

dfTimewolf

A framework for orchestrating forensic collection, processing and data export.

dfTimewolf consists of collectors, processors and exporters (modules) that pass
data on to one another. How modules are orchestrated is defined in predefined
“recipes”.

 	[image: Travis-CI]
 	[image: Codecov]
 	[image: CodeFactor]

Table of contents

	Getting started

	User manual

	Recipe list

	Module list

	Developer's guide

	Architecture

Getting started

Installation

Ideally you’ll want to install dftimewolf in its own virtual environment. We
leverage pipenv for that.

$ pip install pipenv
$ git clone https://github.com/log2timeline/dftimewolf.git && cd dftimewolf
$ pipenv install -e .

 Attention

 If you want to leverage other modules such as log2timeline, you'll have
 to install them separately and make them available in your virtual environment.

Then use pipenv shell to activate your freshly created virtual environment.
You can then invoke the dftimewolf command from any directory.

You can still use python setup.py install or pip install -e . if you’d rather
install dftimewolf this way.

Quick how-to

dfTimewolf is typically run by specifying a recipe name and any arguments the
recipe defines. For example:

$ dftimewolf local_plaso /tmp/path1,/tmp/path2 --incident_id 12345

This will launch the local_plaso recipe against path1 and path2 in /tmp. In this
recipe --incident_id is used by Timesketch as a sketch description.

Details on a recipe can be obtained using the standard python help flags:

$ dftimewolf -h
usage: dftimewolf [-h]
 {grr_huntresults_plaso_timesketch,local_plaso,...}

Available recipes:

 local_plaso Processes a list of file paths using plaso and sends results to Timesketch.

positional arguments:
 {grr_huntresults_plaso_timesketch,local_plaso,...}

optional arguments:
 -h, --help show this help message and exit

To get more help on a recipe’s specific flags, specify a recipe name before
the -h flag:

$ dftimewolf local_plaso -h
usage: dftimewolf local_plaso [-h] [--incident_id INCIDENT_ID]
 [--sketch_id SKETCH_ID]
 paths

Analyze local file paths with plaso and send results to Timesketch.

- Collectors collect from a path in the FS
- Processes them with a local install of plaso
- Exports them to a new Timesketch sketch

positional arguments:
 paths Paths to process

optional arguments:
 -h, --help show this help message and exit
 --incident_id INCIDENT_ID
 Incident ID (used for Timesketch description)
 (default: None)
 --sketch_id SKETCH_ID
 Sketch to which the timeline should be added (default:
 None)

User manual

dfTimewolf ships with recipes, which are essentially instructions on how to
launch and chain modules.

	User manual
	Listing all recipes

	Get detailed help for a specific recipe

	Running a recipe
	~/.dftimewolfrc

Listing all recipes

Since you won’t know all the recipe names off the top of your head, start with:

$ dftimewolf -h
usage: dftimewolf [-h]
 {grr_huntresults_plaso_timesketch,local_plaso,timesketch_upload,grr_artifact_hosts,grr_hunt_artifacts,grr_flow_download,grr_hunt_file}
 ...

Available recipes:

 grr_artifact_hosts Fetches default artifacts from a list of GRR hosts, processes them with plaso, and sends the results to Timesketch.
 grr_flow_download Downloads the contents of a specific GRR flow to the filesystem.
 grr_hunt_artifacts Starts a GRR hunt for the default set of artifacts.
 grr_hunt_file Starts a GRR hunt for a list of files.
 grr_huntresults_plaso_timesketch Fetches the findings of a GRR hunt, processes them with plaso, and sends the results to Timesketch.
 local_plaso Processes a list of file paths using plaso and sends results to Timesketch.
 timesketch_upload Uploads a .plaso file to Timesketch.

positional arguments:
 {grr_huntresults_plaso_timesketch,local_plaso,timesketch_upload,grr_artifact_hosts,grr_hunt_artifacts,grr_flow_download,grr_hunt_file}

optional arguments:
 -h, --help show this help message and exit

Get detailed help for a specific recipe

To get more details on a specific recipe:

$ dftimewolf grr_artifact_hosts -h
usage: dftimewolf grr_artifact_hosts [-h] [--artifacts ARTIFACTS]
 [--extra_artifacts EXTRA_ARTIFACTS]
 [--use_tsk USE_TSK]
 [--approvers APPROVERS]
 [--sketch_id SKETCH_ID]
 [--incident_id INCIDENT_ID]
 [--grr_server_url GRR_SERVER_URL]
 hosts reason

Collect artifacts from hosts using GRR.

