

Documentation for use of Dataflow Python Kernel

Installation

To install the Dataflow Python Kernel (Package)

>> pip install dfkernel

From Source

>> git clone

>> cd dfkernel

>> pip install -e .

>> python -m dfkernel install [–user|–sys-prefix]

Note: –sys-prefix works best for conda environments

Contents

	Dataflow Kernel Tutorial
	Controlling Output references

	Output Magics

	Accessing Outputs

	Auto-Parse Library functionality

	Jupyter Notebook Interactions
	Delete Cell

	Copy, Cut and Paste Cell

	Split and Merge

	Cell Statuses

	Dependency Viewer Actions and Interactions
	Graph Updates

	Toggle Cell Sinks

	Dependencies and the Cell Toolbar
	Cell Toolbars

	Dataflow IPykernel Convert
	Installation

	Convert to IPython kernel compliant notebook

	Convert to Dataflow kernel compliant notebook

	Contact Information

	Index

	Module Index

	Search Page

Dataflow Kernel Tutorial

Controlling Output references

In the Dataflow Kernel there are several different ways to export your
variables into the current namespace that you’re working in. Any unnamed
type will simply be given a persistent identifier that matches the
persistent cell identifier that the input is given.

In [e90038]:

2+3

Out[e90038]:

5

You can also give an output a tag by assigning a name to it, as long as
the variable has a name we can just export that into the namespace.

In [aabe16]:

a = 3

a:

3

All names are considered persistent throughout the notebook, this means
if you try and reassign it in a different cell you’ll get an error
however, this can be resolved by simply deleting that cell and you’ll be
able to redefine that name in any other cell.

In [f2146e]:

a = 4

DuplicateNameError Traceback (most recent call last)
DuplicateNameError: name 'a' has already been defined in Cell 'aabe16'

You can also assign multiple variables at once as long as you pass
multiple references.

In [cff2e4]:

c,d = 3,4

c:

3

d:

4

In [b7f27b]:

e,f = 5,6
e,f

e:

5

f:

6

In the case of mixed named and unnamed variables the named variables
will be pulled out by their variable names and any unnamed variables
will be given the ability to be referenced through bracket notation.

In [aaa071]:

g,h = 5,6
g,h,[2,3]

g:

5

h:

6

Out[aaa071][2]:

[2, 3]

Output Magics

Since a user might want to split out a dictionary into multiple
variables we’ve provided methods for that.

NOTE: In versions of Python below 3.6 tags are not guaranteed to be in
order as dict keys have no guaranteed ordering and if you desire your
keys to be in order we suggest the user of ``OrderedDict``.

In [fff27b]:

%split_out {'j':1,'k':1}

j:

1

k:

1

Accessing Outputs

The Dataflow kernel allows for several different methods of accessing
exported variables in the notebook. Completion is enabled for only the
last cell in the most current revision, despite this cells and tags that
have been exported can all be autocompleted by using the completer.

In [c3f778]:

m = 4

m:

4

_ + <tab> produces

In [d04d7a]:

m

Out[d04d7a]:

4

In [f2cc87]:

n,o = 1,2

n:

1

o:

2

When a cell has multiple tags the completer will produce a tuple of the
outputs

In [f21db2]:

(n,o)

Out[f21db2]:

(1, 2)

A cell can also still be addressed as it’s original output tag if
desired but this behavior is discouraged unless the user needs to
reference outputs this way.

In the example below typing f2c and hitting <tab> will result in
the following

In [def65e]:

Out[f2cc87]

Out[def65e]:

(1, 2)

Auto-Parse Library functionality

To make life easier on users we came to the conclusion that libraries
should be parsed out at a local level because writing extra code to
specifically export libraries slows users down.

So even when you write only assignments the library will be parsed out
and become attached to that cell.

In [f2e1a8]:

import sys
p = 3

sys:

<module 'sys' (built-in)>

p:

3

However, when you access the cell or try to reference it, it will
perform in the same way you expected before so it doesn’t become a
problem when referencing objects.

In [efd9e7]:

Out[f2e1a8]

Out[efd9e7]:

3

It also performs the same way when you have multiple tags but is instead
referenced as a tuple.

In [bcaf80]:

import os
q,r = 1,2

os:

<module 'os' from '/home/colin/anaconda3/envs/noglobals/lib/python3.6/os.py'>

q:

1

r:

2

In [f0a682]:

Out[bcaf80]

Out[f0a682]:

(1, 2)

Jupyter Notebook Interactions

To be able to properly accomodate both UUIDs and our namespace into the
notebook we’ve had to make some changes to the way normal notebooks
work.

