
DevAssistant Documentation
Release 0.10.0

Bohuslav Kabrda, Petr Hracek

November 13, 2014

Contents

1 Contents 3
1.1 User Documentation . 3
1.2 Developer Documentation . 7

2 Overview 55

i

ii

DevAssistant Documentation, Release 0.10.0

DevAssistant - making life easier for developers

Contents 1

DevAssistant Documentation, Release 0.10.0

2 Contents

CHAPTER 1

Contents

1.1 User Documentation

1.1.1 A Brief Intro

DevAssistant - start developing with ease

DevAssistant (http://devassistant.org) can help you with creating and setting up basic projects in various languages,
installing dependencies, setting up environment etc.

It is based on idea of per-{language/framework/...} “assistants” (plugins) with hierarchical structure.

Note: prior to version 0.10.0, DevAssistant has been shipped with a default set of assistants that only worked on
Fedora. We decided to drop this default set and create DAPI, DevAssistant Package Index, https://dapi.devassistant.org/
- an upstream PyPI/Rubygems-like repository of packaged assistants. DAPI’s main aim is to create a community
around DevAssistant and provide various assistants with good support for various platforms - a task that DevAssistant
core team alone is not able to achieve for a large set of assistants.

This all means that if you get DevAssistant from upstream repo or from PyPI, you will have no assistants installed
by default. To get assistants, search DAPI through web browser or run da pkg search <term> and da pkg
install <assistant package> . This will install one or more DAPs (DevAssistant Packages) with the desired
assistants.

If you want to create your own assistants and upload them to DAPI, see
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant.html and
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant/packaging_and_distributing.html.

There are four main modes of DevAssistant execution. Explanations are provided to better illustrate what each mode
is supposed to do:

create Create new projects - scaffold source code, install dependencies, initialize SCM repos ...

tweak Work with existing projects - add source files, import to IDEs, push to GitHub, ...

prepare Prepare environment for working with existing upstream projects - install dependencies, set up services, ...

extras Tasks not related to a specific project, e.g. enabling services, setting up IDEs, ...

These are some examples of what you can do:

search for assistants that have "Django" in their description
$ da pkg search django
python - Python assistants (library, Django, Flask, GTK3)

install the found "python" DAP, assuming it supports your OS/distro

3

http://devassistant.org
https://dapi.devassistant.org/
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant.html
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant/packaging_and_distributing.html

DevAssistant Documentation, Release 0.10.0

$ da pkg install python

find out if the installed package has documentation
$ da doc python
INFO: DAP "python" has these docs:
...
INFO: usage.txt
...
show help
$ da doc python usage.txt

if the documentation doesn’t say it specifically, find out if there is a "create"
assistant in the installed "python" DAP
$ da create -h
...
{..., python, ...}
...

there is, so let’s find out if it has any subassistants
$ da create python -h
...
{..., django, ...}
...

we found out that there is "django" subassistant, let’s find out how to use it
$ da create python django -h
<help text with commandline options>

help text tells us that django assistant doesn’t have subassistants and is runnable, let’s do it
$ da create python django -n ~/myproject # sets up Django project named "myproject" inside your home dir

using the same approach with "pkg search", "pkg install" and "da tweak -h",
we find, install and read help for "tweak" assistant that imports projects to eclipse
$ da tweak eclipse -p ~/myproject # run in project dir or use -p to specify path

using the same approach, we find, install and read help for assistant
that tries to prepare environment for a custom upstream project, possibly utilizing
its ".devassistant" file
$ da prepare custom -u scm_url -p directory_to_save_to

sometimes, DevAssistant can really do a very special thing for you ...
$ da extras make-coffee

Should you have some questions, feel free to ask us at Freenode channel #devassistant or on our mail-
ing list (https://lists.fedoraproject.org/mailman/listinfo/devassistant). You can also join our G+ com-
munity (https://plus.google.com/u/0/communities/112692240128429771916) or follow us on Twitter
(https://twitter.com/dev_assistant).

1.1.2 So What is an Assistant?

In short, assistant is a recipe for creating/tweaking a project or setting up the environment in a certain way. DevAssis-
tant is in fact just a core that “runs” assistants according to certain rules.

Each assistant specifies a way to achieve a single task, e.g. create a new project in framework X of language Y.

If you want to know more about how this all works, consult Create Your Own Assistant.

4 Chapter 1. Contents

https://lists.fedoraproject.org/mailman/listinfo/devassistant
https://plus.google.com/u/0/communities/112692240128429771916
https://twitter.com/dev_assistant

DevAssistant Documentation, Release 0.10.0

Assistant Roles

There are four assistant roles:

creator (create or crt on command line) creates new projects

tweak (tweak or twk on command line) works with existing projects

preparer (prepare or prep on command line) prepares environment for development of upstream projects

extras (extras or extra on command line) performs arbitrary tasks not related to a specific project

The main purpose of having roles is separating different types of tasks. It would be confusing to have e.g. python
django assistant (that creates new project) side-by-side with eclipse assistant (that registers existing project into
Eclipse).

You can learn about how to invoke the respective roles below in Creating New Projects, Working with Existing Projects,
Preparing Environment and Extras.

1.1.3 Using Commandline Interface

Creating New Projects

DevAssistant can help you create your projects with one line in a terminal. For example:

$ da create python django -n foo -e -g

da is the short form of devassistant. You can use either of them, but da is preferred.

What this line does precisely depends on the author of the assistant. You can always display help by using da create
python django -h. Running the above command line may do something like this:

• Install Django and all needed dependencies.

• Create a Django project named foo in the current working directory.

• Make any necessary adjustments so that you can run the project and start developing right away.

