>

	Extra parameters to pass to the virtualenv executable. This is useful if
you need to change the behaviour of virtualenv during the packaging process.
You can use this flag multiple times to pass in different virtualenv flags.

	
--requirements <REQUIREMENTS FILE>

	Use a different requirements file when installing. Some packages
such as pbr [http://docs.openstack.org/developer/pbr/] expect
the requirements.txt file to be a simple list of requirements
that can be copied verbatim into the install_requires
list. This command option allows specifying a different
requirements.txt file that may include pip specific flags such
as -i, -r- and -e.

	
--setuptools

	Use setuptools instead of distribute in the virtualenv.

	
--setuptools-test

	
New in version 1.0.

Run python setup.py test when building the package. This was
the old default behaviour before version 1.0. This option is
incompatible with the deprecated --no-test.

	
--python <path>

	Use a specific Python interpreter found in path as the
interpreter for the virtualenv. Default is to use the system
default, usually /usr/bin/python.

	
--builtin-venv

	Enable the use of the build-in venv module, i.e. use python -m venv
to create the virtualenv. It will only work with Python 3.4 or later,
e.g. by using the option
--python /usr/bin/python3.4.

	
-S, --use-system-packages

	Enable the use of system site-packages in the created virtualenv
by passing the --system-site-packages flag to virtualenv.

	
--skip-install

	Skip running pip install . after dependencies have been
installed. This will result in anything specified in setup.py being
ignored. If this package is intended to install a virtualenv
and a program that uses the supplied virtualenv, it is up to
the user to ensure that if setup.py exists, any installation logic
or dependencies contained therein are handled.

This option is useful for web application deployments, where the
package’s virtual environment merely supports
an application installed via other means.
Typically, the debian/«packagename».install file is used
to place the application at a location outside of the virtual environment.

	
--pypi-url <URL>

	
Deprecated since version 1.0: Use --index-url instead.

	
--no-test

	
Deprecated since version 1.0: This option has no effect. See --setuptools-test.

Advanced usage

To provide command line options to the dh_virtualenv step,
use debhelper’s override mechanism.

The following debian/rules will provide http://example.com as
an additional source of Python packages:

#!/usr/bin/make -f

%:
 dh $@ --with python-virtualenv

override_dh_virtualenv:
 dh_virtualenv --extra-index-url http://example.com

pbuilder and dh-virtualenv

Building your Debian package in a pbuilder [https://wiki.ubuntu.com/PbuilderHowto] environment can help to ensure
proper dependencies and repeatable builds. However, precisely because pbuilder
creates its own build environment, build failues can be much more difficult to
understand and troubleshoot. This is especially true when there is a pip error
inside the pbuilder environment. For that reason, make sure that you can build
your Debian package successfully outside of a pbuilder environment before
trying to build it inside.

With those caveats, here are some tips for making pip and dh_virtual work
inside pbuilder.

If you want pip to retrieve packages from the network, you need to
add USENETWORK=yes to your /etc/pbuilderrc or ~/.pbuilderrc file.

pip has several options that can be used to make it more compatible
with pbuilder.

Use --no-cache-dir to stop creating wheels in your home directory,
which will fail when running in a pbuilder environment, because
pbuilder sets the HOME environment variable to “/nonexistent”.

Use --no-deps to make pip builds more repeatable [https://pip.readthedocs.org/en/stable/user_guide.html#ensuring-repeatability].

Use --ignore-installed to ensure that pip installs every package in
requirements.txt in the virtualenv. This option is especially important if
you are using the –system-site-packages option in your virtualenv.

Here’s an example of how to use these arguments in your rules file.

override_dh_virtualenv:
 dh_virtualenv \
 --extra-pip-arg "--ignore-installed" \
 --extra-pip-arg "--no-deps" \
 --extra-pip-arg "--no-cache-dir"

Experimental buildsystem support

Important

This section describes a completely experimental
functionality of dh-virtualenv.

Starting with version 0.9 of dh-virtualenv, there is a buildsystem alternative.
The main difference in use is that instead of the --with python-virtualenv
option, --buildsystem=dh_virtualenv is passed to debhelper. The debian rules
file should look like this:

#!/usr/bin/make -f

%:
 dh $@ --buildsystem=dh_virtualenv

Using the buildsystem instead of the part of the sequence (in other
words, instead of the --with python-virtualenv) one can get more
flexibility into the build process.