In the vanilla notebook an action like copying a cell and pasting it
twice has no reprecussions, for us however these interactions had to be
changed to incorporate things like ensuring that no Cell IDs is the
same.

Let’s step through some of these interactions.

Delete Cell

A cell that has never been executed is the same interaction you’d see in
a normal notebook, it removes the cell and you never have to deal with
that cell ever again.

However, with CodeCells that have already been executed that is not
the case, a horizontal red bar will show up where that cell was.

In [d7a7c8]:

from IPython.display import Image

Image:

IPython.core.display.Image

In [aed959]:

Deletee14d16 = Image(url='https://rawgit.com/colinjbrown/dfkernel/documentation-update/docs/tutorial/img/delete_cell.png',width=800)

Deletee14d16:

It’s best to think of this cell as a “Soft Delete”, it’s completely
reversible without any consequences. The reason why this is the case is
because until a new cell is executed the Python kernel doesn’t even know
you’ve deleted a cell. Upon executing another cell though this bar will
be completely removed and will be considered “hard deleted”.

Note: We think this is the best way to handle these deletions because
when you delete any cell in the Notebook you might not be aware of the
cells that are impacted by it.

Copy, Cut and Paste Cell

Copy

Copy behaves just as you imagine it would so there are no special
interactions that happen here.

Cut

On cutting a cell, much like when we delete a cell performing a soft
delete. However there are now two copies of the cell that exist, one
exists in the undelete stack and one exists on the clipboard. Both of
these are considered equally valid references so until one of two events
happens they are all valid.

	Paste Event: Pasted Cell is now considered the authentic reference to
that cell and the deleted cell maintains a different Cell ID and has
output wiped if it is undeleted.

	Undelete Event: Undeleted Cell is now considered the authentic
reference to that cell and the cell on clipboard maintains a
different Cell ID and has output wiped if it is pasted.

Paste

This behaves relatively the same other than two references to the same
cell cannot exist, so if you try and for example paste twice they will
have two different Cell IDs and the second one will not have any output
attached to it.

Split and Merge

Split

This is the same as a typical split, one side gets the output tags and
the other does not, determining the proper way to split requires code
introspection so the onus falls on the user to not make poor choices.

Merge As text is collapsed together so is the output, we only retain
the outputs from the bottom cell.

Cell Statuses

In [e84c3f]:

from IPython.display import Image

Image:

IPython.core.display.Image

In [b87ea7]:

Success = Image(url='https://cdn.rawgit.com/colinjbrown/dfkernel/29b7b020/dfkernel/resources/df-notebook/img/fa/check-circle.svg')
SavedSuccess = Image(url='https://cdn.rawgit.com/colinjbrown/dfkernel/29b7b020/dfkernel/resources/df-notebook/img/fa/check-circle-yellow.svg')
Running = Image(url='https://cdn.rawgit.com/colinjbrown/dfkernel/29b7b020/dfkernel/resources/df-notebook/img/fa/clock.svg')
Unverified = Image(url='https://cdn.rawgit.com/colinjbrown/dfkernel/29b7b020/dfkernel/resources/df-notebook/img/fa/exclamation-circle.svg')
NewCell = Image(url='https://cdn.rawgit.com/colinjbrown/dfkernel/29b7b020/dfkernel/resources/df-notebook/img/fa/plus-circle.svg')
EditedNewCell = Image(url='https://cdn.rawgit.com/colinjbrown/dfkernel/29b7b020/dfkernel/resources/df-notebook/img/fa/plus-circle-yellow.svg')
Error = Image(url='https://cdn.rawgit.com/colinjbrown/dfkernel/29b7b020/dfkernel/resources/df-notebook/img/fa/times-circle.svg')
UnverifiedError = Image(url='https://cdn.rawgit.com/colinjbrown/dfkernel/29b7b020/dfkernel/resources/df-notebook/img/fa/times-circle-yellow.svg')
Success,SavedSuccess,Running,Unverified,NewCell,EditedNewCell,Error,UnverifiedError

Success:

SavedSuccess:

Running:

Unverified:

NewCell:

EditedNewCell:

Error:

UnverifiedError:

Success:

This represents the best case for a cell, this represents a cell that
has had no change to it’s text and everything upstream of it is also in
this state.

SavedSuccess:

The last run of this cell was successful, there’s a good chance that
this will succeed too, but if however you were missing a file that the
original author had the cell would fail.

Running:

This state is only reached when a cell continues to run, as our UUIDs
are persistent we’ve gotten rid of the typical [*] state one would
see in a vanilla notebook and replaced it with this icon as a feedback
mechanism for users.