- Collect a predefined list of artifacts from hosts using GRR
- Process them with a local install of plaso
- Export them to a Timesketch sketch

positional arguments:
hosts Comma-separated list of hosts to process
reason Reason for collection

optional arguments:
-h, --help show this help message and exit
--artifacts ARTIFACTS
 Comma-separated list of artifacts to fetch (override
 default artifacts) (default: None)
--extra_artifacts EXTRA_ARTIFACTS
 Comma-separated list of artifacts to append to the
 default artifact list (default: None)
--use_tsk USE_TSK Use TSK to fetch artifacts (default: False)
--approvers APPROVERS
 Emails for GRR approval request (default: None)
--sketch_id SKETCH_ID
 Sketch to which the timeline should be added (default:
 None)
--incident_id INCIDENT_ID
 Incident ID (used for Timesketch description)
 (default: None)
--grr_server_url GRR_SERVER_URL
 GRR endpoint (default: http://localhost:8000/)

Running a recipe

One typically invokes dftimewolf with a recipe name and a few arguments. For
example:

$ dftimewolf <RECIPE_NAME> arg1 arg2 --optarg1 optvalue1

Given the help output above, you can then use the recipe like this:

$ dftimewolf grr_artifact_hosts tomchop.greendale.xyz collection_reason

If you only want to collect browser activity:

$ dftimewolf grr_artifact_hosts tomchop.greendale.xyz collection_reason --artifact_list=BrowserHistory

In the same way, if you want to specify one (or more) approver(s):

$ dftimewolf grr_artifact_hosts tomchop.greendale.xyz collection_reason --artifact_list=BrowserHistory --approvers=admin
$ dftimewolf grr_artifact_hosts tomchop.greendale.xyz collection_reason --artifact_list=BrowserHistory --approvers=admin,tomchop

~/.dftimewolfrc

If you want to set recipe arguments to specific values without typing them in
the command-line (e.g. your development Timesketch server, or your favorite set
of GRR approvers), you can use a .dftimewolfrc file. Just create a
~/.dftimewolfrc file containing a JSON dump of parameters to replace:

$ cat ~/.dftimewolfrc
{
 "approvers": "approver@greendale.xyz",
 "timesketch_endpoint": "http://timesketch.greendale.xyz/"
}

This will set your timesketch_endpoint and approvers parameters for all
subsequent dftimewolf runs. You can still override these settings for one-shot
usages by manually specifying the argument in the command-line.

Recipe list

dfTimewolf uses recipes, which are a way to configure Collectors, Processors,
and Exporters (called Modules).

grr_artifact_hosts

Use this recipe to collect a predefined set of artifacts from a specific list of
hosts. If you want to collect the BrowserHistory and LinuxLogFiles from
tomchop.greendale.xyz and admin.greendale.xyz, use this
command:

$ dftimewolf grr_artifact_hosts tomchop.greendale.xyz,admin.greendale.xyz --artifact_list=BrowserHistory,LinuxLogFiles

If artifact_list is not provided, the list defaults to:

	Linux

	AllUsersShellHistory

	BrowserHistory

	LinuxLogFiles

	AllLinuxScheduleFiles

	LinuxScheduleFiles

	ZeitgeistDatabase

	AllShellConfigs

	Mac OS

	MacOSRecentItems

	MacOSBashHistory

	MacOSLaunchAgentsPlistFiles

	MacOSAuditLogFiles

	MacOSSystemLogFiles

	MacOSAppleSystemLogFiles

	MacOSMiscLogs

	MacOSSystemInstallationTime

	MacOSQuarantineEvents

	MacOSLaunchDaemonsPlistFiles

	MacOSInstallationHistory

	MacOSUserApplicationLogs

	MacOSInstallationLogFile

	Windows

	WindowsAppCompatCache

	WindowsEventLogs

	WindowsPrefetchFiles

	WindowsScheduledTasks

	WindowsSearchDatabase

	WindowsSuperFetchFiles

	WindowsSystemRegistryFiles

	WindowsUserRegistryFiles

	WindowsXMLEventLogTerminalServices

grr_flow_download

Use this recipe to download the results of a given GRR flow.

If because of test_reason you want to fetch flow F:920AFD8 from
tomchop.greendale.xyz and dump results into /tmp/tomflow/,
use the following command:

$ dftimewolf grr_flow_download tomchop.greendale.xyz F:920AFD8 test_reason /tmp/tomflow

grr_hunt_artifacts

Launches a hunt for specific artifacts. The hunt is launched with a client limit
set to 100 hosts.

If because of test_reason you want to launch a fleet-wide artifact hunt on
BrowserHistory artifacts, use the following command:

$ dftimewolf grr_hunt_artifacts BrowserHistory test_reason

NOTE: Since hunts take time to complete, dfTimewolf will launch the hunt and
return a Hunt ID that you can then feed to grr_huntresults_plaso_timesketch.

grr_hunt_file

Launches a hunt for specific files. The hunt is launched with a client limit set
to 100 hosts. This is standard procedure for creating new hunts anyways.

