
DevAssistant Documentation
Release 0.9.3

Bohuslav Kabrda, Petr Hracek

November 13, 2014

Contents

1 Contents 3
1.1 User Documentation . 3
1.2 Developer Documentation . 9

2 Overview 45

i

ii

DevAssistant Documentation, Release 0.9.3

DevAssistant - making life easier for developers

Contents 1

DevAssistant Documentation, Release 0.9.3

2 Contents

CHAPTER 1

Contents

1.1 User Documentation

1.1.1 Subtopics

DevAssistant and Docker.io

Note: this document is under construction. The described features are not yet implemented in DevAssistant and might
change significantly before version 0.9.0 is released.

Docker is “an open source project to pack, ship and run any application as a lightweight container”.

A container is basically a lightweight virtual machine, that has all the dependency installation and system setup done
inside it, so they don’t affect your system.

This page summarizes Docker usage workflow during project development/deployment, as well as instructions on how
to make the steps painless through DevAssistant.

Why Docker?

Development and deployment with Docker, e.g. in a container isolated from your own system, have several advantages:

• Dependencies are installed only into the container, leaving your system clean.

• System setup is only done inside the container, leaving your system unaffected.

• Your application has a stable runtime environment with a reproducible way of rebuilding this environment.

• You can develop/deploy multiple applications with conflicting dependency sets/environment settings on one
system - just provide a different container for each application.

• You can easily distribute your application as a built container image - and anyone can deploy it easily on any
system that has Docker.

Terminology

• Image - a file system snapshot that can be “run” as a container

• Container - a running “lightweight virtual machine” that uses an image as its filesystem

3

http://docker.io

DevAssistant Documentation, Release 0.9.3

It is important to understand that Docker uses layered images. E.g. one image is used as a base image and there can
be many images built on top of it - each of them storing a different set of filesystem changes. When a container is
run, Docker “squashes” the images, creating a single read-only filesystem for the container. All changes done in the
container are recorded into a new image, that can be saved when container shuts down.

Docker Development/Deployment Workflow

This section summarizes development and deployment workflows for projects using Docker.

Dockerfile A crucial part of development/deployment workflow is Dockerfile. It’s basically a list of instructions that
says how to create an image for your application. It contains:

• Name of base image (this is usually obtained from Docker index of images).

• Zero or more shell commands that install dependencies/set up environment for the application

• List of exported ports (accessible from outside the container), mount points etc.

• A command that copies your application into the image.

Development Overally, the development workflow looks like this (assuming you have a Dockerfile):

• Build a fresh image.

• Instead of using source code that was copied into the image statically, mount the source directory from your
system. This allows you to edit the code outside of the container (with your favourite editor/IDE), while running
the code inside the container.

• Run the image to get a new container (this is actually done in one command with the previous step).

Rough equivalent of the above in Docker commandline invocations:

docker build -rm <dir> # <dir> is the directory containing Dockerfile
-v mounts a local directory to the container, -P opens all ports specified in Dockerfile
docker run -v <local_path>:<container_path> -P <image_id>

Deployment The deployment workflow is quite similar:

• Build a fresh image (from a SCM revision that you want to distribute).

• Distribute the image.

This roughly translates to (if pushing to Docker index):

docker build <dir>
docker commit <container_id> myname/myapp
docker push myname/myapp

Implementation in DevAssistant

DevAssistant 0.9.0 comes with support for building Docker images and running Docker containers. Currently, the
only assistant that supports creating new projects with Dockerfile is crt python django:

da create python django -n foo --docker

but we also have mod docker develop assistant, which is generally usable for any type of project that ships a
Dockerfile. Use it like this:

4 Chapter 1. Contents

http://docs.docker.io/en/latest/use/builder/
https://index.docker.io/
https://index.docker.io/

DevAssistant Documentation, Release 0.9.3

da modify docker develop [-m MOUNTPOINT] [-i REUSE_IMAGE] [-p PATH]

If used with no arguments, this assistant searches for Dockerfile in current directory, builds a Docker image, mounts
source code (the directory that contains Dockerfile) into it (mount point is determined based on first found ADD
instruction in Dockerfile), runs a container and attaches to its output, so that you can develop and see the messages
from process running inside the container.

By using the mentioned options, you can:

• override the directory where your sourcecode should be mounted (-m) in the container

• provide an image to use, if you’ve already built one (-i)

• specify path to your project if it’s not in your current directory (-p)

1.1.2 A Brief Intro

DevAssistant is developer’s best friend (right after coffee).

DevAssistant (http://devassistant.org) can help you with creating and setting up basic projects in various languages,
installing dependencies, setting up environment etc. There are four main types of functionality provided:

Note: Please be advised that with version 0.10.0, the modify command changes to tweak.

• da create - create new project from scratch

• da modify - take local project and do something with it (e.g. import it to Eclipse)

• da prepare - prepare development environment for an upstream project or a custom task

• da task - perform a custom task not related to a specific project

The first three of these have shortcuts for faster use: “create” can be shortened as “crt”, “modify” as “mod” and
“prepare” as “prep”.

DevAssistant is based on idea of per-{language/framework/...} “assistants” with hierarchical structure. E.g. you can
run:

$ da create python django -n ~/myproject # sets up Django project named "myproject" inside your home dir
$ da create python flask -n ~/flaskproject # sets up Flask project named "flaskproject" inside your home dir
$ da create ruby rails -n ~/alsomyproject # sets up RoR project named "alsomyproject" inside your home dir

DevAssistant also allows you to work with a previously created project, for example import it to Eclipse:

$ da modify eclipse # run in project dir or use -p to specify path

With DevAssistant, you can also prepare environment for developing upstream projects - either using project-specific
assistants or using “custom” assistant for arbitrary projects (even those not created by DevAssistant):

$ da prepare custom custom -u scm_url

Warning: The custom assistant executes custom pieces of code from .devassistant file of the project. There-
fore you have to be extra careful and use this only with projects whose authors you trust.

Last but not least, DevAssistant allows you to perform arbitrary tasks not related to a specific project:

$ da task <TODO:NOTHING YET>

1.1. User Documentation 5

http://devassistant.org

DevAssistant Documentation, Release 0.9.3

Should you have some questions, feel free to ask us at Freenode channel #devassistant or on our mail-
ing list (https://lists.fedoraproject.org/mailman/listinfo/devassistant). You can also join our G+ com-
munity (https://plus.google.com/u/0/communities/112692240128429771916) or follow us on Twitter
(https://twitter.com/dev_assistant).

1.1.3 So What is an Assistant?

In short, assistant is a recipe for creating/modifying a project or setting up the environment in a certain way. DevAs-
sistant is in fact just a core that “runs” assistants according to certain rules.

Each assistant specifies a way to achieve a single task, e.g. create a new project in framework X of language Y.

If you want to know more about how this all works, consult Yaml Assistant Reference.

Assistant Roles

There are four assistant roles:

Note: Please be advised that with version 0.10.0, the modify command changes to tweak.

creator (create or crt on command line) creates new projects

modifier (modify or mod on command line) works with existing projects

preparer (prepare or prep on command line) prepares environment for development of upstream projects

task (task on command line) performs arbitrary tasks not related to a specific project

The main purpose of having roles is separating different types of tasks. It would be confusing to have e.g. python
django assistant (that creates new project) side-by-side with eclipse assistant (that registers existing project into
Eclipse).

You can learn about how to invoke the respective roles below in Creating New Projects, Modifying Existing Projects
and Preparing Environment.

1.1.4 Using Commandline Interface

Creating New Projects

DevAssistant can help you create (that’s crt in the commands below) your projects with one line in a terminal. For
example:

$ da create python django -n foo -e -g

da is the short form of devassistant. You can use either of them, but da is preferred.

This line will do the following:

• Install Django (RPM packaged) and all needed dependencies.

• Create a Django project named foo in the current working directory.

• Make any necessary adjustments so that you can run the project and start developing right away.

• The -e switch will make DevAssistant register the newly created projects into Eclipse (tries ~/workspace
by default, if you have any other, you need to specify it as an argument to -e). This will also cause installation
of Eclipse and PyDev, unless already installed.

6 Chapter 1. Contents

https://lists.fedoraproject.org/mailman/listinfo/devassistant
https://plus.google.com/u/0/communities/112692240128429771916
https://twitter.com/dev_assistant

DevAssistant Documentation, Release 0.9.3

• The -g switch will make DevAssistant register the project on Github and push sources there. DevAssistant will
ask you for your Github password the first time you’re doing this and then it will create a Github API token and
new SSH keys, so on any further invocation, this will be fully automatic. Note, that if your system username
differs from your Github username, you must specify the Github username as an argument to -g.

Modifying Existing Projects

Note: Please be advised that with version 0.10.0, the modify command changes to tweak.

DevAssistant allows you to work with previously created projects. You can do this by using da modify, as opposed
to da create for creating:

$ da modify eclipse

This will import a previously created project into Eclipse (and possibly install Eclipse and other dependencies implied
by the project language). Optionally, you can pass -p path/to/project if your current working directory is not
the project directory.

Preparing Environment

DevAssistant can set up the environment and install dependencies for development of an already existing project
located in a remote SCM (e.g. Github). For custom projects you can use the custom assistant. Note that for projects
that don’t have .devassistant file, this will just checkout the sources:

$ da prepare custom -u scm_url

Warning: The custom assistant executes custom pieces of code from a .devassistant file, so use this only for
projects whose upstreams you trust.

The plan is to also include assistants for well known and largely developed projects (that, of course, don’t contain a
.devassistant file). So in future you should be able to do something like:

$ da prepare openstack

and it should do everything needed to get you started developing OpenStack in a way that others do. But this is still
somewhere in the future...

Tasks

Note: Please be advised that with version 0.10.0, the task command changes to extra.

The last piece of functionality is performing arbitrary tasks that are not related to a specific projects. E.g.:

$ da task <TODO:NOTHING YET>

Custom Actions

There are also some custom actions besides crt, mod and prep. For the time being, these are not of high importance,
but in future, these will bring more functionality, such as making coffee for you.

help Displays help, what else?

version Displays current DevAssistant version.

1.1. User Documentation 7

DevAssistant Documentation, Release 0.9.3

1.1.5 Using the GUI

The DevAssistant GUI provides the full functionality of Commandline Interface through a Gtk based application.

As opposed to the CLI, which consists of three binaries, the GUI provides all assistant types (creating, modifying,
preparing) in one, each type having its own page.

