
DevAssistant Documentation
Release 0.7.0

Bohuslav Kabrda, Petr Hracek

October 02, 2013

CONTENTS

1 Contents 3
1.1 User Documentation . 3
1.2 Developer Documentation . 6

2 Overview 17

i

ii

DevAssistant Documentation, Release 0.7.0

DevAssistant - start developing with ease.

CONTENTS 1

DevAssistant Documentation, Release 0.7.0

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 User Documentation

DevAssistant is developer’s best friend (right after coffee).

DevAssistant can help you with creating and setting up basic projects in various languages, installing dependencies,
setting up environment etc. There are three main types of functionality provided:

• da crt - create new project from scratch

• da mod - take local project and do something with it (e.g. import it to Eclipse)

• da prep - prepare development environment for an upstream project or a custom task

DevAssistant is based on idea of per-{language/framework/...} “assistants” with hierarchical structure. E.g. you can
run:

$ da crt python django -n ~/myproject # sets up Django project named "myproject" inside your home dir
$ da crt python flask -n ~/flaskproject # sets up Flask project named "flaskproject" inside your home dir
$ da crt ruby rails -n ~/alsomyproject # sets up RoR project named "alsomyproject" inside your home dir

DevAssistant also allows you to work with a previously created project, for example import it to Eclipse:

$ da mod eclipse # run in project dir or use -p to specify path

Last but not least, DevAssistant allows you to prepare environment for executing arbitrary tasks or developing upstream
projects (either using “custom” assistant for projects previously created by DevAssistant or using specific assistant for
specific projects):

$ da prep custom custom -u scm_url

1.1.1 So What is an Assistant?

In short, assistant is a recipe for creating/modifying a project or setting up environment in a certain way. DevAssistant
is in fact just a core that “runs” assistants according to certain rules.

Each assistant specifies a way how to achieve a single task, e.g. create a new project in framework X of language Y.

If you want to know more about how this all works, consult Yaml Assistant Reference.

Assistant Roles

There are three assistant roles:

3

DevAssistant Documentation, Release 0.7.0

creator creates new projects

modifier modifies existing projects

preparer prepares environment for development of upstream project or custom task

The main purpose of having roles is separating different types of tasks. It would be confusing to have e.g. python
django assistant (that creates new project) side-by-side with eclipse assistant (that registers existing project into
Eclipse).

You can learn about how to invoke the respective roles below in Creating New Projects, Modifying Existing Projects
and Preparing Environment.

1.1.2 Using Commandline Interface

Creating New Projects

DevAssistant can help you create (that’s the crt in the below command) your projects with one line in terminal. For
example:

$ da crt python django -n foo -e -g

da is short form of devassistant. You can use any of them, but da is preferred.

This line will do the following:

• Install Django (RPM packaged) and all needed dependencies.

• Create a Django project named foo in current working directory.

• Make any necessary adjustments so that you can run the project and start developing right away.

• The -e switch will make DevAssistant register the newly created projects into Eclipse (tries ~/workspace
by default, if you have any other, you need to specify it as an argument to -e). This will also cause installation
of Eclipse and PyDev, unless already installed.

• The -g switch will make DevAssistant register the project on Github and push sources there. DevAssistant will
ask you for your Github password the first time you’re doing this and then it will create Github API token and
new SSH keys, so on any further invocation, this will be fully automatic. Note, that if your system username
differs from your Github username, you must specify Github username as an argument to -g.

Modifying Existing Projects

DevAssistant allows you to work with previously created projects. You can do this by using da mod, as opposed to
da crt for creating:

$ da mod eclipse

This will import previously created project into Eclipse (and possibly install Eclipse and other dependencies implied
by the project language). Optionally, you can pass -p path/to/project if your current working directory is not
the project directory.

Preparing Environment

DevAssistant can set up environment and install dependencies for executing aribtrary tasks or development of already
existing project located in a remote SCM (e.g. Github). For custom projects created by DevAssistant, you can use the
custom assistant:

4 Chapter 1. Contents

DevAssistant Documentation, Release 0.7.0

$ da prep custom -u scm_url

The plan is to also include assistants for well known and largely developed projects (that, of course, don’t contain
.devassistant file). So in future you should be able to do something like:

$ da prep openstack

and it should do everything needed to get you started developing OpenStack in a way that others do. But this is still
somewhere in the future...

Custom Actions

There are also some custom actions besides crt, mod and prep. For the time being, these are not of high importance,
but in future, these will bring more functionality, such as making coffee for you.

help Displays help, what else?

version Displays current DevAssistant version.