Flexibility comes from the fact that buildsystem will have individual
steps for configure, build, test and install and those can be
overridden by adding override_dh_auto_<STEP> target into the
debian/rules file. For example:

#!/usr/bin/make -f

%:
 dh $@ --buildsystem=dh_virtualenv

override_dh_auto_test:
 py.test test/

In addition the separation of build and install steps makes it
possible to use debian/install files to include built files into
the Debian package. This is not possible with the sequencer addition.

The build system honors the DH_VIRTUALENV_INSTALL_ROOT
environment variable. Following other environment variables can be
used to customise the functionality:

	
DH_VIRTUALENV_ARGUMENTS

	Pass given extra arguments to the virtualenv command

For example:

export DH_VIRTUALENV_ARGUMENTS="--no-site-packages --always-copy"

The default is to create the virtual environment with
--no-site-packages.

	
DH_VIRTUALENV_INSTALL_SUFFIX

	Override the default virtualenv name, instead of source package name.

For example:

	
DH_REQUIREMENTS_FILE

	
New in version 1.0.

Override the location of requirements file. See --requirements.

	
DH_UPGRADE_PIP

	
New in version 1.0.

Force upgrade of the pip tool by setting
DH_UPGRADE_PIP to empty (latest version) or specific
version. For example:

	
DH_UPGRADE_SETUPTOOLS

	
New in version 1.0.

Force upgrade of setuptools by setting
DH_UPGRADE_SETUPTOOLS to empty (latest version) or
specific version.

	
DH_UPGRADE_WHEEL

	
New in version 1.0.

Force upgrade of wheel by setting DH_UPGRADE_WHEEL to empty
(latest version) or specific version.

	
DH_PIP_EXTRA_ARGS

	
New in version 1.0.

Pass additional parameters to the pip command. For example:

export DH_PIP_EXTRA_ARGS="--no-index --find-links=./requirements/wheels"

Packaging Cookbook

This chapter has recipes and tips for specific dh-virtualenv use-cases,
like proper handling of binary manylinux1 wheels.
It also demonstrates some Debian packaging and debhelper features
that are useful in the context of Python software packaging.

List of Recipes

	Building Packages for Python3

	Making executables available

	Handling binary wheels

	Adding Node.js to your virtualenv

	Multi-platform builds in Docker

	Cross-packaging for ARM targets

Building Packages for Python3

The Python2 EOL in 2020 is not so far away, so you better start to use
Python3 for new projects, and port old ones that you expect to survive until then.
The following is for Ubuntu Xenial or Debian Stretch with Python 3.5,
and on Ubuntu Bionic you get Python 3.6.

In debian/control, the Build-Depends and Pre-Depends lists
have to refer to Python3 packages.

Source: py3software
Section: contrib/python
…
Build-Depends: debhelper (>= 9), python3, dh-virtualenv (>= 1.0),
 python3-setuptools, python3-pip, python3-dev, libffi-dev
…

Package: py3software
…
Pre-Depends: dpkg (>= 1.16.1), python3 (>= 3.5), ${misc:Pre-Depends}

And the Python update triggers in debian/«pkgname».triggers need to be adapted, too.

…
interest-noawait /usr/bin/python3.5
…

That’s all.

Making executables available

To make executables in your virtualenv’s bin directory callable from any shell prompt,
do not add that directory to the global PATH by a profile.d hook or similar.
This would add all the other stuff in there too, and you simply do not want that.

So use the debian/«pkgname».links file to add a symbolic link to those exectuables
you want to be visible, typically the one created by your main application package.

opt/venvs/«venvname»/bin/«cmdname» usr/bin/«cmdname»

Replace the contained «placeholders» with the correct names.
Add more links if there are additional tools, one line per extra executable.
For root-only commands, use usr/sbin/….

Handling binary wheels

The introduction of manylinux [https://github.com/pypa/manylinux] wheels via PEP 513 [https://www.python.org/dev/peps/pep-0513/] is a gift,
sent by the PyPA community to us lowly developers wanting to use
packages like Numpy while not installing a Fortran compiler just for that.

However, two steps during package building often clash with the contained shared libraries,
namely stripping (reducing the size of symbol tables)
and scraping package dependencies out of shared libraries (shlibdeps).

