
DEVINE Documentation
Release 0.1.0

Ismael Balafrej, Julien Chouinard-Beaupre, Félix Labelle, Adam Létourneau, Felix Martel-Denis, Éric Matte, Antoine Mercier-Nicol, Jordan Prince Tremblay

Dec 18, 2018

Contents

1 Architecture 3

2 External Links 7

3 Installation 9

4 All DEVINE modules 17

5 Tests 27

6 Cheat Sheet 29

i

ii

DEVINE Documentation, Release 0.1.0

Welcome,

In this document you will find various technical documentation of the DEVINE project such as installation process, in
depth module information and even more!

Contents 1

DEVINE Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Architecture

1.1 Architecture

The DEVINE project is base on a distributed ROS system.

This allow the project to run on a real robot, while rendering heavy tasks like images segmentation and body tracking
in another more perfomant computer.

1.1.1 Distributed Computing

As part of this project we experimented with running ROS nodes on multiple machines.

This solution was developed to suit our project’s needs by allowing it to run on a remote server with its dependencies
inside a container.

Initial network configuration

First, create a docker network. In this tutorial we will use subnet 172.20.0.0/16, but you may need to change
subnet so it does not conflict with existing networks. On each machine run:

$ docker network create --subnet 172.20.0.0/16 --gateway 172.20.0.1 devine

This will create a bridge interface named br-${networkId}. The network id can be recovered using docker
network ls.

Bringing up the nodes

When bringing up the containers, assign them an ip (within the subnet) and a hostname. ROS nodes also need to be
able to reach the rosmaster specified by the environment variable ROS_MASTER_URI.

For example, run on the first machine:

3

DEVINE Documentation, Release 0.1.0

$ docker run -ti --rm --runtime=nvidia --network devine \
--hostname machine1 --ip 172.20.0.16 \
--add-host machine2:172.20.0.15 \
-e ROS_MASTER_URI=http://172.20.0.16:11311 \

$ devine bash

On the second machine run:

$ docker run -ti --rm --runtime=nvidia --network devine \
--hostname machine2 --ip 172.20.0.15 \
--add-host machine1:172.20.0.16 \
-e ROS_MASTER_URI=http://172.20.0.16:11311 \

$ devine bash

Tunneling

To link the containers we use ssh tunneling.

From machine1 run:

$ ssh -o Tunnel=ethernet -w 123:123 root@machine2

This will create a tap interface named tap123 on each side.

We connect these taps to the bridge. On each machine run:

$ ip link set tap123 master br-$(docker network ls -f name=devine | grep devine | awk
→˓'{print $1}')
$ ip link set tap123 up

You can also check out the diagrams below in order to learn the basics on how each DEVINE modules interacts with
each others:

1.1.2 Image Pipeline

Being able to interface with GuessWhat?! and users requires taking inputs from the robot’s Kinect 360 and processing
them accordingly. The first link in the chain is the image dispatcher, which takes compressed images, validates that
they are not blurred, and based on the game state, sends them onto the next node in the chain.

The next node to recieve the image, temporally, is the body tracking node. Using OpenPose we try to determine if
a person is within range to begin a game. If it is the case, after the scene’s picture is taken, the image is sent to the
segmentation and feature extration nodes.

Interfacing with GuessWhat?! requires extracting: a list of all objects, bounding boxes around them and a feature
vector (FC8 of a VGG16). Respectively the segmentatation and feature nodes are responsible for this.

Below is a UML showing the sequence of interactions between the different modules.

4 Chapter 1. Architecture

DEVINE Documentation, Release 0.1.0

Additional Information

Specifics for each node can be found at the following links:

• Image disptacher

• Segmentation

• Feature extraction

• Segmentation

• Bodytracking

• Depth mask

1.1.3 UML Sequence Diagrams

Start Game

1.1. Architecture 5

DEVINE Documentation, Release 0.1.0

Play Game

End of Game

6 Chapter 1. Architecture

CHAPTER 2

External Links

DEVINE website.

DEVINE GitHub.