1.1.3 Using GUI

DevAssistant GUI provides the full functionality of Commandline Interface through a Gtk based application.

As opposed to CLI, which consists of three binaries, GUI provides all assistant types (creating, modifying, preparing)
in one, each type having its own page.

The GUI workflow is dead simple:

• Choose the assistant that you want to use, click it and possibly choose a proper subassistant (e.g. django for
python).

• GUI displays a window where you can modify some settings and choose from various assistant-specific options.

• Click “Run” button and then just watch getting the stuff done. If your input is needed (such as confirming
dependencies to install), DevAssistant will ask you, so don’t go get your coffee just yet.

• After all is done, get your coffee and enjoy.

1.1.4 Currently Supported Assistants

Please note that list of currently supported assistants may vary greatly in different distributions, depending on avail-
able packages etc.

Currently supported assistants with their specialties (if any):

Creating

• C - a simple C project, allows you to create SRPM and build RPM by specifying -b

• C++

• Java - JSF - Java Server Faces project - Maven - A simple Apache Maven project

• Perl - Class - Simple class in Perl - Dancer - Dancer framework project

• PHP - LAMP - Apache/MySQL/PHP project

1.1. User Documentation 5

DevAssistant Documentation, Release 0.7.0

• Python - all Python assistants allow you to use --venv switch, which will make DevAssistant create a project
inside a Python virtualenv and install dependencies there, rather then installing them system-wide from RPM -
Django - Initial Django project, set up to be runnable right away - Flask - A minimal Flask project with a simple
view and script for managing the application - Library - A custom Python library - PyGTK - Sample PyGTK
project

• Ruby - Rails - Initial Ruby on Rails project

Modifying

• Eclipse - add an existing project into Eclipse (doesn’t work for some languages/frameworks)

• Vim - install some interesting Vim extensions and make some changes in .vimrc (these changes will not affect
your default configuration, instead you have to use command let devassistant=1 after invoking Vim)

Preparing

• Custom - checkout a custom previously created project from SCM (git only so far) and install needed depen-
dencies

1.2 Developer Documentation

1.2.1 DevAssistant Core

Note: So far, this only covers some bits and pieces of the whole core.

DevAssistant Load Path

DevAssistant has couple of load path entries, that are searched for assistants, snippets, icons and files used by assis-
tants. In standard installations, there are three paths:

1. “system” path, which is defined by OS distribution (usually /usr/share/devassistant/) or by Python
installation (sth. like /usr/share/pythonX.Y/devassistant/data/)

2. “local” path, /usr/local/share/devassistant/

3. “user” path, ~/.devassistant/

Each load path entry has this structure:

assistants/
crt/
mod/
prep/

files/
crt/
mod/
prep/
snippets/

icons/
crt/
mod/
prep/

snippets/

6 Chapter 1. Contents

DevAssistant Documentation, Release 0.7.0

Icons under icons directory and files in files directory “copy” must the structure of assistants directory. E.g.
for assistant assistants/crt/foo/bar.yaml, the icon must be icons/crt/foo/bar.svg and files must
be placed under files/crt/foo/bar/

Assistants Loading Mechanism

DevAssistant loads assistants from all load paths mentioned above (more specifically from
<load_path>/assistants/ only), traversing them in order “system”, “local”, “user”.

When DevAssistant starts up, it loads all assistants from all these paths. It assumes, that Creator assistants are located
under crt subdirectories the same applies to Modifier (mod) and Preparer (prep) assistants.

For example, loading process for Creator assistants looks like this:

1. Load all assistants located in crt subdirectories of each <load path>/assistants/ (do not descend into
subdirectories). If there are multiple assistants with the same name in different load paths, the first traversed
wins.

2. For each assistant named foo.yaml:

(a) If crt/foo directory doesn’t exist in any load path entry, then this assistant is “leaf” and therefore can
be directly used by users.

(b) Else this assistant is not leaf and DevAssistant loads its subassistants from the directory, recursively going
from point 1).

1.2.2 Yaml Assistant Reference

When developing assistants, please make sure that you read proper version of documentation. The Yaml DSL of
devassistant is still evolving rapidly, so consider yourself warned.

This is a reference manual to writing yaml assistants. Yaml assistants use a special DSL defined on this page. For real
examples, have a look at assistants in our Github repo.