So if you get errors thrown at you by either dh_strip or dh_shlibdeps,
extend your debian/rules file as outlined below.

.PHONY: override_dh_strip override_dh_shlibdeps

override_dh_strip:
 dh_strip --exclude=cffi

override_dh_shlibdeps:
 dh_shlibdeps -X/x86/ -X/numpy/.libs -X/scipy/.libs -X/matplotlib/.libs

This example works for the Python data science stack
– you have to list the packages that cause you trouble.

Adding Node.js to your virtualenv

There are polyglot projects with a mix of Python and Javascript code,
and some of the JS code might be executed server-side in a Node.js runtime.
A typical example is server-side rendering for Angular apps with Angular Universal [https://universal.angular.io/].

If you have this requirement, there is a useful helper named nodeenv,
which extends a Python virtualenv to also support installation of NPM packages.

The following changes in debian/control require Node.js to be available on both
the build and the target hosts.
As written, the current LTS version is selected (i.e. 8.x in mid 2018).
The NodeSource packages [https://github.com/nodesource/distributions] are recommended to provide that dependency.

…
Build-Depends: debhelper (>= 9), python3, dh-virtualenv (>= 1.0),
 python3-setuptools, python3-pip, python3-dev, libffi-dev,
 nodejs (>= 8), nodejs (<< 9)
…
Depends: ${shlibs:Depends}, ${misc:Depends}, nodejs (>= 8), nodejs (<< 9)
…

You also need to extend debian/rules as follows,
change the variables in the first section to define different versions and filesystem locations.

export DH_VIRTUALENV_INSTALL_ROOT=/opt/venvs
SNAKE=/usr/bin/python3
EXTRA_REQUIREMENTS=--upgrade-pip --preinstall "setuptools>=17.1" --preinstall "wheel"
NODEENV_VERSION=1.3.1

PACKAGE=$(shell dh_listpackages)
DH_VENV_ARGS=--setuptools --python $(SNAKE) $(EXTRA_REQUIREMENTS)
DH_VENV_DIR=debian/$(PACKAGE)$(DH_VIRTUALENV_INSTALL_ROOT)/$(PACKAGE)

ifeq (,$(wildcard $(CURDIR)/.npmrc))
 NPM_CONFIG=~/.npmrc
else
 NPM_CONFIG=$(CURDIR)/.npmrc
endif

%:
 dh $@ --with python-virtualenv $(DH_VENV_ARGS)

.PHONY: override_dh_virtualenv

override_dh_virtualenv:
 dh_virtualenv $(DH_VENV_ARGS)
 $(DH_VENV_DIR)/bin/python $(DH_VENV_DIR)/bin/pip install nodeenv==$(NODEENV_VERSION)
 $(DH_VENV_DIR)/bin/nodeenv -C '' -p -n system
 . $(DH_VENV_DIR)/bin/activate \
 && node /usr/bin/npm install --userconfig=$(NPM_CONFIG) \
 -g configurable-http-proxy

You want to always copy all but the last line literally.
The lines above it install and embed nodeenv into the virtualenv
freshly created by the dh_virtualenv call.
Also remember to use TABs in makefiles (debian/rules is one).

The last (logical) line globally installs the configurable-http-proxy NPM package
– one important result of using -g is that Javascript commands appear
in the bin directory just like Python ones.
That in turn means that in the activated virtualenv Python can easily call those JS commands,
because they’re on the PATH.

Change the NPM package name to what you want to install.
npm uses either a local .npmrc file in the project root,
or else the ~/.npmrc one.
Add local repository URLs and credentials to one of these files.

Multi-platform builds in Docker

The code shown here is taken from the debianized-jupyterhub project,
and explains how to build a package in a Docker container.

Why build a package in a container? This is why:

	repeatable builds in a clean environment

	explicitly documented installation of build requirements (as code)

	easy multi-distro multi-release builds

The build is driven by a small shell script named build.sh,
which we use to get the target platform and some project metadata we already have,
and feed that into the Dockerfile via simple sed templating.

So we work on a copy of the Dockerfile, and that is one reason for
anything in the project workdir that is controlled by git being copied to a staging area (a separate build directory).
The other reason is performance – we present Docker with a pristine copy of our workdir,
and so there are no accidents like COPYing a full development virtualenv
or all of .git into the container build.

The build script

Let’s get to the code – since we apply the Adding Node.js to your virtualenv recipe,
we first set the repository where to get Node.js from.