The GUI workflow is dead simple:

• Choose the assistant that you want to use, click it and possibly choose a proper subassistant (e.g. django for
python).

• The GUI displays a window where you can modify some settings and choose from various assistant-specific
options.

• Click the “Run” button and then just watch getting the stuff done. If your input is needed (such as confirming
dependencies to install), DevAssistant will ask you, so don’t go get your coffee just yet.

• After all is done, get your coffee and enjoy.

1.1.6 Currently Supported Assistants

Please note that list of currently supported assistants may vary greatly in different distributions, depending on avail-
able packages etc.

Currently supported assistants with their specialties (if any):

Creating

• C - a simple C project, allows you to create an SRPM and build an RPM by specifying -b

• C++

• Java - JSF - Java Server Faces project - Maven - A simple Apache Maven project

• Perl - Class - Simple class in Perl - Dancer - Dancer framework project

• PHP - LAMP - Apache/MySQL/PHP project

• Python - all Python assistants allow you to use --venv switch, which will make DevAssistant create a project
inside a Python virtualenv and install dependencies there, rather then installing them system-wide from RPM -
Django - Initial Django project, set up to be runnable right away - Flask - A minimal Flask project with a simple
view and script for managing the application - Library - A custom Python library - PyGTK - Sample PyGTK
project

• Ruby - Rails - Initial Ruby on Rails project

Modifying

• Eclipse - add an existing project into Eclipse (doesn’t work for some languages/frameworks)

• Vim - install some interesting Vim extensions and make some changes in .vimrc (these changes will not affect
your default configuration, instead you have to use the command let devassistant=1 after invoking Vim)

Preparing

• Custom - checkout a custom previously created project from SCM (git only so far) and install needed depen-
dencies

8 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

Tasks

<TODO: NOTHING YET>

1.2 Developer Documentation

1.2.1 DevAssistant Core

Note: So far, this only covers some bits and pieces of the whole core.

DevAssistant Load Paths

DevAssistant has couple of load path entries, that are searched for assistants, snippets, icons and files used by assis-
tants. In standard installations, there are three paths:

1. “system” path, which is defined by OS distribution (usually /usr/share/devassistant/) or by Python
installation (sth. like /usr/share/pythonX.Y/devassistant/data/)

2. “local” path, /usr/local/share/devassistant/

3. “user” path, ~/.devassistant/

Another path(s) can be added by specifying DEVASSISTANT_PATH environment variable (if more paths are used,
they must be separated by colon). These paths are prepended to the list of standard load paths.

Each load path entry has this structure:

assistants/
crt/
mod/
prep/
task/

files/
crt/
mod/
prep/
task/
snippets/

icons/
crt/
mod/
prep/
task/

snippets/

Icons under icons directory and files in files directory “copy” must the structure of assistants directory. E.g.
for assistant assistants/crt/foo/bar.yaml, the icon must be icons/crt/foo/bar.svg and files must
be placed under files/crt/foo/bar/

Assistants Loading Mechanism

DevAssistant loads assistants from all load paths mentioned above (more specifically from
<load_path>/assistants/ only), traversing them in order “system”, “local”, “user”.

When DevAssistant starts up, it loads all assistants from all these paths. It assumes, that Creator assistants are located
under crt subdirectories the same applies to Modifier (mod), Preparer (prep) and Task (task) assistants.

1.2. Developer Documentation 9

DevAssistant Documentation, Release 0.9.3

For example, loading process for Creator assistants looks like this:

1. Load all assistants located in crt subdirectories of each <load path>/assistants/ (do not descend into
subdirectories). If there are multiple assistants with the same name in different load paths, the first traversed
wins.

2. For each assistant named foo.yaml:

(a) If crt/foo directory doesn’t exist in any load path entry, then this assistant is “leaf” and therefore can
be directly used by users.

(b) Else this assistant is not leaf and DevAssistant loads its subassistants from the directory, recursively going
from point 1).

Command Runners

Command runners... well, they run commands. They are the functionality that makes DevAssistant powerful, since
they effectively allow you to create callbacks to Python, where you can cope with the hard parts unsuitable for Yaml
assistants.

When DevAssistant executes a run section, it reads commands one by one and dispatches them to their respective
command runners. Every command runner can do whatever it wants - for example, we have a command runner that
creates Github repos.

After a command runner is run, DevAssistant sets LAST_LRES and LAST_RES global variables for usage (these are
rewritten with every command run). These variables represent the logical result of the command (True/False) and
result (a “return value”, something computed), much like with Expressions.

For reference of current commands, see Command Reference.

If you’re missing some cool functionality, you can implement your own command runner and send us a pull request.
(We’re thinking of creating some sort of import hook that would allow assistants to import command runners from
Python files outside of DevAssistant, but it’s not on the priority list right now.) Each command must be a class with
two classmethods:

@register_command_runner
class MyCommandRunner(CommandRunner):

@classmethod
def matches(cls, c):

return c.comm_type == ’mycomm’

@classmethod
def run(cls, c):

input = c.input_res
logger.info(’MyCommandRunner was invoked: {ct}: {ci}’.format(ct=c.comm_type,

ci=input))
return (True, len(input))

This command runner will run all commands with command type mycomm. For example if your assistant contains:

run:
- $foo: $(echo "using DevAssistant")
- mycomm: You are $foo!

than DevAssistant will print out something like:

INFO: MyCommandRunner was invoked: mycomm: You are using DevAssistant!

When run, this command returns a tuple with logical result and result. This means you can assign the length of a string
to a variable like this:

10 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

run:
$thiswillbetrue, $length~:
- mycomm: Some string.

(Also, LAST_LRES will be set to True and LAST_RES to length of the input string.)

Generally, the matches method should just decide (True/False) whether given command is
runnable or not and the run method should actually run it. The run method should use
devassistant.logger.logger object to log any messages and it can also raise any exception that’s
subclass of devassistant.exceptions.ExecutionException.

The c argument of both methods is a devassistant.lang.Command object. You can use various attributes of
Command:

• comm_type - command type, e.g. mycomm (this will always be stripped of exec flag ~).

• comm - raw command input. The input is raw in the sense that it is uninterpreted. It’s literally the same as
what’s written in assistant yaml file.

• had_exec_flag - True if the command type had exec flag, False otherwise.

• input_log_res and input_res - return values of input, see Section Results.

Note: input only gets evaluated one time - at time of using input_log_res or input_res. This means, among other
things, that if exec flag is used, the command runner still has to access input_log_res or input_res to actually execute
the input.

1.2.2 Tutorial: Creating Your Own Assistant

So you want to create your own assistant? There is nothing easier... They say that in all tutorials, right?

This tutorial will guide you through the process of creating simple assistants of different roles - Creator, Modifier,
Preparer.

This tutorial doesn’t cover everything. Consult Yaml Assistant Reference when you’re missing something you re-
ally need to achieve. If you think that DevAssistant misses some functionality that would be useful, open a bug at
https://www.github.com/devassistant/devassistant/issues or send us a pull request.

Common Rules and Gotchas

Some things are common for all assistant types:

• Each assistant is one Yaml file, that must contain exactly one mapping - the so-called assistant attributes:

fullname: My Assistant
description: This will be part of help for this assistant
...

• You have to place them in a proper place, see DevAssistant Load Paths and Assistants Loading Mechanism.

• Files (e.g. templates, scripts, etc.) used by assistant should be placed in the same load dir, e.g. if
your assistant is placed at ~/.devassistant/assistants, DevAssistant will look for files under
~/.devassistant/files.

• As mentioned in DevAssistant Load Paths, there are three main load paths in standard DevAssistant installation,
“system”, “local” and “user”. The “system” dir is used for assistants delivered by your distribution/packaging
system and you shouldn’t touch or add files in this path. The “local” path can be used by system admins to add
system-wide assistants while not touching “system” path. Lastly, “user” path can be used by users to create and
use their own assistants. It is up to you where you place your assistant, but “user” path is usually best for playing
around and development of new assistants. It is also the path that we will use throughout these tutorials.

1.2. Developer Documentation 11

https://www.github.com/devassistant/devassistant/issues

DevAssistant Documentation, Release 0.9.3

Creating a Simple Creator

The title says it all. In this section, we will create a “Creator” assistant, that means an assistant that will take care of
kickstarting a new project. We will write an assistant that creates a project containing a simple Python script that uses
argh Python module. Let’s suppose that we’re writing this assistant for an RPM based system like Fedora, CentOS
or RHEL.

This assistant is a “creator”, so we have to put it somewhere into ~/.devassistant/assistants/crt/.
Since the standard DevAssistant distribution has a python assistant, it seems logical to make
this new assistant a subassistant of python. That means that the assistant file will be
~/.devassistant/assistants/crt/python/argh.yaml. It doesn’t matter that the python as-
sistant actually lives in a different load path, DevAssistant will hook the argh subassistant properly anyway.

Setting it Up

So, let’s start writing our assistant by providing some initial metadata:

fullname: Argh Script Template
description: Create a template of simple script that uses argh library
project_type: [python]

If you now save the file and run da create python argh -h, you’ll see that your assistant was already rec-
ognized by DevAssistant, although it doesn’t provide any functionality yet. (Including project type in your Creator
assistant is not necessary, but it may bring some benefits - see Project Types.

Dependencies

Now, we’ll want to add a dependency on python-argh (which is how the package is called e.g. on Fedora). You
can do this just by adding:

dependencies:
- rpm: [python-argh]

Now, if you save the file and actually try to run your assistant with da create python argh, it will install
python-argh! (Well, assuming it’s not already installed, in which case it will do nothing.) This is really super-
cool, but the assistant still doesn’t do any project setup, so let’s get on with it.

Files

Since we want the script to always look the same, we will create a file that our assistant will copy
into proper place. This file should be put into into crt/python/argh subdirectory the files directory
(~/.devassistant/files/crt/python/argh). The file will be called arghscript.py and will have
this content:

#!/usr/bin/python2

from argh import *

def main():
return ’Hello world’

dispatch_command(main)

We will need to refer to this file from our assistant, so let’s open argh.yaml again and add a files section:

12 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

files:
arghs: &arghs
source: arghscript.py

DevAssistant will automatically search for this file in the correct directory, that is
~/programming/files/crt/pyargh. If an assistant has more subassistants, e.g.
crt/pyargh/someassistant and these assistants need to share some files, it is reasonable to place them
into ~/programming/files/crt/pyargh and refer to them with relative path like ../file.foo from the
subassistants. Note, that the two arghs in arghs: &arghs should be the same because of issue 74.

