

Guía Desarrollador OWASP

Bienvenidos a la documentacion de Guia del Desarrollador, aqui encontraran documentacion tanto para el proyect

OWASP Guia del Desarrollador

Bienvenido

	Gracias por su interés en la guía para desarrolladores de OWASP, documento principal

	Open Web Application Security Project(OWASP) [https://OWASP.org/]

Esta es la versión de desarrollo de la guía para desarrolladores de OWASP, y se convertirá en PDF y MediaWiki para su publicación cuando termine.

Este repositorio es la version actualizada en desarrollo 3.0

Version Estable versión 2.0.1 [https://github.com/OWASP/DevGuide/tree/dc5a2977a4797d9b98486417a5527b9f15d8a251/DevGuide2.0./] y es la versión recomendada para la lectura hasta que 3.0 este completa.

Vea nuestro nuestro wiki [https:/github.com/OWASP/dev/Guide/wiki]. , FAQ página [https:/github.com/OWASP/dev/Guide/wiki/FAQs] y Road Map [https://wiki/Road-Map)] para más información.

Integración con Gitbook

Para una experiencia de lectura agradable, utilice GitBook [https://Gitbookio/gitbook] para convertir este documento en un PDF, libro electrónico, sitio web, etc.

Contribuyendo

Nuestro wiki [https://github.com/OWASP/DevGuide/wiki] contiene más información sobre el propósito del proyecto. Esto se actualizará y luego transferido a la wiki oficial Open Web Application Security Project(OWASP) [https://OWASP.org/]

Usted no tiene que ser un experto en seguridad con el fin de contribuir!

COMIENZA aquí: recomendamos buscar primero en los Issues [https://github.com/OWASP/dev/Guide/issues]. y tratar de cerrarlos.

Algunas de las maneras que usted puede ayudar:

	Edición técnica

	Revisión

	Diagramacion

	Diseño gráfico

	Traduccion a su idioma favorito

Contacto

Puede unirse a la conversación en la lista de correos [https://lists.OWASP.org/mailman/listinfo/OWASP-Guide].

También discutimos sobre la guía de OWASP en Google + [https://Plus.Google.com/Communities/105181517914716500346].

Póngase en contacto con los desarrolladores del proyecto: Steven van der Baan o Brad Chesney ** para cualquier consulta sobre esta edición.

`Steven van der Baan <mailto:Steven.van.der.Baan@owasp.org`_
Brad Chesney

Index

 g# GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with … Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

DevGuide

The OWASP Guide

Documentación en Español (En proceso)

https://devguide.readthedocs.io/en/latest/

Summary

	README

	Introduction

	Authors

	Foreword

	[About the Development Guide](00-Introduction/01-About the Development Guide.md)

	[About the Open Web Application Security Project](00-Introduction/02-About the Open Web Application Security Project.md)

	Foundations

	[Security Fundamentals](01-Foundations/01-Security Fundamentals.md)

	[Policies, Standards, and Guidelines](01-Foundations/02-Policies, Standards and Guidelines.md)

	[Risk management](01-Foundations/03-Risk management.md)

	[Secure Development Lifecycle](01-Foundations/04-Secure Development Lifecycle.md)

	Training

	[Acquiring secure software](01-Foundations/06-Aquiring secure software.md)

	Design

	[Principles of Security Engineering](02-Design/01-Principles of Security Engineering.md)

	[Security Architecture](02-Design/02-Security Architecture.md)

	Build

	Authentication

	Session management

	Access control

	Input validation

	Output encoding

	Business logic

	Accountability

	Data protection

	Files and resources

	Cryptography

	Memory

	Concurrency

	Operational security

	Administrative interfaces

Foreword

 About the Development Guide

About the Development Guide

Welcome to the OWASP Development Guide 3.0

This guide has been re-written from the ground up, multiple times until it came to the current state. It has been expanded, shrunk and rebuild under multiple leaders as this is a hard subject.
Where the previous guides tried to be a single stop of all information we decided to have a new approach and separated the language specific examples from the language agnostic principles. This allows adding coding examples for new languages without having to rewrite the whole guide. This meant that the current form has been divided into a couple of components:

	This guide that has the overall information

	A companion website that has code examples in various coding languages

	An exercise guide (to be released)

The Guide has also been aligned with the OWASP Testing Guide and the OWASP Application Security Verification Guide (ASVS) where possible in order to provide a unified guidance towards security.

Security is not a black and white field; it is many shades of grey. In the past, many organizations wished to buy a simple silver security bullet – “do it this way or follow this check list to the letter, and you’ll be safe.” The black and white mindset is invariably wrong, costly, and ineffective.
The Guide strongly recommends the use of threat risk modeling as a way to reduce development costs and time, and eliminate wasted resources. Instead, with careful selection of controls via threat risk modeling, only those controls that demonstrably reduce the risk are implemented. These controls are usually cheap, effective, and simple to implement.

In some countries, risk-based development is not an optional extra, but legally mandated. For example, a core control required by Sarbanes Oxley is to prove that adequate controls are in place for financial systems, and that senior management believes the controls are effective. The Guide provides keys into COBIT (the most commonly used control framework for SOX) to assist organizations produce applications that meet SOX requirements.

As with any long-lived project, there is a need to keep the material fresh and relevant. Therefore, some of the material from the older Guides has been migrated to OWASP’s portal or outright replaced with new advice.

Thanks to the many authors and editors for their hard work in bringing this guide to where it is today. If you have any comments or suggestions on the Guide, please e-mail the Guide mail list (see our web site for details) or contact me directly.
Steven van der Baan, vdbaan@owasp.org
Augustus 2015, UK

 About the Open Web Application Security Project

About the Open Web Application Security Project

The Open Web Application Security Project (OWASP) is an open community dedicated to finding and fighting the causes of insecure software. All of the OWASP tools, documents, forums, and chapters are free and open to anyone interested in improving application security.

https://www.owasp.org/

OWASP is a new type of entity in the security market. Our freedom from commercial pressures allows us to provide unbiased, practical, cost-effective information about application security. OWASP is not affiliated with any technology company, although we support the informed use of security technology.

We advocate approaching application security as a people, process, and technology problem. The most effective approaches to application security include improvements in all of these areas.

Structure and Licensing

The OWASP Foundation is the not for profit (501c3) entity that provides the infrastructure for the OWASP community. The Foundation provides our servers and bandwidth, facilitates projects and chapters, and manages the worldwide OWASP AppSec Conferences.

All of the OWASP materials are available under an approved open source license. If you opt to become an OWASP member organization, can also use the commercial license that allows you to use, modify, and distribute all of the OWASP materials within your organization under a single license.

Participation and Membership

Everyone is welcome to participate in our forums, projects, chapters, and conferences. OWASP is a fantastic place to learn about application security, network, and even build your reputation as an expert. Many application security experts and companies participate in OWASP because the community establishes their credibility.

If you get value from the OWASP materials, please consider supporting our cause by becoming an OWASP member. All monies received by the OWASP Foundation go directly into supporting OWASP projects.

Projects

OWASP projects are broadly divided into two main categories, development projects, and documentation projects. Our documentation projects currently consist of:

	The Guide – This document which provides detailed guidance on web application security.

	Top Ten Most Critical Web Application Vulnerabilities – A high level document to help focus on the most critical issues.

	Metrics – A project to define workable web application security metrics.

	Legal – A project to help software buyers and sellers negotiate appropriate security in their contracts.

	Testing Guide – A guide focused on effective web application security testing.

	ISO17799 – Supporting documents for organizations performing ISO17799 reviews.

	AppSec FAQ – Frequently asked questions and answers about application security.

Development projects include:

	WebScarab - a web application vulnerability assessment suite including proxy tools

	Validation Filters – (Stinger for J2EE, filters for PHP) generic security boundary filters that developers can use in their own applications

	WebGoat - an interactive training and benchmarking tool that users can learn about web application security in a safe and legal environment

	DotNet – a variety of tools for securing .NET environments.

 Authors

Authors

Editors

The Guide has had several editors, all of whom have contributed immensely as authors, project managers, and editors over the lengthy period of the Guide’s gestation

	Adrian Wiesmann

	Andrew van der Stock

	Brad Chesney

	Mark Curphey

	Ray Stirbei

	Steven van der Baan

Authors and Reviewers

The Guide would not be where it is today without the generous gift of volunteer time and effort from many individuals. If you are one of them, and not on this list, please contact Steven van der Baan, vdbaan@owasp.org

	Andrew van der Stock

	Brad Chesney

	Chris Madden

	Dennis Groves

	Don Lampert

	Frenchi

	Gabriel Pedro

	Jerry Kickenson

	Kevin W. Wall

	Luke Briner

	Sean West

	Steven van der Baan

	Viral Maniar

	Yagiz Erkan

Revision History

Date	Version	Pages	Notes
——	——–:	——:	:—–
Jun 2002	1.0	93	Mark Curphey, Guide lead, Original Word doc (lost)
Jun 2002	1.0.1	93	Mark Curphey, Guide lead, Minor changes
Sep 2002	1.1	98	Mark Curphey, Guide lead, TeX document (lost)
Sep 2002	1.1.1	70	Mark Curphey, Guide lead, DocBook XML document (lost)
Jun 2004	2.0a1	104	Adrian Wiesmann, Guide lead, DocuBook XML document
Nov 2004	2.0a2	149	Adrian wiesmann, Guide lead, DocBook XML document
Dec 2004 - Apr 2005	2.0a3 - 2.0a7	134 - 156	Andrew van der Stock, Guide lead, Word document
Jun 2005	2.0b1	211	Andrew van der Stock, Guide lead, Word document
Jul 2005	2.0RC	211	Andrew van der Stock, Guide lead, Word document
Dec 2015	3.0	150	Steven van der Baan, Guide lead, Markdown documents

Text

The following authors are involved in this project:

	Andrew van der Stock vanderaj@owasp.org

	Brad Chesney bradchesney79@gmail.com

	Dennis Groves dennis.groves@gmail.com

	frenchi thebestfrenchie@gmail.com

	Gabriel Pedro gpedro831@gmail.com

	Jerry Kickenson jerry.kickenson@gmail.com

	Kevin W. Wall kevin.w.wall@gmail.com

	Luke Briner luke@pixelpin.co.uk

	Sean E. West sean.e.west@gmail.com

	Steven van der Baan steven.van.der.baan@owasp.org

	Viral Maniar maniar.viral@gmail.com

 Introduction

Introduction

Welcome to the totally re-written OWASP Guide 3.0! The OWASP Guide has been re-written to be:

	Shorter

	More applicable

	More functional

The previous Guide contained information on how to review, attack and protect code. That is no longer necessary now that the Code Review Guide and Penetration Testing Guides have been completed. This version of the Guide concentrates upon writing solid, safe and secure code. By reducing the length of the Guide to no more than 150 pages, we hope that more architects, designers, business analysts, software engineers and developers will be able to digest the new version, thus creating safe and more secure applications. There will never be a one page version of this book.

Architects and designers should digest the first section and use the remaining sections like an encyclopedia or dictionary – looking up controls as necessary. Software engineers should read the entire Guide. The reasoning behind choosing certain controls is in the first section, and the controls themselves in the remaining sections.

Those who set policy are recommended to read as much as they can – only by knowledge of what can go wrong can organizations set policy to prevent the acquisition or development of insecure software.

It is far harder to write solid code than to destroy it. Necessarily, this book contains a great deal of information. Not every application will require every control, and thus it is necessary to.

 Security Fundamentals

Security Fundamentals

Security is simply about controlling who can interact with your information, what they can do with it, and when they can interact with it. These characteristics of control are described through what is called the CIA triad.

[image: ../_images/01x01-CIA_Triad.png]CIA Triad

CIA

CIA stands for Confidentiality, Integrity and Availability, and it is usually depicted as a triangle representing the strong bonds between its three tenets. This trio are considered the pillars of application security. Often they are extended with Authorization, Authentication and Auditing. CIA is described as a property of some data or of a process.

Confidentiality

Confidentiality is the protection of data against unauthorized disclosure, or otherwise put, it is about ensuring that only those with the correct authorization can access the data. Confidentiality applies to data at rest, but also to data in motion. It is related to the broader concept of data privacy.
A model that has the focus on data confidentiality and controlled access is the Bell-LaPaluda model.

Integrity

Integrity is about protecting data against unauthorized modification, or assuring data trustworthiness. The concept contains the notion of data integrity (data has not been changed accidentally or deliberately) and the notion of source integrity (data came from or was changed by a legitimate source).
A model that has the focus on data integrity through access control rules is the Biba model.

Availability

Availability is about ensuring the presence of information or resources. This concept relies not just on the protection of the data itself – for example by using replication of data – but also on the protection of the services that provide access to the data – for example by using load balancing.

Additions

CIA is often extended with Authentication and Authorization as these are closely linked to CIA concepts. Better put, CIA has such a strong dependency on Authentication and Authorization that the confidentiality of the data in question can’t be assured without them.
Auditing is added as it can provide the mechanism to ensure proof of any interaction with the system.

Authentication

Authentication is about confirming the identity of the entity that wants to interact with a secure system.

Authorization

Authorization is about specifying access rights to secure resources (data, services, files, applications, etc.). These rights describe the privileges or access levels related to the resources in question. It is normally preceded by Authentication.

Auditing (non-repudiation)

Auditing is about keeping track of implementation-level events, as well as domain-level events taking place in a system. It can provide not only technical information about the running system, but also proof that particular actions have been performed. The typical questions that are answered by auditing are “Who did What? When? And potentially How?”

 Policies, Standards, Procedures and Guidelines

Policies, Standards, Procedures and Guidelines

Text copied from: http://mindfulsecurity.com/2009/02/03/policies-standards-and-guidelines/

As with

What are Policies, Standards, Guidelines and Procedures?

In order to protect information, businesses need to implement rules and controls around the protection of information and the systems that store and process this information. This is commonly achieved through the implementation of information security policies, standards, guidelines and procedures. However, what exactly are these? This article will explain what information security policies, standards, guidelines and procedures are, the differences between each and how they fit together to form an information security policy framework.

[image: ../_images/02x01-Policies.png]Policy, Standards, Guidelines and Procedures

Policies

A Security policy is a definition/statement of what it means to be secure for a system, organization or other entity [2 [https://en.wikipedia.org/wiki/Security_policy]]. An information security policy is a statement regarding the protection of business information. These statements are of a high level and are usually produced and supported by senior management.

The policy defines the scope of the information that has to be protected and describes at high level what type of controls must be in place to protect it. A policy commonly describes security roles and responsibilities regarding the information. Known security related policies are ISO 27001, PCI and Sarbanes-Oxley. These are included into the business policies depending on the branch of the business. Next to branch specific policies, there can be legal policies that have to be met regarding the protection of information. Businesses can have a single overall policy, or multiple specific policies targeted at individual areas, e.g. email policy and personal use policy. A policy should frequently be revisited to ensure that it is still covers all the requirements set by laws and regulations.

Standards

A standard is an established norm in regards to technical systems [3 [https://en.wikipedia.org/wiki/Technical_standard]]. An information security standard is a specific description of a certain security control. Standards can be taken from external sources, but the foundation is that a standard is there to help and support a policy.

~~Needs rewriting~~
Standards help to ensure security consistency across the business and usually contain security controls relating to the implementation of specific technology, hardware or software. For example, a password standard may set out rules for password complexity and a Windows standard may set out the rules for hardening Windows clients.

Guidelines

A guideline is a statement by which to determine a course of action [4 [https://en.wikipedia.org/wiki/Guideline]]. Guidelines are non-mandatory controls that are defined to support standards. They are commonly referred as recommendations and can act as a reference when there is no applicable standard.

Guidelines commonly are best practices that are strongly recommended, like coding style guides are. They commonly contain additional recommendations that support and improve controls that are defined in a standard. For example, a password standard may define that passwords should expire after a certain period, the password guideline would state that it is best practice to expire passwords after 30 days.

Procedures

A Procedure is designed to describe Who, What, Where, When, and Why by means of establishing corporate accountability in support of the implementation of a “policy” [5 [https://en.wikipedia.org/wiki/Procedure_(term)]].

As where a policy, standard and guideline states the controls that should be in place, a procedure details on how to implement these controls. For example, SOX, ISO27001, PCI DSS and HIPAA all call for strong cyber security defenses, with a hardened build-standard at the core, the procedure details each step that has to be taken to harden said build.

 Risk Management

Risk Management

Risk management [https://en.m.wikipedia.org/wiki/Risk_management] is the identification, assessment, and prioritization of risks (defined in ISO 31000 as the effect of uncertainty on objectives) followed by coordinated and economical application of resources to minimize, monitor, and control the probability and/or impact of unfortunate events or to maximize the realization of opportunities. Risk management’s objective is to assure uncertainty does not deflect the endeavor from the business goals.

Or in other words, risk management can be split in two parts. First, determining which risks exists and then handling those risks in a way that is best for the business. This last bit is very important, risk management is always business driven. There are four common ways to handling risk. These are:

	Acceptance; this is where the business is aware of the risk, but has decided that no action will be taken against the risk.

	Mitigation; this is when security controls are implemented to remove the risk.

	Transferring; another word for this is insurance.

	Elimination; this is, for example, when the system that is at risk is removed completely. The object with which the risk is associated is removed.

 Development Life cycle

Development Life cycle

‘Standard’ life cycles

	Waterfall Security;
The waterfall model is a sequential design process, used in software development processes, in which progress is seen as flowing steadily downwards (like a waterfall) through the phases of Conception, Initiation, Analysis, Design, Construction, Testing, Production/Implementation, and Maintenance [1 [http://en.wikipedia.org/wiki/Waterfall_model]].

	Agile Security;
Agile software development is a group of software development methods in which requirements and solutions evolve through collaboration between self-organizing, cross-functional teams. It promotes adaptive planning, evolutionary development, early delivery, continuous improvement and encourages rapid and flexible response to change. It is a conceptual framework that focuses on delivering working software with the minimum amount of work [2 [http://en.wikipedia.org/wiki/Agile_software_development]].

	Spiral;
The spiral model is a risk-driven process model generator for software projects. Based on the unique risk patterns of a given project, the spiral model guides a team to adopt elements of one or more process models, such as incremental, waterfall, or evolutionary prototyping [3 [http://en.wikipedia.org/wiki/Spiral_model]].

	Rapid Prototyping;
Software prototyping is the activity of creating prototypes of software applications, i.e., incomplete versions of the software program being developed. It is an activity that can occur in software development and is comparable to prototyping as known from other fields, such as mechanical engineering or manufacturing [4 [http://en.wikipedia.org/wiki/Software_prototyping]].

Secure Development Life cycles

MSDLC

The Security Development Life cycle (SDL) is a software development process that helps developers build more secure software and address security compliance requirements while reducing development cost.[5 [http://www.microsoft.com/en-us/sdl/default.aspx]].

As a result of its commitment to trustworthy computing proclaimed in 2002, Microsoft deﬁned the SDL to address the security issues they frequently faced in their products. SDL comprises a set of activities, which complement Microsoft’s development process and which are particularly aimed at addressing security issues.

MSDLC can be characterized as follows:

	Security as a supporting quality

	Well-deﬁned process

	Good guidance

	Management perspective

CLASP

CLASP (Comprehensive, Lightweight Application Security Process) provides a well-organized and structured approach for moving security concerns into the early stages of the software development life cycle, whenever possible [6 [https://www.owasp.org/index.php/Category:OWASP_CLASP_Project]].

Originally deﬁned by Secure Software and later donated to OWASP, CLASP is a lightweight process for building secure software. It includes a set of 24 top-level activities, which can be tailored to the development process in use.