7

https://devineproject.github.io/
https://github.com/devineproject/DEVINE

DEVINE Documentation, Release 0.1.0

8 Chapter 2. External Links

CHAPTER 3

Installation

Global installation process for the project can be found here

3.1 Getting Started

DEVINE is a project with many dependencies such as ROS.

In this section, you can find links to different installation types that we support.

That being said, we highly recommand going with the Docker way.

3.1.1 Installation

Docker

Docker is an application which runs a program in an isolated environment with its dependencies, akin to a virtual
machine. Docker is portable, lightweight and allows for compatibility.

How to get started

First, navigate to the docker folder.

Build the docker image for CPU use:

$./build.sh

Or build the docker image for GPU use:

$./build.sh --gpu

9

http://www.ros.org/

DEVINE Documentation, Release 0.1.0

Theses commands will get the devine-base image and build the devine image.

Once the build is complete, you can validate by running sudo docker images. One docker should be named
devine. With an image in hand, simply run the command to launch an instance of your docker image:

$./run.sh

You will arive in a ubuntu like terminal which has the same layout as the code base. To exit, use ctrl+d.

Note: both run.sh and build.sh have some arguments that can be set depending on your usage. Use the argument
--help for more information.

Information about the DEVINE docker images

The DEVINE project uses two docker images:

• devine-base: contains all of the projects dependencies and can be rebuilt if necessary using ./base/
build-base.sh.

• devine: contains the actual code.

Separating the dependencies from the code speed up further DEVINE builds.

Useful commands

$ sudo docker container ls # Lists all
→˓containers currently running
$ sudo docker exec -it {containerId} bash # starts another
→˓bash in a given docker container
$ docker cp {path/to/filename} {containerId}:{Destination/Path/} # copy a file into a
→˓specific docker image

Ubuntu 16.04 LTS

We recommend you to install it on a fresh copy of Ubuntu 16.04 LTS.

The following steps will install all the dependencies for the DEVINE project.

1. Create a catkin workspace directory like explained in the ROS tutorial.

2. Create src directory under it.

3. Clone the DEVINE repository in src/. Make sure not to rename the repository

4. Navigate to DEVINE/scripts.

5. Run the following command:

$./install.sh {path/to/catkin/src} {path/to/devine/root}

GPU Usage - Optional

If you want to use your GPU instead of your CPU for the computation, follow the GPU setup bellow.

10 Chapter 3. Installation

https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
https://github.com/devineproject/DEVINE

DEVINE Documentation, Release 0.1.0

GPU Setup

Following the steps shown at Ubuntu 16.04 LTS, Tensorflow will use the CPU for all the computational problems. To
make TensorFlow use your GPU, you need to do some more installation.

There is many ways to install TensorFlow / CUDA. This guide is only one of them.

As the writting of this documentation, TensorFlow GPU is officially supported for CUDA 9.0 with Nvidia drivers >
384.x and cuDNN >= 7.2

After these steps, you will have installed:

• CUDA 9.0 and it’s dependencies

• cuDNN 7.3.0 and it’s dependencies

• TensorFlow with GPU support and it’s dependencies

Step 0 - Dependencies

You should have most of theses already.

$ sudo apt-get install build-essential cmake git unzip zip python-pip python3-pip
→˓python-virtualenv swig python-wheel libcurl3-dev curl python-dev python3-dev python-
→˓numpy python3-numpy
$ sudo apt-get install linux-headers-$(uname -r)

Step 1 - Cleanup

You need to make sure that you have nothing Nvidia or CUDA related installed on your machine.

You can follow theses steps if you want to uninstall CUDA, Nvidia and Tensorflow from your machine.

Do not worry, Nvidia drivers will be installed with CUDA later on.