Run

Finally, we will be adding a run section, which is the section that does all the hard work. A run section is a list of
commands. Every command is in fact a Yaml mapping with exactly one key and value. The key determines command
type, while value is the command input. For example, cl is a command type that says that given input should be
run on commandline, log_i is a command type that lets us print the input (message in this case) for user, etc.

Let’s start writing our run section:

run:
- log_i: Hello, I’m Argh assistant and I will create an argh project for you.

But wait! We don’t know what the project should be called and where it should be placed... Before we finish the run
section, we’ll need to add some arguments to our assistant.

Oh Wait, Arguments!

Creating any type of project typically requires some user input, at least name of the project to be created. To ask user
for this sort of information, we can use DevAssistant arguments like this:

args:
name:
flags: [-n, --name]
required: True
help: ’Name of project to create’

This means that this assistant will have one argument called name. On commandline, it will expect -n foo or
--name foo and since the argument is required, it will refuse to run without it.

You can now try running da create python argh -h and you’ll see that the argument is printed out in com-
mandline help.

Since there are some common arguments, the standard installation of DevAssistant ships with so called “snippets”,
that contain (among other things) definitions of frequentyl used arguments. You can use name argument for Creator
assistants like this:

args:
name:
use: common_args

Note: up to version 0.8.0, “snippet” can also be used in place of “use”; “snippet” is obsolete and will be removed in
0.9.0.

1.2. Developer Documentation 13

https://github.com/devassistant/devassistant/issues/74

DevAssistant Documentation, Release 0.9.3

Run Again

Now that we can obtain the desired name, let’s continue. Now that we have the project name (let’s assume that it’s an
arbitrary path to a directory where the argh script should be placed), we can continue. First, we will make sure that the
directory doesn’t already exist. If so, we need to exit, because we don’t want to overwrite or break something:

run:
- log_i: Hello, I’m Argh assistant and I will create an argh project for you.
- if $(test -e "$name"):

- log_e: ’"$name" already exists, can’t proceed.’

There are few things to note here:

• There is a simple if condition with a shell command. If the shell command returns a non-zero value, the
condition will evaluate to false, else it will evaluate to true. So in this case, if something exists at path "$name",
the condition will evaluate to true.

• In any command, we can use value of the name argument by prefixing argument name with $ (so $name or
${name}).

• The log_e command type is used to print a message and then abort the assistant execution immediately.

Let’s continue by creating the directory. Add this line to run section:

- cl: mkdir -p "$name"

You may be wondering what will happen, if DevAssistant doesn’t have write permissions or more generally if the
mkdir command just fails. In this case, DevAssistant will exit, printing the output of failed command for user.

Next, we want to copy our script into the directory. We want to name it the same as name of the directory itself. But
what if directory is a path, not simple name? We have to find out the project name and remember it somehow:

- $proj_name~: $(basename "$name")

What just happened? We assigned output of command basename "$name" to a new variable proj_name that
we can use from now on. Note the ~ at the end of $proj_name~. This is called execution flag and it says that the
command input should be executed as an expression, not taken as a literal. See Expressions for detailed expressions
reference.

Note: the execution flag makes DevAssistant execute the input as a so-called “execution section”. The input can either
be a string, evaluated as an expression, or a list of commands, evaluated as another “run” section.

So let’s copy the script and make it executable:

- cl: cp *arghs ${name}/${proj_name}.py
- cl: chmod +x ${name}/${proj_name}.py

One more thing to note here: by using *arghs, we reference a file from the files section.

Now, we’ll use a super-special command:

- dda_c: "$name"

What is dda_c? The first part, dda stands for “dot devassistant file”, the second part, _c, says, that we want to
create this file (there are more things that can be done with .devassistant file, see .devassistant Commands). The
“command” part of this call just says where the file should be stored, which is directory $name in our case.

The .devassistant file serves for storing meta information about the project. Amongst other things, it stores
information about which assistant was invoked. This information can later serve to prepare the environment (e.g.
install python-argh) on another machine. Assuming that we commit the project to a git repository, one just needs
to run da prepare custom -u <repo_url>, and DevAssistant will checkout the project from git and use
information stored in .devassistant to reinstall dependencies. (There is more to this, you can for example add

14 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

a custom run section to .devassistant file or add custom dependencies, but this is not covered by this tutorial
(not even by reference, so I need to place TODO here to document it).)

Note: There can be more dependencies sections and run sections in one assistant. To find out more about the rules of
when they’re used and how run sections can call each other, consult dependencies reference and run reference.

Something About Snippets

Wait, did we say git? Wouldn’t it be nice if we could setup a git repository inside the project directory and do an initial
commit? These things are always the same, which is exactly the type of task that DevAssistant should do for you.

Previously, we’ve seen usage of argument from snippet. But what if you could use a part of run section from there?
Well, you can. And you’re lucky, since there is a snippet called git_init_add_commit, which does exactly what
we need. We’ll use it like this:

- cl: cd "$name"
- use: git_init_add_commit.run

This calls section run from snippet git_init_add_commit in this place. Note, that all variables are “global”
and the snippet will have access to them and will be able to change their values. However, variables defined in called
snippet section will not propagate into current section.

Note: up to version 0.8.0, “call” can also be used in place of “use”; “call” is obsolete and will be removed in 0.9.0.

Finished!

It seems that everything is set. It’s always nice to print a message that everything went well, so we’ll do that and we’re
done:

- log_i: Project "$proj_name" has been created in "$name".

The Whole Assistant

... looks like this:

fullname: Argh Script Template
description: Create a template of simple script that uses argh library
project_type: [python]

dependencies:
- rpm: [python-argh]

files:
arghs: &arghs
source: arghscript.py

args:
name:
use: common_args

run:
- log_i: Hello, I’m Argh assistant and I will create an argh project for you.
- if $(test -e "$name"):

- log_e: ’"$name" already exists, cannot proceed.’
- cl: mkdir -p "$name"

1.2. Developer Documentation 15

DevAssistant Documentation, Release 0.9.3

- $proj_name~: $(basename "$name")
- cl: cp *arghs ${name}/${proj_name}.py
- cl: chmod +x *arghs ${name}/${proj_name}.py
- dda_c: "$name"
- cl: cd "$name"
- use: git_init_add_commit.run
- log_i: Project "$proj_name" has been created in "$name".

And can be run like this: da create python argh -n foo/bar.

Creating a Modifier

This section assumes that you’ve read the previous tutorial and are therefore familiar with DevAssistant basics. Mod-
ifiers are meant to modify existing projects, that means projects with .devassistant file (there is also an option
to write assistant that modifies an arbitrary project without .devassistant, read on).

Modifier Specialties

The special behaviour of modifiers only applies if you use dda_r in pre_run section. This command reads
.devassistant file from given directory and puts the read variables in global variable context, so they’re available
from all the following dependencies and run section.

If modifier reads .devassistant file in pre_run section, DevAssistant tries to search for more dependencies
sections to use. If the project was previously created by crt python django, the engine will install dependencies
from sections dependencies_python_django, dependencies_python and dependencies.

Also, the engine will try to run run_python_django section first, then it will try run_python and then run -
note, that this will only run the first found section and then exit, unlike with dependencies, where all found sections
are used.

– IN PROGRESS –

1.2.3 Packaging Your Assistant

Note: this functionality is under heavy development and is not fully implemented yet.

So now you know how to create an assistant. But what if you want to share your assistant with others?

For that you could send them all the files from your assistant and tell them where they belong. But that would be very
unpleasant and that’s why we’ve invented dap. Dap is a format of extension for DevAssistant that contains custom
assistants. It means DevAssistant Package.

A dap is a tar.gz archive with .dap extension. The name of a dap is always <package_name>-<version>.dap
- i.e. foo-0.0.1.dap.

Directory structure of a dap

The directory structure of a dap copies the structure of ~/.devassistant or /usr/share/devassistant
folder. The only difference is, that it can only contain assistants, files and icons that that belongs to it’s namespace.

Each dap has an unique name (lat’s say foo) and it can only contain assistants foo or foo/*. Therefore, the directory
structure looks like this:

16 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

foo-0.0.1/
meta.yaml
assistants/
{crt,mod,prep,task}/

foo.yaml
foo/

files/
{crt,mod,prep,task,snippets}/

foo/
snippets/
foo/

icons/
{crt,mod,prep,task,snippets}/

foo.{png,svg}
foo/

doc/
foo/

Note several things:

• Each of this is optional, i.e. you don’t create files or snippets folder if you provide no files or snippets.
Only mandatory thing is meta.yaml (see below).

• Everything goes to the particular folder, just like you’ve learn in the Tutorial. However, you can only add stuff
named as your dap (means either a folder or a file with a particular extension). If you have more levels of
assistants, such as crt/foo/bar/spam.yaml, you have to include top-level assistants (in this case both
crt/foo.yaml and crt/foo/bar.yaml). And you have to preserve the structure in other folders as well
(i.e. no icons/crt/foo/spam.svg but icons/crt/foo/bar/spam.svg).

• The top level folder is named <package_name>-<version>.

meta.yaml

package_name: foo # required
version: 0.0.1 # required
license: GPLv2 # required
authors: [Bohuslav Kabrda <bkabrda@mailserver.com>, ...] # required
homepage: https://github.com/bkabrda/assistant-foo # optional
summary: Some brief one line text # required
bugreports: <a single URL or email address> # optional
description: |

Some not-so-brief optional text.
It can be split to multiple lines.

BTW you can use **Markdown**.

• package name can contain lowercase letters (ASCII only), numbers, underscore and dash (while it can only
start and end with a letter or digit), it has to be unique, several names are reserved by DevAssitant itself (e.g.
python, ruby)

• version follows this scheme: <num>[.<num>]*[dev|a|b], where 1.0.5 < 1.1dev < 1.1a < 1.1b < 1.1

• license is specified via license tag used in Fedora https://fedoraproject.org/wiki/Licensing:Main?rd=Licensing#Good_Licenses

• authors is a list of authors with their e-mail addresses (_at_ can be used instead of @)

• homepage is an URL to existing webpage that describes the dap or contains the code (such as in example), only
http(s) or ftp is allowed, no IP addresses

1.2. Developer Documentation 17

https://fedoraproject.org/wiki/Licensing:Main?rd=Licensing#Good_Licenses

DevAssistant Documentation, Release 0.9.3

• summary and description are self-descriptive in the given example

• bugreports defines where the user should report bugs, it can be either an URL (issue tracker) or an e-mail
address (mailing list or personal)

Checking your dap for sanity

Once you have your dap packaged, check it for sanity with daplint tool from daploader.