Key characteristics include:

	Security at the center stage

	Limited structure

	Role-based

	Rich in resources

Touchpoints

The touchpoints are one of the three pillars of software security. Attaining software security may not be easy, but it doesn’t have to be a burden. By describing a manageable small set of touchpoints (or best practices) based around the software artifacts you already produce, religious warfare over process is avoided and the focus is set on the business of software security [7 [http://www.swsec.com/resources/touchpoints]].

Touchpoints provides a set of best practices that have been distilled over the years out of the extensive industrial experience of its proposer. Most of the best practices, named activities from here on, are grouped together in seven so-called touch points.

Touchpoints can be characterized as follows:

	Risk Management

	Black vs White

	Flexibility

	Examples

	Resource

Advise

We do not recommend to abandon your current development life cycle and switch to a secure one. These security development life cycles are provided as a source to migrate your own development life cycle to a secure version thereof. We recommend to use small changes of your process and use an evaluation period to ensure that everybody sees the benefits before including the next phase.

 Training

Training

“It’s all to do with the training: you can do a lot if you’re properly trained.” – Queen Elizabeth II

Training is not a one-off exercise (pun intended). Proper training is a continuous endeavor. Next to the training that is provided at various OWASP Conferences (Appsec EU, Appsec USA, Appsec Asiapac, Appsec Latam tour), local OWASP events and through this development guide, there are other organizations that provide secure development programs. Known ones are:

	SANS

	ISC2

Also various application security organizations provide forms of training.

 Acquiring secure software

Acquiring secure software

Software options

Most of the software used in a company can not be developed internally and have to be purchased from suppliers. Software acquisitions may represent a faster and/or custom response to company needs. Usually the process involves the evaluation of many possibilities, where options can be found within these categories:

	Commercial off-the-shelf (COTS)

	Made-to-order

	Company acquisitions/mergers

	Open source

The acquisition process

Most of this software can be run on systems managed by the company, or purchased as an Infrastructure-as-a-service, or provided as Software-as-a-service. As it happens for internal software development, during software acquisition, the company has to ensure the adoption of secure software. The process to achieve a secure application, should follow 4 important steps:

	planning

	contracting

	monitoring and acceptance

	follow on

Touchpoints

Touchpoints still play a fundamental role in software acquisition as to allow the company to maintain the focus on security.

	Security requirements

	Abuse cases

	Architectural risk analysis

	Security tests

	Code review (from the supplier)

	Penetration testing

	Security operations (security patch releases)

Planning

During planning a company should outline the need for a new software, identify the security requirements and produce a plan. Evaluation criteria should be defined and possible suppliers should be enquired about.

Contracting

During contracting the company asks and evaluates proposal before signing the final contract. Any proposal evaluated should include:

	statement of work (for custom softwares)

	terms and conditions

	warranties, software assurances, SLA

	manuals and instructions

	certifications provided by the suppliers

	requirements for the company

Each proposal should be evaluated by subject matter experts.

Monitoring and acceptance

During this stage the company will monitor the delivery by:

	establishing a work schedule (timelines for meeting)

	implementing change control

	reviewing and accepting deliverables

Follow on

Security is an ongoing process, therefore, software acquisition does not end when the software is fully delivered to the company, but involves also:

	software maintenance

	procedures for disposal or decommission

Software maintenance should address the release of security patches and ensure through change control that security is not reduced during any future configuration change, upgrade, patch, support. Procedures for disposal or decommission should instead ensure data is properly destroyed, migrated or archived.

 Secure Design Principles

Secure Design Principles

Defense in Depth

Also known as layered defense, defense in depth is a security principle where single points of complete compromise are eliminated or mitigated by the incorporation of a series or multiple layers of security safeguards and risk-mitigation countermeasures.

Have diverse defensive strategies, so that if one layer of defense turns out to be inadequate, another layer of defense will hopefully prevent a full breach.

Fail Safe

A security principle that aims to maintaining confidentiality, integrity and availability by defaulting to a secure state, rapid recovery of software resiliency upon design or implementation failure. In the context of software security, fail secure is commonly used interchangeably with fail safe, which comes from physical security terminology.

Unless a subject is given explicit access to an object, it should be denied access to that object, aka Fail Safe Defaults.

Least Privilege

A security principle in which a person or process is given only the minimum level of access rights (privileges) that is necessary for that person or process to complete an assigned operation. This right must be given only for a minimum amount of time that is necessary to complete the operation.

Limits the damage in case of exploited vulnerability.

In order to apply this principle, proper granularity of privileges and permissions should be established.

Separation of Duties

Also known as the compartmentalization principle [https://en.wikipedia.org/wiki/Compartmentalization_%28information_security%29], or separation of privilege, separation of duties is a security principle which states that the successful completion of a single task is dependent upon two or more conditions that need to be met and just one of the conditions will be insufficient in completing the task by itself.

Economy of Mechanism

This in layman terms is the Keep It Simple, Stupid [https://en.wikipedia.org/wiki/KISS_principle] principle because the likelihood of a greater number of vulnerabilities increases with the complexity of the software architectural design and code.

By keeping the software design and implementation details simple, the attack-ability or attack surface of the software is reduced.

Complete Mediation

A security principle that ensures that authority is not circumvented in subsequent requests of an object by a subject, by checking for authorization (rights and privileges) upon every request for the object.

In other words, the access requests by a subject for an object is completely mediated every time.

“All accesses to objects must be checked to ensure that they are allowed.”

Performance v/s Security issue:

	Results of access check are often cached

	What if permissions have changed since the last check?

	Mechanisms to invalidate or flush caches after a change are often missing

Open Design

The open design security principle states that the implementation details of the design should be independent of the design itself, which can remain open, unlike in the case of security by obscurity wherein the security of the software is dependent upon the obscuring of the design itself.

When software is architected using the open design concept, the review of the design itself will not result in the compromise of the safeguards in the software.

“The security of a mechanism should not depend on the secrecy of its design or implementation.”

If the details of the mechanism leaks then it is a catastrophic failure for all the users at once.

If the secrets are abstracted from the mechanism, e.g. inside a key, then leakage of a key affects only one user.

Least Common Mechanism

The security principle of least common mechanisms disallows the sharing of mechanisms that are common to more than one user or process if the users and processes are at different levels of privilege. For example, the use of the same function to retrieve the bonus amount of an exempt employee and a non-exempt employee will not be allowed. In this case the calculation of the bonus is the common mechanism.

Psychological acceptability

A security principle that aims at maximizing the usage and adoption of the security functionality in the software by ensuring that the security functionality is easy to use and at the same time transparent to the user. Ease of use and transparency are essential requirements for this security principle to be effective.

Security mechanisms should not make the resource more difficult to access than if the security mechanism were not present.

Problem: Users looks for ways to defeat the mechanisms and “prop the doors open”.

Weakest Link

This security principle states that the resiliency of your software against hacker attempts will depend heavily on the protection of its weakest components, be it the code, service or an interface.

Leveraging Existing Components

This is a security principle that focuses on ensuring that the attack surface is not increased and no new vulnerabilities are introduced by promoting the reuse of existing software components, code and functionality.

 Security Architecture

Security Architecture

Security architecture is not separate to the normal architecture of an application – it is an innate aspect of the architecture of even the simplest systems. Security architecture should be stable for at least two-three years in the average application.

This chapter cannot distil the enormity of the security architecture profession - there are excellent texts available which we highly recommend if you want to learn more.

There are three major domains of security architecture:

	Enablement - common services, components, patterns and practices that enable security by default

	Identity and access control - the process of correlating evidence of identity to an account, and the management of the account by the individual

	Defensive Services - common (and some would consider traditional) security services that are present in all cloud and enterprise settings - firewalls, intrusion detection / prevention, Security Incident and Event Management (SIEM), certificates, adaptive / two factor authentication, logging and correlation engines.

It is important to realise that although security is the single non-functional requirement (NFR) shared by all programs of any size, there is not a single security architecture that suits all applications.

Each organization needs to define their own security policies, preferably based around global standards like ISO 27002 or COBIT, adopt security standards (such as the OWASP Application Security Verification Standard) and guidelines (such as this document), and secure software development life-cycle (SSDLC).

Security is meaningless without two key intrinsic attributes:

	Senior management support - without senior management involvement(support), it is impossible to inculcate a security culture within the organisation, where security is an up front issue, and secure systems are not only expected, but are the norm.

	Data classification - It is possible to spend vast sums of money on useless security trinkets. If an organization does not understand where their critical assets lie, they cannot determine how best to protect them nor if they are spending too little (usually) or too much (not often, but this is a far worse outcome), or on the wrong assets.

Enablement

Patterns and practices

Shared security components

Identity and access management

Evidence of identity

Shared authentication services

Multi-factor authentication

Access Control

Identity management

Defensive Services

 Overview

Overview

Overview

Authentication is TBA.

Principles

Evidence of Identity

Authentication is the process of establishing a strong link between a person and an electronic identity principal, which is generally stored in a user object store, like an LDAP server, database, or Active Directory.
The evidence of identity in the registration process should be in line with the business risk of the application. For example, the evidence of identity for a tax return application or banking application should be quite rigorous, as anti-money laundering laws and other local laws and regulations apply, whereas the evidence of identity for social networks can be very relaxed unless there are local laws requiring real names to be used.
Evidence of identity post registration applies even if anonymous usage is encouraged or mandated. For example, under many Privacy regimes, there is a requirement that users must be given an opportunity to deal with an organization anonymously, and all business processes and storage preserves that anonymity. For example, if a user wishes to register for a competition, their name should not appear as a winner unless the user has consented to that usage.
Another misconception about evidence of identity is that it only applies during registration, but it also applies for all authentication attempts. For example, user X of a whistle blowing application expects that no one else can impersonate user X. This means adequate proof of identity is provided when logging in, such as the use of multi-factor authentication. The use of passwords alone is no longer considered safe, and so authentication should be multi-factor or risk based to prevent attackers obtaining an account improperly.

Complete mediation

The Principle of Complete Mediation requires all secured pages, functions and data to be protected by an authentication control. At its simplest, complete mediation could be implemented by

Enforce authentication

Authentication must be enforced in a trusted environment, such as at a policy enforcement point or server. If authentication is enforced in an untrusted location, such as on a mobile device or browser, authentication can always be bypassed.

Protect credentials in transit

Credentials, including session, API and function tokens, must be protected in transit to prevent disclosure to eavesdroppers. The dangers of unencrypted or clear text sessions has been amply shown by tools such as FireSheep, DriftNet and Dsniff.

Protect credentials at rest

Credentials, particularly API keys and passwords, must be properly protected from exposure.

API keys must be protected from disclosure, including in source revision control systems, as they are equivalent to username and passwords, and often allow direct remote access to an application’s inner workings.

Passwords should be salted and hashed using a modern algorithm, with cryptographic agility to allow multiple salting and hash algorithm choices. A safe password storage scheme does not allow for the reversal of password hashes into clear text. A safe alternative today is the use of a random salt:

password’ = hash(password + salt)

DerivedKey = PBKDF2(PRF, password, salt, c, dkLen)

Where PRF is a pseudo random function, such as SHA1-HMAC

A strong hashing algorithm should take a considerable amount of time on a modern computer, such as multiple rounds of SHA256 or PBKDF2.

Classification of system

Authentication Models

Single factor

Authenticating an entity entails proving a secret is known, a tangible object is possessed, or an inherent characteristic is present. A secret could be a password or pin number. A tangible object example might be an employee ID card or Yubikey. An inherent characteristic might be biometric data like a fingerprint, retinal scan, or voice recognition.

But the main point is that only one of these ‘challenges’ to the entity is used to compare against some known good data stored in single factor authentication. For some trivial purposes, the weak security provided by a password only authentication may be sufficient.

Multi-factor authentication

As laws and regulations change regularly, the reader should be aware of the regulatory environments they operate in. OWASP is not a source of legal advice. That being said, the following may be used as starting points for further research.

When protecting resources from the unauthorized, two-factor authentication is the bare minimum. Usual implementations employ an intangible secret with a real world factor like a physical key or palm print. The most popular implementation is with YubiKey type token generators either with a physical real world generator device or software token generator. It is rare to see multi-factor authentication security with biometric and physical infrastructure outside of government, medical, and banking applications but not unheard of.

For matters in the United States HIPAA for healthcare, Office of Management & Budget Memorandum 07-16 for government, and Special Publication 800-63 Electronic Authentication Guideline from the National Institute of Standards and Technology all specify when two factor authentication is part of best practices if not required.

Australian federal government departments must comply with the first four of the ASD Top 35 in addition to Australian Privacy Principles and Medicare Act if maintaining health records.

Additionally, documents from ISO 2000x (specifically ISO 20007), ISO 31000 (derived from AS/NZS 4360), NZIM, Jericho Forum, ENISA IAF, BSI Germany, and BITS Shared Assessments - AUP / SIG may apply in regards to acceptable international security practices.

Knowledge based authentication

There are two forms of knowledge based authentication(KBA). The first is static KBA where the system requests responses for secret information to be used during authentication. This is a frequently used method. It is straight forward to design and implement the storage of information the user provides. Unfortunately, the information requested is often not difficult to derive from other sources. For example date of birth, mother’s maiden name, high school attended, pet’s name, or last four digits of a Social Security number can be discovered for most people. The second type of knowledge based authentication is dynamic KBA where the system obtains data already known to the system and presents the user a challenge to verify the user knows the data the system found. Needless to say, these systems are generally more sophisticated and require more planning to execute well. A common example of dynamic KBA might include knowing the amount and/or date of the last transaction for a bank account. The bank knows when someone made their last transaction at the ATM and for what amount. This is an excellent use for knowledge based authentication because finding this information in public data stores would be unlikely. To authenticate the user in control of the bank account, the user would provide matching information to the data stored with the bank.

Risk based authentication

Risk based authentication takes into account available information and ramps up the security as specified for the profile that is built from the information gathered. A known machine accessing resources from an internally recognized IP address during customary business hours will likely generate a very low risk profile. So, the login challenge presented to the user will likely be fast and easy. By comparison a previously unseen mobile device from outside the internal network at odd hours should generate a higher risk profile and presentation of a more involved challenge or challenges would be appropriate.

Claims based identity

This method of identifying a user involves trust. Anyone that has logged in with facebook or google has used claims based identity. The basic idea is that a third-party provides the confirmation that a user has been sufficiently vetted as being that user. This allows separation of identification and authorization & access control which can simplify a lot of registration issues.

Biometric authentication

Biometric authentication

Biometric authentication is not suitable for most devices or systems on the following basis:

A) The user is covering a system owner’s risk with their life and body parts. This is an unacceptable risk.
B) Biometric credentials cannot be revoked, only removed. This means biometric credentials fail the most basic attribute of a credential - revocation.
C) Biometric authentication relies on trust of the biometric device, which unless it is strictly controlled (such as under constant vigilance such at a border crossing), is not true.
D) The false positive rate within large user populations means that biometrics cannot be used as a single factor authentication mechanism.
E) The cost of biometric devices is relatively high compared to secure alternatives, such as transaction signing tokens or SMS one time passwords.

Biometric authentication can be a useful mechanism where the user has a device under their control, and is the only enrolled user

Authentication Patterns

Self-registration UML

[image: user based registration]user based registration

Credential reset UML

Forgot credential UML

REST or API Authentication

Login UML

Login UML using WS-Security*

Login UML using OAuth2

High value transaction signing UML

Logout UML

Negative patterns

Questions and answers

Credential enumeration

Horizontal and vertical brute force

 Overview

 Assigned to LB

Overview

Session management is required to track the state of a user’s journey through a web application. It is the role of a developer/designer to create or use a session management system in a way that is secure, avoiding the leaking of this
information to an attacker, leading to common attack vectors such as replay of state, forging state or intercepting the state of another user.

Introduction

The web, by design, is stateless. In its original use case, a request would be made e.g. GET, PUT, DELETE and once the action had occurred, the protocol was complete, the previous state of the system was unknown and unimportant. Naturally,
as more complex applications have developed, it is rarely possible to create a stateless web application. As well as knowing who the user is, by means of Authentication, it is common to want to know where the user has been or is going and
whether they have done anything in the process e.g. added an item to a shopping basket, so that this information can be used at a later date. Session management is concerned with how this data is linked to the user securely and how it is
stored and ultimately used or deleted.

Although session management might be seen as a dangerous vulnerability to a web application, it can also be dangerous to try and avoid session completely, since that is more likely to cause secret information being passed in URLs or hidden fields.
It also runs counter to security best-practice which is to keep something simple in order to make mistakes easier to see or find. A correctly managed session system is not a security vulnerability any more than correctly filtered inputs or
correctly used encryption. Another objection that session is resource-intensive is not generally true, but that depends on correctly designing the content of your session data and not simply storing everything in the session. Data can be stored in
the main database or in some restricted cases, in the cookies.

Types of Attack Vector

In its most simple (and insecure) form, a session management system might simply associate a cookie with a userid and store any session data into this cookie, which would then be sent to the web client and returned to the server on subsequent
requests. This example can demonstrate the common types of attack vectors in session management. Firstly, imagine the userid and whether they are logged in are stored in the cookie. An attacker hijacks the session simply by creating a local cookie
with their target userid and a logged in flag and then visits a page on the site, they are immediately logged in to another user’s account - a simple session hijack. Secondly, imagine the type of user was stored in this session cookie (user or administrator). An attacker can easily
change their user type and get elevated privileges - a session forgery. In fact, it is common for session data to be stored on the server but there still needs to exist a link between this stored data and the user who is performing the request,
which is most commonly achieved with a session cookie recording a single identity value which is then mapped onto the session data on the server. This identity will be sent in the cookie with each request but this in itself can lead to potential
weaknesses including access of this session value via malicious JavaScript or a man-in-the-middle who can read and then re-use the session ID in another browser.

Using a Framework

In most cases, a web application will (and generally should) use a framework. These frameworks should all include their own session management system but in the world of security, we should not automatically trust that these systems are implemented
correctly. They might be partially complete, have a bug or perhaps have not been updated recently. Also, we must remember that frameworks are usually designed to meet the widest range of needs and not necessarily the most secure implementation. It
is essential that designers or developers investigate their chosen framework in line with the information contained in this document to ensure that best practice is followed and there are no differences between the security requirements of your application
and the actual framework implementation.

In some cases, your chosen framework might not contain a session management system or perhaps you are not using a framework at all. In general, this must be considered poor security practice since one of the best weapons in the security battle is to
have a lot of public exposure to a system to prove that it is reliable and secure. Writing your own system or trying to improve a poor implementation is theoretically possible but carries risk depending on your ability to correctly identify and mitigate all of the
potential weaknesses.

Elements of Secure Session Management

Cryptographically secure session identifier generation

As mentioned previously, it is common to store session data on the server and to generate a session identifier to store in a cookie. If this session identifier is not cryptographically secure (such as just using the userid of the current user) or is not suitably
random, such as incrementing a number, then the session identifier is easy to guess and the session easy to hijack by an attacker. A good session management system will generate a cryptographically secure value for a session identifier. For example, ASP.Net uses
a 24 character alphanumeric identifier (which will be web safe, as opposed to a binary value).

Where to store the session data

Although it is possible to store almost any session data in a cookie, this is not recommended and for any authorization type information should never be done. Security is best handled on a server, not decided by the contents of a small text file which is easy
to see and modify. It is preferable to only store the session id in the cookie and store the remaining data either in a database at the server-side or in memory on the web server. There are performance and cost considerations to these choices, depending on the number
of users on the system and how much data is stored in the session. There are also special considerations if you are using a web server farm due to the memory not being shared. In these cases, if you want to use a memory-based session, you need to use some type of
shared memory or a mechanism provided by your hosting provider for this purpose.