#! /usr/bin/env bash
#
Build Debian package in a Docker container
#

set -e

NODEREPO="node_8.x"

Next, the given platform and existing project metadata is stored into a bunch of variables.

Get build platform as 1st argument, and collect project metadata
image="${1:?You MUST provide a docker image name}"; shift
dist_id=${image%%:*}
codename=${image#*:}
pypi_name="$(./setup.py --name)"
pkgname="$(dh_listpackages)"
tag=$pypi_name-$dist_id-$codename
staging_dir="build/staging"

Based on the collected input parameters, the staging area is set up in the build/staging directory.
tar does the selective copy work, and sed is used to inject dynamic values into the copied files.

Prepare staging area
rm -rf $staging_dir 2>/dev/null || true
mkdir -p $staging_dir
git ls-files >build/git-files
tar -c --files-from build/git-files | tar -C $staging_dir -x
sed -i -r -e 1s/stretch/$codename/g $staging_dir/debian/changelog
sed -r -e s/#UUID#/$(< /proc/sys/kernel/random/uuid)/g \
 -e s/#DIST_ID#/$dist_id/g -e s/#CODENAME#/$codename/g \
 -e s/#NODEREPO#/$NODEREPO/ -e s/#PYPI#/$pypi_name/ -e s/#PKGNAME#/$pkgname/ \
 <Dockerfile.build >$staging_dir/Dockerfile

After all that prep work, we finally get to build our package.
The results are copied from /dpkg where the Dockerfile put them (see below),
and then the package metadata is shown for a quick visual check if everything looks OK.

Build in Docker container, save results, and show package info
docker build --tag $tag "$@" $staging_dir
docker run --rm $tag tar -C /dpkg -c . | tar -C build -xv
dpkg-deb -I build/${pkgname}_*~${codename}*.deb

The Dockerfile

This is the complete Dockerfile, the important things are the two RUN directives.

Build Debian package using dh-virtualenv

FROM #DIST_ID#:#CODENAME# AS dpkg-build
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update -qq && apt-get install -yqq \
 build-essential debhelper devscripts equivs dh-virtualenv \
 curl tar gzip lsb-release apt-utils apt-transport-https libparse-debianchangelog-perl \
 python3 python3-setuptools python3-pip python3-dev libffi-dev \
 libxml2-dev libxslt1-dev libyaml-dev libjpeg-dev \
 libssl-dev libncurses5-dev libncursesw5-dev libzmq3-dev \
 && (curl -s https://deb.nodesource.com/gpgkey/nodesource.gpg.key | apt-key add -) \
 && echo 'deb https://deb.nodesource.com/#NODEREPO# #CODENAME# main' \
 >/etc/apt/sources.list.d/nodesource.list \
 && apt-get update -qq && apt-get install -y nodejs \
 && rm -rf "/var/lib/apt/lists"/*
WORKDIR /dpkg-build
COPY ./ ./
RUN dpkg-buildpackage -us -uc -b && mkdir -p /dpkg && cp -pl /#PKGNAME#[-_]* /dpkg
RUN pwd && dh_virtualenv --version && ls -la && du -sch . ##UUID#

The first RUN installs all the build dependencies on top of the base image.
The second one then builds the package and makes a copy of the resulting files,
for the build script to pick them up.

Putting it all together

Here’s a sample run of building for Ubuntu Bionic.

$./build.sh ubuntu:bionic
Sending build context to Docker daemon 106kB
Step 1/6 : FROM ubuntu:bionic AS dpkg-build
…
Successfully tagged debianized-jupyterhub-ubuntu-bionic:latest
./
./jupyterhub_0.9.1-1~bionic_amd64.deb
./jupyterhub_0.9.1-1~bionic_amd64.buildinfo
./jupyterhub-dbgsym_0.9.1-1~bionic_amd64.ddeb
./jupyterhub_0.9.1-1~bionic_amd64.changes
 new debian package, version 2.0.
 size 265372284 bytes: control archive=390780 bytes.
 84 bytes, 3 lines conffiles
 1214 bytes, 25 lines control
 2350661 bytes, 17055 lines md5sums
 4369 bytes, 141 lines * postinst #!/bin/sh
 1412 bytes, 47 lines * postrm #!/bin/sh
 696 bytes, 35 lines * preinst #!/bin/sh
 1047 bytes, 41 lines * prerm #!/bin/sh
 217 bytes, 6 lines shlibs
 419 bytes, 10 lines triggers
 Package: jupyterhub
 Version: 0.9.1-1~bionic
 Architecture: amd64
 Maintainer: 1&1 Group <jh@web.de>
 Installed-Size: 563574
 Pre-Depends: dpkg (>= 1.16.1), python3 (>= 3.5)
 Depends: perl:any, libc6 (>= 2.25), libexpat1 (>= 2.1~beta3), libgcc1 (>= 1:4.0), …
 Suggests: oracle-java8-jre | openjdk-8-jre | zulu-8
 Section: contrib/python
 Priority: extra
 Homepage: https://github.com/1and1/debianized-jupyterhub
 Description: Debian packaging of JupyterHub, a multi-user server for Jupyter notebooks.
…