Why the hell another DSL? When we started creating DevAssistant and we were asking people who work in various
languages whether they’d consider contributing assistants for those languages, we hit the “I’m not touching
Python” barrier. Since we wanted to keep the assistants consistent (centralized logging, sharing common func-
tionality, same backtraces, etc...), we created a new DSL. So now we have something that everyone complains
about, including Pythonists, which seems to be consistent too ;)

Assistant Roles

There are three types of assistants:

Creator creator assistants are meant to create new projects from scratch, they’re accessed using da binary

Modifier modifier assistants are used for modifying existing projects previously created by DevAssistant

Preparer preparer assistants are used for setting up environment for already existing projects (located e.g. at remote
SCM etc.) that may or may not have been creating by DevAssistant

The role is implied by assistant location in one of the load path directories, as mentioned in Assistants Loading
Mechanism.

All the rules mentioned in this document apply to all types of assistants, with exception of sections Modifier Assistants
and Preparer Assistants that talk about specifics of Modifier, resp. Preparer assistants.

1.2. Developer Documentation 7

https://github.com/bkabrda/devassistant/tree/master/devassistant/assistants/assistants

DevAssistant Documentation, Release 0.7.0

Assistant Name

Assistant name is a short name used on command line, e.g. python. It should also be the only top-level yaml
mapping in the file (that means just one assistant per file). Each assistant should be placed in a file that’s named the
same as the assistant itself (e.g. python assistant in python.yaml file).

Assistant Content

The top level mapping has to be mapping from assistant name to assistant attributes, for example:

python:
fullname: Python
etc.

List of allowed attributes follows (all of them are optional, and have some sort of reasonable default, it’s up to your
consideration which of them to use):

fullname a verbose name that will be displayed to user (Python Assistant)

description a (verbose) description to show to user (Bla bla create project bla bla)

dependencies (and dependencies_*) specification of dependencies, see below Dependencies

args specification of arguments, see below Args

files specification of used files, see below Files

run (and run_*) specification of actual operations, see below Run

files_dir directory where to take files (templates, helper scripts, ...) from. Defaults to
base directory from where this assistant is taken + files. E.g. if this assistant is
~/.devassistant/assistants/crt/path/and/more.yaml, files will be taken from
~/.devassistant/files/crt/path/and/more by default.

icon_path absolute or relative path to icon of this assistant (will be used by GUI). If not present, a default path
will be used - this is derived from absolute assistant path by replacing assistants by icons and .yaml
by .svg - e.g. for ~/.devassistant/assistants/crt/foo/bar.yaml, the default icon path is
~/.devassistant/icons/crt/foo/bar.svg

Dependencies

Yaml assistants can express their dependencies in multiple sections.

• Packages from section dependencies are always installed.

• If there is a section named dependencies_foo, then dependencies from this section are installed iff foo
argument is used (either via commandline or via gui). For example:

$ da python --foo

• These rules differ for Modifier Assistants

Each section contains a list of mappings dependency type: [list, of, deps]. If you provide more
mappings like this:

dependencies:
- rpm: [foo]
- rpm: ["@bar"]

they will be traversed and installed one by one. Supported dependency types:

8 Chapter 1. Contents

DevAssistant Documentation, Release 0.7.0

rpm the dependency list can contain RPM packages or YUM groups (groups must begin with @ and be quoted, e.g.
"@Group name")

call installs dependencies from snippet or other dependency section of this assistant. For example:

dependencies:
- call: foo # will install dependencies from snippet "foo", section "dependencies"
- call: foo.dependencies_bar # will install dependencies from snippet "foo", section "bar"
- call: self.dependencies_baz # will install dependencies from section "dependencies_baz" of this assistant

if, else conditional dependency installation. For more info on conditions, Run below. A very simple example:

dependencies:
- if $foo:
- rpm: [bar]

- else:
- rpm: [spam]

Full example:

dependencies: - rpm: [foo, "@bar"]

dependencies_spam:
- rpm: [beans, eggs]
- if $with_spam:

- call: spam.spamspam
- rpm: [ham]

Args

Arguments are used for specifying commandline arguments or gui inputs. Every assistant can have zero to multiple
arguments.

The args section of each yaml assistant is a mapping of arguments to their attributes:

args:
name:
flags:
- -n
- --name

help: Name of the project to create.