What to store in the session

One of the ways to reduce the burden on the session storage is to only keep the minimum amount of information in the session that you need to. For instance, a language choice might be kept in a cookie to keep it away from the server and based on the fact that it
is neither secret or dangerous if it was tampered with. Certain data can also be stored in the URL e.g. the current ordering of a gridview since, again, it is generally not secret and should probably not be kept in a session. Anything that is kept in hidden fields
on a page is actually visible to anyone who looks. If this data is secret, you should either keep it stored in the session or in a related database table.

HTTP Only Cookies

A session cookie in any good framework should default to setting an HTTPOnly flag. This tells the browser that the cookie cannot be accessed by JavaScript to read the session of another user who has somehow got malware script running in a site they are visiting.

SSL Only Flag

It is also recommended, wherever possible, to set the Secure flag on the cookie which enforces that the cookie is only allowed to be downloaded via HTTPS. This will only work if your site implements SSL/TLS but prevents a man-in-the-middle being able to read the contents of the cookie.

CSRF Tokens

One of the weaknesses inherent in most session systems is that tabs in a browser share session and it is therefore possible for an attacker to take a victim to a malicious site, which will then call an operation on a vulnerable target site. This visit to the target site will automatically send any relevant cookie/session data and if this in itself is enough to do something dangerous (transfer money, extract data etc.) then the attack has succeeded without the victim necessarily knowing. This is called a Cross-Site Request Forgery (CSRF).

A straight-forward way to stop this involves creating a page-unique token which is stored on the server against the session id. This unique token is stored in the page that the user requests and would be sent back as part of the next site request. If a malicious site accessed the same site, although the cookie (and session) information would be available, the unique token would not since it is embedded in another page. The site would then recognize that there is no CSRF token present (or it does not match the previous one linked to the session) and would fail validation. Most modern frameworks support this feature.

Logging and audit

One of the most important but sometimes least appreciated systems is related to logging and audit. If your organisation is unfortunate to suffer some kind of attack, one of the ways in which it can be mitigated is being able to supply law enforcement with useful data to catch the attacker as well as seeing things happening that are unusual, which might warn you of an attack that is pending. The worst case is not knowing what has happened and why and therefore not being able to prevent it happening again. Reputation is important in business and being able to deal with attacks professionally by collecting a good amount of data is important. Please see the chapter on logging for more information.

Testing for Risks

The following sections describe specific attack vectors against your site session management system and tell you how to test for the vulnerability and how to fix it, should it exist. It should be noted that some of the fixes are simply options on your session management system, whereas others will affect higher-level parts of your system design and should be considered before your application is written, to avoid the potential difficulty of retro-fitting these controls afterwards.

Session Token Transmission

If a session token is captured in transit through network interception, a web application account is then trivially prone to a replay or hijacking attack. Typical web encryption technologies include but are not limited to Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols in order to safeguard the state mechanism token. A variation on this vulnerability means that a man-in-the-middle could intercept the session id and interact directly with the server to perform additional operations without the knowledge of the user.

Applies to frameworks

All frameworks are potentially at risk

How to determine if you are vulnerable

Visit a page on your site and/or login to cause the system to create a new session. Using your browser developer tools, view the cookies for the site and find the session cookie. If it is not marked as secure and your site url is not https then you are vulnerable. Alternatively, if you know your site does not support SSL/TLS at all, then you are also vulnerable.

How to protect yourself

Set up SSL/TLS on your web server and set the Secure flag on your session cookie. Verify the fix by visiting your site, causing it to create a session cookie and using your developer tools to ensure the Secure flag is checked proving that the browser has downloaded the cookie on a secure connection.

Weak Session Cryptographic Algorithms

If your session i.d. is generated in a predictable way, it is possible for an attacker to guess an id that relates to another session and potentially hijack that other session.

Applies to frameworks

Generally applies to older frameworks. Does NOT apply to latest .Net frameworks or PHP frameworks that use the built-in PHP session functions.

How to determine if you are vulnerable

Determine a way to obtain 1000 ids within a short period of time and plot these on a graph as numbers to determine if there is a pattern. Alternatively, research your session id generation framework/function to see whether it is known to be cryptographically secure.

How to protect yourself

In general, you should not create a generation function yourself but prefer to use an alternative library/framework or update your framework to a later version that does use a secure generation protocol. A secure function will use a recognized source of randomness and optionally tie the id to the client ip address and/or a CSRF token.

Lack of Session ID Keyspace or Entropy

Even if the generation of a session id is cryptographically strong, if the output is restricted to a short number of bits or is restricted to, for instance, integers only, then the session is still potentially brute-forcible.

Applies to frameworks

Generally applies to older or homemade frameworks. Does NOT apply to the latest .Net framework or PHP frameworks that use the built-in session functions.

How to determine if you are vulnerable

Either research your framework to determine how strong the keyspace and entropy is or generate multiple session keys and ensure they are at least 20 alpha-numeric characters. Use a tool like Brutus to attempt to brute-force session ids if you cannot determine directly whether your application is vulnerable.

How to protect yourself

As with any legacy weaknesses, prefer to use another framework/library or to upgrade your framework to the latest version. It is not generally recommended to produce your own session id generation function, since you will lack the exposure and experience that has been applied to publically available frameworks.

Lack of session timeout

Any session that does not have a suitably low session time out can create an attack vector on the application. Since many end-users will forget to log out and especially in shared computer environments, the longer the session is allowed to remain active, the more time an attacker has to attempt an attack. “Remember me” functionality is particularly susceptible to this vulnerability, if it allows privileged access to the application without any further checks.

Applies to frameworks

Does NOT generally apply to newer frameworks by default but applications can be made vulnerable if session features are added to enhance the user experience!

How to determine if you are vulnerable

An application that uses any kind of trick to automate extending the user session is vulnerable.
An application that has a “remember me” function is potentially vulnerable.
A faulty or extensive session timeout can be checked easily by logging in, taking a lunch break and then attempting to continue using the application. If you are allowed to, your application is vulnerable.

How to protect yourself

Set the idle timeout for your application to between 5 and 20 minutes and ENSURE that it works by testing it. For the most protected applications, do not auto-extend the session and do not use “Remember Me” functionality. On lower risk applications, ensure that “Remember Me” is a convenience to only remember certain low-value information, such as auto-populating an email text box and does not remember e.g. a login unless you have fully risk-assessed what value that would have to an attacker.

Regeneration of Session Tokens

If a session token is kept alive for an extended period of time, even if the user is actively using the site, it extends the window that an attacker has to brute-force a specific user or to attempt to replay a previous action using the stolen session id. By recreating session ids regularly, these types of attack are mitigated.

Applies to frameworks

Applies to all frameworks

How to determine if you are vulnerable

Either research your framework to determine its default or optional regeneration functionality or stay actively logged into a site for an hour (ensure the session doesn’t expire) and see whether the session id ever changes.

How to protect yourself

If possible, regenerate tokens, either after a number of requests from a single user e.g. 30 requests = regenerate or if the traffic is lower, then after a fixed period of time e.g. 20 minutes.

Persistent Session Tokens

Even if your application uses session tokens to store its session, these are only destroyed when the browser is closed. In the case of shared environments, this is not necessarily true and if not done can expose a valid session id to an attacker.

Applies to frameworks

Applies to all frameworks

How to determine if you are vulnerable

Login to the application and check the session id. Logout and then using the browser developer tools, check to see whether the session cookie is still present with the same session id. Check to see whether other non-session id data has been removed from the cookie (if used). Any residual data or the same session id being present means your application is vulnerable

How to protect yourself

When the user logs out, destroy the session, with all its data and if possible, overwrite the session cookies with a newly generated (but useless) session id.

Session id Validation

Since many systems are designed to work correctly with the correct data, they don’t always fail in a predictable way when incorrect data is used. For instance, if a malformed session id is sent to the server and the server is not coded correctly, the logic for checking the session might break and either allow access to another session or cause some other kind of data leakage or error.

Applies to frameworks

Generally applies to older or homemade frameworks.

How to determine if you are vulnerable

A direct code inspection is most helpful to find out if and how the session id is validated before it is used to lookup a session. If this is not possible, various tests should be made by passing invalid session ids to the application being tested to ensure that the system behaves in a desired way, either recreating a valid id or displaying an error. These tests should include but not be limited to session ids that are too long, too short, have unexpected characters in, are only one character long or have unusual characters such as the NULL character (0x0) or other control characters.

How to protect yourself

Use a framework or library that performs correct validation or in the case of a homemade session function, ensure the session id is pessimistically validated before being used, for example by using a regular expression.

Session token replay or hijack

This vulnerability exists where an attacker can obtain a session token from a victim and use this to obtain their own access to the system under the pretence of being the victim. This works because many systems tie session to identity. The session id might be obtained from an undeleted session cookie, a user who did not log out, intercepted data from a network or simply by visiting a previous site on a shared computer.

Applies to frameworks

Potentially applies to all frameworks

How to determine if you are vulnerable

Take a session cookie and inject it into the application from another browser. If you are able to use the session at the same time in different browsers or if logging out from one browser session does not prevent the other from continuing to use the session, your application is vulnerable.

How to protect yourself

Use a library or framework that can tie the session to a unique browser id. Attempting access from another browser should either fail or cause intrusion detection to log out the first user.
Use a library or framework that supports session id regeneration to shorten the window of attack.
Do not use persistent cookies for session ids, which expose the session id more easily to an attacker.
Force cleanup of session data during logout including server-side session so that a replay cannot occur after the user has logged out.

Session fixation

If an attacker can force a victim into using a known value for session, then it is possible for the victim to login to the known session and thereby allow the attacker to access a session that is now authenticated with a web application.

Applies to frameworks

Any framework that allows session ids to be passed in forms or the querystring are particularly vulnerable. Other frameworks may be vulnerable.

How to determine if you are vulnerable

Research or test whether it is possible to pass a session id on the querystring, that is accepted and used by the application. If your application URL is a sub-domain (e.g. subdomain.example.com) where you have no control over the other sub-domains, you are potentially vulnerable if an attacker controls another subdomain.

How to protect yourself

Do not allow session ids to be passed in except via an HTTP cookie.
Regenerate the session id after logging in. This way, if an attacker did force the victim to login to a pre-known session, it would become invalid as soon as the victim logs in.
Some frameworks will automatically generate a new session if a session id is presented in a cookie, even if it wasn’t generated on the server. To avoid this, set a flag in the session when it is generated on the server-side and if this flag is not set when a user connects, regenerate the session id.
Perform correct wiping of session data and overwrite cookies on log out.
Use some form of browser fingerprinting including client ip address to fix a session id to a client. Although not perfect, this is a very effective against attacks from arbitrary attackers.

Detecting brute-forcing of session ids

Although a range of measures in other areas of this document are very effective in preventing session attacks, including brute-forcing, it might be desirable to attempt to detect attempted brute-forcing in order to take relevant action. Intrusion detection of this type can be detailed and complicated and will not be fully explained here but the actions you can take are reasonably limited and include IP address blocking (which does not identify individual users), account blocking (which might be real or a hacked account) or some kind of bandwidth throttling. In many cases, Intrusion Detection actions are temporary but long enough to thwart most attempts to brute-force.

Applies to frameworks

All frameworks

How to determine if you are vulnerable

Attempt to pass multiple session ids using some kind of test program in quick succession and see whether the system responds in a way that slows or prevents this happening.

How to protect yourself

You can booby-trap certain session ids and ensure these are never used in real sessions, perhaps every 100th number. If these are sent back to the server, you know someone has guessed the id and you can take any action you deem necessary such as:
1.Temporary IP address ban. Remember that commonly there are multiple users behind an IP address so a permanent ban is unlikely to be a good idea.
2.Throttle the speed for the given ip address for a certain amount of time.
3.If the user is logged on, block their account either permanently or temporarily, possibly requiring a call to reset it.
4.Investigate possible third-party solutions or libraries that might perform this work for your chosen language/framework.

Tying session to authentication or authorization incorrectly

In some applications, authentication, authorization and session are seen to be equivalent whereas in reality they are not. If they are seen as the same thing then session = authenticated = authorized. Clearly, having a session does not and should not imply that you are authenticated and even authenticated users are not necessarily authorized for a particular action.
Note that this topic overlaps with the authentication and authorization chapters.

Applies to frameworks

All frameworks

How to determine if you are vulnerable

Log into two browsers with two different users. Take the session id from one session and replace the session id in the other session. If your application is vulnerable, the server should detect the mismatch between authentication and the session id and immediately error with a forced logout.
If the system allows you to continue as the user that you logged in with (but the wrong session) then your application is vulnerable but the risk of this depends on what information is stored in the session.
If the system changes the user you are logged in with as a result of the changed session id then your system is vulnerable.

How to protect yourself

Your framework should link the session with the authenticated user (the authentication information will usually be present in a separate cookie) in a way that means that if they don’t match, this is detected and forces the user to logout, as well as deleting the session data. Your system then needs to handle what happens if two users (the legitimate one and the attacker) are both logged in when the attacker causes the system to log them out – it shouldn’t break the legitimate user’s account but would need to log them out also with a relevant message.
Use browser identification to prevent the session being used by a second person and therefore avoiding the need to logout the user and destroy the session.

Split Session Attacks

If the server has no way of linking a session id to a client, it might be possible for an attacker to piggy-back a victim’s session, possibly seeing what the victim is doing or has done.

Applies to frameworks

All frameworks

How to determine if you are vulnerable

Log into a site from one browser and then copy the session id into a cookie in another browser (or another computer). If it is possible for both users to remain in their respective browser sessions with the same session id, the session has effectively split between two different clients.

How to protect yourself

Utilise a framework or library that ties session to a specific client using a browser fingerprint and client ip address.
Use session regeneration at suitable intervals, at which point the old session can be deleted leaving one user without a session – which might be the victim!
Require re-authentication for high-value operations and regenerate the session id at this point.

Sessions in RESTful applications

RESTful applications create a special kind of session problem. The idea behind a RESTful service or application is that no state is stored server-side, all of the relevant information is stored on the client and passed in with the request, either as parameters or implied from the url that is accessed for the request. This brings special considerations for a session scheme, such as how to prevent tampering, hijacking, fixating and replay attacks.

One of the special considerations is what data can be stored in the session. Since the session is necessarily exposed outside of the server, it cannot contain any information that we cannot trust the client not to modify. For example, setting the users privilege level in a cookie that is sent to the user would not normally be done in a non-REST situation due to the chance of someone attempting to elevate their privilege but in the case of REST, there is no choice, in which case the design should not depend on storing such sensitive information in the session cookie.

Any system needs to consider encryption, hashing and message signatures to provide the necessary protections and although there are various ways to provide the required mechanisms, it is recommended that professional advice is taken before implementing a REST session system in a high-value application.

The following test cases relate to specific attack vectors on REST-based sessions.

Simple session authentication with signing

It is possible that your REST system does not require any particular session data and simply needs to authenticate each request to ensure that the client is authorized to use the service or endpoint. This requires at the very least a reliable way of obscuring login credentials, that must necessarily be passed in.

The password/secret should NEVER be passed in the query string, which can be exposed by caches, search engines and in the browser.

At a minimum, SSL/TLS should be used to secure the endpoints. In most cases, if you do NOT use SSL/TLS, many authentication systems are vulnerable to network sniffing. Even if the password/secret is obscured in some way, an attacker can often easily replay the request with the obscured data and still achieve unauthorized access to the service.

The recommended way to pass the password or secret into the system is by using some kind of message authentication code (MAC) and instead of using the secret directly, using it to sign the remainder of the request. By doing this, the server can repeat the process without the secret actually being passed (it is pre-shared) and this will verify that the secret is correct and that the request has not been tampered with. If the date/time is also used in generating the signature, it will also reduce the replay window although you will have to account for slight differences in the time between client and server due to incorrect time settings and network latency.

The following example is based on Amazon Web Services and how they derive their authorization signature:

StringToSign = HTTP-Verb + “\n” +
________Content-MD5 + “\n” +
________Content-Type + “\n” +
________Date + “\n” +
________CanonicalizedAmzHeaders +
________CanonicalizedResource;

Signature = Base64(HMAC-SHA1(UTF-8-Encoding-Of(YourSecretAccessKeyID), StringToSign));

Authorization = “AWS” + “ “ + AWSAccessKeyId + “:” + Signature;

Replaying authentication or session

Since the server should not keep track of session in a RESTful system, it cannot track any nonces that could normally be used to prevent replay attacks. For this reason, replay attacks can only be mitigated in REST rather than removed. This must take place by tying the request signatures to the current date/time which will reduce (but not remove) the attack replay window. By using SSL/TLS to encrypt client to server communications, the short replay window of perhaps 5-10 minutes should suitably reduce the risk of replays.

Another mitigation is to use the userid or equivalent in a session authentication code which can be passed as part of the session and which then makes it unusable by another user since when the server checks the MAC of the session coming back, they can determine whether this session was produced for this user or not.

1.Produce relevant session data for user and sign the results with a secret HMAC key and the userid or equivalent
2.Send the session cookie back with the data and the MAC code
3.The correct user sends back the session with the next request, the server re-computes the HMAC and it matches so it can proceed.
4.An attacker attempts to send back the correct users’ session cookie. The server attempts to generate the signature from the attacker’s use id and it doesn’t match. The request is denied.

Modifying session data to elevate privileges

As previously stated, any session data in the case of REST is exposed directly to and stored by the client. For this reason, by default, we should assume that people will attempt to modify that data to maliciously or otherwise alter the behaviour of the REST service. For this reason, the data should be protected with a MAC, such that tampering can easily be detected. This works since only the server should ever change or set session data and by using a MAC based on a key only known to the server, the user could alter the session but the MAC would then not match and the server can take appropriate action. Since the client does not know the session MAC signing key, they cannot re-compute the MAC to match the altered data.

As with all unshared secrets, the key should be of a suitably long length (256 bits or longer) and generated pseudo-randomly so that the chance of guessing or brute-forcing it is unfeasible. It can also be changed over a suitable period of time (every 3 months) since only the server needs to use this as the signing key.

Revoking sessions

Revoking sessions cannot actually be performed independently of blocking a user account since no session information is stored on the server. This means that scenarios that would normally require a session to be deleted such as logging out or intrusion detection would be carried out differently. Logging out does not occur in RESTful services since logging in is by definition a stateful process, which is not how REST is designed to work.

The main area where this might be of concern is in response to a detected attack, where a session might need removing to prevent the attack gaining privileges from a session that has been hijacked. In this case, the likely attack vector is that someone has stolen a session cookie from another user and is using it with their valid credentials. In this case, the session should be validated against the MAC and against the user. Since the server cannot store the link between session and user, it would have to form part of the session MAC e.g.

sessionMac = Base64(hmac-sha1(sessioncontents, secretmackey + thisuserid));

 Overview

Overview

Allocated to Jerry

Access control is the process of enforcing that a particular user identity has sufficient permissions to create, read, update or delete a secured resource, access a secured function, page, or data, or perform a secured business flow.

Principles

Separation of duties

Separation of duties [http://en.wikipedia.org/wiki/Separation_of_duties] is the concept of having more than one person required to complete a task.

Principle of least privilege

The principle of least privilege [http://en.wikipedia.org/wiki/Principle_of_least_privilege] requires that in a particular abstraction layer of a computing environment, every module (such as a process, a user or a program depending on the subject) must be able to access only the information and resources that are necessary for its legitimate purpose

Deny all by default

Design access controls so that they fail securely. Default access to protected resources should be denial, with access granted only if the requestor has been explicitly assigned access rights (by reason of the requestor’s identity, role or attributes depending on the access control model being used).

Policy enforcement on trusted devices

Access control can be performed anywhere, but to be effective, it must be enforced on a trusted device, typically the server. For usability or performance (latency) reasons, access control logic can be done at the client in addition to server side. However, client side code can be altered or bypassed, and so should not be trusted.