• Remove all Nvidia and CUDA related installation

Danger: Be careful, the following steps are destructive and will uninstall and remove any Nvidia drivers
installed

$ sudo apt-get purge nvidia*
$ sudo apt-get purge cuda* # You may need to manually purge them, for example sudo
→˓apt-get purge cuda-cusparse-9-0
$ dpkg -l | grep '^rc' | awk '{print $2}' | grep cuda | sudo xargs dpkg --purge #
→˓verify the output first so you don't delete something else...
$ dpkg -l | grep '^rc' | awk '{print $2}' | grep nvidia | sudo xargs dpkg --purge #
→˓verify the output first so you don't delete something else...
$ sudo apt-get autoremove
$ sudo apt-get autoclean
$ sudo rm -rf /usr/local/cuda*

• Uninstall any TensorFlow installation

$ pip uninstall tensorflow
$ pip uninstall tensorflow-gpu

3.1. Getting Started 11

https://www.tensorflow.org/install/gpu
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn

DEVINE Documentation, Release 0.1.0

• reboot!

$ sudo reboot

Step 1 - Install CUDA

You can download CUDA from Nvidia website and manually install it, but it is preferable to use their repository and
install it using Ubuntu’s package manager.

• Download and install CUDA 9.0

$ curl -O http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/
→˓cuda-repo-ubuntu1604_9.0.176-1_amd64.deb
$ sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/
→˓repos/ubuntu1604/x86_64/7fa2af80.pub
$ sudo dpkg -i ./cuda-repo-ubuntu1604_9.0.176-1_amd64.deb
$ sudo apt-get update
$ sudo apt-get install cuda-9-0 # this may take a while (~1.7G)

• reboot!

$ sudo reboot

• Verify installation

$ nvidia-smi # should return a list of GPUs with some metrics. Make sure the driver's
→˓version shown on the top is > 384.x

$ nvcc -V # should return the CUDA compiler version installed. Make sure the version
→˓is 9.0

example

(continues on next page)

12 Chapter 3. Installation

DEVINE Documentation, Release 0.1.0

(continued from previous page)

nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176

If you do not pass any verification steps, go back to Step 1 - Cleanup.

Step 2 - Install cuDNN

Download cuDNN 7.3.0 for CUDA 9.0 from Nvidia’s cuDNN archive.

You may need to create a account if you do not have one yet.

• Download and install

$ sudo tar -xzvf cudnn-9.0-linux-x64-v7.3.0.29.tgz
$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

• Update your bashrc.

In the case you have different CUDA version installed, change the folder to the CUDA version you want.

$ echo 'export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/
→˓cuda/extras/CUPTI/lib64"' >> ~/.bashrc
$ echo 'export CUDA_HOME=/usr/local/cuda' >> ~/.bashrc
$ echo 'export PATH="$PATH:/usr/local/cuda/bin"' >> ~/.bashrc
$. ~/.bashrc

Step 3 - Install TensorFlow GPU

• Uninstall TensorFlow

$ pip uninstall tensorflow

• Install TensorFlow with GPU support under python3

$ python3 -m pip install --user tensorflow-gpu

• Verify installation

$ python3
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session() # You should see some information about your GPU in the output
print(sess.run(hello))

in another shell
$ nvidia-smi # you should see in the processe list python3

If you do not pass any verification steps, go back to Step 1 - Cleanup.

3.1. Getting Started 13

https://developer.nvidia.com/rdp/cudnn-archive

DEVINE Documentation, Release 0.1.0

Step 5 - Profit

Have fun!

Virtual Box

The DEVINE project can be installed in a virtual machine.

To do so, make sure you have a VM with Ubuntu 16.04 installed, and follow the steps of installing Ubuntu 16.04 LTS.

Note about running the project in Virtual Box

To allow the Xbox Kinect connected physically to the host to communicate with the VM, you must link your USB
devices from the host to the client:

There should be three devices to select for the Kinect:

• Microsoft Xbox NUI Motor

• Microsoft Xbox NUI Camera

• Microsoft Xbox NUI Audio

If you get an error while linking the devices, it may be possible that the device is busy by another process. The simplest
way to solve that is to restart the client and restart the host.

You may also need to install Oracle VM VirtualBox Extension Pack in order to allow the use of USB 2.0 in the settings
of your VM.

3.1.2 Launching the project

The project uses a devine.launch file which can start all the required ROS nodes.