Available argument attributes:

flags specifies commandline flags to use for this argument. The longer flag (without the --, e.g. name from
--name) will hold the specified commandline/gui value during run section, e.g. will be accessible as $name.

help a help string

required one of {true,false} - is this argument required?

nargs how many parameters this argument accepts, one of {?,*,+} (e.g. {0 or 1, 0 or more, 1 or more})

default a default value (this will cause the default value to be set even if the parameter wasn’t used by user)

action one of {store_true, [default_iff_used, value]} - the store_true value will create a
switch from the argument, so it won’t accept any parameters; the [default_iff_used, value] will
cause the argument to be set to default value value iff it was used without parameters (if it wasn’t used, it
won’t be defined at all)

1.2. Developer Documentation 9

DevAssistant Documentation, Release 0.7.0

snippet name of the snippet to load this argument from; any other specified attributes will override those from
the snippet By convention, some arguments should be common to all or most of the assistants. See Common
Assistant Behaviour

Gui Hints

GUI needs to work with arguments dynamically, choose proper widgets and offer sensible default values to user.
These are not always automatically retrieveable from arguments that suffice for commandline. For example, GUI
cannot meaningfully prefill argument that says it “defaults to current working directory”. Also, it cannot tell whether
to choose a widget for path (with the “Browse ...” button) or just a plain text field.

Because of that, each argument can have gui_hints attribute. This can specify that this argument is of certain type
(path/str/bool) and has a certain default. If not specified in gui_hints, the default is taken from the argument itself,
if not even there, a sensible “empty” default value is used (home directory/empty string/false). For example:

args:
path:
flags:
- [-p, --path]
gui_hints:

type: path
default: $(pwd)/foo

If you want your assistant to work properly with GUI, it is good to use gui_hints (currently, it only makes sense to
use it for path attributes, as str and bool get proper widgets and default values automatically).

Files

This section serves as a list of aliases of files stored in one of the files dirs of DevAssistant. E.g. if your assistant
is assistants/crt/foo/bar.yaml, then files are taken relative to files/crt/foo/bar/ directory. So if
you have a file files/crt/foo/bar/spam, you can use:

files:
spam: &spam
source: spam

This will allow you to reference the spam file in run section as *spam without having to know where exactly it is
located in your installation of DevAssistant.

Run

Run sections are the essence of DevAssistant. They are responsible for preforming all the tasks and actions to set up
the environment and the project itself. By default, section named run is invoked (this is a bit different for Modifier
Assistants). If there is a section named run_foo and foo argument is used, then only run_foo is invoked. This is
different from dependencies sections, as the default dependencies section is used every time.

Every run section is a sequence of various commands, mostly invocations of commandline. Each command is a
mapping command_type: command. During the execution, you may use logging (messages will be printed to
terminal or gui) with following levels: DEBUG, INFO, WARNING, ERROR, CRITICAL. By default, messages of level
INFO and higher are logged. As you can see below, there is a separate log_* command type for logging, but some
other command types can also log various messages. Log messages with levels ERROR and CRITICAL terminate
execution of DevAssistant imediatelly.

Run sections allow you to use variables with certain rules and limitations. See below.

List of supported commands follows:

10 Chapter 1. Contents

DevAssistant Documentation, Release 0.7.0

cl runs given command on commandline, aborts execution of the invoked assistant if it fails. Note: cd is a special
cased command, which doesn’t do shell expansion other than user home dir (~) expansion.

cl_i the i option makes the command execution be logged at INFO level (default is DEBUG), therefore visible to
user

log_[diwec] logs given message at level specified by the last letter in log_X. If the level is e or c, the execution
of the assistant is interrupted immediately.

dda_{c,dependencies,run}

• c creates .devassistant file (containing some sane initial meta information about the project) in given
directory

• dda_dependencies let’s you install dependencies from .devassistant file (DevAssistant will use
dependencies from original assistant and specified dependencies attribute, if any - this has the same
structure as dependencies in normal assistants, and is evaluated in current assistant context, not the
original assistant context)

• dda_run will execute a series of commands from run section from .devassistant (in context of
current assistant)

if <expression>, else conditional execution. The condition must be an Expression.

for <var> in <expression> (for example for $i in $(ls)) - loop over result of given expression (if
it is string, which almost always is, it is split on whitespaces)

$foo assigns result of an Expression to the given variable (doesn’t interrupt the assistant execution if command fails)

$success, $foo assigns logical result (True/False) of evaluating an Expression to $success and result to
$foo (same as above)

call run another section of this assistant (e.g.‘‘call: self.run_foo‘‘) of a snippet run section (call:
snippet_name.run_foo) at this place and then continue execution

scl run a whole section in SCL environment of one or more SCLs (note: you must use the scriptlet name - usually
enable - because it might vary) - for example:

run:
- scl enable python33 postgresql92:
- cl_i: python --version
- cl_i: pgsql --version

Variables

Initially, variables are populated with values of arguments from commandline/gui and there are no other variables
defined for creator assistants. For modifier assistants global variables are prepopulated with some values read from
.devassistant. You can either define (and assign to) your own variables or change the values of current ones.