First, you have to get the daplint tool. Install daploader with pip or easy_install.

pip install daploader

Then you can check your dap with daplint:

daplint foo-0.0.1.dap

Uploading your dap to DevAssistant Package Index

When you are satisfied, you can share your assistant on Dapi (DevAssistant Package Index).

On Dapi, log in with Github or Fedora account and follow Upload a Dap link in the menu.

1.2.4 Yaml Assistant Reference

Note: The Yaml DSL has changed significantly in 0.9.0 in backwards incompatible manner. This documentation is
only for version 0.9.0 and later.

This is a reference manual to writing yaml assistants. Yaml assistants use a special DSL defined on this page. For real
examples, have a look at assistants in our Github repo.

Why the hell another DSL? When we started creating DevAssistant and we were asking people who work in various
languages whether they’d consider contributing assistants for those languages, we hit the “I’m not touching
Python” barrier. Since we wanted to keep the assistants consistent (centralized logging, sharing common func-
tionality, same backtraces, etc...), we created a new DSL. So now we have something that everyone complains
about, including Pythonists, which seems to be consistent too ;)

Assistant Roles

For list and description of assistant roles see Assistant Roles.

The role is implied by assistant location in one of the load path directories, as mentioned in Assistants Loading
Mechanism.

All the rules mentioned in this document apply to all types of assistants, with exception of sections Modifier Assistants,
Preparer Assistants and Task Assistants that talk about specifics of Modifier, resp. Preparer, resp. Task assistants.

Assistant Name

Assistant name is a short name used on command line, e.g. python. Historically, it had to be the only top-level yaml
mapping in the file, e.g.:

python:
fullname: Python
description: Some verbose description

18 Chapter 1. Contents

https://pypi.python.org/pypi/daploader/
http://dapi.devassistant.org/
http://dapi.devassistant.org/
http://dapi.devassistant.org/upload
https://github.com/devassistant/devassistant-assistants-fedora/

DevAssistant Documentation, Release 0.9.3

Since DevAssistant 0.9.0, it is preferred to omit it and just provide the assistant attributes as the top level mapping:

fullname: Python
description: Some verbose description

Assistant name is derived from the filename by stripping the .yaml extension, e.g. assistant python.yaml file is
named python.

Assistant Attributes

Assistant attributes form the top level mapping in Yaml file:

fullname: Python

run:
- cl: mkdir -p $name
- log_i: I’m in $name

List of allowed attributes follows (all of them are optional, and have some sort of reasonable default, it’s up to your
consideration which of them to use):

fullname a verbose name that will be displayed to user (Python Assistant)

description a (verbose) description to show to user (Bla bla create project bla bla)

dependencies (and dependencies_*) specification of dependencies, see below Dependencies

args specification of arguments, see below Args

files specification of used files, see below Files

project_type type of the project, see Project Types

run (and run_*) specification of actual operations, see Run Sections Reference

pre_run and post_run specification of operations to carry out before/after running main run section, see below
Assistants Invocation; follow the rules specified in Run Sections Reference

files_dir directory where to take files (templates, helper scripts, ...) from. Defaults to
base directory from where this assistant is taken + files. E.g. if this assistant is
~/.devassistant/assistants/crt/path/and/more.yaml, files will be taken from
~/.devassistant/files/crt/path/and/more by default.

icon_path absolute or relative path to icon of this assistant (will be used by GUI). If not present, a default path
will be used - this is derived from absolute assistant path by replacing assistants by icons and .yaml
by .svg - e.g. for ~/.devassistant/assistants/crt/foo/bar.yaml, the default icon path is
~/.devassistant/icons/crt/foo/bar.svg

Assistants Invocation

When you invoke DevAssistant with it will run following assistants sections in following order:

• pre_run

• dependencies

• run (possibly different section for Modifier Assistants)

• post_run

If any of the first three sections fails in any step, DevAssistant will immediately skip to post_run and the whole
invocation will be considered as failed (will return non-zero code on command line and show “Failed” in GUI).

1.2. Developer Documentation 19

DevAssistant Documentation, Release 0.9.3

Dependencies

Yaml assistants can express their dependencies in multiple sections.

• Packages from section dependencies are always installed.

• If there is a section named dependencies_foo, then dependencies from this section are installed iff foo
argument is used (either via commandline or via gui). For example:

$ da python --foo

• These rules differ for Modifier Assistants

Each section contains a list of mappings dependency type: [list, of, deps]. If you provide more
mappings like this:

dependencies:
- rpm: [foo]
- rpm: ["@bar"]

they will be traversed and installed one by one. Supported dependency types:

rpm the dependency list can contain RPM packages or YUM groups (groups must begin with @ and be quoted, e.g.
"@Group name")

use / call (these two do completely same, call is obsolete and will be removed in 0.9.0) installs dependen-
cies from snippet/another dependency section of this assistant/dependency section of superassistant. For
example:

dependencies:
- use: foo.dependencies
- use: foo.dependencies_bar # will install dependencies from snippet "foo", section "bar"
- use: self.dependencies_baz # will install dependencies from section "dependencies_baz" of this assistant
- use: super.dependencies # will install dependencies from "dependencies" section of first superassistant that has such section

if, else conditional dependency installation. For more info on conditions see Run Sections Reference. A very
simple example:

dependencies:
- if $foo:
- rpm: [bar]

- else:
- rpm: [spam]

Full example:

dependencies: - rpm: [foo, "@bar"]

dependencies_spam:
- rpm: [beans, eggs]
- if $with_spam:

- use: spam.spamspam
- rpm: ["ham${more_ham}"]

Sometimes your dependencies may get terribly complex - they depend on many parameters, you need to use them
dynamically during run, etc. In these cases, consider using Dependencies Command in run section.

Args

Note: In versions starting with 0.9.* and older, the name of the corresponding variable is derived from the argument’s

20 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

flags (to mimic Python’s argparse behaviour, see below). In newer versions, the variable name is derived from
the argument’s name itself.

Arguments are used for specifying commandline arguments or gui inputs. Every assistant can have zero to multiple
arguments.

The args section of each yaml assistant is a mapping of arguments to their attributes:

args:
name:
flags:
- -n
- --name

help: Name of the project to create.

Available argument attributes:

flags specifies commandline flags to use for this argument. The longer flag (without the --, e.g. name from
--name) will hold the specified commandline/gui value during run section, e.g. will be accessible as $name.

help a help string

required one of {true,false} - is this argument required?

nargs how many parameters this argument accepts, one of {0, ?,*,+} (e.g. {0, 0 or 1, 0 or more, 1 or more})

default a default value (this will cause the default value to be set even if the parameter wasn’t used by user)

action one of {store_true, [default_iff_used, value]} - the store_true value will create a
switch from the argument, so it won’t accept any parameters; the [default_iff_used, value] will
cause the argument to be set to default value value iff it was used without parameters (if it wasn’t used, it
won’t be defined at all)

metavar a name of variable to show in help on command line, e.g. with metavar: META, you’ll get a help line
--some-arg META <help>.

use / snippet (these two do completely same, snippet is obsolete and will be removed in 0.9.0) name of the
snippet to load this argument from; any other specified attributes will override those from the snippet By con-
vention, some arguments should be common to all or most of the assistants. See Common Assistant Behaviour

preserved if set, the value of this argument will be saved and will reappear in the next launch of devassistant
GUI. The attribute string is a key under which the argument value will be stored. The key should be of the
form “scope.argname” so that you can either share the value across more assistants or avoid collisions if any
other assistant uses an argument with same name but different meaning. The argument values are stored in
“~/.devassistant/.config”. It is ignored in command-line interface.

Gui Hints

GUI needs to work with arguments dynamically, choose proper widgets and offer sensible default values to user.
These are not always automatically retrieveable from arguments that suffice for commandline. For example, GUI
cannot meaningfully prefill argument that says it “defaults to current working directory”. Also, it cannot tell whether
to choose a widget for path (with the “Browse ...” button) or just a plain text field.

Because of that, each argument can have gui_hints attribute. This can specify that this argument is of certain type
(path/str/bool) and has a certain default. If not specified in gui_hints, the default is taken from the argument itself,
if not even there, a sensible “empty” default value is used (home directory/empty string/false). For example:

args:
path:
flags:

1.2. Developer Documentation 21

DevAssistant Documentation, Release 0.9.3

- [-p, --path]
gui_hints:

type: path
default: $(pwd)/foo

If you want your assistant to work properly with GUI, it is good to use gui_hints (currently, it only makes sense to
use it for path attributes, as str and bool get proper widgets and default values automatically).

Files

This section serves as a list of aliases of files stored in one of the files dirs of DevAssistant. E.g. if your assistant
is assistants/crt/foo/bar.yaml, then files are taken relative to files/crt/foo/bar/ directory. So if
you have a file files/crt/foo/bar/spam.foo, you can use:

files:
spam: &spam
source: spam.foo

This will allow you to reference the spam.foo file in run section as *spam without having to know where exactly it
is located in your installation of DevAssistant. Note, that the Yaml anchor name should be the same as mapping name,
e.g. the two spam in spam: &spam should match. This is because of issue 74, that can’t really be reasonably
fixed.

Run

Reference for run sections has a separate page: Run Sections Reference.

Modifier Assistants

Modifier assistants are assistants that are supposed to work with already created project. They must be placed under
mod subdirectory of one of the load paths, as mentioned in Assistants Loading Mechanism.

There are few special things about modifier assistants:

• They usually utilize dda_r to read the whole .devassistant file (usually from directory specified by path
variable or from current directory). Since version 0.8.0, every modifier assistant has to do this on its own, be it
in pre_run or run section. This also allows you to modify non-devassistant projects - just don’t use dda_r.

The special rules below only apply if you use dda_t in pre_run section.

• They use dependency sections according to the normal rules + they use all the sections that are named according
to project_type loaded from .devassistant, e.g. if project_type is [foo, bar], dependency
sections dependencies, dependencies_foo and dependencies_foo_bar will be used as well as
any sections that would get installed according to specified parameters. The rationale behind this is, that if you
have e.g. eclipse modifier that should work for both python django and python flask projects,
chance is that they have some common dependencies, e.g. eclipse-pydev. So you can just place these
common dependencies in dependencies_python and you’re done (you can possibly place special per-
framework dependencies into e.g. dependencies_python_django).