The package files are now in build/, and you can dput them into your local repository.

Cross-packaging for ARM targets

If you need to create packages that can be installed on ARM architectures,
but want to use any build host (e.g. a CI worker),
first install the qemu-user-static and binfmt-support packages.

Then build the package by starting a container in QEMU using this Dockerfile.

FROM arm32v7/debian:latest

RUN apt-get update && apt-get -y upgrade && apt-get update \
 && apt-get -y install sudo dpkg-dev debhelper dh-virtualenv python3 python3-venv
…

The build might fail from time to time, due to unknown causes (maybe instabilities in QEMU).
If you get a package out of it, that works 100% fine, however.

See configsite for the full project that uses this.

— with input from @Nadav-Ruskin [https://github.com/Nadav-Ruskin]

Trouble-Shooting Guide

Installing on older Debian releases

TODO

Fixing package building problems

‘pkg-resources not found’ or similar

If you get errors regarding pkg-resources during the virtualenv creation,
update your build machine’s pip and virtualenv.
The versions on previous releases of many distros
are just too old to handle current infrastructure (especially PyPI)
– even Debian Jessie comes with the ancient pip 1.5.6.

This is the one exception to “never sudo pip”, so go ahead and do this:

sudo pip install -U pip virtualenv

Then try building the package again.

Fixing package installation problems

dpkg: too-long line or missing newline in ‘…/triggers’

TODO https://github.com/spotify/dh-virtualenv/pull/84

Real-World Projects Show-Case

These complete projects show how to combine the features of dh-virtualenv
and Debian packaging in general to deliver actual software in the wild.
You’ll also see some of the recipes of the Packaging Cookbook applied in a wider context.

List of Projects

	debianized-sentry

	debianized-jupyterhub

	configsite

debianized-sentry

	Author

	Jürgen Hermann

	URL

	https://github.com/1and1/debianized-sentry

The project packages Sentry.io, adding systemd integration and default configuration
for the Sentry Django/uWSGI app and related helper services.
It also shows how to package 3rd party software as relased on PyPI,
keeping the packaging code separate from the packaged project.

It is based on the debianized-pypi-mold [https://github.com/Springerle/debianized-pypi-mold] cookiecutter, which allows you to set up
such projects from scratch to the first build in typically under an hour.

debianized-jupyterhub

	Author

	Jürgen Hermann

	URL

	https://github.com/1and1/debianized-jupyterhub

JupyterHub has a Node.js service that implements its configurable HTTP proxy component,
so this project applies the Adding Node.js to your virtualenv recipe to install CHP.
It also uses Python 3.5 instead of Python 2.

Otherwise, it is very similar to the debianized-sentry project,
which is no surprise since they’re based on the same cookiecutter template.

configsite

	Author

	Nadav-Ruskin

	URL

	https://github.com/Nadav-Ruskin/configsite

This project shows how to cross-package a web service for the ARM platform,
using QEMU [https://www.qemu.org/] and Docker [https://www.docker.com/].

API / Code Reference

	dh_virtualenv package
	Submodules

	dh_virtualenv.cmdline module

	dh_virtualenv.deployment module

dh_virtualenv package

Submodules

dh_virtualenv.cmdline module

Helpers to handle debhelper command line options.

	
class dh_virtualenv.cmdline.DebhelperOptionParser(usage=None, option_list=None, option_class=<class optparse.Option>, version=None, conflict_handler='error', description=None, formatter=None, add_help_option=True, prog=None, epilog=None)

	Bases: optparse.OptionParser

Special OptionParser for handling Debhelper options.