If because of test_reason you want to launch a fleet-wide file hunt on
/tmp/billgates.pl files, use the following command:

$ dftimewolf grr_hunt_file /tmp/billgates.pl test_reason

 Note

 Since hunts take time to complete, dfTimewolf will launch
 the hunt and return a Hunt ID that you can then feed to
 grr_huntresults_plaso_timesketch.

grr_huntresults_plaso_timesketch

Use this recipe to collect results from a GRR Hunt, process them with a local
instance of plaso, and send them to our Timesketch server.

If you want to fetch results for H:7481F262 because of test_reason, use the
following command:

$ dftimewolf grr_huntresults_plaso_timesketch H:7481F262 test_reason

local_plaso

Use this recipe to process a local file using plaso and send the results to our
Timesketch server.

If because of test_reason you want to process all files in /mnt/winroot with
plaso and send results to Timesketch, use the following command:

$ dftimewolf local_plaso /mnt/winroot test_reason

timesketch_upload

Use this recipe to upload a .plaso or .csv file to Timesketch:

$ dftimewolf timesketch_upload ~/cases/sem12345/sdb1.plaso

Module list

This is a list of existing dfTimewolf modules. To see how well they play
together, see the recipe list.

Collectors

	FilesystemCollector - a simple collector that just passes a local path on to
the processors.

GRR hunts

Launch or fetch results from fleet-wide GRR hunts.

	GRRHuntArtifactCollector - Launches a fleet-wide GRR ArtifactCollectorFlow

	GRRHuntFileCollector - Launches a fleet-wide GRR FileFinder

	GRRHuntDownloader - Downloads results from a GRR hunt.

GRR flows

Launch and fetch flows on a specific list of hosts.

	GRRArtifactCollector - Launches a GRR ArtifactCollectorFlow on specific
hosts.

	GRRFileCollector - Launches a FileFinder flow on specific hosts.

	GRRFlowCollector - Downloads the results of an arbitrary flow.

NOTE: As a general rule, GRRHuntArtifactCollector and
GRRHuntFileCollector collectors are asynchronous. They will create a hunt and
return the hunt ID that should be used with GRRHuntDownloader once the hunt is
complete. GRRArtifactCollector, GRRFileCollector and GRRFlowCollector will
wait for results before exiting.

Processors

	LocalPlasoProcessor - processes a list of file paths with a local plaso
(log2timeline.py) instance.

Exporters

	TimesketchExporter - exports the result of a processor to a remote Timesketch
instance.

	LocalFileSystemExporter - exports the results of a processor to the local
filesystem.

Developer’s guide

This page gives a few hints on how to develop new recipes and modules for
dftimewolf. Start with the architecture
page if you haven’t read it already.

Creating a recipe

If you’re not satisfied with the way modules are chained, or default arguments
that are passed to some of the recipes, then you can create your own. See
existing
recipes [https://github.com/log2timeline/dftimewolf/tree/master/dftimewolf/cli/recipes]
for simple examples like
local_plaso [https://github.com/log2timeline/dftimewolf/blob/master/dftimewolf/cli/recipes/local_plaso.py].
Details on recipe keys are given
here.

Recipe arguments

Recipes launch Modules with a given set of arguments. Arguments can be specified
in different ways:

	Hardcoded values in the recipe’s Python code

	@ parameters that are dynamically changed, either:

	Through a ~/.dftimewolfrc file

	Through the command line

Parameters are declared for each Module in a recipe’s recipe variable in the
form of @parameter placeholders. How these are populated is then specified in
the args variable right after, as a list of (argument, help_text, default_value) tuples that will be passed to argparse. For example, the
public version of the
grr_artifact_hosts.py [https://github.com/log2timeline/dftimewolf/blob/master/dftimewolf/cli/recipes/grr_artifact_hosts.py]
recipe specifies arguments in the following way:

args = [
 ('hosts', 'Comma-separated list of hosts to process', None),
 ('reason', 'Reason for collection', None),
 ('--artifacts', 'Comma-separated list of artifacts to fetch '
 '(override default artifacts)', None),
 ('--extra_artifacts', 'Comma-separated list of artifacts to append '
 'to the default artifact list', None),
 ('--use_tsk', 'Use TSK to fetch artifacts', False),
 ('--approvers', 'Emails for GRR approval request', None),
 ('--sketch_id', 'Sketch to which the timeline should be added', None),
 ('--incident_id', 'Incident ID (used for Timesketch description)', None),
 ('--grr_server_url', 'GRR endpoint', 'http://localhost:8000')

]

hosts and reason are positional arguments - they must be provided
through the command line. artifact_list, extra_artifacts, use_tsk,
sketch_id, and grr_server_url are all optional. If they are not specified
through the command line, the default argument will be used.