• By default, they don’t use run section. Assuming that project_type is [foo, bar], they first try to
find run_foo_bar, then run_foo and then just run. The first found is used. If you however use cli/gui
parameter spam and section run_spam is present, then this is run instead.

22 Chapter 1. Contents

https://github.com/devassistant/devassistant/issues/74

DevAssistant Documentation, Release 0.9.3

Preparer Assistants

Preparer assistants are assistants that are supposed to checkout sources of upstream projects and set up environment
for them (possibly utilizing their .devassistant file, if they have one). Preparers must be placed under prep
subdirectory of one of the load paths, as mentioned in Assistants Loading Mechanism.

Preparer assistants commonly utilize the dda_dependencies and dda_run commands in run section.

Task Assistants

Task assistants are supposed to carry out arbitrary task that are not related to a specific project. <TODO>

1.2.5 Run Sections Reference

Run sections are the essence of DevAssistant. They are responsible for performing all the tasks and actions to set up
the environment and the project itself. For Creator and Preparer assistants, the section named run is always invoked,
Modifier Assistants may invoke different sections based on metadata in a .devassistant file.

Note, that pre_run and post_run follow the same rules as run sections. See Assistants Invocation to find out
how and when these sections are invoked.

Every section is a sequence of various commands, mostly invocations of commandline. Each command is a mapping
of command type to command input:

run:
- command_runner: command_input
- command_runner_2: another_command_input

Note, that section is a general term used for any sequence of commands. Sections can have subsections (e.g. in
conditions or loops), assuming they follow some rules (see below).

Introduction to Commands and Variables

The list of all supported commands can be found at Command Reference, we only document the basic usage of the
most important commands here. Note, that when you use variables (e.g. $variable) in command input, they get
substituted for their values (undefined variables will remain unchanged).

• command line invocation:

- cl: mkdir -p $spam

This will invoke a subshell and create a directory named $spam. If the command returns non-zero return code,
DevAssistant will fail.

• logging:

- log_i: Directory $spam created.

This command will log the given message at INFO level - either to terminal or GUI. You can use similar
commands to log at different log levels: log_d for DEBUG, log_w for WARNING, log_e for ERROR and
log_c for CRITICAL. By default, messages of level INFO and higher are logged. Log messages with levels
ERROR and CRITICAL emit the message and then terminate execution of DevAssistant immediately.

• conditions:

1.2. Developer Documentation 23

DevAssistant Documentation, Release 0.9.3

- if not $foo and $(ls /spam/spam/spam):
- log_i: This gets executed if the condition is satisfied.

- else:
- log_i: Else this section gets executed.

Conditions work as you’d expect in any programming language - if subsection gets executed if the condition
evaluates to true, otherwise else subsection gets executed. The condition itself is an expression, see Expres-
sions for detailed reference of expressions.

• loops:

- for $i word_in $(ls):
- log_i: Found file $i.

Loops probably also work as you’d expect - they’ve got the control variable and an iterable. Loop iterators are
expressions, see Expressions. Note, that you can use two forms of for loop. If you use word_in, DevAssistant
will split the given expression on whitespace and then iterate over that, while if you use in, DevAssistant will
iterate over single characters of the string.

• variable assignment:

- $foo: "Some literal with value of "foo" variable: $foo"

This shows how to assign a literal value to a variable. It is also possible to assign the result of another command
to a variable, see Section Results for how to use the execution flag.

Remember to check Command Reference for a comprehensive description of all commands.

Literal Sections vs. Execution Sections

DevAssistant distinguishes two different section types: input sections and execution sections. Some sections are
inherently execution sections:

• all run sections of assistants

• if, else subsections

• for subsections

Generally, execution sections can be either:

• expression (e.g. a Yaml string that gets interpreted as an expression)

or

• section (sequence of commands)

Literal section can be any valid Yaml structure - string, list or mapping.

Section Results

Similarly to expressions, sections return logical result and result:

• literal section

– result is a string/list/mapping with variables substituted for their values

– logical result is False if the structure is empty (empty string, list or mapping), True otherwise

• execution sections

– result is the result of last command of given section

24 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

– logical result is the logical result of last command of given section

Some examples follow:

run:
now we’re inherently in an execution section
- if $(ls /foo):

now we’re also in an execution section, e.g. the below sequence is executed
- foo:

the input passed to "foo" command runner is inherently a literal input, e.g. not executed
this means foo command runner will get a mapping with two key-value pairs as input, e.g.:
{’some’: ’string value’, ’with’: [...]}
some: string value
with: [$list, $of, $substituted, $variables]

- $var: this string gets assigned to "var" with $substituted $variables

If you need to assign the result of an expression or execution section to a variable or pass it to a command runner, you
need to use the execution flag: ~:

run:
- $foo~: ($this or $gets) and $executed_as_expression
- foo~:

input of "foo" command runner will be result of the below execution section
- command_runner: literal_section
- command_runner_2~:
similarly, input of command_runner_2 will be result of the below execution section
- cr: ci
- cr2: ci2

Note, that a string starting with the execution flag is also executed as an expression. If you want to create a literal that
starts with ~, just use the escape value for it (~~):

run:
- $foo: ~$(ls) and $bar
- $bar: ~~/some_dir_in_users_home
- log_i: The tilde character (~) only needs to be escaped when starting a string.

Each command specifies its return value in a different way, see Command Reference.

Variables Explained

Initially, variables are populated with values of arguments from the commandline/gui and there are no other variables
defined for creator assistants. For modifier assistants global variables are prepopulated with some values read from
.devassistant. You can either define (and assign to) your own variables or change the values of current ones.

Additionally, after each command, variables $LAST_RES and $LAST_LRES are populated with the result of the last
command (these are also the return values of the command) - see Command Reference

The variable scope works as follows:

• When invoking a different run section (from the current assistant or snippet), the variables get passed by value
(e.g. they don’t get modified for the remainder of this scope).

• Variables defined in subsections (if, else, for) continue to be available until the end of the current run
section.

All variables are global in the sense that if you call a snippet or another section, it can see all the arguments that are
defined.

1.2. Developer Documentation 25

DevAssistant Documentation, Release 0.9.3

Quoting

When using variables that contain user input, they should always be quoted in the places where they are used for bash
execution. That includes cl* commands, conditions that use bash return values and variable assignment that uses
bash.

Global Variables

In all assistants, a few useful global variables are available. These include:

• $__system_name__ - name of the system, e.g. “linux”

• $__system_version__ - version of the system, e.g. “3.13.3-201.fc20.x86_64”

• $__distro_name__ - name of Linux distro, e.g. “fedora”

• $__distro_version__ - version of Linux distro, e.g. “20”

Note: if any of this information is not available, the corresponding variable will be empty. Also note, that you can rely
on all the variables having lowercase content.

Expressions

Expressions are used in assignments, conditions and as loop “iterables”. Every expression has a logical result (meaning
success - True or failure - False) and result (meaning output). Logical result is used in conditions and variable
assignments, result is used in variable assignments and loops. Note: when assigned to a variable, the logical result of
an expression can be used in conditions as expected; the result is either True or False.

Syntax and semantics:

• $foo

– if $foo is defined:

* logical result: True iff value is not empty and it is not False

* result: value of $foo

– otherwise:

* logical result: False

* result: empty string

– note: boolean values (e.g. those acquired by argument with action: store_true) always have an
empty string as a result and their value as logical result

• $(commandline command) (yes, that is a command invocation that looks like running command in a
subshell)

– if commandline command has return value 0:

* logical result: True

– otherwise:

* logical result: False

– regardless of logical result, result always contains both stdout and stderr lines in the order they were printed
by commandline command

26 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

– note: Due to the way the expression parser works, DevAssistant may sometimes add spaces around
special characters between $(and). This is a known issue, but we don’t have any system-
atic solution right now. The problem can be worked around by putting quotes (single or double)
around the whole commandline invocation, e.g. you can use $("echo +-"). See issue 271
<https://github.com/devassistant/devassistant/issues/271>.

• as_root $(commandline command) runs commandline command as superuser; DevAssistant may
achieve this differently on different platforms, so the actual way how this is done is considered to be an imple-
mentation detail

• defined $foo - works exactly as $foo, but has logical result True even if the value is empty or False

• not $foo negates the logical result of an expression, while leaving result intact

• $foo and $bar

– logical result is the logical conjunction of the two arguments

– result is an empty string if at least one of the arguments is empty, or the latter argument

• $foo or $bar

– logical result is the logical disjunction of the two arguments

– result is the first non-empty argument or an empty string

• literals - "foo", ’foo’

– logical result True for non-empty strings, False otherwise

– result is the string itself, sans quotes

– Note: If you use an expression that is formed by just a literal, e.g. "foo" , then DevAssistant will fail,
since Yaml parser will strip these. Therefore you have to use ’"foo"’ .

• $foo in $bar

– logical result is True if the result of the second argument contains the result of the second argument (e.g.
“inus” in “Linus Torvalds”) and False otherwise

– result is always the first agument

All these can be chained together, so, for instance, "1.8.1.4" in $(git --version) and defined
$git is also a valid expression

1.2.6 Command Reference

This page serves as a reference for commands of the DevAssistant Yaml DSL. Every command consists of a com-
mand_type and command_input. After it gets executed, it sets the LAST_LRES and LAST_RES variables. These
are also its return values, similar to Expressions logical result and result.

• LAST_LRES is the logical result of the run - True/False if successful/unsuccessful

• LAST_RES is the “return value” - e.g. a computed value

In the Yaml DSL, commands are called like this:

command_type: command_input

This reference summarizes commands included in DevAssistant itself in the following format:

command_type - some optional info

• Input: what should the input look like?

1.2. Developer Documentation 27

DevAssistant Documentation, Release 0.9.3

• RES: what is LAST_RES set to after this command?

• LRES: what is LAST_LRES set to after this command?

• Example: example usage

Missing something? Commands are your entry point for extending DevAssistant. If you’re missing some functionality
in run sections, just write a command runner and send us a pull request.

Builtin Commands

There are three builtin commands that are inherent part of DevAssistant Yaml DSL:

• variable assignment

• condition

• loop

All of these builtin commands utilize expressions in some way - these must follow rules in Expressions.

Variable Assignment

Assign result (and possibly also logical result) of Expressions to a variable(s).