Principle of Aggregate Access Control

An important update to the OWASP Developer Guide 2013 is the concept of aggregate access control: users may be allowed to access a secured resource a reasonable number of times, or within a specified overall system limit. This prevents secured resource denial of service, or secured resource information disclosure attacks.

For example, the number of HTTP requests to a particular resource, or the web service overall, from a particular source or all sources, should be limited. Queries on data tier should be limited to prevent unnecessary full table scans or excess data downloads.

Establishing limits is dependent on the business needs of the application and capacity of the server and data stores, as well as security policy. It is advisable to design limits to be configurable, in order to adapt the application to changing business needs and capacity.

Single mechanism

Use a centralized mechanism (including libraries that call external authorization services) for protecting access to each type of protected resource. De-centralizing access control is both inefficient and can be insecure. If access control decisions are made separately in each application component, updates to access policy may not be reflected in all parts of the application.

If developing in Java or JavaScript, consider using the OWASP ESAPI [https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API] AccessController interface.

All access control decisions are auditable

Log all access control decisions that result in access denial. This allows forensic analysis for any security incidents, and can also be used proactively to detect possible attack attempts.

If feasible, log all access control decisions, including those granting access.

Protect access control metadata

The integrity of all user and data attributes and policy information used by access controls should be considered critical. Ensure these data cannot be manipulated by end users unless specifically authorized, using access control measures and data integrity measures covered elsewhere in this guide.

Common Access Control Schemes

[image: Access Control Models]Access Control Models

ACL (Access Control List), RBAC (Role Based Access Control), and ABAC (Attribute Based Access Control) are described in this guide. PBAC (Policy Based Access Control) is another perspective on ABAC. RAdAC (Risk Adaptive Access Control) is still experimental, and so is not further discussed in this guide.

Role Based Access Control

“A role based access control (RBAC [http://csrc.nist.gov/rbac/ferraiolo-kuhn-92.pdf]) policy bases access control decisions on the functions a user is allowed to perform within an organization. The users cannot pass access permissions on to other users at their discretion.”

[image: Role Based Access Control]Role Based Access Control

Access permissions (in terms of operations such as read/write) are assigned to roles, not users. Users (or subjects) are then granted roles. An access control decision for a subject is determining whether the subject has any role (one is sufficient) with the requested access. Role hierarchies allow specification of roles which contain other roles.

Mandatory Access Control

Mandatory access control (MAC [http://en.wikipedia.org/wiki/Mandatory_access_control]) refers to a type of access control by which the operating system constrains the ability of a subject or initiator to access or generally perform some sort of operation on an object or target. With mandatory access control, users do not have the ability to override the policy and, for example, grant access to files that would otherwise be restricted. This is in contrast to discretionary access control (DAC [http://en.wikipedia.org/wiki/Discretionary_access_control]), such as that used for UNIX file permissions.

Capabilities Based Access Control

Capability based security [http://en.wikipedia.org/wiki/Capability-based_security] controls access on the basis of possession of a capability, defined to be a protected object reference which, by virtue of its possession by a user process, grants that process specific access to the referenced object. A capability is typically implemented as a privileged data structure that consists of a section that specifies access rights, and a section that uniquely identifies the object to be accessed.

Capability based security and access control requires supporting infrastructure, typically the operating system, to provide secure capability generation and transmission.

Windows and .Net claims [http://msdn.microsoft.com/en-us/library/ff423674.aspx] are similar to capabilities. Claims are tokens that make a claim (such as possession of a role or access privilege) that can be trusted by the resource owner (the claim token may be digitally signed by a truster issuer, for instance). Claims based access control is used in Microsoft Azure Access Control Service (ACS) [http://msdn.microsoft.com/en-us/library/hh446534.aspx].

Attribute Based Access Control (ABAC)

ABAC [http://csrc.nist.gov/projects/abac/] is a logical access control model that is distinguishable because it controls access to objects by evaluating rules against the attributes of the entities (subject and object) actions and the environment relevant to a request. Attributes may be considered characteristics of anything that may be defined and to which a value may be assigned. In its most basic form, ABAC relies upon the evaluation of attributes of the subject, attributes of the object, environment conditions, and a formal relationship or access control rule defining the allowable operations for subject-object attribute and environment condition combinations.

[image: Attribute Based Access Control]Attribute Based Access Control

ABAC provides a more straightforward way to express access control policies in executable access control rules. For instance, an access control policy that states that data classified as secret can be accessed only by persons with secret or higher clearance, and then only from within the internal organizational network (not the Internet), can be expressed as an ABAC rule like: subject with clearance attribute of value “secret” or higher may access data with classification attribute of value “secret” when environmental condition source network has value “internal”.

Besides allowing expression of policy in rules, ABAC is resilient to changes in subject and attribute characteristics. For instance, if a subject loses his secret clearance, he immediately loses access to data classified as secret, without any need to modify access rules. Alternatively, if data is re-classified from secret to public, a subject may immediately gain access, again without any need to change any ACL or access configuration. This follows from the direct expression of policy in access control rules.

How to enforce access control

Check out the OWASP Access Control Cheat Sheet [https://www.owasp.org/index.php/Access_Control_Cheat_Sheet].

Services

Ensure that users can only access secured services and functions for which they possess specific authorization.

Services are often realized in web applications as JEE (Java Enterprise Edition) servlets [http://en.wikipedia.org/wiki/Java_Servlet], REST [http://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_web_services] resources identified as URIs, SOAP (Simple Object Access Protocol) [http://en.wikipedia.org/wiki/Simple_Object_Access_Protocol] request servers, or W3C Web Services [http://www.w3.org/2002/ws/].

If developing in Java or JavaScript, consider using the OWASP ESAPI [https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API] AccessController (assertAuthorizedForService method) interface to control access to services. Otherwise, use a similar interface to a centralized service access control decision point.

URLs

Ensure that users can only access secured URLs for which they possess specific authorization.

If developing in Java or JavaScript, consider using the OWASP ESAPI [https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API] AccessController (assertAuthorizedForURL method) interface to control access to URLs. Otherwise, use a similar interface to a centralized service access control decision point.

Files and directories

Ensure that users can only access secured data files for which they possess specific authorization.

If developing in Java or JavaScript, consider using the OWASP ESAPI [https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API] AccessController (assertAuthorizedForFile method) interface to control access to files. Otherwise, use a similar interface to a centralized file access control decision point.

Data

Ensure that direct object references are protected, such that only authorized objects are accessible to each user.

If developing in Java or JavaScript, consider using the OWASP ESAPI [https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API] AccessController (assertAuthorizedForData method) interface to control access to data. Otherwise, use a similar interface to a centralized data access control decision point.

Functions

Functions may be realized in a Web application as SOAP request types, REST operations encoded in the URI, etc.

Ensure that the application or framework generates strong random anti-CSRF (Cross Site Request Forger) tokens unique to the user as part of all high value transactions or accessing sensitive data, and that the application verifies the presence of this token with the proper value for the current user when processing these requests. This protection measure can prevent CSRF [https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet] attacks from succeeding, and is known as the Synchronizer Token Pattern [http://www.corej2eepatterns.com/Design/PresoDesign.htm].

Randomization is discussed in the Cryptography chapter of this guide.

If developing in Java or JavaScript, consider using the OWASP ESAPI [https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API] User (resetCSRFToken method) interface to create anti-CSRF tokens, and the HTTPUtilities (verifyCSRFToken method) interface to verify the token.

Better yet, consider centralizing anti-CSRF token generation and verification by using the OWASP ESAPI [https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API] AccessController (assertAuthorizedForFunction method) interface to control access to functions, including anti-CSRF token verification. Otherwise, use a similar interface to a centralized function access control decision point.

Memory and objects

If end users need direct access to data objects, ensure that the application verifies access to secured memory and objects before granting access.

If developing in Java or JavaScript, consider using the OWASP ESAPI [https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API] AccessController (assertAuthorizedForData method) interface to control access to objects. Otherwise, use a similar interface to a centralized object access control decision point.

Presentation

Ensure that the same access control rules implied by the presentation layer are enforced on the server side for that user role, such that controls and parameters cannot be re-enabled or re-added from higher privilege users. Consistency between presentation and server side also avoids user confusion.

Web Services

OAuth2

The Open Authorization v2 protocol (OAuth 2.0), specified in RFC 6749 [https://tools.ietf.org/html/rfc6749], describes how a client can obtain access to a resource owned by a third party.

In OAuth, the client requests access to resources controlled by the resource owner and hosted by the resource server, and is issued a different set of credentials than those of the resource owner. Instead of using the resource owner’s credentials to access protected resources, the client obtains an access token – a string denoting a specific scope, lifetime, and other access attributes. Access tokens are issued to third-party clients by an authorization server with the approval of the resource owner. The client uses the access token to access the protected resources hosted by the resource server.

Authorization Grants

The authorization grant may be one of four types:

	Authorization Code

	Implicit

	Resource Owner Password

	Client

If authorization is granted, the client receives an access token. The client presents this token to the resource server to actually gain access to the resource requested. How the token is presented is outside the scope of OAuth 2.0, but rather left to separate profiles.

Authorization Code Grant

[image: Auth Code Grant]Auth Code Grant

This is the type of grant used by Facebook and Google OAuth authorization servers.

Implicit Grant

[image: Implicit Grant]Implicit Grant

Resource Owner Password Grant

[image: Resource Ownder Password]Resource Owner Password Grant

Client Grant

[image: Client Grant]Client Grant

Access Tokens

Access tokens are credentials used to access protected resources. An access token is a string representing an authorization issued to the client. The string is usually opaque to the client. Tokens represent specific scopes and durations of access, granted by the resource owner, and enforced by the resource server and authorization server.

The token may denote an identifier used to retrieve the authorization information or may self-contain the authorization information in a verifiable manner (i.e., a token string consisting of some data and a signature).

In practice, a single access token type has been specified in standards - the bearer token (see RFC 6750 [http://tools.ietf.org/html/rfc6750]. This token is simply a string with an optional expiration period. The bearer token is unprotected (both integrity and confidentiality) and unauthenticated. As a result, the standard requires the use of SSL/TLS when transmitting the token.

An example bearer token looks like the following JSON object:

{
“access_token”:”mF9.B5f-4.1JqM”,
“token_type”:”Bearer”,
“expires_in”:3600
}

Verification of the token is not specified. It is entirely proprietary. In the case where the authorization server and resource server are the same, or co-located, a local lookup of the presented access token can be done. Otherwise, the authorization server provides a proprietary way to enquire as to the legitimacy of the token (see Interoperability section following).

Interoperability

OAuth 2.0 specifies the granting of a token, but does not specify how tokens are verified. The only current standard token profile, for bearer tokens, also does not specify how the bearer token, which is not signed, is to be verified by the resource server. As a result, interoperability is something of an issue, and different OAuth 2.0 providers handle verification differently. A developer implementing OAuth 2.0 will need to customize based on the provider.

For example, Facebook offers a graph API [https://developers.facebook.com/docs/facebook-login/login-flow-for-web/v2.0] to verify an access token:

GET graph.facebook.com/debug_token?input_token={token-to-inspect}&access_token={app-token-or-admin-token}

Note: Facebook doesn’t use a strictly standard authorization request, either!

Google offers a tokeninfo endpoint [https://developers.google.com/accounts/docs/OAuth2UserAgent?hl=es#validatetoken] to verify an access token:

https://www.googleapis.com/oauth2/v1/tokeninfo?access_token=1/fFBGRNJru1FQd44AzqT3Zg

Calling an API using OAuth2

How to include an OAuth access token with API calls is specified in the token type profile. For bearer tokens, three approaches are available in the profile:

	Authorization Request Header Field

	Form-Encoded Body Parameter

	URI Query Parameter

The first method places the access token in a bearer authentication scheme in the Authorization HTTP header:

 GET /resource HTTP/1.1
 Host: server.example.com
 Authorization: Bearer mF_9.B5f-4.1JqM

This method is the only one resource servers must support.

The second method places the access token in the HTTP request body as a parameter:

 POST /resource HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded

 access_token=mF9.B5f-4.1JqM

The last method places the access token in the URI as a query parameter, but is not recommended unless the other methods cannot be used by the client:

 https://server.example.com/resource?access_token=mF_9.B5f-4.1JqM&p=q

Asking users for permission

REST

Claims based access control (Windows Azure)

XACML

Look at PicketBox, an open source XACML implementation for more details.

ABAC Architecture

[image: ABAC Architecture]ABAC Architecture

Policy Enforcement Point (PEP)

Enforces policy decisions in response to a request from a subject requesting access to a protected object; the access control decisions are made by the PDP (Policy Decision Point).

Policy Decision Point (PDP)

Computes access decisions by evaluating the subject, object and environmental attributes provided by the PEP and PIP against the access control policy.

Policy Information Point (PIP)

Serves as the retrieval source of attributes, or the data required for policy evaluation to provide the information needed by the PDP to make the decisions.

Policy Administration Point (PAP)

Provides a user interface for creating, managing, testing, and debugging access control policies, and storing these policies in the appropriate repository.

References

 Input validation

Input validation

Allocated to Viral

Background

Majority of today’s applications get exploited because it fails to validate the input coming from users, files, third party applications, infrastructure, external entities, database systems or by other processes. Almost every application on the web requires some sort of input from the listed entity. These input sources can be a great starting point for an attacker. Hence, all inputs to an application must be checked and validated before processing it.

Following are a detailed list of vulnerabilities against which an application can be protected just by validating an input:

	HTML Injection

	Buffer Overflow

	Code Insertion

	Social Engineering

Principles

Assume every input field is vulnerable and user has malicious intention

It is a good practice to assume that all the user input has malicious intention. Developer must develop a proper logic where an application can draw a boundry between malicious and trusted user input. For example, if you call an external Web service that returns strings, how do you know that malicious commands are not present? Also, if several applications write to a shared database, when you read data, how do you know whether it is safe?

Validation should be the core part of the application

Developers should consider a centralized approach to validate every input area of an application. Input validation strategy should be a core element during the development process.

Sometimes it is difficult to apply a common strategy application wide in such case individual fields of the forms of an application require a special validation, for example, with specifically developed regular expressions. However, you can frequently factor out common routines to validate regularly used fields such as e-mail addresses, titles, names, postal addresses including ZIP or postal codes, and so on.

Client-side validation are easy to bypass

Server-side code should perform its own validation. Client side validation code are easily seen by an attacker using view source facility in browsers and hence can be bypassed. Also, if the user has configured their browser to not run JavaScript then in that case the validation will fail.

Use client-side validation to help reduce the number of round trips to the server but do not rely on it for security. This is an example of defense in depth.

Reject all known bad input - paraphrasing required

Deny “bad” data; although do not rely completely on this approach. This approach is generally less effective than using the “allow” approach described earlier and it is best used in combination. To deny bad data assumes your application knows all the variations of malicious input. Remember that there are multiple ways to represent characters. This is another reason why “allow” is the preferred approach.

While useful for applications that are already deployed and when you cannot afford to make significant changes, the “deny” approach is not as robust as the “allow” approach because bad data, such as patterns that can be used to identify common attacks, do not remain constant. Valid data remains constant while the range of bad data may change over time.

Encrypt sensitive cookie state -

paraphrasing required and put good example from Apple documentation

Cookies may contain sensitive data such as session identifiers or data that is used as part of the server-side authorization process. To protect this type of data from unauthorized manipulation, use cryptography to encrypt the contents of the cookie. Make sure that users do not bypass your checks. Make sure that users do not bypass your checks by manipulating parameters. URL parameters can be manipulated by end users through the browser address text box. For example, the URL http://www.//sessionId=10 has a value of 10 that can be changed to some random number to receive different output. Make sure that you check this in server-side code, not in client-side JavaScript, which can be disabled in the browser.

 Output encoding

Output encoding

Allocated to Viral

Background

Principles (if any)

Positive controls

Control

How to build a secure using Control to help you, including (or even just) UML diagrams. I prefer swim lanes, but as long as it prints in landscape mode, I’m cool. I don’t want portrait diagrams as this is impossible to reflow automatically using our tools.

 Business Logic Flaws

Business Logic Flaws

Background

Principles (if any)

Positive controls

Control

How to build a secure using Control to help you, including (or even just) UML diagrams. I prefer swim lanes, but as long as it prints in landscape mode, I’m cool. I don’t want portrait diagrams as this is impossible to reflow automatically using our tools.

 Accountability

Accountability

Allocated to Chris

Background

Principles (if any)

Positive controls

Control

How to build a secure using Control to help you, including (or even just) UML diagrams. I prefer swim lanes, but as long as it prints in landscape mode, I’m cool. I don’t want portrait diagrams as this is impossible to reflow automatically using our tools.

 Data Protection

Data Protection

Allocated to AJV

Background

Data protection is one of the top priorities of secure development, and yet one of the least well developed from an API point of view. It is possible to increase the trust of your application considerably with a few well chosen data protection controls.

Various laws and regulations exist to protect user privacy. Users expect their data to be handled well as a baseline requirement, particularly when it comes to the cloud. It is no longer sufficient to protect against SQL injection and consider data protection done. Users expect more from software vendors. Organisations will not trust their data with you unless you have a strong end to end data protection architecture.

With recent events exposing both mass surveillance of the Internet, as well as the memory scraping attacks favored by attackers, it is important for developers to include countermeasures to protect data at rest, during processing and data in transit.

Principles

Encrypt all data in transit

Ten years ago, it was very common for the majority of applications to transmit all their data unencrypted. There is still strong resistance to the idea of encrypting all data, but end to end encryption is essential to building trust between you and your users.

With the collection and analysis of metadata shown to be a clear and present danger to the Internet at large, it is important to ensure that all communications to and from your services are encrypted. This doesn’t prevent mass surveillence understanding the size or who connects to your services, but it does prevent basic data leakage, which is very common with older web apps and many mobile applications.

For more information, please see TBA below.

Encrypt sensitive data at rest

Data stored in the cloud, or even bulk data collections require protection from interception and exfiltration. Generally, high value records should be protected, such as:

Data that could be considered a private record under privacy legislation, which may include (but is not limited to):

	Name, phone, e-mail and address (generally taken together, but refer to your local privacy laws)

	Gender

	Political affiliations

	Health records or status

	TBA (need to look at privacy legislation)

It is important to understand that simply using database engine “encryption” facilities does not protect against application level attacks against bulk data stored in the database, nor does it stop database administrators from accessing that data. Therefore, it should be up to the application to ensure that the data being encrypted cannot be viewed or decrypted without obtaining the private key held on the application server.

This approach allows for safe storage in the cloud, as long the key is not stored with the data. If you store the key with the data, that is called “plain text equivalent” and provides no real protection.

For more information, please see TBA below and in the cryptography chapter.

Protect sensitive data in processing

A common security flaw is direct object references, where a URL design, particularly in RESTful webservices:

http://example.com/webservice/member/32351/edit

But what happens when you change the URL to the following?

http://example.com/webservice/member/32352/edit

If your application does not protect against this issue, which is also the OWASP Top 10 #4 software flaw, data protection is at risk. It is important to enforce direct object reference security wherever a primary key is used to access data.

For more information, please see TBA below.

Clear memory as soon as you’re done with it

One of the most common modern attack techniques is to inject malware into an application, and scrape the application’s memory for sensitive data. With a large virtual memory space, this can include the memory allocator’s work pages, which are often not zeroed out. This means that if you create a sensitive string in memory, such as a password or a certificate, or a special value such as account roles or balances, an attacker can scrape your memory and obtain these values.

For more information, please see TBA below.