Unverified:

This represents a stale state, this state can be reached by a number of
ways. If a user were to edit an upstream cell not only would we mark
that cell as stale because that cell has not yet been executed, but
everything that is downstream from that cell has reached a stale state
as they depend on that cell.

NewCell:

A new empty cell.

EditedNewCell:

A new cell that has had it’s contents modified.

Error:

The opposite of a Success, this is a verified error state where the
error has happened locally.

UnverifiedError:

Most of the time an error is an error, however that is not always the
case if whoever saved the file was missing a library and you have it.
Without knowing the cause of an error we must mark it as unverified when
the Notebook is saved out.

Dependency Viewer Actions and Interactions

In [ca5d7e]:

from IPython.display import Image

Image:

IPython.core.display.Image

Graph Updates

To best describe what happens when a graph updates we must first open
the dependency viewer.

In [ea1465]:

DepViewerOpen = Image(url='https://rawgit.com/colinjbrown/dfkernel/documentation-update/docs/tutorial/img/cell_toolbar.png')

DepViewerOpen:

Once our viewer is open we can execute code to create some nodes. ####
Note: The viewer does not have to be open, changes that happen while the
viewer is not open will be rendered upon opening of the viewer.

In [b89f91]:

a = 3

a:

3

After our cell finishes executing the viewer will now update the graph.

In [e775eb]:

Executeb89f91 = Image(url='https://rawgit.com/colinjbrown/dfkernel/documentation-update/docs/tutorial/img/stage1.svg',width=300)

Executeb89f91:

In [d91de0]:

b = a+3

b:

6

When we execute a second cell the viewer will move out and the edge
between a and Cell[d91de0] will be shown.

In [a9ad40]:

Executed91de0 = Image(url='https://rawgit.com/colinjbrown/dfkernel/documentation-update/docs/tutorial/img/stage2.svg',width=500)

Executed91de0:

In [e14d16]:

c = b+5

c:

11

This process then can again be repeated for another cell.

In [d5ce14]:

Executee14d16 = Image(url='https://rawgit.com/colinjbrown/dfkernel/documentation-update/docs/tutorial/img/stage3.svg',width=800)

Executee14d16:

When we decide to delete Cell[b92938] the changes are not rendered
immediatly because the kernel does not know about these changes, instead
we opt to provide a red horizontal cell that acts as a place holder
until that cell is actually removed. Thus inside of the viewer the cell
is also rendered in red.

In [d7faa2]:

Deletee14d16 = Image(url='https://rawgit.com/colinjbrown/dfkernel/documentation-update/docs/tutorial/img/delete_cell.png',width=800)
GraphUpdate = Image(url='https://rawgit.com/colinjbrown/dfkernel/documentation-update/docs/tutorial/img/stage4.svg',width=800)
Deletee14d16,GraphUpdate

Deletee14d16:

GraphUpdate:

When we decide to click on the red bar to undelete the cell the viewer
restores the color of that cell to green as if nothing had happened to
that cell at all.

In [b782f3]:

Restoree14d16 = Image(url='https://rawgit.com/colinjbrown/dfkernel/documentation-update/docs/tutorial/img/stage3.svg',width=800)

Restoree14d16:

Now we edit In[b89f91] so that instead of a=3 we set a=2,
this results in the graph being updated again.

In [c2ca48]:

Editb89f91 = Image(url='https://rawgit.com/colinjbrown/dfkernel/documentation-update/docs/tutorial/img/stage5.svg',width=800)

Editb89f91:

Toggle Cell Sinks

To be able to demonstrate exactly what this does a more complicated
graph needs to be shown, so we will use the graph from a fully executed
example of ours that can be found
here [https://github.com/colinjbrown/dfkernel/blob/master/examples/digits-classification-df.ipynb].

In [a80e4d]:

CellSinksVisible = Image(url='https://cdn.rawgit.com/colinjbrown/dfkernel/documentation-update/docs/tutorial/img/digits-classification-df.svg')

CellSinksVisible:

Upon hitting the toggle to remove cell sinks, we can see that any sink
nodes in our graph are now removed and our graph is significantly more
compact.

In [e88bb4]:

NoCellSinks = Image(url='https://cdn.rawgit.com/colinjbrown/dfkernel/documentation-update/docs/tutorial/img/digits-classification-df-no-sink.svg')

NoCellSinks:

Dependencies and the Cell Toolbar

Dependencies in the notebook will execute upstreams if the code in an
upstream cell changes. Code caches are checked to ensure that everything
stays up to date.