$<var1>[, $<var2>] - if one variable is given, result of expression (command input) is assigned. If two vari-
ables are given, the first gets assigned logical result and the second result.

• Input: an expression

• RES: result of the expression

• LRES: logical result of the expression

• Example:

$foo: "bar"
$spam:
- spam
- spam
- spam
$bar: $baz
$success, $list~: $(ls "$foo")

Condition

Conditional execution.

if <expression>, else - conditionally execute one or the other section (if can stand alone, of course)

• Input: a subsection to run

• RES: RES of last command in the subsection, if this clause is invoked. If not invoked, RES remains untouched.

• LRES: LRES of last command in the subsection, if this clause is invoked. If not invoked, LRES remains
untouched.

• Example:

28 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

if defined $foo:
- log_i: Foo is $foo!
else:
- log_i: Foo is not defined!

Loop

A simple for loop.

for <var>[, <var>] [word_in,in] <expression> - loop over result of the expression. If word_in is
used and <expression> is a string, it will be split on whitespaces and iterated over; with in, string will be split to
single characters and iterated over. For iterations over lists and mappings, word_in and in behave the same. When
iterating over mapping, two control variables may be provided to get both key and its value.

• Input: a subsection to repeat in loop

• RES: RES of last command of last iteration in the subsection. If there are no interations, RES is untouched.

• LRES: LRES of last command of last iteration in the subsection. If there are no interations, RES remains
untouched.

• Example:

for $i word_in $(ls):
- log_i: File: $i

$foo:
1: one
2: two

for $k, $v in $foo:
- log_i: $k, $v

Ask Commands

User interaction commands, let you ask for password and various other input.

ask_confirm

• Input: mapping containing prompt (short prompt for user) and message (a longer description of what the
user should confirm)

• RES: the confirmation (True or False)

• LRES: same as RES

• Example:

- $confirmed~:
- ask_confirm:

message: "Do you think DevAssistant is great?"
prompt: "Please select yes."

ask_input

• Input: mapping containing prompt (short prompt for user) and optionally message (a longer description)

• RES: the string that was entered by the user

• LRES: True if non-empty string was provided

1.2. Developer Documentation 29

DevAssistant Documentation, Release 0.9.3

• Example:

- $variable:
- ask_input:

prompt: "Your name"

ask_password

• Input: mapping containing prompt (short prompt for user)

• This command works the same way as ask_input, but the entered text is hidden (displayed as bullets)

• RES: the password

• LRES: True if non-empty password was provided

• Example:

- $passwd:
- ask_password:

prompt: "Please provide your password"

Command Line Commands

Run commands in subprocesses and receive their output.

cl, cl_[i,r] (these do the same, but appending i logs the command output on INFO level and appending r runs
command as root; appending p makes DevAssistant pass subcommand error, e.g. execution continues normally even
if subcommand return code is non-zero)

• Input: a string, possibly containing variables and references to files

• RES: stdout + stdin interleaved as they were returned by the executed process

• LRES: always True (if the command fails, the whole DevAssistant execution fails)

• Example:

cl: mkdir ${name}
cl: cp *file ${name}/foo
cl_i: echo "Hey!"
cl_ir: echo "Echoing this as root"
cl_r: mkdir /var/lib/foo
$lres, $res:
- cl_ip: cmd -this -will -log -in -realtime -and -save -lres -and -res -and -then -continue

Note: when using r, it’s job of DevAssistant core to figure out what to use as authentication method. Consider this an
implementation detail.

A note on changing current working directory: Due to the way Python interpreter works, DevAssistant has to special-
case “cd <dir>” command, since it needs to call a special Python method for changing current working directory of
the running interpreter. Therefore you must always use “cd <dir>” as a single command (do not use “ls foo && cd
foo”); also, using pushd/popd is not supported for now.

Dependencies Command

Install dependencies from given command input.

dependencies

30 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

• Input: list of mappings, similar to Dependencies section, but without conditions and usage of sections from
snippets etc.

• RES: command input, but with expanded variables

• LRES: always True (terminates DevAssistant if dependency installation fails)

• Example:

if $foo:
- $rpmdeps: [foo, bar]
else:
- $rpmdeps: []

dependencies:
- rpm: $rpmdeps

.devassistant Commands

Commands that operate with .devassistant file.

dda_c - creates a .devassistant file, should only be used in creator assistants

• Input: directory where the file is supposed to be created

• RES: always True, terminates DevAssistant if something goes wrong

• LRES: always empty string

• Example:

dda_c: ${path}/to/project

dda_r - reads an existing .devassistant file, should be used by modifier and preparer assistants.Sets some global
variables accordingly, most importantly original_kwargs (arguments used when the project was created) - these
are also made available with dda__ prefix (yes, that’s double underscore).

• Input: directory where the file is supposed to be

• RES: always empty string

• LRES: always True, terminates DevAssistant if something goes wrong

• Example:

dda_r: ${path}/to/project

dda_w - writes a mapping (dict in Python terms) to .devassistant

• Input: list with directory with .devassistant file as a first item and the mapping to write as the second
item. Variables in the mapping will be substituted, you have to use $$foo (two dollars instead of one) to get
them as variables in .devassistant.

• RES: always empty string

• LRES: always True, terminates DevAssistant if something goes wrong

• Example:

dda_w:
- ${path}/to/project
- run:
- $$foo: $name # name will get substituted from current variable
- log_i: $$foo

1.2. Developer Documentation 31

DevAssistant Documentation, Release 0.9.3

dda_dependencies - installs dependencies from .devassistant file, should be used by preparer assistants.
Utilizes both dependencies of creator assistants that created this project plus dependencies from dependencies
section, if present (this section is evaluated in the context of current assistant, not the creator).

• Input: directory where the file is supposed to be

• RES: always empty string

• LRES: always True, terminates DevAssistant if something goes wrong

• Example:

dda_dependencies: ${path}/to/project

dda_run - run run section from from .devassistant file, should be used by preparer assistants. This section is
evaluated in the context of current assistant, not the creator.

• Input: directory where the file is supposed to be

• RES: always empty string

• LRES: always True, terminates DevAssistant if something goes wrong

• Example:

dda_run: ${path}/to/project

Github Command

Manipulate Github repositories.

Github command (github) has many “subcommands”. Subcommands are part of the command input, see below.

• Input: a string with a subcommand or a two item list, where the first item is a subcommand and the second item
is a mapping that explicitly specifies parameters for the subcommand.

• RES: if command succeeds, either a string with URL of manipulated repo or empty string is returned (depends
on subcommand), else a string with problem description (it is already logged at WARNING level)

• LRES: True if the Github operation succeeds, False otherwise

• Example:

github: create_repo

github:
- create_and_push
- login: bkabrda
reponame: devassistant

github: push

github: create_fork

Explanation of individual subcommands follows. Each subcommand takes defined arguments, whose default values
are taken from global context. E.g. create_and_push takes an argument login. If it is not specified, assistant
variable github is used.

create_repo Creates a repo with given reponame (defaults to var name) for a user with given login (de-
faults to var github). Optionally accepts private argument to create repo as private (defaults to var
github_private).

32 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

create_and_push Same as create_repo, but it also adds a proper git remote to repository in current working
dir and pushes to Github.

push Just does git push -u origin master, no arguments needed.

create_fork Creates a fork of repo at given repo_url (defaults ot var url) under user specified by login
(defaults to var github).

Jinja2 Render Command

Render a Jinja2 template.

jinja_render, jinja_render_dir - render a single template or a directory containing more templates

• Input: a mapping containing

– template - a reference to file (or a directory if using jinja_render_dir) in files section

– destination - directory where to place rendered template (or rendered directory)

– data - a mapping of values used to render the template itself

– overwrite (optional) - overwrite the file if it exists? (defaults to false)

– output (optional) - specify a filename of the rendered template (see below for information on how the
filename is costructed if not provided), not used with jinja_render_dir

• RES: always success string

• LRES: always True, terminates DevAssistant if something goes wrong

• Example:

jinja_render:
template: *somefile
destination: ${dest}/foo
overwrite: yes
output: filename.foo
data:

foo: bar
spam: spam

jinja_render_dir:
template: *somedir
destination: ${dest}/somedir
data:

foo: foo!
spam: my_spam

The filename of the rendered template is created in this way (the first step is omitted with jinja_render_dir:

• if output is provided, use that as the filename

• else if name of the template endswith .tpl, strip .tpl and use it

• else use the template name

For template syntax reference, see Jinja2 documentation.

1.2. Developer Documentation 33

http://jinja.pocoo.org/docs/

DevAssistant Documentation, Release 0.9.3

Logging Commands

Log commands on various levels. Logging on ERROR or CRITICAL logs the message and then terminates the
execution.

log_[d,i,w,e,c] (the letters stand for DEBUG, INFO, WARNING, ERROR, CRITICAL)

• Input: a string, possibly containing variables and references to files

• RES: the logged message (with expanded variables and files)

• LRES: always True

• Example:

log_i: Hello $name!
log_e: Yay, something has gone wrong, exiting.

Warning: If you start your log command with an apostrophe or a quotation mark, you must end the line with the
same character, and it must not appear elsewhere on the line

SCL Command

Run subsection in SCL environment.

scl [args to scl command] (note: you must use the scriptlet name - usually enable - because it might
vary)

• Input: a subsection

• RES: RES of the last command in the given section

• LRES: LRES of the last command in the given section

• Example:

- scl enable python33 postgresql92:
- cl_i: python --version
- cl_i: pgsql --version

Note: currently, this command can’t be nested, e.g. you can’t run scl enable in another scl enable.

Running Commands as Another User

Run subsection as a different user (how this command runner does this is considered an implementation detail). as
<username> (note: use as root, to run subsection under superuser)

• Input: a subsection

• RES: output of the whole subsection

• LRES: LRES of the last command in the given section

• Example:

- as root:
- cl: ls /root

- as joe:
- log_i~: $(echo "this is run as joe")

34 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

Note: This command invokes DevAssistant under another user and passes the whole section to it. This means some
behaviour differences from e.g. scl command, where each command is run in current assistant. Most importantly,
RES of this command is RES of all commands from given subsection.

Using Another Section

Runs a section specified by command input at this place.

use, call (these two do completely same, call is obsolete and will be removed in 0.9.0) This can be used to run:

• another section of this assistant (e.g. use: self.run_foo)

• section of superassistant (e.g. use: super.run) - searches all superassistants (parent of this, parent of the
parent, etc.) and runs the first found section of given name

• section from snippet (e.g. use: snippet_name.run_foo)

• Input: a string with section name

• RES: RES of the last command in the given section

• LRES: LRES of the last command in the given section

• Example:

- use: self.run_foo
- use: super.run
- use: a_snippet.run_spam

Normalizing User Input

Replace “weird characters” (whitespace, colons, equals...) by underscores and unicode chars by their ascii counter-
parts.