Positive controls

Use end to end encryption for data in transit

The simplest and easiest method is to encrypt all communications to and from your application. As shown recently, this should also include connections to back end systems such as cloud data storage, application analytics, databases, data warehouses, and web services, as it can no longer be assumed that interception of backend traffic is unlikely. In fact, interception of data center traffic is likely

Although there are numerous methods to encrypt traffic between systems, the most common is the use of Transport Layer Security (TLS), often called “SSL encryption” by the lay person. Your application framework or application server should contain instructions on TLS configuration, not only in the traditional sense to web and mobile clients, but also to back end systems such as database servers.

For more information, please review the Cryptography chapter, section TBA.

Create per-installation encryption keys for data at rest

Encrypting data at rest needs to protect against a few different attack scenarios:

	Bulk data extraction, such as from SQL injection attacks

	Malicious administrator attacks, where an administrator accesses data directly from database administration tools

	Internal attacks, such as logging on to the database using application credentials

	Accidental loss, such as backups being exposed or lost

All of these scenarios can be protected against by encrypting sensitive data in the application’s data models. There are a few drawbacks to this approach, including loss of indexing. However, as long as the data is stored on a system other than the application server, dividing the application encryption key and the encrypted data apart will raise the bar for any but the most determined and advanced attackers.

For the highly sensitive data, encrypting within a hardware st

Use secure strings

With ASP.NET 2.0 and later, and with Java ???, it is possible to use secure string classes that protect against memory scraping attacks.

However, in most programming languages, it is not possible to keep memory safe from memory scraping attacks, so the best advice is to ensure sensitive data is zeroed as fast as possible once the use for the sensitive

Use prepared statements, parameterized queries, Active Record, ORMs, or data bindings

As a developer, you should be familiar with the concept of SQL injection (TBA: link to Testing Guide). You can completely avoid SQL injection via the use of prepared statements (also known as parameterized queries), Active Record data access pattern, or Object Relational Mapping engines (ORMs).

All major platforms have support for one or more of these safer alternatives to dynamic queries. You should be using them unless you have a very specific requirement for dynamic queries, such as report writing.

If you have to use dynamic queries, you are responsible for escaping data provided by end users, as this data can be both hostile or accidentally damaging to your database.

NB: it is not possible to escape table names, SQL DDL (such as “ORDER BY”, or “DESC” or “ASC”, etc), and so on. If your dynamic query relies upon user supplied input for this unescapable data, you should strongly validate that data, and review if you could use another data access mechanism, such as prepared statements or an ORM.

Unit or Integration Test Cases

testForEncryption()

Ensure integration and unit tests can test for secure sockets are in use between the end user and application server, as well as between application server and any other trust boundaries, such as database server, in app analytics, content delivery networks, and so on.

testValidDirectObjectReference()

Test your data model to ensure that user A’s records can be created, read, updated and deleted by User A.

For example, create a setUp() that logs in as User A (Alice), and then inserts a record.

Then for the test, login as User A (Alice), and as Alice try to create a new record, read both records, updates one or both records, and finally deletes Alice’s records.

testInvalidDirectObjectReference()

Test your data model to ensure that trying to read an invalid data direct object reference does not work. This will prevent an attacker possibly reading the random user data.

For example, create a setUp() that logs in as User A (Alice) and creates valid records for Alice.

Then for the test, either don’t login, or login as another valid user, such as “

testsomeOneElsesDirectObjectReference()

Test your data model to ensure that user A’s records cannot be accessed or manipulated by user M.

For example, create a setUp() that logs in as User A (Alice), and inserts a record. Then for the test, login as User M (Mallory), and as Mallory try to create, read, update or delete Alice’s records.

Abuse Cases

Protect against direct object references

Negative patterns

Using dynamic queries for SQL or LDAP access

Control that should never ever appear under pain of infinite nyan cat

e.g. shared knowledge questions or answers, or dynamic SQL queries

References

Secure strings

Data retention

Privacy

Data at rest controls

PCI DSS requirements

 Files And Resources

Files And Resources

Background

Principles (if any)

Positive controls

Control

How to build a secure using Control to help you, including (or even just) UML diagrams. I prefer swim lanes, but as long as it prints in landscape mode, I’m cool. I don’t want portrait diagrams as this is impossible to reflow automatically using our tools.

 Cryptography

Cryptography

Note: Email me if you have questions.

Objective

This section will attempt to teach you how to use cryptography (colloquially referred to as “crypto”) correctly. The target audience is primarily software developers, not system administrators nor operations staff.

Specifically, it will teach you:

	What functionality various cryptographic primitives can provide and when the use of them is appropriate.

	What cipher modes are and understanding their various strengths and weaknesses.

	About encryption padding schemes and where and how to use them.

	About the basics about cryptographic key management.

	How to avoid common errors when using cryptography.

It will not attempt to cover: [1]

	How to break cryptography (i.e., cryptanalysis), but will point out the properties and limitations of the cryptographic tools, and the dangers to watch out for

	How to design or implement cryptographic algorithms or cryptographically secure pseudo-random number generators. Moreover, it discourages you from doing so yourself.

	PKI and X.509 certificates

	Configuration issues for point-to-point encryption involving SSL/TLS configuration, SSH configuration, or IPSec configuration.

	Cryptographic protocols

Platforms Affected

All Relevant COBIT Topics

	DS5.8 – Cryptographic Key Management

Glossary of Cryptographic Terms

Like most specialized technical areas, cryptography has its own specific jargon. Rather than trying to define each term as it is used and cause possible distractions for those with familiarity with these terms, we will refer you to the definitions in the following glossaries:

	http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf

	http://www.cryptomuseum.com/crypto/glossary.htm

	http://www.ciphersbyritter.com/GLOSSARY.HTM

There are also more general Internet security glossaries here:

	http://tools.ietf.org/html/rfc4949

	http://www.garlic.com/~lynn/secure.htm [http://www.garlic.com/%7Elynn/secure.htm]

Description

Uses of Cryptography

Initially primarily restricted to the military and the realm of academia, cryptography has become ubiquitous thanks to the Internet. Common every day uses of cryptography include mobile phones, passwords, SSL VPNs, smart cards, and DVDs. Cryptography has permeated through everyday life, and is heavily used by many web applications.

Cryptography (aka, crypto) is one of the more advanced topics of information security, and one whose understanding requires the most schooling and experience. It is difficult to get right because there are many approaches to encryption, each with advantages and disadvantages that need to be thoroughly understood by web solution architects and developers.

The proper and accurate implementation of cryptography is extremely critical to its efficacy.
A small mistake in configuration or coding will result in removing most of the protection and rending the crypto implementation useless.

A good understanding of crypto is required to be able to discern between solid products and snake oil. The inherent complexity of crypto makes it easy to fall for fantastic claims from vendors about their product. Typically, these are “a breakthrough in cryptography” or “unbreakable” or provide “military grade” security. If a vendor says “trust us, we have had experts look at this,” chances are they weren’t experts!

Confidentiality

For the purposes of this OWASP Development Guide, we define “confidentiality” as “no unauthorized disclosure of information”. Cryptography addresses this via encryption of either the data at rest or data en transit by protecting the information from all who do not hold the decryption key. We also use cryptographic hashes (i.e., secure, one way hashes) to prevent passwords from disclosure.

Authentication

Authentication is the process of verifying a claim that a subject is who it says it is via some provided corroborating evidence. We use cryptography for authentication in several different ways. First, we use crypto to protect the provided corroborating evidence (e.g., hashing of passwords for subsequent storage as we just mentioned). Secondly, authentication protocols (e.g., challenge-response protocols, such as MS-CHAPv2) often use cryptography to either directly authenticate entities or to exchange credentials in a secure manner. Finally, cryptography is frequently used to verify the identity one or both parties in exchanging messages. Such is the case when cryptography is used with Transport Layer Security (TLS) and its predecessor, Secure Socket Layer (SSL).

Integrity

We define “integrity” as ensuring that even authorized users have performed no accidental or malicious alternation of information. Cryptography can be used to prevent tampering by means of Message Authentication Codes (MACs) or Digital Signatures, both which will be discussed later. When you hear the term “message authenticity” being referred to, it is really referring to integrity. It sometimes is referred to as “authenticated encryption” as well, although in the case of symmetric encryption and shared keys, it really doesn’t authenticate the sending party per se. (However, if asymmetric encryption is used, one can in fact use it to authenticate the sender.)

Non-repudiation

Non-repudiation comes in two flavors…non-repudiation of sender ensures that someone sending a message should not be able to deny later that he or she sent it. Non-repudiation of receiver means that the receiver of a message should not be able to deny that she received it. Cryptography can be used to provide non-repudiation by providing unforgeable messages or replies to messages.

Non-repudiation is useful for financial, e-commerce, and contractual exchanges. Non-repudiation is accomplished by having the sender and/or recipient to digitally sign some unique transactional record.

Attestation

Attestation is the act of “bearing witness” or certifying something for a particular use or purpose. (For example, Digital Rights Management is interested in attesting that your device or system hasn’t been compromised with some back-door to allow someone to illegally copy DRM-protected content.) Cryptography can be used to provide a “chain of evidence” that everything is as it is expected to be to prove to challenger that everything is in accordance with the challenger’s expectations. For example, remote attestation can be used to prove to a challenger that you are indeed running the software that you claim that you are running. Most often, attestation is done by providing a chain of digital signatures starting with a trusted (digitally signed) boot loader. An example of this is the secure boot loader that comes with Microsoft Windows 8 on computers supporting Unified Extensible Firmware Interface (UEFI).

This OWASP Development Guide will not discuss the use of cryptography for attestation purposes further as it is not something with which most developers will have to deal. Attestation is generally discussed in the context of a Trusted Platform Module (TPM), Digital Rights Management (DRM), and UEFI Secure Boot.

Cryptographic Primitives

Cryptographic Hashes

Cryptographic hashes, also known as message digests, are functions that map arbitrary length bit strings to some fixed length bit string (referred to as the “hash value” or “digest value”). These hash functions are many-to-one mappings that are compression functions.
To be useful in a cryptographic sense, a hash function H operating on input x such that digest value d = H(x), hash function H must have the following three properties:

	They must be one-way functions. That is, given hash algorithm H and digest value d, it is computationally infeasible to compute input x.

	Given input x such that d = H(x), it is computationally infeasible to find a second input x’, such that H(x’) yields the same digest value d.

	It is computationally infeasible to find two different inputs, x and x’ such that both hash to the same value; that is, such that H(x) == H(x’) where x != x’.
Such cryptographic hash functions are used to provide data integrity (i.e., to detect intentional data tampering), to store passwords or pass phrases, and to provide digital signatures in a more efficient manner than using asymmetric ciphers. Cryptographic hash functions are also used to extend a relatively small bit of entropy so that secure random number generators can be constructed.

When used to provide data integrity, cryptographic functions come in two flavors, keyed hashes (called “message authentication codes”) and unkeyed hashes (called “message integrity codes”).
Hash algorithms to avoid: MD2, MD4, MD5, SHA-0 (aka, SHA), and any hash algorithm based on Cyclic Redundancy Check (CRC).

	Hash algorithms to avoid (except as required by legacy code): SHA-1

	Recommended hash algorithms: SHA-2 (i.e., SHA-224, SHA-256, SHA-384, and SHA-512), SHA-3 (aka, Kecak)

Ciphers

A cipher is an algorithm that performs encryption or decryption. Modern ciphers can be categorized in a couple of different ways. The most common distinctions between them are:

	Whether they work on fixed size number of bits (block ciphers) or on a continuous stream of bits (stream ciphers).

	Whether the same key is used for both encryption and decryption (symmetric ciphers) or separate keys for encryption and decryption (asymmetric ciphers).

Symmetric Ciphers

Symmetric ciphers encrypt and decrypt using the same key. This implies that if one party encrypts data that a second party must decrypt, those two parties must share a common key.
Symmetric ciphers come in two main types:

	Block ciphers, which operate on a block of characters (typically 8 or 16 octets) at a time. An example of a block cipher is AES.

	Stream ciphers, which operate on a single bit (or occasionally a single byte) at a time. Examples of a stream ciphers are RC4 (aka, ARC4) and Salsa20.
Note that all block ciphers can also operating in “streaming mode” by selecting the appropriate cipher mode.

Recommendations

	Symmetric cipher algorithms to avoid: DES, using any algorithm with a key size of less than 80 bits

	Symmetric cipher algorithms to avoid (except as required by legacy code): RC4 (Note: RC4 is very badly broken. It should be considered for replacement even for legacy use.)
Recommended symmetric cipher algorithms: AES, 3-key Triple DES (aka, DESede[2]), Salsa20

Cipher Modes

Block ciphers can function in different modes of operations known as “cipher modes”. This cipher mode algorithmically describes how a cipher operates to repeatedly apply its encryption or decryption mechanism to a given cipher block. Cipher modes are important to have an awareness of because they have an enormous impact on both the confidentiality and the message authenticity of the resulting ciphertext messages.

The simplest cipher mode—and unfortunately often the only one introduced in introductory textbooks or cryptography examples—is known as Electronic Codebook (ECB). ECB mode is simply a repeated application of the block cipher’s raw encryption (or decryption) operation on the corresponding block of plaintext (or ciphertext for decryption). As simple as ECB mode is, it almost always should be avoided as it is fraught with various easily exploitable cryptographic vulnerabilities. All cipher modes other than ECB require an “initialization vector” (IV) to initialize the encryption process.

Almost all cryptographic libraries support the four original DES cipher modes of ECB, CBC (Cipher Block Chaining), OFB (Output Feedback), and CFB (Cipher Feedback). Many also support CTR (Counter) mode.

The discussion of all the nuances of cipher modes is beyond the scope of this document; however, some further comments will be discussed about cipher modes a bit later. [3]

Initialization Vectors

In cryptography, an initialization vector (IV) is a fixed size input to a block cipher’s encryption / decryption primitive. The IV is recommended (and in many cases, required) to be random or at least pseudo-random. We will discuss IVs and their related requirements later in this document.

Padding

Block ciphers generally operate on fixed size blocks (the exception is when they are operating in a “streaming” mode). However, these ciphers must also operate on messages of any sizes, not just those that are an integral multiple of the cipher’s block size.

Asymmetric Ciphers

Asymmetric ciphers encrypt and decrypt with two different keys. One key generally is designated as the private key and the other is designated as the public key. The public key generally is widely shared.

Asymmetric ciphers are several orders of magnitude slower than symmetric ciphers. Because of that, they are used frequently in hybrid cryptosystems, which combine asymmetric and symmetric ciphers. In such hybrid cryptosystems, a random symmetric “session” key (i.e., a key only used for the duration of the encrypted communication) is generated. This random session key is then encrypted using an asymmetric cipher and the recipient’s private key. The plaintext data itself is encrypted with the session key. Then the entire bundle (encrypted session key and encrypted message) is all sent together. Both TLS and S/MIME are common cryptosystems using hybrid cryptography.

Practices to avoid

With all asymmetric ciphers, chosen plaintext attacks [4] are always a concern. Because the public key is always considered as known to potential adversaries, attackers can always encrypt any arbitrary plaintext and observe the resulting ciphertext. Ordinarily, this is not a cause for concern because the plaintext that is to be encrypted with an asymmetric cipher is highly unpredictable (e.g., encrypting session keys or cryptographic hash values). However, chosen plaintext attacks become an issue when using public-key crypto to encrypt highly structured / regular plaintext, especially when that plaintext has a limited length to make encrypting of all possible plaintexts practical. Consider the ill-advised scenario where an application is using RSA encryption to encrypt plaintext social security numbers or bank account numbers and then storing the resulting ciphertext into the application’s database. An inside attacker who as access to the database (but not the RSA private key) could use the RSA public key (which we assume is available) and use it to encrypt all possible SSNs, keeping a map of SSN to ciphertext. The attacker could then use the resulting ciphertexts to determine which plaintext SSN corresponds to which DB record by searching by the ciphertext SSN in the database. Consequently, asymmetric encryption algorithms should generally be avoided when the plaintext follows some predictable format or it can largely be enumerated over all possible plaintext values. For such situations, one should use symmetric ciphers instead.

Cipher Modes and Padding for Asymmetric Ciphers

Cipher modes and padding are still pertinent to asymmetric ciphers, however the cipher mode is almost always ECB [5]. (This is not a problem when the data being encrypted is a random session key.) For padding, generally some form of OAEP is used. PKCS5 (or PKCS7) padding should generally be avoided with asymmetric encryption.

Note that encryption using asymmetric ciphers and OAEP has some limitation though. For example, when OAEP is used as a padding scheme for RSA (that is, RSAEP-OAEP is being used), PKCS1 v2 states that the maximum length of any message that may be encrypted using RSA is:

k - (2 * hLen) - 2

where	k		is the RSA modulus length
and		hLen	is the # of octets in the chosen hash function.

	Asymmetric cipher algorithms to avoid: TBD

	Asymmetric cipher algorithms to avoid (except as required by legacy code): TBD

	Recommended asymmetric cipher algorithms: RSA with at modulus of at least 2048-bits, Elliptic Curve (see Daniel J. Bernstein’s and Tanja Lange’s http://safecurves.cr.yp.to/index.html and/or NIST FIPS 186-3 for recommended curves)

Digital Signatures

Digital signatures are a cryptographically unique data string that is used to ensure data integrity and prove the authenticity of some digital message. and that associates some input message with an originating entity. A digital signature generation algorithm is a cryptographically strong algorithm that is used to generate a digital signature.

Key Exchange and Key Agreement Algorithms

Key exchange algorithms (also referred to as key establishment algorithms) are protocols that are used to exchange secret cryptographic keys between a sender and receiver in a manner that meets certain security constraints. Key exchange algorithms attempt to address the problem of securely sharing a common secret key with two parties over an insecure communication channel in a manner that no other party can gain access to a copy of the secret key. Traditionally this has relied on two humans somehow securely exchanging keys out-of-band; e.g., via a direct face-to-face meeting or mailing an attachment as an encrypted zip file that is encrypted with a previously shared passphrase, etc. However, the traditional methods do not allow two unknown parties who have never met to exchange a secret key with each other. In fact, proof of (or at least, high confidence in) identity is a major unsaved problem in such cases.

Key agreement protocols are protocols whereby N parties (usually two) can agree on a common key without actually exchanging the key. When designed and implemented properly, key agreement protocols are preventing adversaries from learning the key or forcing their own key choice on the participating parties.

This Development Guide will discuss key exchange and key agreement algorithms later in the context of key management.

Common Cryptographic Concerns

Too often, cryptography is treated as a silver bullet for security, but many times it is poorly implemented or simply misapplied, causing at best no additional security and at worst, weakened security.

Therefore, knowing how to apply cryptography correctly is just as important as knowing when to apply it. All too often a sufficient key length and a strong cipher (e.g., using AES with a 256-bit key) is used incorrectly in ways that can significantly weaken it or even make it useless.

Providing Confidentiality

Using cryptography for encryption to prevent disclosure of data is one of its most common uses, but one needs to be careful in how one uses cryptography to encrypt. There is more to it than simply picking a strong algorithm and a sufficiently large key size; getting it wrong means you only have provided the illusion of security.

Choosing a Cipher Type: Streaming vs. Block Ciphers

The first choice when encrypting is to decide whether a block cipher or a stream cipher (or equivalently, a block cipher operating in streaming mode) is the most appropriate. If the output is coming in as a continuous stream and you are simply forwarding on as an encrypted stream, then use a stream cipher or a cipher operating in streaming mode. If the input is chunked (e.g., reading blocks from a file) or you want to encrypt something and store the ciphertext for some period, then you probably should use a block cipher.