$ roslaunch devine devine.launch

By default, this will launch all the nodes. You can also specify which nodes to launch, like so:

$ roslaunch devine devine.launch launch_all:=false dashboard:=true

14 Chapter 3. Installation

https://www.virtualbox.org/wiki/Downloads

DEVINE Documentation, Release 0.1.0

Also by default, the launch file is made to run on a real robot. To run in simulation only, you can change the sim
argument:

$ roslaunch devine devine.launch sim:=true

3.1. Getting Started 15

DEVINE Documentation, Release 0.1.0

16 Chapter 3. Installation

CHAPTER 4

All DEVINE modules

4.1 Audio

4.1.1 Description

We use SNIPS as our voice assistant to interact with the robot with the voice.

4.1.2 ROS Installation

As SNIPS does not officially support Ubuntu Xenial, its intallation comes with a few caveat.

1. Run $ sudo npm install -g snips-sam to install SAM

2. Go to /usr/lib/node_modules/snips-sam/lib/session/ssh.js (or usr/local/lib/node_modules/snips-
sam/lib/session/ssh.js) and change line 426 to [. . .] echo "deb https://debian.snips.ai/
stretch stable main" [. . .]

3. Install an upstream version of libc $ sudo add-apt-repository -y
ppa:ubuntu-toolchain-r/test && sudo apt-get update && sudo apt-get upgrade
-y libstdc++6

4. Connect with $ sam connect localhost

5. $ sam init

6. If you get an error at this stage, add this line your_username ALL=(ALL) NOPASSWD: ALL at the end
of your sudoers file with the command : $ sudo visudo, then try again from step 4.

7. Test the speaker with $ sam test speaker

8. Test the microphone with $ sam test microphone

9. If tests are not conclusive or quality is poor, try selecting a different speaker and microphone with : $ sam
setup audio

17

DEVINE Documentation, Release 0.1.0

10. Install our assistant $ wget https://github.com/projetdevine/static/releases/
download/v0.0.1/assistant.zip && sudo unzip -o assistant.zip -d /usr/
share/snips

Once the SNIPS team adds support for Ubuntu Xenial step 2 and 3 will not be necessary. Note that our assistant was
tested for version 0.58.3 of the snips-platform-voice package.

4.1.3 Usage

$ roscore #start ROS master
$ rosrun devine_dialog snips.py __ns:=devine #run snips node
$ sam watch
$ rostopic echo /devine/tts/answer #listen to the answers

To send custom data to the topic used by snips, do :

$ rosrun rqt_gui rqt_gui

• Select topic : /devine/tts/query

• Select type : devine_dialog/TtsQuery

• Select a frequency

• Fill out the ‘text’ (ex: “Is the object blue ?”), ‘uid’ (ex: 1) and ‘answer_type’ (ex: 1) fields.

Or, run this command : $ rostopic pub /devine/tts/query devine_dialog/TtsQuery
'{text: "Is the object blue?", uid: 1, answer_type: 1}'

4.2 Bodytracking

4.2.1 Description

Detecting people is an important part of our project. By detecting nearby humans, we can follow them using the robots
eyes and find potential players. This functionality is provided by tf-pose-estimation.

The body tracking node outputs a JSON which contains a skeleton of all the people in a given image. It is is published
on the image/body_tracking topic.

4.2.2 ROS Installation

Run the install script install.sh

4.2.3 Usage

$ rosrun devine_image_processing body_tracking.py __ns:=devine

18 Chapter 4. All DEVINE modules

https://github.com/ildoonet/tf-pose-estimation

DEVINE Documentation, Release 0.1.0

4.3 Dashboard

4.3.1 Description

The dashboard is a web based project where we integrate all of the ROS nodes and gives us a centralized operation
center. You can subscribe to any ROS topic and see what is being send on any topic and you can also send information
to them. It’s main goal is to allow us to verify that the whole DEVINE system works in harmony.

It can also be used to demo the project.

4.3.2 Usage

Once the project is installed on your machine, you can simply launch the dashboard like so:

$ roslaunch devine devine.launch launch_all:=false dashboard:=true

The process will listen and update whenever there is a change in the code.