The variable scope works as follows:

• When invoking run section (from the current assistant or snippet), the variables get passed by value (e.g. they
don’t get modified for the remainder of this scope).

• As you would probably expect, variables that get modified in if and else sections are modified until the end
of the current scope.

All variables are global in the sense that if you call a snippet or another section, it can see all the arguments that are
defined.

1.2. Developer Documentation 11

DevAssistant Documentation, Release 0.7.0

Expressions

Expressions are expressions, really. They are used in assignments, conditions and as loop “iterables”. Every expression
has a logical result (meaning success - True or failure - False) and result (meaning output). Logical result is used
in conditions and variable assignments, result is used in variable assignments and loops. Note: when assigned to a
variable, the logical result of an expression can be used in conditions as expected; the result is either True/False.

Syntax and semantics:

• $foo

– if $foo is defined:

* logical result: True iff value is not empty and it is not False

* result: value of $foo

– otherwise:

* logical result: False

* result: empty string

• $(commandline command) (yes, that is a command invocation that looks like running command in a
subshell)

– if commandline command has return value 0:

* logical result: True

– otherwise:

* logical result: False

– regardless of logical result, result always contains both stdout and stderr lines in the order they were printed
by commandline command

• not - negates the logical result of an expression, while leaving result intact, can only be used once (no, you
can’t use not not not $foo, sorry)

• defined $foo - works exactly as $foo, but has logical result True even if the value is empty or False

Quoting

When using variables that contain user input, they should always be quoted in the places where they are used for bash
execution. That includes cl* commands, conditions that use bash return values and variable assignment that uses
bash.

Modifier Assistants

Modifier assistants are assistants that are supposed to work with already created project. They must be placed under
mod subdirectory of one of the load paths, as mentioned in Assistants Loading Mechanism.

There are few special things about modifier assistants:

• They read the whole .devassistant file and make its contents available as any other variables (notably
$subassistant_path).

• They use dependency sections according to the normal rules + they use all the sections that are named according
to loaded $subassistant_path, e.g. if $subassistant_path is [foo, bar], dependency sections

12 Chapter 1. Contents

DevAssistant Documentation, Release 0.7.0

dependencies, dependencies_foo and dependencies_foo_bar will be used as well as any sec-
tions that would get installed according to specified parameters. The rationale behind this is, that if you have
e.g. eclipse modifier that should work for both python django and python flask projects, chance
is that they have some common dependencies, e.g. eclipse-pydev. So you can just place these common
dependencies in dependencies_python and you’re done (you can possibly place special per-framework
dependencies into e.g. dependencies_python_django).

• By default, they don’t use run section. Assuming that $subassistant_path is [foo, bar], they first
try to find run_foo_bar, then run_foo and then just run. The first found is used. If you however use
cli/gui parameter spam and section run_spam is present, then this is run instead.

Preparer Assistants

Preparer assistants are assistants that are supposed to set up environment for executing arbitrary tasks or prepare
environment and checkout existing upstream projects (possibly using their .devassistant file, if they have it).
Preparers must be placed under prep subdirectory of one of the load paths, as mentioned in Assistants Loading
Mechanism.

Preparer assistants commonly utilize the dda_dependencies and dda_run commands in run section.

1.2.3 Common Assistant Behaviour

Common Parameters of Assistants and Their Meanings

-e Create Eclipse project, optional. Should create .project (or any other appropriate file) and register project to
Eclipse workspace (~/workspace by default, or the given path if any).

-g Register project on GitHub (uses current user name by default, or given name if any).

-n Name of the project to create, mandatory. Should also be able to accept full or relative path.

To include these parameters in your assistant with common help strings etc., include them from
common_args.yaml (-n, -g) or eclipse.yaml (-e) snippet:

args:
name:
snippet: common_args

Other Conventions

When creating snippets/Python commands, they should operate under the assumption that current working directory
is the project directory (not one dir up or anywhere else). It is the duty of assistant to switch to that directory. The
benefit of this approach is that you just cd once in assistant and then call all the snippets/commands, otherwise you’d
have to put 2x‘cd‘ in every snippet/command.