Choosing a Cipher Specification: Algorithm, Cipher Mode, Padding, and Key Size

Choosing an Algorithm

If you chose a block cipher, AES is your best choice. Don’t use anything else unless you need it to support legacy systems or you need an algorithm that is intentionally slow (e.g., when computing password hashes; consider how bcrypt uses Blowfish because of its slow key setup).

If you really must select a stream cipher, Salsa20 is a good choice, but using a streaming cipher mode with a block cipher such as AES will work just as well and is the recommended way to go, as that approach has options that are more flexible, especially since Salsa20 is not widely implemented outside of C, C++, and Python. RC4 is acceptable for legacy software where it is required for compatibility, but in general, you should avoid it because of known cryptographic weaknesses.

Authenticated vs. Non-authenticated Encryption

Authenticated Encryption (AE) is any block cipher mode that provides confidentiality, data integrity, and authenticity of the data. Specifically, AE ensures the authenticity of the ciphertext (or more generally, the IV and ciphertext) in a manner that can guarantee that the IV and/or ciphertext has not been tampered with. This is important as it prevents chosen ciphertext attacks such as padding oracle attacks.

In general, one should prefer authenticated encryption modes whenever there is a chance that an adversary may have a chance to alter or provide the IV and/or ciphertext that you are attempting to decrypt. (A good reason to develop a threat model before you design your encryption.)

Recommended AE cipher modes are Counter with CBC-MAC (CCM) and Galois/Counter Mode (GCM). Both CCM and GCM are NIST approved and patents encumber neither. CCM is the simpler of the two and thus less likely to be fraught with side channels in its implementations. GCM is supposedly more parallelizable so may provide better throughput (at least when implemented in hardware), but it seems to make many cryptographers nervous because there are so many things to get exactly right. [Note to Java developers: Oracle’s JDK 7 now supports both CCM and GCM in the SunJCE. If you are using an earlier JDK release, you can use Bouncy Castle as your JCE provider. In lieu of using an AE cipher mode, you can “wrap” an HMAC around the IV and ciphertext and check its validity before decrypting. (The so-called “encrypt-then-MAC” approach. [6]) This is the approach that OWASP ESAPI 2.x (Java) has taken when an AE cipher mode is not available; in fact, it is ESAPI 2.x’s default mode for symmetric encryption. There is no standard supported AE mode in Microsoft’s .NET Framework, however some members of the .NET security team have made a .NET assembly supporting both CCM and GCM modes available here [http://blogs.msdn.com/b/shawnfa/archive/2009/03/17/authenticated-symmetric-encryption-in-net.aspx]. A more complete list of authenticated encryption modes may be found on the NIST Modes Development page [http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html]. Note that if no AE mode is available and you decide to use the encrypt-then-MAC approach, do not use the same key for both the encryption and the MAC.

Cipher Padding

A streaming cipher or a block cipher using a streaming mode such as OFB, CFB, CTR, etc. does not require padding. However, we recommend that you use padding with any block cipher that uses a block mode (e.g., CBC). For symmetric block ciphers, PKCS7 (RFC 5652) or PKCS5 padding are good choices as they are supported by almost all cryptographic libraries. For most practical purposes, PKCS5 padding is the same as PKCS7 padding, except that technically, PKCS5 padding can only be used to pad ciphers whose block size is 64 bits (In fact, the standard SunJCE cryptographic provider in Java supports only PKCS5 padding, but not PKCS7 padding. On the other hand, the .NET Framework supports only PKCS7 padding, but not PKCS5 padding. Fortunately, in practice, these two padding schemes can generally be used interchangeably.) For asymmetric ciphers, one needs to be more cautious in the choice of padding because of cryptographic weaknesses with some padding schemes used with such ciphers. For the RSA algorithm, we recommend the OAEP padding scheme OAEP with SHA-1 and MGF1 padding (OAEPWithSHA1andMGF1Padding)

Recommended: Block ciphers using block mode – PKCS7 or PKCS5 padding; with RSA - OAEPWithSHA1andMGF1Padding

A Final Word About Cipher Modes

Using a cipher in its “raw” form is referred to as Electronic Code Book (ECB) mode. When encrypting using ECB, the plaintext message is divided into blocks (corresponding to the cipher algorithm’s block size) and each block is encrypted individually with no interaction with any other blocks. Unfortunately, except when the plaintext message is less than the cipher’s block size (typically 128 or 64 bits) or one is encrypting completely random data (e.g., using a asymmetric cipher to encrypt a key for a symmetric cipher). ECB mode should generally be avoided in all other cases because it has many cryptographic weaknesses. Normally, an AE cipher mode (see “Authenticated vs. Non-authenticated Encryption”, above) should be used. However, all cipher modes other than ECB require an “initialization vector” (IV). An IV usually is a random or pseudorandom bit stream that has the same length as the cipher block size. In any streaming cipher mode, it is important that for any given encryption key, the same IV never be used to encrypt multiple plaintext messages.

Therefore, either ensure you use a different IV or a different key whenever you use a stream cipher or a symmetric cipher in a streaming mode. Since it is generally easier to change the IV instead of the key (since the latter needs to be securely transmitted with the intended recipient of the ciphertext), it is recommended that you construct the IV in such cases by breaking it into two parts: one part being a time stamp in at least millisecond resolution and the other a counter. Figuring out how many bits to dedicate for the counter depends on what you think the maximum number of messages you can encrypt in a clock increment (millisecond, nanosecond, or whatever resolution you are using) combined with how long you will encrypt for with the same encryption key. With IVs that are 128-bits in length, you should have plenty of room for both. In general, it is highly recommended that you change the encryption key at least once a year. (PCI DSS requires at least this; but generally, more frequently is recommended.) Because of the way stream ciphers work (or block ciphers operating in a streaming cipher mode), if you do use the same encryption key / IV pair to encrypt multiple plaintext messages, an adversary can simply take the resulting ciphertext streams and XOR them together. The result of this operation leaves a bit stream of the two plaintext messages XOR’d together, which the adversary can then analyze using statistical frequency analyzing leading to the discovery of the two original plaintext messages. [7]

Okay, okay, so that was more than a final word. How about this for a summary:

It’s hard to go wrong with a properly implemented crypto system built with AES with CBC mode using PKCS#7 padding and random IVs that uses an HMAC-SHA256 to provide an encrypt-then-MAC approach.

If that sounds like an advertisement for ESAPI 2.x, it’s not. It’s just the advice that ESAPI symmetric encryption followed.

Ensuring Data Integrity

Another use of cryptography is to detect intentional (or unintentional, for that matter) tampering of data–that is, to ensure data integrity. There are three general approaches to this, depending on the exact needs.

To ensure the integrity of data during file downloads where you exclusively control the data, using a Message Integrity Code (MIC), generally implemented via a secure one-way cryptographic hash, is sufficient. A MIC is simply an unkeyed hash. In such cases, you would have links from which to download the file along with the MIC hash code listed. (The expectation being, that once someone downloads the file, they calculate the cryptographic hash themselves—usually using SHA1 or MD5—and che#ck it against what is listed on your website.

On the other hand, if you expect your downloads to be mirrored to other sites which you do not control—that is, to potentially untrusted sites—then using a MIC (unkeyed hash) is not sufficient because an adversary could tamper with your data and then simply recalculate the hash on the tampered data and publish the new hash for the file. They could do that, simply because calculating the hash does not require the adversary knows any secrets. In such cases, you will want to digitally sign the bytes of the file with your private key and publish your public key on your website. Typically, a utility like Gnu Privacy Guard (gpg), although often the installer software such as rpm or apt-get will do this for you as part of the download / installation process. (Further details of how to use these utilities are beyond the scope of this document. See the relevant manual pages for details.)

Digital signatures of course are also useful for signing other things, for instance dynamically created documents. Another mechanism of “signing” data is via a Message Authentication Code (MAC), which is just a signed cryptographic hash. While both digital signatures and MACs are used to “sign” data to ensure its integrity, each have their specific use. Because digital signatures use public / private keys, they are appropriate when 1) an identity should be associated the data or 2) when the data’s integrity needs to be verified by a large group. Because a MAC uses a shared secret key, it does not scale well when a large number of entities need to verify the same data. However, MACs have an advantage of speed so they are often used in cases where a secret key has already been established and shared between two entities such as when providing message authenticity (i.e., ensuring data integrity) to encrypted messages. For example, a MAC is used with encryption in the previously discussed “encrypt-then-MAC” approach. In that approach, the usually approach is to take a secret key and to use it to derive two separate keys, one used for encrypting with a symmetric cipher and the other used for the key to the MAC algorithm. A “key derivation function” is used to securely derive two keys from a single key.

Recommendations for algorithms:

	For MIC:	Because of the assumption that you are the only one that controls the bits and the hash signature, any secure one-way hash will do. SHA1 or MD5 are generally adequate because in this case the algorithms are really only acting as a checksum, much as a 32-bit CRC might be used. However, if there is concern that an adversary can attempt collisions but for some reason not change the hash signature (e.g., maybe it’s built into some widely distributed software), then use a stronger hash algorithm such as SHA-256.

	For MAC:	HMAC-SHA1 is acceptable. HMAC-SHA256 or HMAC-SHA3 (aka, Keccak) is recommended for new applications and/or long term use.

	For Digital Signatures:	RSA. DSA may be used in a pinch but is should be avoided because it is much more sensitive to implementation flaws.

Cryptography for Authentication

We use cryptography for authentication in two different ways. First, cryptographic protocols are used to securely authenticate entities over an insecure communication channel. Some of these more widely known communication protocols include Kerberos, RADIUS, and MS-CHAPv2. If, as a developer, you have need of authentication protocol, you are advised to either use a standard one known to be secure or work with a reputable professional cryptographer to develop one to suit your needs. History is replete with examples from broken authentication protocols even when they are developed by experts. A prime example is the original Needham-Schroeder protocol. Hire a professional cryptographer as this use of cryptography is much harder than it seems.

The second way that cryptography is used for authentication is for storing a user’s password. Unless the user’s password must later be replayed in a separate context to make the plaintext password available to some other downstream system (possibly when the user is no longer even authenticated to the present system), the recommended way to do this is to use a strong, one-way secure cryptographic hash along with “salting” (adding a nonce of sufficient length).

Using Cryptography to Solve Practical Problems

Among the two most common uses of cryptography securing data-at-rest (e.g., stored in a file or a database) and securing data in transit. When we use the term “securing” data via cryptography, we are generally referring to providing confidentiality and ensuring data integrity / authenticity. That is the minimum expectations of using cryptography to “secure” data as discussed in this section and subsections.

Securing Data at Rest

Introduction

When it comes to stored data-at-rest so that it is encrypted in an SQL database, there are three commonly practiced approaches:

	The SQL database engine itself handles the encryption and decryption. Examples of this are Oracle Database “Transparent Data Encryption” and Microsoft SQL Server “Transparent Data Encryption”. (We will refer to these as Oracle TDE and SQL Server TDE respectively, and just refer to the technology as TDE in general.)

	The application code completely handles the encryption and decryption of the sensitive data before it is stored in and after it is retrieved from said database, as well as ensuring its authenticity.

	An appropriate proxy (for example, MIT’s CryptDB or a custom web service that clients start using to access the data rather than accessing it directly) between the application and the database handles all the encryption / decryption.

Each of these approaches have their own advantages and disadvantages of securing data-at-rest stored in a database. Exploring all of these pros and cons is beyond the current scope of this wiki page, although this may be provided in the future should the need warrant.
The present purpose of this document is to provide some background for understanding why the pros and cons of each approach and to understand the threat models that each of these approaches address.

General Approaches

Database Engine Transparent Data Encryption (TDE)

How It Works (General Description)

In this technology, the DB engine itself (e.g., Oracle Database, Microsoft SQL Server Database) handle the encryption and decryption and usually can be configured to handle the key management issues as well.

TDE usually offers encryption at the column, table, and tablespace levels. TDE only supports limited encryption algorithms (most typically, AES and 3DES) and assorted key lengths.
There usually are (at least) 2 keys involved. One, is the DB “master” key. This master key is usually secured with a pass phrase / password which ideally is controlled by an application team who is considered the data custodian for the to-be-encrypted data. This master key is then used to derive other specific DB key encryption keys that encrypt specific columns, tables, or tablespaces.

Most often, the DB engine uses the CBC cipher mode and something like PKCS7 padding (which Java refers to as PKCS5Padding) to handle the encryption. Also, with TDE, there are usually two modes of operation…deterministic encryption and non-deterministic encryption. This translates into whether or not each individual item being encrypted (generally, a record, when encrypting a column) uses unique Initialization Vector (IV) [sometimes referred to as ‘salt’ by the DB vendors] or not. Deterministic encryption uses the same IV for all records; non-deterministic encryption uses a unique IV for each record that is encryption and this IV is maintained in a manner that is transparent to the DB access. Deterministic and non-deterministic encryption will be discussed later in more detail in the Advantages and Disadvantages subsection to follow.

Key management normally consists of distributing a file containing the password-encrypted DB master key along with making the password or passphrase known to whomever needs to decrypt this master key in order to provide it to the database engine. If this master key file and password are placed within the database itself (which is the easiest to implement), then the database engine will automatically decrypt its encrypted data. However, this scenario does not protect the sensitive encrypted data from a rogue DBA or system administrator (see the “General Threat Model” subsection, below), so frequently it is recommended that the application team or some other independent data custodian becomes responsible for managing this password-encrypted master key. (Note: Some TDE implementations use a separate private key contained in a keystore file to decrypt the master secret key, but the ideas as the same. In such cases, this private key ideally should be password protected when stored in the keystore file.) Further discussion of key management for SQL Encryption purposes is beyond the scope of this document.

General Threat Model

Like encryption used for any purpose–be it authentication, confidentiality, data integrity, etc.–one needs to ask “what is your threat model?”. In other words, what particular threat agents are you trying to prevent which particular assets via what particular attack vectors?
For the case of TDE, the vendors generally do not explicitly document a threat model. Instead, they vaguely hand wave and point to something like section 3.4 of the PCI Data Security Standard and state “we satisfy those requirements”. However, when one looks closely at these PCI DSS requirements as well as the vendor-specific TDE behavior, it usually becomes clear that the general threat model these vendors have in mind is someone like a rogue DBA or other rogue operations person doing a “smash and grab” of a hard drive where the encrypted database resides or attempting to steal confidential encrypted data from some offline backup of the database.

From the perspective of a security engineer, that is a very narrow threat model is it does nothing to reduce attacks to an online encrypted database (which presumably is the usual, or at least preferred, state of one’s DB). And indeed, this particular niche attack vector can only be effectively mitigated if one does proper key management as alluded to above. If the file (or as Oracle prefers to call it, the “wallet”) containing the password-encrypted DB master key is made available to the DBA, this mitigation is no longer available. (In terms of Oracle TDE, we would restate this if is arranged that the Oracle wallet is auto-opened when the database comes up, then the encryption that Oracle TDE provides you does not even sufficiently protect you against this particular niche attack vector.)

Advantages

Given that the threat model for DB Engine TDE is so narrow, why use a TDE solution at all? Indeed, that is the $64,000 question.

In a nutshell, it’s because the solution is cheap. It is almost 100% transparent (at least when using deterministic encryption) to the applications accessing the encrypted data stored in the database and because of that, it is a very inexpensive solution to deploy. When one adds to that the fact that it can satisfy the letter of the law of regulatory policies (such as section 3.4.x of PCI DSSv2), often that’s all that it takes. Such companies often take a security-by-checklist approach because they are more concerned with fines failing to meet regulatory compliance issues than they are in reduce losses from potential security breaches.

At other times, while it is recommended as a very poor solution, it may be the only feasible solution, especially for legacy databases. For example, if your company has 20 or so applications accessing some database where very sensitive data such as (say) full-credit card numbers are stored and those applications are a combination of third-party applications, Cobol applications, C/C++ applications, Java applications, and .NET applications, it is often very difficult or prohibitively expensive to design a common, secure solution that will work for all 20+ applications. (The “Encryption By Proxy” approach can approach this, but it has some significant performance issues and still is not ready for production-deployment.) And when faced with impending large fines from PCI or other regulatory bodies for not being in compliance for securing data-at-rest, the TDE approach starts looking like the ideal candidate to those in upper management.

Disadvantages

The disadvantages of the DB Engine TDE approach are great. The major ones are:

	Because the DB engine itself decrypts all the data transparently to clients, once the DB is provided the decrypted master key, any client having query access to the encrypted columns will have access to the decrypted data. If this is not the desired state, in order to keep the data secure, the database access model often needs to be significantly revamped to construct separate DB views for each different use case actor with legitimate access to at least portions of the database.

	Deterministic encryption is usually the preferred solution by both database administrators and application developers, but unfortunately it has numerous short-comings. With deterministic encryption, the same plaintext will always encrypt to the same ciphertext (at least until a key change operation is done to generate new DB key encryption keys). However, for the same reasons that we do generally require unique IVs (even for CBC mode; in any other mode, it is a major disaster in the making), deterministic encryption is not considered secure. The details of these cryptographic attacks are beyond the scope of this document. However, using non-deterministic encryption with a unique IV (or “salt”) per record results in stronger encryption but does not allow the DB engine to do indexed searching on that specific column. For cases where the sensitive plaintext data is something where all possible plaintext values are easily enumerated (for example, with Social Security Numbers), this allows someone who would have access to the ciphertext stored in the database who also has insert or update access to create records with all possibilities. Those ciphertext values can then be compared to the other identical ciphertext values in the database and that can be used to determine the plaintext by the attacker simply keeping a mapping of plaintext to ciphertext. This is an attack that could be done by a rogue DBA even though that DBA does not know the DB TDE encryption key. Had non-deterministic encryption been chosen instead, such a simple enumeration attack would not be possible.

	When backup copies of an open / online database are made, certain types of these backups make copies of the decrypted data so that anyone having access to the backup copies has access to the sensitive plaintext data that had been encrypted. Examples for Oracle include backups made via the “Data Pump export utility (expdp)” or “explicit captures” made via Oracle streams. (See the section “Using Data Pump with TDE” for the former and “How Oracle Streams Works with Other Database Components” for details of the latter.) Similar issues are expected with Microsoft SQL Server backups but have not been verified. Therefore, this may require changes to the database backup procedures.

	Because the sensitive data sent to the database is plaintext, passive network sniffing attacks are a major concern. Consequently, the database connection should be established over TLS, IPSec, or some other secure communication channel.

Application Level Encryption

How It Works (General Description)

Application level encryption refers to encryption that is considered part of the application itself; it implies nothing about where in the application code the encryption is actually done. In a typical 3-tier web application, the encryption most often is done in the application server before being sent to the database. Thus–in this design–the database is only sent ciphertext, not the sensitive plaintext (compare that to the TDE case, above).

An alternate approach is to do all the encryption / decryption as stored SQL procedures, possibly invoked via DB triggers. This design is very similar to the DB TDE approach discussed above with the biggest difference is that it has all the disadvantages and none of the advantages (such as minimal development costs). Because of this, for the rest of this section we assume encryption / decryption is handled in the application server and not done within the DB via stored procedures.

General Threat Model

It goes without saying (but we will say it otherwise), that for this approach the application developers are trusted in some sense. While they may not (and indeed, should not) be trusted with the encryption keys, the must be trusted to produce secure code to handle the encryption. (Contrast this to the implied threat model for TDE where the DB vendor is trusted to produce secure code and DBAs are considered trusted. While application developers also trusted not to leak sensitive information–either intentionally or unintentionally–they do not have to be trusted with writing the encryption code in the case of TDE.)

Advantages

	Like the TDE approach, a smash and grab of an offline copy of the database will contain only ciphertext. Unlike the TDE approach, the same is true of a direct DB dump of an online database. Given that the ideal state of one’s production database is that it is online, this is an important distinction.