4.3.3 Manual installation

$ sudo npm i -g webpack
$ npm install
$ pip3 install -r requirements.txt
$ sudo apt-get install ros-kinetic-rosbridge-server

4.3.4 Adding a view

Create an html layout for your view. E.g: views/myview.html. Or reuse one similar to yours.

include it in views/index.html, keep these class attributes uk-width-expand command-view and change the name at-
tribute.

<div class="uk-width-expand command-view" name="myview" hidden>
{% include 'myview.html' %}

</div>

Add it to the menu with a class attribute matching the name you used previously.

<li class="command-myview command-menu">My view

Code your view in its own file (src/myview.js) and import it in src/app.js.

4.4 Depth mask

4.4.1 Description

To filter out extraneous objects in the background, the kinect’s depth sensor is used to create a mask. This mask blacks
out all objects further then 1.5m.

The body tracking node outputs the masked image. It is is published on the sensor_msgs/CompressedImage topic.

4.3. Dashboard 19

DEVINE Documentation, Release 0.1.0

4.4.2 ROS Installation

Run the install script install.sh

4.4.3 Usage

$ rosrun devine_image_processing mask.py __ns:=devine

4.5 Feature extraction

4.5.1 Description

VGG-16 is used to extract image features which was in turn used by the question generator. It was coded using
tensorflow and is available on github.

The feature extraction node outputs an array which contains the class of the object, which contains the FC8 layer’s
output. It is is published on the features topic.

4.5.2 ROS Installation

Run the install script source install_package.sh

4.5.3 Usage

$ rosrun devine_image_processing features_extraction.py __ns:=devine

4.6 GuessWhat

4.6.1 Description

This project makes use of the open source code provided alongside the original GuessWhat?! research. On our side,
we add the strict minimum to have it act as a ROS node.

4.6.2 Installation

Since guesswhat is not yet a proper python module, it has to be added to your python path:

$ git clone --recursive https://github.com/GuessWhatGame/guesswhat.git /tmp/somewhere
$ export PYTHONPATH=/tmp/somewhere/src:$PYTHONPATH

Also install python dependencies:

$ pip3 install -r requirements.txt

Build this ROS package using:

20 Chapter 4. All DEVINE modules

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/GuessWhatGame/guesswhat/

DEVINE Documentation, Release 0.1.0

$ catkin_make -C ~/catkin_ws

4.6.3 Usage

Roslaunch:

$ roslaunch devine devine.launch launch_all:=false guesswhat:=true

Monitor questions:

$ rostopic echo /devine/tts/query
text: "is it a person ?"
uid: 1234
answer_type: 1

Send some test inputs:

$ cd example
$ python3 example.py

Reply:

$ rostopic pub /devine/tts/answer devine_dialog/TtsAnswer '{original_query: {text:
→˓"is it a person ?", uid: 1234, answer_type: 1}, probability: 1.0, text: "yes"}'

4.7 Head Coordinator

4.7.1 Description

Scene finding:

We’re using april tags and the apriltags2_ros library to find the scene where the objets are located. The head will rotate
looking down until both tags are found, and then the image_dispatcher will proceed by taking a picture of the scene
found.

4.7.2 Installation

1. Clone the apriltags2_ros repository in your catkin workspace, presumably ~/catkin_ws.

$ git clone git@github.com:dmalyuta/apriltags2_ros.git

2. Copy the settings available in ./src/head_coordinator/apriltags2_config in the config directory of the newly
cloned repository under ./apriltags2_ros/config

3. Build the module using catkin_make:

$ catkin_make -C ~/catkin_ws

4.7. Head Coordinator 21

DEVINE Documentation, Release 0.1.0

4.7.3 Usage

Using a kinect, place two 11cm by 11cm tag36h11 identified 0 and 1 in the top left and botom right corners of the
scene you are trying to find.

$ roslaunch devine devine.launch launch_all:=false kinect:=true find_scene:=true

The robot’s head should turn in order to find the scene when the zone_detection topic is triggered.