• Input: a string

• RES: a string with weird characters (e.g. brackets/braces, whitespace, etc) replaced by underscores

• LRES: True

• Example:

- $dir~:
- normalize: foo!@#$%^bar_ěšč

- cl: mkdir $dir # creates dir named foo______bar_esc

Setting up Project Directory

Creates a project directory (possibly with a directory containing it) and sets some global variables.

• Input: a mapping of input options, see below

• RES: path of project directory or a directory containing it, if create_topdir is False

• LRES: always True, terminates DevAssistant if something goes wrong

• Example:

1.2. Developer Documentation 35

DevAssistant Documentation, Release 0.9.3

- $dir: foo/bar/baz
- setup_project_dir:

from: $dir
create_topdir: normalized

Note: as a side effect, this command runner sets 3 global variables for you (their names can be altered by using
arguments contdir_var, topdir_var and topdir_normalized_var):

• contdir - the dir containing project directory (e.g. foo/bar in the example above)

• topdir - the project directory (e.g. baz in the example above)

• topdir_normalized - normalized name (by Normalizing User Input) of the project directory

Arguments:

• from (required) - a string or a variable containing string with directory name (possibly a path)

• create_topdir - one of True (default), False, normalized - if False, only creates the directory
containing the project, not the project directory itself (e.g. it would create only foo/bar in example above,
but not the baz directory); if True, it also creates the project directory itself; if normalized, it creates the
project directory itself, but runs it’s name through Normalizing User Input first

• contdir_var, topdir_var, topdir_normalized_var - names to which the global variables should
be assigned to - note: you have to use variable names without dollar sign here

• accept_path - either True (default) or False - if False, this will terminate DevAssistant if a path is
provided

• on_existing - one of fail (default), pass - if fail, this will terminate DevAssistant if directory spec-
ified by from already exists; if pass, nothing will happen; note, that this is always considered pass, if
create_topdir is False (in which case the assistant is in full control and responsible for checking every-
thing itself)

1.2.7 Common Assistant Behaviour

Common Parameters of Assistants and Their Meanings

-e Create Eclipse project, optional. Should create .project (or any other appropriate file) and register project to
Eclipse workspace (~/workspace by default, or the given path if any).

-g Register project on GitHub (uses current user name by default, or given name if any).

-n Name of the project to create, mandatory. Should also be able to accept full or relative path.

To include these parameters in your assistant with common help strings etc., include them from
common_args.yaml (-n, -g) or eclipse.yaml (-e) snippet:

args:
name:
snippet: common_args

Other Conventions

When creating snippets/Python commands, they should operate under the assumption that current working directory
is the project directory (not one dir up or anywhere else). It is the duty of assistant to switch to that directory. The
benefit of this approach is that you just cd once in assistant and then call all the snippets/commands, otherwise you’d
have to put 2x‘cd‘ in every snippet/command.

36 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

1.2.8 Snippets

Snippets are the DevAssistant’s way of sharing common pieces of assistant code. For example, if you have two
assistants that need to log identical messages, you want the messages to be in one place, so that you don’t need to
change them twice when a change is needed.

Example

Let’s assume we have two assistants like this:

assistants/crt/assistant1.yaml
...
run:
- do: some stuff
- log_i: Creating cool project $name ...
- log_i: Still creating ...
- log_i: I suggest you go have a coffee ...
- do: more stuff

assistants/crt/assistant2.yaml
...
run:
- do: some slightly different stuff
- log_i: Creating cool project $name ...
- log_i: Still creating ...
- log_i: I suggest you go have a coffee ...
- do: more slightly different stuff

So we have two assistants that have three lines of identical code in them - that breaks a widely known programmer
best practice: Don’t do it twice, write a function for it. In DevAssistant terms, we’ll write a run section and place it in
a snippet:

snippets/mysnip.yaml
run:
- log_i: Creating cool project $name ...
- log_i: Still creating ...
- log_i: I suggest you go have a coffee ...

Then we’ll change the two assistants like this (we’ll utilize “use” command runner):

assistants/crt/assistant1.yaml
...
run:
- do: some stuff
- use: mysnip.run
- do: more stuff

assistants/crt/assistant2.yaml
...
run:
- do: some slightly different stuff
- use: mysnip.run
- do: more slightly different stuff

How Snippets Work

This section summarizes important notes about how snippets are formed and how they work.

1.2. Developer Documentation 37

DevAssistant Documentation, Release 0.9.3

Syntax and Sections

Snippets are very much like assistants. They can (but don’t have to) have args, dependencies* and run* sections -
structured in the same manner as in assistants. A snippet can contain any combination of the above sections (even
empty file is a valid snippet).

Variables

When a snippet section is called (this applies to both dependencies* and run*, it gets a copy of all arguments of its
caller - e.g. it can use the variables, it can assign to them, but they’ll be unchanged in the calling section after the
snippet finishes.

Using Snippets and Return Value

As noted above, snippets can hold 3 types of content (args, dependencies* sections and run* sections), each of which
can be used in assistants:

snippets/mysnip.yaml

args:
foo:
flags: [-f, --foo]
help: Foo is foo
required: True

dependencies:
- rpm: [python3]

run:
- log_i: Spam spam spam

assistants/crt/assistant1.yaml

args:
foo:
use: mysnip

dependencies:
- use: mysnip.dependencies

run:
- do: stuff
- use: mysnip.run

Return values (RES and LRES) of snippet are determined by the use command runner - RES and LRES of last
command of the snippet section.

1.2.9 Project Metainfo: the .devassistant File

Note: .devassistant file changed some of its contents and semantics in version 0.9.0.

Project created by DevAssistant usually get a .devassistant file, see .devassistant Commands for information
on creating and manipulating it by assistants. This file contains information about a project, such as project type or
paramaters used when this project was created. It can look like this:

38 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

devassistant_version: 0.9.0
original_kwargs:

name: foo
github: bkabrda

project_type: [python, django]
dependencies:
- rpm: [python-django]

When .devassistant is used

Generally, there are two use cases for .devassistant:

• Modifier assistants read the .devassistant file to get project type (which is specified by project_type
entry) and decide what to do with this type of project (by choosing a proper run section to execute and proper
dependencies section, see Modifier Assistants).

• When you use the custom preparer with URL to this project (da prepare custom -u <url>), DevAs-
sistant will checkout the project, read the data from .devassistant and do few things:

– It will install any dependendencies that it finds in .devassistant. These dependencies look like
normal dependencies section in assistant, e.g.:

dependencies:
- rpm: [python-spam]

– It will also run a run section from .devassistant, if it is there. Again, this is a normal run section:

run:
- log_i: Hey, I’m running from .devassistant after checkout!

Generally, when using custom assistant, you have to be extra careful, since someone could put rm -rf ~
or similar evil command in the run section. So use it only with projects whose upstream you trust.

1.2.10 Project Types

This is a list of official project types that projects should use in their .devassistant file and Creator assistants
should state. If you choose one of the official project types, there is a good chance that Modifier and Preparer assistants
written by others will work well with projects created by your Creator.

The project type is given as a list of strings - these describe the project from the most general type to the most specific.
E.g:

project_type: [python, django]

If you don’t use project_type in your Creator assistant, it will be automatically supported to .devassistant:
If your assistant is crt/footest/foobar.yaml, project type in .devassistant will be [footest,
foobar]. This means that Modifier and Preparer assistants written by others may not work well with your project,
but otherwise it does no harm.

Current List of Types

Current project types list follows. If you want anything added in here, open a bug for us at
https://github.com/devassistant/devassistant/issues. Note: the list is currently not very thorough and it is meant
to grow as we get requested by assistant developers.

• c

1.2. Developer Documentation 39

https://github.com/devassistant/devassistant/issues

DevAssistant Documentation, Release 0.9.3

• cpp

• java

• nodejs

– express

• perl

– dancer

• php

• python

– django

– flask

– gtk3

– lib

• ruby

– rails

1.2.11 Contributing to DevAssistant

We are very happy that you want to contribute to DevAssistant, and we want to make this as easy as possible for you
- that’s what DevAssistant is all about anyway. To save both you and ourselves a lot of time and energy, here we list
some rules we would like you to follow to make the pull request process as quick and painless as possible.

Have a look at our code first

Every programmer has a different programming style, a different way of thinking, and that’s good. However, if several
people contribute to the same project, and each one of them keeps to their style while ignoring the others, it becomes
very hard to read the code afterwards. Please, before you start coding your solution, have a look at similar parts of
DevAssistant’s code to see how we approached it, and try to follow that if possible. You will make future maintenance
much easier for everyone, and we will be able to review your pull requests faster as well.

Use PEP8

We follow PEP8, and we ask you to do that as well. It makes the code much more readable and maintainable. Our
only exception is that lines can be as long as 99 characters.

Write tests

Good code has tests. The code you wrote works now, but once someone changes something, it may all break apart.
There are a few general good practices to go by if you’re writing code:

• If you write some new feature, please write tests that make sure it works when everything is okay, and that it
fails the expected way when it isn’t.

• If you fix something, please create tests that ensure that the code really works the new way, and that it doesn’t
work the way it used to work before.

40 Chapter 1. Contents

DevAssistant Documentation, Release 0.9.3

If you go by these rules, there is very little chance that your code breaks some other part of DevAssistant, and at the
same time, you make your part of code less likely to break in the future.

For testing, we use pytest.

When testing, use mocking (namely flexmock)

Often when you need to test some object’s behaviour, you need to “pretend” that something works somehow, for
example that the network is up or that a specific file exists. That is okay, but it is not okay to actually connect to the
internet for testing, or create or delete specific files in the file system. This could break something, or might not work
on our test server.

Of course, sometimes you may need to create a nameless temporary file with tempfile.mkstemp(), which is
something we do often, and it is a perfectly acceptable practice. However, you should not touch for example the
~/.devassistant/config file, which actually belongs to the user, and by writing it, you could delete or damage
the user’s config.

To overcome these problems, we are using flexmock, which is a library that allows you to modify the behaviour of the
environment so that you don’t have to rely on the values on the user’s machine. By calling flexmock on an object, you
can either change some of its methods or attributes, or you can completely replace it with a flexmock object whose
behaviour you fully control.