Basically this means converting -O–option to –option before
parsing.

	
parse_args(args=None, values=None)

	

	
dh_virtualenv.cmdline.get_default_parser()

	

dh_virtualenv.deployment module

	
class dh_virtualenv.deployment.Deployment(package, extra_urls=[], preinstall=[], extras=[], pip_tool='pip', upgrade_pip=False, index_url=None, setuptools=False, python=None, builtin_venv=False, sourcedirectory=None, verbose=False, extra_pip_arg=[], extra_virtualenv_arg=[], use_system_packages=False, skip_install=False, install_suffix=None, requirements_filename='requirements.txt')

	Bases: object

	
clean()

	

	
create_virtualenv()

	

	
find_script_files()

	Find list of files containing python shebangs in the bin directory

	
fix_activate_path()

	Replace the VIRTUAL_ENV path in bin/activate to reflect the
post-install path of the virtualenv.

	
fix_local_symlinks()

	

	
fix_shebangs()

	Translate /usr/bin/python and /usr/bin/env python shebang
lines to point to our virtualenv python.

	
classmethod from_options(package, options)

	

	
install_dependencies()

	

	
install_package()

	

	
pip(*args)

	

	
pip_preinstall(*args)

	

	
run_tests()

	

	
venv_bin(binary_name)

	

Changelog

Following list contains the most notable changes by version.
For a full list, consult the git history [https://github.com/spotify/dh-virtualenv/commits/master] of the project.

1.1

	Support new style shebangs generated by recent pip (#226) [@nailor]

	Add --extras option (#243) [@jhermann]

	Python 3.4 and 3.5 added to test environments (#238) [@jhermann]

	New build dependendcies (dh-exec + python-sphinx-rtd-theme) (#231) [@labeneator]

	Disallow building a package whilst within an activated virtualenv (#224) [@lamby]

	Use python -m pip instead of direct pip calls (#219) [@moritz]

	Ignore --extra-pip-arg in call for --upgrade-pip (#197) [@jhermann]

	buildsystem: Allow to specify a virtualenv name (#180) [@dzen]

	docs: Improved structure, new chapters [@jhermann]

	docs: Fix reference to pbuilder’s USENETWORK option (#246) [@mkohler]

	Fix setuptools and pip setup when using built-in virtualenv with
--system-site-packages (#247) [@lucasrangit]

1.0

	Backwards incompatible Change the default install root to
/opt/venvs. This is due to the old installation root
(/usr/share/python) clashing with Debian provided Python
utilities. To maintain the old install location, use
DH_VIRTUALENV_INSTALL_ROOT and point it to
/usr/share/python.

	Backwards incompatible By default, do not run setup.py test
upon building. The --no-test flag has no longer has any
effect. To get the old behaviour, use the
--setuptools-test flag instead.

	Backwards incompatible Buildsystem: Move files into build folder
in install step instead of build step. Thanks to Ludwig Hähne [https://github.com/Pankrat] for the patch!

	Deprecate --pypi-url in favour of --index-url

	Support upgrading pip to the latest release with --upgrade-pip
flag.

	Buildsystem: Add support for DH_UPGRADE_PIP,
DH_UPGRADE_SETUPTOOLS and DH_UPGRADE_WHEEL. Thanks
to Kris Kvilekval [https://github.com/kkvilekval] for the
implementation!

	Buildsystem: Add support for custom requirements file location
using DH_REQUIREMENTS_FILE and for custom pip command
line arguments using DH_PIP_EXTRA_ARGS. Thanks to Einar
Forselv [https://github.com/einarf] for implementing!

	Fixing shebangs now supports multiple interpreters. Thanks Javier
Santacruz [https://github.com/jvrsantacruz]!

	Allow a custom pip executable via --pip-tool flag. Thanks
Anthony Sottile [https://github.com/asottile] for the
implementation!

	Fix handling of shebang lines for cases where interpreter was
wrapped in quotes. Thanks to Kamil Niechajewicz [https://github.com/noizex] for fixing!

	Support extra arguments to be passed at virtualenv using
--extra-virtualenv-arg. Thanks to Julien Duponchelle [https://github.com/noplay] for the fix.