4.7.4 Example of april tags

These are examples of 36h11 tag ids #0 and #1. The tags must be 11cm wide when printed, and positioned respectively
in the top left and bottom right corners. It’s also preferable that they directly face the camera to have the best accuracy
possible.

4.8 Image disptacher

4.8.1 Description

The image dispatcher is responsible for distributing images from the kinect to the various modules that need them in
the correct order. It takes raw images, checks them for blur, applies the depth mask and sends the processed images to
be segmented and have their features extracted.

4.8.2 ROS Installation

Run the install script install.sh

4.8.3 Usage

$ rosrun devine_image_processing image_dispatcher.py __ns:=devine

22 Chapter 4. All DEVINE modules

DEVINE Documentation, Release 0.1.0

4.9 Robot Behavior

4.9.1 Description

We currently use robot IRL-1 from IntRoLab for our demonstrations. See official IRL-1 GitHub for more details.

4.9.2 Possible Mouvements

• Point to position (x, y, z) with

– Right arm

– Left arm

– Head

• Open and close

– Right gripper

– Left gripper

• SIMULATION ONLY, Do complex movements with arms and head:

– Happy (confidence >= threshold, success 1)

– Satisfied (confidence < threshold, success 1)

– Disappointed (confidence >= threshold, success 0)

– Sad (confidence < threshold, success 0)

• Facial expression

– Anger

4.9. Robot Behavior 23

https://introlab.3it.usherbrooke.ca/mediawiki-introlab/index.php/Autonomous_Robot
https://introlab.3it.usherbrooke.ca
https://github.com/introlab/IRL-1

DEVINE Documentation, Release 0.1.0

– Joy

– Sad

– Surprise

4.9.3 Running Examples

Before running any examples, you need to:

1. Launch jn0 with RViz UI

$ roslaunch jn0_gazebo jn0_empty_world.launch # for simulation
$ roslaunch jn0_bringup jn0_standalone.launch # for real robot

2. Launch devine_irl_control nodes

$ roslaunch devine_irl_control devine_irl_control.launch sim:=true # for simulation

3. Load RViz configuration

File -> Open Config -> src/robot_control/launch/irl_point.rviz

You can now execute any of the examples:

• Point to position [x, y, z]

$ rosrun devine_irl_control example_point.py --point 0.6,0.3,0.5 --look 1,-0.6,0.5 __
→˓ns:=devine
Position is referenced from base_link

• Do complex move (SIMULATION ONLY!!!)

$ rosrun devine_irl_control example_emotion.py -c 0 -s 0 __ns:=devine

4.9.4 Dependencies

See package.xml for dependencies.

4.9.5 Topics

Topics input and output from this module

In/Out Topic ROS Message
In /devine/guess_location/world geometry_msgs/PoseStamped *
In /devine/robot/robot_look_at
In /devine/robot/head_joint_traj_point trajectory_msgs/JointTrajectoryPoint
Out /devine/robot/is_pointing std_msgs/Bool
Out /devine/robot/is_looking
Out /devine/robot/err_pointing std_msgs/Float64MultiArray

* PoseStamped are relative to base_link (see frame_id)

24 Chapter 4. All DEVINE modules

http://docs.ros.org/api/geometry_msgs/html/msg/PoseStamped.html
http://docs.ros.org/api/trajectory_msgs/html/msg/JointTrajectoryPoint.html
http://docs.ros.org/api/std_msgs/html/msg/Bool.html
http://docs.ros.org/api/std_msgs/html/msg/Float64MultiArray.html

DEVINE Documentation, Release 0.1.0

4.9.6 Constants

File irl_constant.py contains

• Controllers names

• Joints names

• Joints limits

4.10 Segmentation

4.10.1 Description

We currently use Mask R-CNN to detect and segment the objects of our images. It was coded using tensorflow and
trained using MSCOCO, which means that the classes it uses to segment objects are compatible with GuessWhat?!

The segmentation node outputs a SegmentedImage object which contains the class of the object, a box which delimits
the object and a segmentation mask. It is is published on the objects topic.