An example:

import os
from flexmock import flexmock

def test_something(self):
flexmock(os.path).should_receive(’isfile’).with_args(’/foo/bar/baz’).and_return(True)
do_something_assuming_foobarbaz_is_a_valid_file()

What you did here is modify the behaviour of the method os.path.isfile() so that it returns True when called
with the argument /foo/bar/baz. This works only within the current code block, so you can mock something in
one test, and then just forget about it. The next test will have clean environment again.

Here is flexmock documentation.

Just a note here: Mocking doesn’t work well in setup and teardown methods, because they are different code blocks.

Parameterize tests

It makes perfect sense to feed multiple values to a method to see how it works in different situations. Very often it’s
done like this:

def test_something(self):
for value, number in [(’foo’, 1), (’bar’, 2), (’baz’, 3)]:

do_something(value, number)

That’s not exactly how we want to do it. For one, if it fails, you can’t quickly see what the values were when the test
failed, so you have to use a debugger or put some print statements in the code. Another thing is that it’s harder to read
and more prone to error. The preferred way of achieving the same functionality is this:

@pytest.mark.parametrize((’value’, ’number’), [
(’foo’, 1),
(’bar’, 2),
(’baz’, 3),

])

1.2. Developer Documentation 41

http://pytest.org/latest/contents.html#toc
http://has207.github.io/flexmock/user-guide.html

DevAssistant Documentation, Release 0.9.3

def test_something(self, value, number):
do_something(value, number)

The second example is much better especially if you’re doing more than just calling one method - for example mocking,
running a setup/teardown method etc. Pytest also automatically outputs the test parameters if a test fails, so debugging
is much easier. We strongly encourage you to use the second example, and might not accept your pull request if you
don’t, unless you present a good reason why.

Use six for Python 2 + 3 compatibility

DevAssistant works with both major versions of Python currently in production, and we want to keep only one code-
base, therefore we need an interoperability library, namely six. This library is much more powerful and easy to use
than, say, importing __future__, so please, use six and nothing else.

In a majority of cases, we use six for these things:

• importing libraries that were moved or renamed

• testing if a variable contains a string/unicode/bytes

• testing what version of python DevAssistant is running on.

To import a library that was renamed in Python 3, you use the six.moves.builtins module:

from six.moves.builtins import urllib

This imports a module mimicking Python 3’s urllib module, so both in Python 2 and Python 3, you then call:

urllib.request.urlretrieve(url)

The variable containing the information if the code is running under Python 3 is found here:

import six
six.PY3

There is also the six.PY2 constant, but that was added to six quite recently, so for better backwards compatibility,
we kindly ask you to use not six.PY3 instead.

Use pyflakes to sanitize your code

Pyflakes (as well as pylint), are two great tools for improving the quality of your code. We especially urge you to use
pyflakes to find unused imports, undeclared variables and other errors detectable without actually running the code.

Always talk to us when:

Your contribution changes dependencies

We try to keep DevAssistant’s dependency chain as small as possible, so if your code adds a dependency, it is a big
deal for us. For this reason, we urge you to talk to us first (here’s how). If we decide that the new dependency is
necessary, we’ll gladly give you a green light and accept your contribution. If we think that your idea can do without
adding the new package, we’ll do our best to help you modify your idea.

However, if you do not talk to us and implement your feature right away, there is a risk that we will reject your
contribution and you will have to throw your existing code away and start from scratch.

42 Chapter 1. Contents

https://devassistant.org/contact

DevAssistant Documentation, Release 0.9.3

You want to implement a large feature

We welcome large contributions, and are very happy that you take the interest and time to make them. However, we
have certain plans where DevAssistant should go, or what it should look like, and there’s quite a good chance that if
you don’t discuss your idea with us, you might write something quite different, which we won’t be willing to accept.

To avoid this kind of situations, always consult your intentions with us before you start coding - we’re more than open
to new ideas, but we want to know about them first.

You want to include your contribution in an upcoming release

We do have a release plan, but this doesn’t mean we couldn’t occasionally wait a few days for your feature to be
included. If you tell us about your contribution, and we decide that we want it in, we’ll hold a release for you to finish
and submit your code. Of course, the sooner you tell us, the better the outcome will be.

1.2.12 Talk to Us!

If you want to see where DevAssistant development is going and you want to influence it and send your suggestions
and comments, you should really join our ML: https://lists.fedoraproject.org/mailman/listinfo/devassistant.

1.2.13 Overall Design

DevAssistant consists of several parts:

Core Core of DevAssistant is written in Python. It is responsible for interpreting Yaml Assistants and it provides an
API that can be used by any consumer for the interpretation.

CL Interface CL interface allows users to interact with DevAssistant on commandline; it consumes the Core API.

GUI (work in progress) GUI allows users to interact with Developer Assistant from GTK based GUI; it consumes the
Core API.

Assistants Assistants are Yaml files with special syntax and semantics (defined in Yaml Assistant Reference). They
are indepent of the Core, therefore any software distribution can carry its own assistants and drop them into the
directory from where DevAssistant loads them - they will be loaded on next invocation. Note, that there is also
a possibility to write assistants in Python, but this is no longer supported and will be removed in near future.

1.2.14 Assistants

Internally, each assistant is represented by instance of devassistant.yaml_assistant.YamlAssistant.
Instances are constructed by DevAssistant in runtime from parsed yaml files. Each assistant can have zero or more
subassistants. This effectively forms a tree-like structure. For example:

MainAssistant
/ \

/ \
Python Ruby
/ \ / \

/ \ / \
Django Flask Rails Sinatra

This structure is defined by filesystem hierarchy as explained in Assistants Loading Mechanism

1.2. Developer Documentation 43

https://lists.fedoraproject.org/mailman/listinfo/devassistant

DevAssistant Documentation, Release 0.9.3

Each assistant can optionally define arguments that it accepts (either on commandline, or from GUI). For example,
you can run the leftmost path with:

$ da create python [python assistant arguments] django [django assistant arguments]

If an assistant has any subassistants, one of them must be used. E.g. in the example above, you can’t use just Python
assistant, you have to choose between Django and Flask. If Django would get a subassistant, it wouldn’t be usable on
its own any more, etc.

Assistant Roles

The crt in the above example means, that we’re running an assistant that creates a project.

There are four assistant roles:

Note: Please be advised that with version 0.10.0, the modify command changes to tweak.

creator (create or crt on command line) creates new projects

modifier (modify or mod on command line) works with existing projects

preparer (prepare or prep on command line) prepares environment for development of upstream projects

task (task on command line) performs arbitrary tasks not related to a specific project

The main purpose of having roles is separating different types of tasks. It would be confusing to have e.g. python
django assistant (that creates new project) side-by-side with eclipse assistant (that registers existing project into
Eclipse).

1.2.15 Contributing

If you want to contribute (bug reporting, new assistants, patches for core, improving documentation, ...), please use
our Github repo:

• code: https://github.com/devassistant/devassistant

• issue tracker: https://github.com/devassistant/devassistant/issues

If you have DevAssistant installed (version 0.8.0 or newer), there is a fair chance that you have devassistant
preparer. Just run da prepare devassistant and it will checkout our sources and do all the boring stuff that
you’d have to do without DevAssistant.

If you don’t have DevAssistant installed, you can checkout the sources like this (just copy&paste this to get the job
done):

git clone https://github.com/devassistant/devassistant
get the official set of assistants
cd devassistant
git submodule init
git submodule update

You can find list of core Python dependencies in file requirements.txt. If you want to write and run tests (you
should!), install dependencies from requirements-devel.txt:

pip install -r requirements-devel.txt

On top of that, you’ll need polkit for requesting root privileges for dependency installation etc. If you want
to play around with GUI, you have to install pygobject, too (see how hard this is compared to da prepare
devassistant?)

44 Chapter 1. Contents

https://github.com/devassistant/devassistant
https://github.com/devassistant/devassistant/issues

CHAPTER 2

Overview

This is documentation for version 0.9.3.

DevAssistant is developer’s best friend (right after coffee).

DevAssistant (http://devassistant.org) can help you with creating and setting up basic projects in various languages,
installing dependencies, setting up environment etc. There are four main types of functionality provided:

Note: Please be advised that with version 0.10.0, the modify command changes to tweak.

• da create - create new project from scratch

• da modify - take local project and do something with it (e.g. import it to Eclipse)

• da prepare - prepare development environment for an upstream project or a custom task

• da task - perform a custom task not related to a specific project

The first three of these have shortcuts for faster use: “create” can be shortened as “crt”, “modify” as “mod” and
“prepare” as “prep”.

DevAssistant is based on idea of per-{language/framework/...} “assistants” with hierarchical structure. E.g. you can
run:

$ da create python django -n ~/myproject # sets up Django project named "myproject" inside your home dir
$ da create python flask -n ~/flaskproject # sets up Flask project named "flaskproject" inside your home dir
$ da create ruby rails -n ~/alsomyproject # sets up RoR project named "alsomyproject" inside your home dir

DevAssistant also allows you to work with a previously created project, for example import it to Eclipse:

$ da modify eclipse # run in project dir or use -p to specify path

With DevAssistant, you can also prepare environment for developing upstream projects - either using project-specific
assistants or using “custom” assistant for arbitrary projects (even those not created by DevAssistant):

$ da prepare custom custom -u scm_url

Warning: The custom assistant executes custom pieces of code from .devassistant file of the project. There-
fore you have to be extra careful and use this only with projects whose authors you trust.

Last but not least, DevAssistant allows you to perform arbitrary tasks not related to a specific project:

$ da task <TODO:NOTHING YET>

Should you have some questions, feel free to ask us at Freenode channel #devassistant or on our mail-
ing list (https://lists.fedoraproject.org/mailman/listinfo/devassistant). You can also join our G+ com-

45

http://devassistant.org
https://lists.fedoraproject.org/mailman/listinfo/devassistant

DevAssistant Documentation, Release 0.9.3

munity (https://plus.google.com/u/0/communities/112692240128429771916) or follow us on Twitter
(https://twitter.com/dev_assistant).

DevAssistant works on Python 2.6, 2.7 and >= 3.3.

This whole project is licensed under GPLv2+.

46 Chapter 2. Overview

https://plus.google.com/u/0/communities/112692240128429771916
https://twitter.com/dev_assistant

	Contents
	User Documentation
	Developer Documentation

	Overview