	An advantage of handling the encryption outside of the database is that–if done correctly–one need not be overly concerned about the contents of the database being stolen. In the face of SQL injections where an external attacker can sometimes dump database table contents remotely, this can be an important advantage. Compare this to the TDE solution, where the database would transparently decrypt the data when a SQL injection occurs. This does not mean that this is approach is completely immune to data leakage via SQL injection attacks, but it does lower the likelihood.

	Because the application controls the entire encryption / decryption process, one can also provide for data integrity across the entire record. This can be used to prev

Disadvantages

	In terms of initial layout and ongoing software support costs, this is likely to be the most costly of the three solutions.

	The application developers need to understand cryptography w

	ell enough to develop secure cryptographic solutions. Given that this is a relatively rare skill for application developers, its importance should not be overlooked.

	In addition to the actual encryption / decryption solution, the application must also handle the ancillary functions of secure key management which is anything but trivial. This includes, but is not limited to key distribution and key change operations.

Encryption By Proxy

TODO - mention CryptDB here, and any others.

How It Works (General Description)

TODO

General Threat Model

TODO

Advantages

TODO

Disadvantages

TODO - These sections to be covered later, should the need arise. Performance is a likely issue.

Securing Data in Transit

TODO

Key Management

The following diagram shows standards relevant to key management:

[image: 03-Build/images/KeyMgmt.png?raw=true]KeyMgmt

Oasis Cryptographic Key Management [http://xml.coverpages.org/keyManagement.html] provides a comprehensive list of bodies and standards for Key Management inclduding NIST SP 800-130 A Framework for DesigningCryptographic Key ManagementSystems [http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-130.pdf]

For the Financial Services industry the main standards and references are

	ANSI X9.24 Retail Financial Services Symmetric Key Management Part 1: Using Symmetric Techniques for the Distribution of Symmetric Keys

	ANSI X9 X9.24-2-2006 Retail Financial Services Symmetric Key Management Part 2: Using Asymmetric Techniques for the Distribution of Symmetric Keys

	PCI PIN Security Requirements v2 [https://www.pcisecuritystandards.org/documents/PCI_PIN_Security_Requirements_v2.pdf]

Key Derivation

A key derivation function [http://en.wikipedia.org/wiki/Key_derivation_function] (KDF) is a deterministic algorithm to derive a key of a given size from some secret value. If two parties use the same shared secret value and the same KDF, they should always derive exactly the same key.

PBKDFs [http://en.wikipedia.org/wiki/PBKDF2] (Password Based Key Derivation Functions) are designed to encrypt data, typically keys, based on a password. The password is mixed with a salt (e.g. random 8 bytes) to form an intermediate key (Key Encryption Key) and this is used to encrypt the data/key.

Passwords have a relatively small keyspace (limited by typeable characters on a keyboard and passwords that people can remember) compared to randomly generated data of the same length.Therefore, a salt is added to prevent dictionary attacks. The process is repeated many times (based on a count e.g. 1000) to deter brute force attacks (key stretching).

NIST SP 800-108 Recommendation for Key Derivation Using Pseudorandom Functions [http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf]and NIST 800-56C Recommendation for Key Derivation through Extraction-then-Expansion [http://csrc.nist.gov/publications/nistpubs/800-56C/SP-800-56C.pdf] are NIST approved KDFs.

SP 800-135 Rev 1 Recommendation for Existing Application-Specific Key Derivation Functions [http://csrc.nist.gov/publications/nistpubs/800-135-rev1/sp800-135-rev1.pdf] lists security requirements for other KDFs e.g. HKDF, IKE-v1-KDF and IKE-v2-KDF, X9.63-KDF.

Key Wrapping

Key wrapping is a construction used with symmetric ciphers to protect cryptographic key material by encrypting it in a special manner. Key wrap algorithms are intended to protect keys while held in untrusted storage or while transmitting keys over insecure communications networks. NIST has defined a special AES key wrap specification [http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf] which is supported in the Java Cryptography Extensions that is performed using Cipher.WRAP_MODE and Cipher.UNWRAP_MODE as the operation mode to Cipher.init(). (Althernately, in newer versions of the JDK, you can just call Cipher.wrap() and Cipher.unwrap() respectively.)

Key Exchange

Key exchange algorithms (also referred to as key establishment algorithms) are protocols that are used to exchange secret cryptographic keys between a sender and receiver in a manner that meets certain security constraints. Key exchange algorithms attempt to address the problem of securely sharing a common secret key with two parties over an insecure communication channel in a manner that no other party can gain access to a copy of the secret key. Traditionally this has relied on two humans somehow securely exchanging keys out-of-band; e.g., via a direct face-to-face meeting or mailing an attachment as an encrypted zip file that is encrypted with a previously shared passphrase, etc. However, the traditional methods do not allow two unknown parties who have never met to exchange a secret key with each other. In fact, proof of (or at least, high confidence in) identity is a major unsolved problem in such cases.

Key Agreement protocols are protocols whereby N parties (usually two) can agree on a common key with all parties contribute to the key value. When designed and implemented properly, key agreement protocols prevent adversaries from learning the key or forcing their own key choice on the participating parties.

The most familiar key exchange algorithm is Diffie-Hellman Key Exchange. There are also password authenticated key exchange algorithms. RSA key exchange using PKI or webs-of-trust or trusted key servers are also commonly used.

Key Transport protocols are where one party generates the key and sends it securely to the recipient(s).

The selection of schemes specified in NIST Special Publication 800-56A [http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf]Revision 2 [http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf]Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography [http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf]based on standards for key-establishment

Key Exchange protocols based on different primitives are available:

	X9.42 Public Key Cryptography for the Financial Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm Cryptography:

	This standard, partially adapted from ISO 11770-3 (see [13]), specifies schemes for the agreement of symmetric keys using Diffie-Hellman and MQV algorithms. It covers methods of domain parameter generation, domain parameter validation, key pair generation, public key validation, shared secret value calculation, key derivation, and test message authentication code computation for discrete logarithm problem based key agreement schemes

	X9.44 Key Establishment Using Integer Factorization Cryptography.

	Key transport based on the RSA algorithm.

	X9.63 Public Key Cryptography for the Financial Services Industry: Key Agreement and Key Transport Using Elliptic Curve Cryptography

Key Transport protocols used in the financial industry:

	ASC X9 TR-31-2005 - Interoperable Secure Key Exchange Key Block Specification for Symmetric Algorithms specified a scheme for transporting a key based on a pre-existing shared key.

	ASC X9 TR-34 Interoperable Method for Distribution of Symmetric Keys using Asymmetric Techniques: Part 1 - Using Factoring-Based Public Key Cryptography Unilateral Key Transport is similar to X9 TR-31 but uses asymmetric ciphers (to avoid having to have a pre-existing symmetric key). It uses CMS EnvelopedData (X9.44 OAEP), and SignedData types (X9.44 RSASSA-PKCS-v1_5).

Key Lifecycle

The following “Key States and Transitions” diagram is from page 76 of http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf It is relevant to the following discussion.

[image: NIST Key States and Transitions - NIST SP800-57 Part 1 (Rev 4)]

Generation

Keys start out in the “pre-activation” state.

NIST SP 800-133 Recommendation for Cryptographic Key Generation [http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-133.pdf] discusses the generation of keys to be used with the approved cryptographic algorithms.

ANSI X9.24 Part 1 provides details on what forms keys can exist outside the Secure Cryptographic Device (SCD) e.g. Hardware Security Module (HSM) that they were generated in.

Symmetric Keys

For symmetric keys (e.g. AES, DES), the highest level key is generated randomly e.g. 16 bytes from an RNG for an AES-128 key.

If there is no prior trust with the receiving entity then the highest level symmetric key is generally split into multiple plaintext components for distribution to the other party via out-of-band manual means.

Key operations that involve people generally require at least dual control split knowledge to ensure no one person has all the key material e.g. 2 parties have a key or password component that is only effective when combined with the other part.

Further keys may be derived from this highest level key e.g. using a KDF with device identifier or serial number as input.

In general a tag-and-bag scheme is used for these keys:

	tag: since the key is just random bytes the end user needs to know information about the key when they receive it e.g. what the key should be used for, the algorithm to use e.g. DES or AES , etc… This information is represented by additional information that is distributed with the key and is called a Key Block Header (KBH)

	bag: cryptographic schemes are applied to the key such that Confidentiality-Integrity-Authenticity is assured.

Examples include:

	ANSI X9 TR-31 2010 Interoperable Secure Key Exchange Key Block Specification for Symmetric Algorithm

	Key Management Interoperability Protocol Specification Version 1.1 [http://docs.oasis-open.org/kmip/spec/v1.1/os/kmip-spec-v1.1-os.html]

	CMS NamedKeyEncryptedData type (with additional authentication added via MAC or signature)

Asymmetric Keys

Asymmetric keys are generated based on the mathematical problem they are based on e.g. prime generation. This gives a public and private key pair.

In general, the key pair is certified (the public key is signed) by a Certificate Authority to bind the key pair to some entity and convey that it is trustworthy.

Distribution

Key are distributed to their install locations.

For asymmetric keys, it may be either the private key (Confidentiality-Integrity-Authenticity required) or the public key (Integrity-Authenticity) that is being distributed.

Usage

Keys are now live and should be used per the Recommendations section above. See Data in Use section.

Re-Keying Operations (aka, Rotation)

Re-keying (that is “key change operations”, commonly referred to as “key rotation”) is done whenever a key is thought to be compromised (see key lifecycle diagram) or a key change is scheduled for compliance issues (e.g., because of PCI DSSv2) or the key has been used for too many encryption operations.

Working keys (those that encrypt the actual payload) usage should be limited. According to Steven Bellovin, a security researcher and CS professor at Columbia University in a post to a cryptography mailing list [http://osdir.com/ml/encryption.general/2005-02/msg00005.html]:

When using CBC mode, one should not encrypt more than 232 64-bit blocks under a given key. That comes to ~275G bits, which means that on a GigE link running flat out you need to rekey at least every 5 minutes, which is often impractical. Since I’ve seen Gigabit Ethernet cards for <US$25, this bears thinking about – and while 10GigE is still too expensive for most people, its prices are dropping rapidly. With 10GigE, you’d have to rekey every 27.5 seconds…

For reference purposes, with AES you’d be safe for 264*128 bits. That’s a Big Number of seconds.

Rotation can be done automatically as part of the protocol (or done separately):

	For symmetric keys, in the Financial industry, Derived Unique Key Per Transaction (DUKPT) [http://en.wikipedia.org/wiki/Derived_unique_key_per_transaction] is a key management [http://en.wikipedia.org/wiki/Key_management] scheme in which a new key is derived for every transaction. However, there’s a limitation of 1 million transactions per device, so a new key (IPEK) must be installed then.

	For Asymmetric keys, Ephemeral [http://en.wikipedia.org/wiki/Ephemeral_key]modes where the asymmetric keys are changed per use; e.g. for TLS TLS_DHE and TLS_ECDHE.

Generally, when performing re-keying operations, all new encryptions are done only with the new key, but the old key is retired and kept around for some amount of time to ensure that all previous data encrypted with that key can continue to be encrypted. If that data can then be re-encrypted using the old key, that old retired key can be destroyed, but for some off-line archived encrypted data, it may need to be kept indefinitely. Regardless of how long an old key is kept though, it should be marked in some manner to indicate that it henceforth should never be used for any new encryption operations.

Backup and Recovery

The highest level keys in a system should be backed up to allow for recovery in a Business Continuity or Disaster Recovery event.

Revocation and Destruction

Symmetric Keys are generally used by 2 parties only so the revocation is generally done by changing to a new random key.

A Public key Certificates could be used by many so each user needs to be informed of the revoked status. Public key Certificates can be revoked using Certification Revocation Lists or Online Certificate Status Protocol [http://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol] or can be permanently removed manually depending on the environment. This prevents another entity using this public key for encryption or authentication as the certificate is revoked.

Archive

Keys are no longer in active service but are retained for validation or until it is ensure the key is no longer needed.

References

	http://www.keylength.com/

	Alfred Menezes, Paul van Oorschot, Scott Vanstone, Handbook of Applied Cryptography, 1997, CRC Press, ISBN 0-8493-8523-7. (Online: http://cacr.uwaterloo.ca/hac/)

	Neils Ferguson, Bruce Schneier, Tadayoshi Kohno, Cryptography Engineering: Design Principles and Practical Applications, Wiley Publishing, ISBN 978-0-470-47424-2 [http://www.amazon.com/exec/obidos/ASIN/9780470474242]

	NIST Special Publications 800-57, Recommendation for Key Management – Part 1: General (Revision 4). (Online: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf)

	NIST Special Publications 800-57, Recommendation for Key Management – Part 2: Best Practices for Key Management Organization. (Online: http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part2.pdf)

	NIST Special Publications 800-57, Recommendation for Key Management – Part 3: Application-Specific Key Management Guidance (Revision 1). (Online: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf)

	ENISA (editor: Nigel P. Smart), Algorithms, Key Sizes, and Parameters Report: 2013 Recommendations, (Online: http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-sizes-and-parameters-report)

	http://www.cryptopp.com/wiki/Authenticated_Encryption

	https://cryptocoding.net/index.php/Coding_rules

Contributors

Authors

Kevin W. Wall /
Chris Madden /
Michael Howard

Reviewers

Candidates:

	Tor Erling Bjørstad tor@mnemonic.no (offered via cryptography@randombits.net mailing list)

	Jeff Walton – probable; need to ask

	Michael Howard? (ask; previous author)

	Chris Tidball (volunteered)

	Kevin Kenan? (ask)

	Anthony J. Stiebler? (Wells Fargo, ask)

Endnotes

[1] This is, after all to be a chapter on cryptography, and not a book about it. That and the fact that this chapter author is just running out of gas. If you are interested in such topics, check out the listed references.

[2] In Java, if you use DESede and do not specify a key size, you will end up with 2-key triple DES rather than 3-key triple DES. Note also to use 3-key triple DES in Java, you must have the Java JCE Unlimited Strength Jurisdiction Policy Files installed; otherwise, you will get an exception when you try to generate or use a 168-bit (i.e., 3-key) encryption key.

[3] Again, this is a chapter on cryptography, not a book. The interested reader should see Menezes, et al mentioned in the References section.

[4] A chosen plaintext attack (CPA) is a cryptoanalytic attack whereby an adversary has the ability to choose which plaintext he/she wishes to have encrypted along with the ability to observe the resulting ciphertexts. See the Wikipedia “Chosen Plaintext Attack” [http://en.wikipedia.org/wiki/Chosen-plaintext_attack] article for further details. If you prefer something with more technical depth, try CPA slide desk [http://cs.wellesley.edu/%7Ecs310/lectures/CPA_slides_handouts.pdf] from the CS Dept of Wesley College.

[5] In fact, according to Cryptix co-author, David Hopwood (see http://www.users.zetnet.co.uk/hopwood/crypto/scan/ca.html) suggests that other cipher modes may not even make sense for asymmetric ciphers. Hopwood states:

Where an asymmetric cipher requires an encoding method in order to be specified completely, the naming convention is “encryption-primitive/encryption-encoding”. Some existing JCE providers

will accept the use of a block cipher mode and padding with an asymmetric cipher (e.g. “RSA/CBC/PKCS#7”); this is not recommended, and new providers MUST reject this usage. An encryption primitive name on its own (e.g. “RSA”, as opposed to a complete encryption scheme such as “DLIES-ISO(…)”) SHOULD also be rejected.

[6] There are three possible approaches to applying a MAC to ensure the authenticity of ciphertext. One is the MAC-and-encrypt, which the sender computes a MAC of the plaintext, encrypts the plaintext, and then appends the MAC to the IV and ciphertext. The second is MAC-then-encrypt, where the sender computes a MAC of the plaintext, then encrypts both the plaintext (and generally, the IV) and the MAC. And the third is the encrypt-then-MAC approach where the sender encrypts the plaintext, then appends a MAC of the IV plus ciphertext. Of these three mechanisms, only the encrypt-then-MAC has proven to resist known cryptographic attacks (when implemented correctly).

[7] See Dr. Rick Smith’s course notes on key stream attacks (at http://courseweb.stthomas.edu/resmith/c/csec/streamattack.html) for a discussion of what can happen if this advice is not heeded. Bottom line: Make sure that you do NOT repeat the key / IV pairs for stream ciphers or block ciphers operating in a streaming mode.

 Memory

Memory

Overview

In some lower-level languages, it is very easy to create code that is prone to memory corruption or manipulation. Although many applications are not vulnerable because of their choice of languages, even within these managed languages, such as Java EE and .Net, it is possible to call unmanaged code either directly or via third-party libraries. It is the responsibility of the designers and developers of an application to consider memory management in each of these libraries to ensure that data is not leaked or the application is not taken offline by an attacker taking advantage of these memory vulnerabilities. There are also specific memory issues that can occur, even in managed languages, specifically out-of-memory errors due to excessive memory consumption.

Background

Not only is all the data of an application stored in memory at some point, but the very execution of a program is governed by values stored in memory. Temporary variables and the location of the function to return to are stored in a stack per-thread and other data that is created, especially using a keyword like “new” or “alloc” is kept in the program’s heap. It is therefore possible to either access data present in memory by tricking the application into revealing it, to alter the behaviour generally of the application, either for advantage or to deny service and also possible for an attacker to run attack code by modifying the memory contents of a location that the program is going to use for its next function execution. A more obvious attack is to attempt to make the application consume too much memory, causing it to slow and eventually crash.

In general, these vulnerabilities exist partly due to older operating systems not segregating memory effectively and more commonly now by low-level language primitives which provide little or no protection for the way in which memory can be assigned or the size of data that can be copied into a memory location. These decisions were likely made for performance reasons but can still exist in code that might still be called from modern web applications - legacy or otherwise.

There are many ways in which a vulnerable application can be attacked but these tend to fall into two distinct modes. The first is to try and infiltrate the server and somehow upload a block of attack code. This could be done, for instance, by using an unchecked “upload” function on an application, but often this would not be enough by itself. The second mode is to send wildly incorrect data to form inputs in order to both find out whether the application is validating correctly and secondly to attempt to cause the memory corruption to occur. This is naturally easiest when the attacker has the source code and can work out roughly what they want to do although an attacker who is perhaps not trying to achieve anything specifically might equally be happy causing your site to fail.

Principles (if any)

Some principles are in common with secure development including not trusting input that arrives from across a trust boundary (another process, client, machine etc.) and not making assumptions about the behaviour of third-party libraries that you might be calling or might be calling into your code.

Other principles require more specific knowledge and experience, especially when it comes to reviewing code in order to decide whether it is secure, or otherwise taking decisions where security is balanced with performance, particularly on embedded devices that have reasonable constraints on the memory and CPU cycles that can be used.

As with many OWASP controls, defence-in-depth and careful use of unit tests can help provide confidence in the level of risk your application is taking. Another principle that you should be comfortable with is logging system behaviour so that detection of potential attacks can be made sooner and actions taken if possible. This might not be possible on an application that is deployed to e.g. multiple embedded devices but is more reasonable on a single application.

Positive controls

Choosing a secure language

The most secure control against memory attack is to use a language that does not allow you to directly manipulate memory or contains exception handling where you might attempt to do something harmful. For instance, Java, .Net and PHP are all secure against memory tampering as long as you do not use them to call extensions written in C/C++ or equivalent low-level languages. That is not to say that an application automatically becomes completely immune to memory related attacks. For instance, an unchecked upload capability can expose to the server to an out-of-memory attack which might take the server down or at best cause it to become largely unresponsive.

Using library classes

In many cases, where you have to use a low-level language, you do not have to use the lowest level construct in order to achieve what you need. For instance, in C++, you could use a char[] for strings but you can also choose to use the Standard Template Library (STL) string class or another library class to achieve a much more secure protection against mis-use for a small increase in overhead.