4.10.2 ROS Installation

Run the install script install.sh

4.10.3 Usage

$ rosrun devine_image_processing segmentation.py __ns:=devine

4.11 Video

4.11.1 Description

We currently use a Microsoft Kinect for a Xbox 360 in combination with OpenNI to use it inside the ROS ecosystem.

4.11.2 Pre requirement Installation

1. Install OpenNI

$ sudo apt-get install ros-kinetic-openni-launch ros-kinetic-openni-camera ros-
→˓kinetic-openni-description
$ sudo apt-get install ros-kinetic-compressed-image-transport #Image compression
→˓plugin

2. Start OpenNI server

$ roslaunch devine devine.launch launch_all:=false kinect:=true dashboard:=true

3. View Data

You can use the dashboard (http://localhost:8080) or the image_view package:

4.10. Segmentation 25

https://github.com/matterport/Mask_RCNN
https://en.wikipedia.org/wiki/Kinect#Kinect_for_Xbox_360_(2010)
http://localhost:8080

DEVINE Documentation, Release 0.1.0

$ rosrun image_view image_view image:=/openni/rgb/image_color #color
$ rosrun image_view image_view image:=/openni/rgb/image_mono #mono
$ rosrun image_view disparity_view image:=/openni/depth_registered/disparity
→˓#disparity

4. Read the ROS OpenNI documentation for more info!

4.11.3 ROS Installation

1. Run the install script ./install_package.bash

2. Build the module using catkin_make:

$ roscd
$ cd ..
$ catkin_make

26 Chapter 4. All DEVINE modules

http://wiki.ros.org/openni_launch/

CHAPTER 5

Tests

5.1 Tests

The tests are made using Python unittest.

5.1.1 Adding test cases

To add a test case, simply copy the testcase_template.py into your test folder, then import your test case into
test_suite.py.

5.1.2 Running the unit tests with catkin

From your catkin workspace run the following:

$ catkin_make run_tests

This command will launch all the necessary nodes and run the tests.

Launching a single test case

Each test_*.py file corresponds to a test case.

Each one of these files can run individually like so:

$ python DEVINE/tests/src/devine_tests/*/test_*.py

27

https://docs.python.org/3/library/unittest.html

DEVINE Documentation, Release 0.1.0

28 Chapter 5. Tests

CHAPTER 6

Cheat Sheet

6.1 ROS Cheat Sheet

Here you can see a couple of usefull ROS commands to help you out!

• $ roscore

– Starts the ros core node, you need this before starting any other node.

• $ rosrun {rosPackageName} {pythonFileContainingTheRosNode}
[__ns:=namespace]

– Example: $ rosrun devine_irl_control node_facial_expression.py
__ns:=devine

– This will start the node specified inside the node_facial_expression.py

• $ rostopic pub {/topic_name} std_msgs/{dataType} {Payload}

– Example: $ rostopic pub /devine/objects_confidence std_msgs/
Float64MultiArray “{layout: {dim: [{label: ‘’, size: 0, stride:
0}], data_offset: 0}, data: [0,0.8, 0.7]}”

– This will publish the specified payload to the specified topic.

• $ rostopic echo {topicName}

– Example: $ rostopic echo /devine/robot/facial_expression

– This will listen and print out any messages on the specified topic.

• $ roslaunch devine devine.launch

– This will launch ALL Devine nodes.

– You can also use this to launch specific nodes like so $ roslaunch devine devine.launch
launch_all:=false dashboard:=true

• $ rosrun topic_tools throttle messages /openni/rgb/image_color/compressed
0.33 /devine/image/segmentation

29

DEVINE Documentation, Release 0.1.0

– Segments every 30 seconds

• $ rosrun rqt_gui rqt_gui

– Starts a GUI with many usefull ROS development tools that enables you to subscribe and monitor ROS
topics for example.

• $ rosrun rqt_top rqt_top

– See the actually ressources consumed by your ROS environment.

30 Chapter 6. Cheat Sheet

	Architecture
	External Links
	Installation
	All DEVINE modules
	Tests
	Cheat Sheet