In [f9cfcd]:

from IPython.display import Image

Image:

IPython.core.display.Image

In [c4ae59]:

a = 3

a:

3

In [e26943]:

b = a+2

b:

5

Upon changing a to be a different value such as a=2 and
executing Cell[e26943], Cell[c4ae59] will immediatly execute to
ensure that b now returns 6 instead.

How this works: To ensure that the ``a`` being referenced is the
proper ``a`` we have enforced a variable name lockdown. That means that
any attempts to reassign a will result in failure. However this only
happens at the final output stage, every cell in the Dataflow kernel is
a closure.

In [d7c413]:

a = 4

DuplicateNameError Traceback (most recent call last)
DuplicateNameError: name 'a' has already been defined in Cell 'c4ae59'

Defining every cell as a closure allows for more interesting behavior
but the user has to be careful as the a in the folowing case is
considered to be a local variable.

In [dd9629]:

a = 5
c = a+4

c:

9

However you can ensure that you are referring to the correct a by the
use of the following keywords global and nonlocal.

In [ccf913]:

global a
a = 6
d = a+3

d:

6

In the following case a user may want to refer to a locally declared
variable a inside a function or class and switch between this
locally declared variable and one that is in the global namespace.

In [c08a91]:

a = 6

class g():
 def __init__(self):
 self.f()
 self.g()
 def f(self):
 nonlocal a
 print(a)
 def g(self):
 global a
 print(a)
g()

6
3

Out[c08a91]:

<__main__.__closure__.<locals>.g at 0x7f49dc5fa6a0>

Cell Toolbars

To allow users an easy way to get an overview of the upstream and
downstream dependencies we’ve provided a cell toolbar that is enabled
from the view dropdown.

In [df4af9]:

CellToolBar = Image(url='https://rawgit.com/colinjbrown/dfkernel/documentation-update/docs/tutorial/img/enabletoolbar.png')

CellToolBar:

Upon enabling the dataflow toolbar and executing the cells below we get
an overview of the dependencies in each cell as well as the ability to
toggle refresh states.

In [ed0889]:

x = a+10
y = b+4
x,y

x:

13

y:

9

In [a6cb70]:

z = x+y

z:

22

In [d8a75f]:

CellToolBarOpen = Image(url='https://rawgit.com/colinjbrown/dfkernel/documentation-update/docs/tutorial/img/cells_displayed.png')

CellToolBarOpen:

In this menu by clicking on you are able to use the cached version of
this cell, anything that is retrieved from this cell will be from the
last run.

While clicking on will make sure that if a cell that is upstream of this
cell executes that you want this downstream cell to also execute.

If a user clicks on all of the cells that are upstream from this cell
will be selected in the notebook.

Where as if a user clicks on all of the cells that are downstream from
this cell will be selected instead.

Note: The Auto-Refresh on downstream is setup this way because it’s
not explicit that a user would want a downstream cell to be re-executed
or not, all cells upstream of a cell have to be re-executed to be
considered valid.

Dataflow IPykernel Convert

Installation

Package

>> pip install dfipy_convert

>> jupyter bundlerextension enable –sys-prefix –py dfipy_convert

From Source

>> git clone

>> pip install .

>> jupyter bundlerextension enable –sys-prefix –py dfipy_convert

Convert to IPython kernel compliant notebook

Open Dataflow Python Kernel Notebook File

Open File Menu

Go under Download menu

Click “Convert to IPykernel Compliant Notebook”

Convert to Dataflow kernel compliant notebook

Open IPykernel Notebook File

Open File Menu

Go under Download menu

Click “Convert to Dataflow Compliant Notebook”

Contact Information

David Koop

dkoop@umassd.edu

Colin Brown

cbrown12@umassd.edu

Hieu Ngo

hngo1@umassd.edu

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Documentation for use of Dataflow Python Kernel

 		
 Dataflow Kernel Tutorial

 		
 Controlling Output references

 		
 Output Magics

 		
 Accessing Outputs

 		
 Auto-Parse Library functionality

 		
 Jupyter Notebook Interactions

 		
 Delete Cell

 		
 Copy, Cut and Paste Cell

 		
 Split and Merge

 		
 Cell Statuses

 		
 Dependency Viewer Actions and Interactions

 		
 Graph Updates

 		
 Toggle Cell Sinks

 		
 Dependencies and the Cell Toolbar

 		
 Cell Toolbars

 		
 Dataflow IPykernel Convert

 		
 Installation

 		
 Convert to IPython kernel compliant notebook

 		
 Convert to Dataflow kernel compliant notebook

 		
 Contact Information

_static/up-pressed.png

_static/up.png