0.11

	Allow passing explicit filename for requirements.txt using
--requirements option. Thanks to Eric Larson [https://github.com/ionrock] for implementing!

	Ensure that venv is configured before starting any daemons. Thanks
to Chris Lamb [https://github.com/lamby] for fixing this!

	Make sure fix_activate_path updates all activate scripts. Thanks
to walrusVision [https://github.com/walrusVision] for fixing
this!

0.10

	Backwards incompatible Fix installation using the built-in
virtual environment on 3.4. This might break installation on Python
versions prior to 3.4 when using --builtin-venv flag.
Thanks to Elonen [https://github.com/elonen] for fixing!

	Honor DH_VIRTUALENV_INSTALL_ROOT in build system. Thanks to
Ludwig Hähne [https://github.com/Pankrat] for implementing!

	Allow overriding virtualenv arguments by using the
DH_VIRTUALENV_ARGUMENTS environment variable when using the
build system. Thanks to Ludwig Hähne [https://github.com/Pankrat]
for implementing!

	Add option to skip installation of the actual project. In other
words using --skip-install installs only the dependencies
of the project found in requirements.txt. Thanks to Phillip
O’Donnell [https://github.com/phillipod] for implementing!

	Support custom installation suffix instead of the package name via
--install-suffix. Thanks to Phillip O’Donnell [https://github.com/phillipod] for implementing!

0.9

	Support using system packages via a command line flag
--use-system-packages. Thanks to Wes Mason [https://github.com/1stvamp] for implementing this feature!

	Introduce a new, experimental, more modular build system. See the
Packaging Guide for documentation.

	Respect the DEB_NO_CHECK environment variable.

0.8

	Support for running triggers upon host interpreter update. This new
feature makes it possible to upgrade the host Python interpreter
and avoid breakage of all the virtualenvs installed with
dh-virtualenv. For usage, see the the Getting Started. Huge thanks to
Jürgen Hermann [https://github.com/jhermann] for implementing
this long wanted feature!

	Add support for the built-in venv module. Thanks to Petri
Lehtinen [https://github.com/akheron]!

	Allow custom pip flags to be passed via the
--extra-pip-arg flag. Thanks to @labeneator [https://github.com/labeneator] for the feature.

0.7

	Backwards incompatible Support running tests. This change
breaks builds that use distutils. For those cases a flag
--no-test needs to be passed.

	Add tutorial to documentation

	Don’t crash on debbuild parameters -i and -a

	Support custom source directory (debhelper’s flag -D)

0.6

First public release of dh-virtualenv

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dh_virtualenv	

 	
 	
 dh_virtualenv.cmdline	

 	
 	
 dh_virtualenv.deployment	

Index

 Symbols
 | C
 | D
 | E
 | F
 | G
 | I
 | P
 | R
 | V

Symbols

 	
 	
 --builtin-venv

 	command line option

 	
 --extra-index-url <url>

 	command line option

 	
 --extra-pip-arg <PIP ARG>

 	command line option

 	
 --extra-virtualenv-arg <VIRTUALENV ARG>

 	command line option

 	
 --extras <name>

 	command line option

 	
 --index-url <URL>

 	command line option

 	
 --install-suffix <suffix>

 	command line option

 	
 --no-test

 	command line option

 	
 --pip-tool <exename>

 	command line option

 	
 --preinstall <package>

 	command line option

 	
 --pypi-url <URL>

 	command line option

 	
 	
 --python <path>

 	command line option

 	
 --requirements <REQUIREMENTS FILE>

 	command line option

 	
 --setuptools

 	command line option

 	
 --setuptools-test

 	command line option

 	
 --skip-install

 	command line option

 	
 --upgrade-pip

 	command line option

 	
 -N <package>, --no-package <package>

 	command line option

 	
 -p <package>, --package <package>

 	command line option

 	
 -S, --use-system-packages

 	command line option

 	
 -v, --verbose

 	command line option

C

 	
 	clean() (dh_virtualenv.deployment.Deployment method)

 	
 command line option

 	--builtin-venv

 	--extra-index-url <url>

 	--extra-pip-arg <PIP ARG>

 	--extra-virtualenv-arg <VIRTUALENV ARG>

 	--extras <name>

 	--index-url <URL>

 	--install-suffix <suffix>

 	--no-test

 	--pip-tool <exename>

 	--preinstall <package>

 	--pypi-url <URL>

 	--python <path>

 	--requirements <REQUIREMENTS FILE>

 	--setuptools

 	--setuptools-test

 	--skip-install

 	--upgrade-pip

 	-N <package>, --no-package <package>

 	-S, --use-system-packages

 	-p <package>, --package <package>

 	-v, --verbose

 	
 	create_virtualenv() (dh_virtualenv.deployment.Deployment method)