Modules

If dftimewolf lacks the actual processing logic, you need to create a new
module. If you can achieve your goal in Python, then you can include it in
dfTimewolf. “There is no learning curve™”.

Check out the Module architecture
and read up on simple existing modules such as the
LocalPlasoProcessor [https://github.com/log2timeline/dftimewolf/blob/master/dftimewolf/lib/processors/localplaso.py]
module for an example of simple Module.

Architecture

Three main objects

The main concepts you need to be aware of when digging into dfTimewolf’s
codebase are:

	Modules

	Recipes

	The state attribute

Modules are individual Python objects that will (for the most part) take
some kind of input and produce some kind of output. Recipes are instructions
that define how modules are chained, essentially defining which Module’s output
becomes another Module’s input. Input and output are all stored in a State
object that is attached to each module.

Modules

Modules all extend the BaseModule
class [https://github.com/log2timeline/dftimewolf/blob/master/dftimewolf/lib/module.py],
and implement the setup, process and cleanup methods.

setup is what is called with the recipe’s modified arguments. Actions here
should include things that have low overhead and can be accomplished
sequentially with no big delay, like checking for permissions on a cloud
project, creating an analysis VM, verifying that a file exists, etc.

process is where all the magic happens - here is where you’ll want to
parallelize things as much as possible (copying a disk, running plaso, etc.).
You’ll be adding information to the state (e.g. processed plaso files) in the
module’s output as you go. You can access a previous module’s output (i.e. your
input) using self.state.input and manipulate the current module’s output using
self.state.output.

cleanup is mostly optional, in case you manipulated the state in a way that
needs post-processing (e.g. adding a “# out of #” description to the module’s
output)

Recipes

Recipes are a Python dictionary that describe how Modules are chained, and which
parameters can be ingested from the command-line. These dictionaries have a few
specific keys:

	name: This is the name with which the recipe will be invoked (e.g.
local_plaso)

	short_description: This is what will show up in the help message when
invoking dftimewolf -h

	modules: A list of dicts describing modules and their corresponding
arguments.

	name: The name of the module class that will be instantiated

	args: A list of (argument_name, argument) tuples that will be passed
on to the module’s setup() method. If argument starts with an @,
it will be replaced with its corresponding value from the command-line
or the ~/.dftimewolfrc file.

Recipes need to describe the way arguments are handled in a global args
variable. This variable is a list of (switch, help_message, default_value)
tuples that will be passed to the argparse.add_argument method for later
parsing.

State

The State object is an instance of the DFTimewolfState
class [https://github.com/log2timeline/dftimewolf/blob/master/dftimewolf/lib/state.py].
It has a couple of useful methods:

	add_error: Used by modules to indicate that an error occurred during
execution (e.g. missing file, unauthorized access).

	check_errors: Display any errors that have been added. If any critical
errors were added, dftimewolf will stop the execution of the recipe and
exit. Non-critical errors will just be displayed and execution will
continue.

	cleanup: Resets the state: moves the output data to the input attribute
and clears the output for the next Module. Moves remaining (and therefore
non-critical) errors to global_errors for later processing.

What happens when you run a recipe

The dftimewolf cycle is as follows:

	The recipe is parsed, and the first Module is instantiated

	Command-line arguments are taken into account and passed to Module’s setup
method.

	Errors are checked

	The module’s process method is called

	Errors are checked

	Cleanup occurs; the output becomes input and the process is repeated with
the next module in the recipe.

Index

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/logo.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 dfTimewolf

 		
 Getting started

 		
 Installation

 		
 Quick how-to

 		
 User manual

 		
 Listing all recipes

 		
 Get detailed help for a specific recipe

 		
 Running a recipe

 		
 ~/.dftimewolfrc

 		
 Recipe list

 		
 grr_artifact_hosts

 		
 grr_flow_download

 		
 grr_hunt_artifacts

 		
 grr_hunt_file

 		
 grr_huntresults_plaso_timesketch

 		
 local_plaso

 		
 timesketch_upload

 		
 Module list

 		
 Collectors

 		
 GRR hunts

 		
 GRR flows

 		
 Processors

 		
 Exporters

 		
 Developer's guide

 		
 Creating a recipe

 		
 Recipe arguments

 		
 Modules

 		
 Architecture

 		
 Three main objects

 		
 Modules

 		
 Recipes

 		
 State

 		
 What happens when you run a recipe

_static/up-pressed.png

_static/up.png