1.2.4 Overall Design

DevAssistant consists of several parts:

Core Core of DevAssistant is written in Python. It is responsible for interpreting Yaml Assistants and it provides an
API that can be used by any consumer for the interpretation.

CL Interface CL interface allows users to interact with DevAssistant on commandline; it consumes the Core API.

1.2. Developer Documentation 13

DevAssistant Documentation, Release 0.7.0

GUI (work in progress) GUI allows users to interact with Developer Assistant from GTK based GUI; it consumes the
Core API.

Assistants Assistants are Yaml files with special syntax and semantics (defined in Yaml Assistant Reference). They
are indepent of the Core, therefore any software distribution can carry its own assistants and drop them into the
directory from where DevAssistant loads them - they will be loaded on next invocation. Note, that there is also
a possibility to write assistants in Python, but this is no longer supported and will be removed in near future.

1.2.5 Assistants

Internally, each assistant is represented by instance of devassistant.yaml_assistant.YamlAssistant. Instances are con-
structed by DevAssistant in runtime from parsed yaml files. Each assistant can have zero or more subassistants. This
effectively forms a tree-like structure. For example:

MainAssistant
/ \

/ \
Python Ruby
/ \ / \

/ \ / \
Django Flask Rails Sinatra

This structure is defined by filesystem hierarchy as explained in Assistants Loading Mechanism

Each assistant can optionally define arguments that it accepts (either on commandline, or from GUI). For example,
you can run the leftmost path with:

$ da crt python [python assistant arguments] django [django assistant arguments]

The crt in the above example means, that we’re running an assistant that creates a project.

There are three assistant roles:

creator creates new projects

modifier modifies existing projects

preparer prepares environment for development of upstream project or custom task

The main purpose of having roles is separating different types of tasks. It would be confusing to have e.g. python
django assistant (that creates new project) side-by-side with eclipse assistant (that registers existing project into
Eclipse).

If an assistant has any subassistants, one of them must be used. E.g. in the example above, you can’t use just Python
assistant, you have to choose between Django and Flask. If Django would get a subassistant, it wouldn’t be usable on
its own any more, etc.

1.2.6 Contributing

If you want to contribute (bug reporting, new assistants, patches for core, improving documentation, ...), please use
our Github repo:

• code: https://github.com/bkabrda/devassistant

• issue tracker: https://github.com/bkabrda/devassistant/issues

Unless you actually have DevAssistant installed, you can checkout the sources like this (just copy&paste this to get
the job done):

14 Chapter 1. Contents

https://github.com/bkabrda/devassistant
https://github.com/bkabrda/devassistant/issues

DevAssistant Documentation, Release 0.7.0

git clone https://github.com/bkabrda/devassistant
get the official set of assistants
cd devassistant
git submodule init
git submodule update

You can find list of core Python dependencies in file requirements.txt. On top of that, you’ll need pygobject
if you want to play around with GUI. DevAssistant also assumes that git is installed on your system.

In next version, we will include a prep assistant, that will be able to actually do this for you... Sweet, ain’t it?

1.2. Developer Documentation 15

DevAssistant Documentation, Release 0.7.0

16 Chapter 1. Contents

CHAPTER

TWO

OVERVIEW

DevAssistant is developer’s best friend (right after coffee).

DevAssistant can help you with creating and setting up basic projects in various languages, installing dependencies,
setting up environment etc. There are three main types of functionality provided:

• da crt - create new project from scratch

• da mod - take local project and do something with it (e.g. import it to Eclipse)

• da prep - prepare development environment for an upstream project or a custom task

DevAssistant is based on idea of per-{language/framework/...} “assistants” with hierarchical structure. E.g. you can
run:

$ da crt python django -n ~/myproject # sets up Django project named "myproject" inside your home dir
$ da crt python flask -n ~/flaskproject # sets up Flask project named "flaskproject" inside your home dir
$ da crt ruby rails -n ~/alsomyproject # sets up RoR project named "alsomyproject" inside your home dir

DevAssistant also allows you to work with a previously created project, for example import it to Eclipse:

$ da mod eclipse # run in project dir or use -p to specify path

Last but not least, DevAssistant allows you to prepare environment for executing arbitrary tasks or developing upstream
projects (either using “custom” assistant for projects previously created by DevAssistant or using specific assistant for
specific projects):

$ da prep custom custom -u scm_url

DevAssistant works on Python 2.6, 2.7 and >= 3.3.

This whole project is licensed under GPLv2+.

17

	Contents
	User Documentation
	Developer Documentation

	Overview