Active intrusion detection

If your application is potentially vulnerable to memory attacks i.e. it uses unmanaged code at some level, then a useful control is to detect malformed data at as high a level as possible and rather than simply stopping, you can take measures to block the offending IP address for a short period to make it hard for an attacker to probe weaknesses in your system. For instance, if you have a function that takes an email address and you validate it and realise that it is excessively long even though you know that your client always validates the data, then you can assume an attack is occurring rather than a simple user error and you can take more direct action.

Input validation

Another major security control is simple input validation. Please see the other chapter for more details but it is best to whitelist validate all user input, including maximum lengths and this must be done on the server. It can optionally be done on the client but client validation can be bypassed and is therefore not sufficient by itself. Validation won’t guarantee that your application is immune since a coding error could present a problem even with data that is otherwise validated. An example mistake is an input allowing 255 characters and a buffer being set to 255 bytes in size despite requiring an additional byte for the NULL terminator character. Sending 255 characters to the buffer could pass validation and still cause a problem with the underlying code.

Unit or Integration Test Cases

???

Abuse Cases

???

Negative patterns

Using strncpy

It might seem that because memory problems are usually caused by string length issues, using strncpy (the version of strcpy that takes a length parameter) will make you immune from buffer overflow. This is not strictly correct and must only be applied alongside other measures. The following are examples of where strncpy would not fix the problem:

// Broken version of the function with no length checking
public void MyFunction(char* input)
{
 char buffer[255];
 strcpy(buffer, input);		// Obvious potential buffer overflow
}

// A version that simply replaces strcpy with strncpy
public void MyFunction(char* input)
{
 char buffer[255];
 strncpy(buffer, input, 255); // If input string is 255 or longer, the null terminator will not be written
 // This could easily lead to problems further down where the correct length of buffer will be unknown
}

// An improved version that makes the buffer larger than the strncpy length to allow for terminator
public void MyFunction(char* input)
{
 char buffer[255+1];
 strncpy(buffer, input, 255);	// Still broken. An input string longer than 255 will still not copy a null terminator
}

// Correct version needs to explicitly terminate the string or preferably return if it is too long
public void MyFunction(char* input)
{
 if (strlen(input) > 255)
 return;

 char buffer[255+1];
 strcpy(buffer, input);	// Don't need strncpy because we have checked the input string
}

// If you want to take the first n characters of the input string, make sure you terminate it
public void MyFunction(char* input)
{
 char buffer[255+1];
 strncpy(buffer, input, 255);
 buffer[255] = '\0';	// Terminate the end, just in case the string is longer than 255
}

Secure string handling

One of the most common causes of buffer overflows are caused when strings are copied using pointers to character buffers (e.g. char*). This is because the size of the string is determined by a null terminator (a zero character) placed after the last character in the string. When copying between strings, if this terminator is not handled correctly, the string becomes implicitly longer, its length determined by the (random) location of the next null terminator in memory. The following examples demonstrate some classic mistakes in string handling in C/C++.

#define MAX_STRING_LENGTH 255
public void MyFunction(char* input)
{
 char buffer[MAX_STRING_LENGTH];
	 strcpy(buffer, input);				// Potential buffer overflow since the input string can be longer than the destination buffer
}

public void MyFunction(char* input)
{
	// A simple check to avoid this problem
	if (strlen(input) > MAX_STRING_LENGTH)
		return;		// Or handle error etc.

	char buffer[MAX_STRING_LENGTH];
	strcpy(buffer, input);				// Potential buffer overflow since the destination buffer is only large enough for a string of 254 length + null terminator
}

public void MyFunction(char* input)
{
	// A simple check to avoid this problem
	if (strlen(input) > MAX_STRING_LENGTH)
		return;		// Or handle error etc.

	// Recommend using + 1 to make it obvious that you have allowed for the null terminator
	char buffer[MAX_STRING_LENGTH + 1];
	strcpy(buffer, input);
}

Similar issues exist for when copying general memory buffers, which would not have a null terminator and therefore no explicit marker for the end of the data. In these scenarios, you should always provide a length parameter so you know how long the input data is but you should still ensure this value is in a sensible range to avoid someone trying to corrupt the stack by copying more data than has actually been provided. These cases are much rarer in web application development but could occur when, for instance, the user uploads an image or other binary file.

public void MyFunction(void* input, size_t length)
 {
 char* buffer = (char*)malloc(length);
	 memcpy(buffer, input, length); 	// Will work but why not include a sanity check on the value of length?
 }

Enabling secure memory flags

???

Memory management

There are two general ways in which memory management or lack of it will cause a vulnerability in your application. Firstly, if there is a way to make your application use excessive memory, it can easily crash. Secondly, if a memory leak is present, the same crash can happen after a period of time or at least the system will start to run very slowly as memory is paged to disk.

Leaking memory is not a problem specific to web applications and is probably considered less of an issue when it comes to the web. This is because of assumptions about the way that the request/response mechanism creates, uses and then disposes of memory and in most cases, this is correct. Where a web application carries out more complex work, especially if calling into unmanaged native libraries, there is a danger that memory is allocated and not freed.

Depending on the complexity of the system, one way to avoid this is to simply check and review code to ensure that memory that is allocated is being freed. Secondly, by attempting to stress test the application, you might be able to see a memory leak over a period of time by using your ‘task manager’.

A more likely way for an attacker to use memory against your system is to find a way in which your application can allocate a large amount of memory and to try and invoke this functionality many times over a short period. You should be careful to consider any parts of your application that are memory intensive, a classic example is image processing where the uploaded file might be a compressed png or jpeg which becomes much larger when opened into memory where it is likely to become a bitmap of many MBs in size. You should ensure that uploaded images or similar uploaded files are not excessively big and consider managing the memory for these in an efficient way if it is likely that you will be handling multiple items at the same time. For instance, you could push the work onto some kind of queue to be serviced by another program one item at a time.

Stack buffer overflows

A stack buffer overflow occurs when something writes data directly to the contents of the thread stack in a location that it is not supposed to potentially or actually overwriting data that is supposed to be there. This can be used, for instance, to make the thread return to a different location than the function it actually came from.

Stack buffer overflow should not be confused with a “stack overflow”, which is a general programming error causing stack memory to run out and is a mistake that needs identifying and fixing.

An example below describes the process of a deliberate attack using stack buffer overflow.

public void MyFunction(char* input)
{
 char buffer[32];
 strcpy(buffer, input);	// Stack variable here is potentially going to be overflowed
}

int main(int argc, char** argv)
{
 MyFunction(argv[1]);
}

The above is a simple example of a program that contains no length checking and is prone to buffer overflow. Since, however, the buffer is on the stack and stack memory is filled from the top downwards, if somebody overwrites the buffer by passing in a string that is too long (i.e. 32 or more) then firstly the parameter “input” will be overwritten, followed by a frame pointer, followed by the function return address. If the attacker has correctly crafted this attack, they can overwrite the internal buffer with attack code and then modify the return address to point to this newly sent attack code. Note that the function would probably either crash or recurse at this point but if the attacker simply wants to run some shell command like “create user” or such like, then they are likely to have succeeded.

In practice, unless your application is open source, it is unlikely that an attacker would be able to generate a favourable outcome from blind attacks but it is possible and even causing your application to crash is an important reason to resolve these.

This is another issue that is removed by using a managed language such as Java, .Net or PHP as long as you don’t invoke vulnerable native code.

The solution is also simple and is the same as protecting against buffer overflows general and that is by range checking and not blindly assuming string lengths from the intended use of the system but check and enforce them instead. For examples, see the section on string handling. In addition, input validation would prevent some useful attack code from even being allowed to that point in your program.

Heap overflows

A heap overflow, like a stack buffer overflow, attempts to use unchecked buffers to overwrite data in the heap area of a program. Aside from this happening accidentally, it can also be used as an attack where various changes can be made to execute code or gain access to memory that is not supposed to be read. This is more of an issue on older operating systems which don’t have memory protection since the heap is otherwise shared between all programs on a machine meaning a heap overflow attack in one program can access the memory of another.

In modern operating systems and with managed languages, this is much more difficult to achieve although with native code execution on open source systems (or in the case of, say, mobile operating systems where the execution environment is visible), the risk is still there.

Mitigation, as for stack and string buffer overflows is to use one or more of the patterns listed above including input validation, bounds checking and intrusion detection.

Integer overflows

Integer overflows occur due to the nature of how integer values are stored in memory. What happens when, for example, you add 1 to an integer that is already set to 11111111? Answer - it wraps round to 00000000 usually, in other words ‘some number’ + 1 = 0. This can be worse for signed types since the most significant bit is used to store whether a value is positive or negative. So adding 1 to a SIGNED integer that contains 01111111 doesn’t increase the value by 1 by takes the value from its largest maximum value to one of its smallest possible values. Another issue can occur when adding two large unsigned integers, which might cause the value to wrap into something small instead. Any cases in your code where this is possible can therefore have unintended consequences.

// The following would work in many situations but if age was large enough, the buffersize could end up being
// really small due to integer overflow. Buffer overflow would then be likely
public void MyFunction(int age)
{
 int buffersize = age + age;
 char* buffer = (char*)malloc(buffersize);
 // etc..
}

// If this was designed to have age1 > age2, the values might be assumed to be correct. If they are the wrong way round, however
// and the buffersize ends up being negative, this would be interpreted as a very large unsigned number when mallocing the buffer
public void MyFunction(byte age1, byte age2)
{
 int buffersize = age1 - age2;
 char* buffer = (char*)malloc(buffersize); // Potential cause of out-of-memory error
 // etc..
}

The issues here can easily be avoided by simple range checks and/or error handling to simply justify assumptions made about the values given. Also, it is preferable (although sometimes slightly awkward) to use unsigned types where appropriate. This can sometimes be hard because library functions can often take a signed type even when it doesn’t need to be and casting is required to force these to work correctly. A more extensive version of the second function above, coded very defensively, might look like this:

public void MyFunction(unsigned char age1, unsigned char age2)
{
 if (age2 >= age1)
 {
 error("Age 1 must be greater than age 2");
 return;
 }
 if (age1 > 120 || age2 > 120)
 {
 error("The age given must be less than 120");
 return;
 }
 int buffersize = age1 - age2;
 char* buffer = (char*)malloc(buffersize);
 // etc..
}

A few languages have built-in assertion syntax to explicitly state your assumptions about input values. These can be left on at runtime to stop execution before anything unexpected happens.

References

OWASP Wiki buffer overflow [https://www.owasp.org/index.php/Buffer_Overflow]

OWASP Wiki integer overflow [https://www.owasp.org/index.php/Integer_overflow]

OWASP Wiki stack overflow [https://www.owasp.org/index.php/Stack_overflow]

OWASP Wiki heap overflow [https://www.owasp.org/index.php/Heap_overflow]

 Concurrency

Concurrency

Background

Concurrency true to its roots refers to actions that flow together. On a single processor machine that may refer to time sharing the CPU between several independent processes, splitting asynchronous tasks across multiple CPU cores, or even similar separation of work thathat might be spread over multiple devices in overlapping time spans. The concept refers to making sure, regardless of the distribution of the parts, that everything happens in an order that, optimally, does not generate any negative impact.

Principles (if any)

TBD

Positive controls

TBD

Control

(TBD How to build a secure using Control to help you, including (or even just) UML diagrams. I prefer swim lanes, but as long as it prints in landscape mode, I’m cool. I don’t want portrait diagrams as this is impossible to reflow automatically using our tools.)
Reliable timestamps and server time settings become very helpful if not essential.

 <no title>

 #UML Resources

##How to edit/access the UML XML files.

Use UML factory, it is of trivial cost for the Android app (best used on tablets…) and free on the desktop via the web app.

This directory will be found in each ‘chapter’ if necessary
The source XML goes into this directory.
The derivative .png or .jpg resource files also go into this directory.
Please be descriptive with the file name.
Please name the source and derivative the same filename and let the file extension be the differentiator.

##Using the derivative UML files.

Use the inline style method.

There won’t be many of them and I like seeing the images in the context appropriate place of the material.
Who wants to go to the spot to recognize a reference then go to the designated place to see the information.
Just put the information in the place people are going to look for it first anyway.

Inline-style markup:

![alt text](https://avatars2.githubusercontent.com/u/155815?s=140 "Logo Title Text 1")

Output:
[image: Logo Title Text 1]alt text

 README for OWASP DevGuide Appendices

README for OWASP DevGuide Appendices

Purpose

This folder is intended for any appendix that should be included at the end of the new [GitHub repository of the OWASP DevGuide]((https://github.com/OWASP/DevGuide/).

Suggested Naming Conventions

It is suggested that the following naming conventions be used so that we don’t
have namespace collisions. Hopefully, this will help sort the order of all the
appendices as well.

Name the appendix file according to the following format:

section#-sectionName-appendix#-short_descriptive_text.md

where appendix# is two decimal digits. For example,

0x11-Cryptography-01-table_of_cryptographic_algorithms.md
0x11-Cryptography-02-crypto-overview-diagram.md
etc.

Contact

Please contact the Project Lead: Andrew van der Stock for any queries about what should be placed here.

vanderaj@owasp.org

 Administrative Interfaces

Administrative Interfaces

Objective

To ensure that

	administrator level functions are appropriately segregated from user activity

	Users cannot access or utilize administrator functionality

	Provide necessary audit and traceability of administrative functionality

Environments Affected

All.

Relevant COBIT Topics

PO4

	4.08 Data and System ownership – requires separate operational and security administration

	4.10 Segregation of duties

Best practices

Administrative interfaces is one of the few controls within the Guide which is legally mandated – Sarbanes Oxley requires administrative functions to be segregated from normal functionality as it is a key fraud control. For organizations that have no need to comply with US law, ISO 17799 also strongly suggests that there is segregation of duties. It is obviously up to the designers to take into account the risk of not complying with SOX or ISO 17799.

	When designing applications, map out administrative functionality and ensure that appropriate access controls and auditing are in place.

	Consider processes – sometimes all that is required is to understand how users may be prevented from using a feature by simple lack of access

	Help desk access is always a middle ground – they need access to assist customers, but they are not administrators.

	Carefully design help desk / moderator / customer support functionality around limited administration capability and segregated application or access if possible

This is not to say that administrators logging on as users to the primary application are not allowed, but when they do, they should be normal users. An example is a system administrator of a major e-commerce site who also buys or sells using the site.

Administrators are not users

Description

Administrators must be segregated from normal users.

How to identify if you are vulnerable

	Log on to the application as an administrator.

	Can the administrator perform normal transactions or see the normal application?

	Can users perform administrative tasks or actions if they know the URL of the administration action?

	Does the administrative interface use the same database or middleware access (for example, database accounts or trusted internal paths?)

	In a high value system, can users access the system containing the administrative interface?

If yes to any question, the system is potentially vulnerable.

How to protect yourself

All systems should code separate applications for administrator and user access. High value systems should separate these systems to separate hosts, which may not be accessible to the wider Internet without access to management networks, such as via the use of a strongly authenticated VPN or from trusted network operations center

Authentication for high value systems

Description

Administrative interfaces by their nature are dangerous to the health of the overall system. Administrative features may include direct SQL queries, loading or backing up the database, directly querying the state of a trusted third party’s system.
How to identify if you are vulnerable
If a high value system does not use strong authentication and encrypted channels to log on to the interface, the system may be vulnerable from eavesdropping, man in the middle, and replay attacks.

How to protect yourself

For high value systems:

	Use strong authentication to log on, and re-authenticate major or dangerous transactions to prevent administrative phishing and session riding attacks.

	Use encryption (such as SSL encrypted web pages) to protect the confidentiality and integrity of the session.

Further Reading

TODO

 GNU Free Documentation License

GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. [https://fsf.org/]
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy of the Document, free of added material, which the general network-using public has access to download anonymously at no charge using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

	A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

	B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has less than five).

	C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

	D. Preserve all the copyright notices of the Document.

	E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

	F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

	G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

	H. Include an unaltered copy of this License.

	I. Preserve the section entitled “History”, and its title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

	J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

	K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s title, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

	L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

	M. Delete any section entitled “Endorsements”. Such a section may not be included in the Modified Version.

	N. Do not retitle any existing section as “Endorsements” or to conflict in title with any Invariant Section. If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties–for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in the various original documents, forming one section entitled “History”; likewise combine any sections entitled “Acknowledgements”, and any sections entitled “Dedications”. You must delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an “aggregate”, and this License does not apply to the other self-contained works thus compiled with the Document, on account of their being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers that surround only the Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License provided that you also include the original English version of this License. In case of a disagreement between the translation and the original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See here.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

 Contributing

 #Translations

The original English version [https://github.com/OWASP/DevGuide] is the source of truth, as it is maintained and updated first.

All translations are created by and maintained by the community.

	Language by Foo Bar [https://github.com/yourname/i18nRepo]

Contributing

Language translations are welcomed and encouraged. The success of these translations depends on the community. I highly encourage new translation contributions and help to keep them up to date.

All translations must preserve the intention of the original document.

All contributions fall under the same license. In other words, you would be providing these free to the community.

New Translations

	Fork the repository

	Create a translation file and name it using the 118n standard format.

	Put this file in the i18n folder

	Translate the original English version to be current with the latest changes

	Make a Pull Request

Once you do these I will merge, point the translation links to it, and enter the translation credit to you.

Updated Translations

	Fork the repository

	Make the translation changes

	Make a Pull Request

Once you do these I will merge, point the translation links to it, and enter the translation credit to you.

(Based heavily upon the John Papa AngularJS Style Guide [https://github.com/johnpapa/angularjs-styleguide] translation strategy.)

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Guía Desarrollador OWASP

_static/up.png

_images/01x01-CIA_Triad.png
Availability
Authentication
Authorization

Auditing

_images/155815.png

_images/3eb889d6b572c39822415fa85d6e6ef691def54b.png
user uses display registration

initiator initiator

user supplies make data entry make malformed data

data available errors accessibleto data

entry for user feedback

V4 |

user submits, canonicalize data

data client side.

A4

validate data

client side.

N collect array of malformed

data

accept user

data submission

A4

canonicalize data

severside

A4

sanitize data

severside

for database

A4

validate data

severside

i

store user data

A4

etuseras

pending user

og details of

\V4 e —

user acknowledges send confirmation

confirmation to user

validate confirmation

token

@tol

accept user

confirmation

A4

convert pending userto

reqular user

_images/02x01-Policies.png
Policy

Standards

Guidelines

Procedures

_images/0b56e9811103b021634d4c08ffa8bf20b22782bc.png
Increasing Policy Basis for
Access Control Decision

Access Control Models

?
RAAAC -
PBAC -/

Increasingly Finer Granularity of Acces

_images/4e5ede24a28fef9d9fd668b9858a144303c7c4d5.png
JClient

TUser Agent (browsen

Resource Owner

TAuthorization Server

/Web-hosted Client Resource

Access Reques

Acces.

fuest

entic.

entic.

1on Requis

1o and

nt

ermmission

_images/5853597ae1b2ee12dd605ac58bdc115901fb60ba.png
JClient

TUser Agent (browsen

Resource Owner (user)

TAuthorization Server

n Request

thenticat

tication

on Request

sipn Grant

_images/4003bc14a49712676ca0d6ccb66a72ae82bcf5cc.png
JClient

TAuthorization Server

Reques

Authenticate Clier

en

Access Token

Access Token

_images/c0e862212f8898674d229573d09c037fd1acc1b7.png
.
/ Authorization Services
1

_images/c38dc49ed90c2ea01866427f69e4bff3d6484daf.png
Subject

Subject Attributes

\

Attribute Based
Ac