D

 	
 	DEB_NO_CHECK

 	DebhelperOptionParser (class in dh_virtualenv.cmdline)

 	Deployment (class in dh_virtualenv.deployment)

 	DH_PIP_EXTRA_ARGS

 	DH_REQUIREMENTS_FILE

 	DH_UPGRADE_PIP, [1]

 	
 	DH_UPGRADE_SETUPTOOLS, [1]

 	DH_UPGRADE_WHEEL

 	dh_virtualenv (module)

 	dh_virtualenv.cmdline (module)

 	dh_virtualenv.deployment (module)

 	DH_VIRTUALENV_ARGUMENTS

 	DH_VIRTUALENV_INSTALL_ROOT, [1], [2], [3], [4]

E

 	
 	
 environment variable

 	DEB_NO_CHECK

 	DH_PIP_EXTRA_ARGS, [1]

 	DH_REQUIREMENTS_FILE, [1]

 	DH_UPGRADE_PIP, [1], [2]

 	DH_UPGRADE_SETUPTOOLS, [1], [2]

 	DH_UPGRADE_WHEEL, [1]

 	DH_VIRTUALENV_ARGUMENTS, [1]

 	DH_VIRTUALENV_INSTALL_ROOT, [1], [2], [3], [4], [5]

 	DH_VIRTUALENV_INSTALL_SUFFIX

F

 	
 	find_script_files() (dh_virtualenv.deployment.Deployment method)

 	fix_activate_path() (dh_virtualenv.deployment.Deployment method)

 	
 	fix_local_symlinks() (dh_virtualenv.deployment.Deployment method)

 	fix_shebangs() (dh_virtualenv.deployment.Deployment method)

 	from_options() (dh_virtualenv.deployment.Deployment class method)

G

 	
 	get_default_parser() (in module dh_virtualenv.cmdline)

I

 	
 	install_dependencies() (dh_virtualenv.deployment.Deployment method)

 	
 	install_package() (dh_virtualenv.deployment.Deployment method)

P

 	
 	parse_args() (dh_virtualenv.cmdline.DebhelperOptionParser method)

 	
 	pip() (dh_virtualenv.deployment.Deployment method)

 	pip_preinstall() (dh_virtualenv.deployment.Deployment method)

R

 	
 	run_tests() (dh_virtualenv.deployment.Deployment method)

V

 	
 	venv_bin() (dh_virtualenv.deployment.Deployment method)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to dh-virtualenv’s documentation!

 		
 Getting Started

 		
 Step 1: Install dh-virtualenv

 		
 Step 2: Set up Debian packaging

 		
 Step 3: Build your project

 		
 Packaging Guide

 		
 Simple usecase

 		
 Environment variables

 		
 Command line options

 		
 Advanced usage

 		
 pbuilder and dh-virtualenv

 		
 Experimental buildsystem support

 		
 Packaging Cookbook

 		
 Building Packages for Python3

 		
 Making executables available

 		
 Handling binary wheels

 		
 Adding Node.js to your virtualenv

 		
 Multi-platform builds in Docker

 		
 Cross-packaging for ARM targets

 		
 Trouble-Shooting Guide

 		
 Installing on older Debian releases

 		
 Fixing package building problems

 		
 ‘pkg-resources not found’ or similar

 		
 Fixing package installation problems

 		
 dpkg: too-long line or missing newline in ‘…/triggers’

 		
 Real-World Projects Show-Case

 		
 debianized-sentry

 		
 debianized-jupyterhub

 		
 configsite

 		
 API / Code Reference

 		
 dh_virtualenv package

 		
 Submodules

 		
 dh_virtualenv.cmdline module

 		
 dh_virtualenv.deployment module

 		
 Changelog

 		
 1.1

 		
 1.0

 		
 0.11

 		
 0.10

 		
 0.9

 		
 0.8

 		
 0.7

 		
 0.6

_static/up.png

_static/up-pressed.png

_static/img/logo-180px.png