• The -e switch will make DevAssistant register the newly created projects into Eclipse. This will also cause
installation of Eclipse and PyDev, unless already installed.

• The -g switch will make DevAssistant register the project on Github and push sources there.

Working with Existing Projects

DevAssistant allows you to work with previously created projects. You can do this by using da tweak, as opposed
to da create for creating:

$ da tweak eclipse

As noted above, what an assistant does depends on its author. In this case, it seems that the assistant will import an
existing project into Eclipse, possibly installing missing dependencies - to find out if this assumption is correct, run
da tweak eclipse -h and read the help.

Preparing Environment

DevAssistant can set up the environment and install dependencies for development of an already existing project
located in a remote SCM (e.g. Github). There is, for example, the so-called custom prepare assistant, that is supposed
to prepare environment for arbitrary upstream projects. This means that it will checkout the source code from given git

1.1. User Documentation 5

https://dapi.devassistant.org/dap/custom/

DevAssistant Documentation, Release 0.10.0

repo and if there is a .devassistant file in the repo, it’ll install dependencies and prepare environment according
to it:

$ da prepare custom -u scm_url

Warning: The custom assistant executes custom pieces of code from a .devassistant file, so use this only for
projects whose upstreams you trust.

We hope that existance of DAPI will attract people from various upstreams to create prepare assistants for their specific
projects, so that people could do something like:

$ da prepare openstack

To get development environment prepared for development of OpenStack, etc...

Extras

The last piece of functionality is performing arbitrary tasks that are not related to a specific projects. E.g.:

$ da extras make-coffee

Custom Actions

There are also some custom actions besides create, tweak, prepare and extras.

• doc - Displays documentation for given DAP. Uses less as pager, if available.:

finds out if "python" DAP has documentation, lists documents if yes
$ da doc python
...
INFO: LICENSE
INFO: somedoc.txt
INFO: docsubdir/someotherdoc.txt
...

displays specific document for "python" DAP
$ da doc python docsubdir/someotherdoc.txt

• help- Displays help :)

• pkg - Manipulate dap packages, communicate with DAPI. Has several subactions:

– info - prints information about packages from DAPI

– install - installs packages from DAPI

– lint - runs sanity checks on local DAP package

– list - lists installed DAPs

– search - searches DAPs on DAPI for given term

– uninstall - uninstalls given package(s)

– update - updates all or given package(s)

• version- Displays current DevAssistant version.

6 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

1.1.4 Using the GUI

The DevAssistant GUI provides the full functionality of Commandline Interface through a Gtk based application.

The GUI provides all assistant of the same type (creating, tweaking, preparing and extras) in one tab to keep things
organized.

The GUI workflow is dead simple:

• Choose the assistant that you want to use, click it and possibly choose a proper subassistant (e.g. django for
python).

• The GUI displays a window where you can modify some settings and choose from various assistant-specific
options.

• Click the “Run” button and then just watch getting the stuff done. If your input is needed (such as confirming
dependencies to install), DevAssistant will ask you, so don’t go get your coffee just yet.

• After all is done, get your coffee and enjoy.

1.2 Developer Documentation

1.2.1 DevAssistant Core

Note: So far, this only covers some bits and pieces of the whole core.

DevAssistant Load Paths

DevAssistant has couple of load path entries, that are searched for assistants, snippets, icons and files used by assis-
tants. In standard installations, there are three paths:

1. “user” path, ~/.devassistant/

2. “local” path, /usr/local/share/devassistant/

3. “system” path, /usr/share/devassistant/

Another path(s) can be added by specifying DEVASSISTANT_PATH environment variable (if more paths are used,
they must be separated by colon). These paths are prepended to the list of standard load paths.

Each load path entry has this structure:

assistants/
crt/
twk/
prep/
extra/

files/
crt/
twk/
prep/
extra/
snippets/

icons/
crt/
twk/
prep/

1.2. Developer Documentation 7

DevAssistant Documentation, Release 0.10.0

extra/
snippets/

Icons under icons directory and files in files directory “copy” must the structure of assistants directory. E.g.
for assistant assistants/crt/foo/bar.yaml, the icon must be icons/crt/foo/bar.svg and files must
be placed under files/crt/foo/bar/

Assistants Loading Mechanism

DevAssistant loads assistants from all load paths mentioned above (more specifically from
<load_path>/assistants/ only), traversing them in order “user”, “local”, “system”.

When DevAssistant starts up, it loads all assistants from all these paths. It assumes, that Creator assistants are located
under crt subdirectories the same applies to Tweak (twk), Preparer (prep) and Extras (extra) assistants.

For example, loading process for Creator assistants looks like this:

1. Load all assistants located in crt subdirectories of each <load path>/assistants/ (do not descend into
subdirectories). If there are multiple assistants with the same name in different load paths, the first traversed
wins.

2. For each assistant named foo.yaml:

(a) If crt/foo directory doesn’t exist in any load path entry, then this assistant is “leaf” and therefore can
be directly used by users.

(b) Else this assistant is not leaf and DevAssistant loads its subassistants from the directory, recursively going
from point 1).

Command Runners

Command runners... well, they run commands. They are the functionality that makes DevAssistant powerful, since
they effectively allow you to create callbacks to Python, where you can cope with the hard parts unsuitable for Yaml
assistants.

When DevAssistant executes a run section, it reads commands one by one and dispatches them to their respective
command runners. Every command runner can do whatever it wants - for example, we have a command runner that
creates Github repos.

After a command runner is run, DevAssistant sets LAST_LRES and LAST_RES global variables for usage (these are
rewritten with every command run). These variables represent the logical result of the command (True/False) and
result (a “return value”, something computed), much like with Expressions.

For reference of current commands, see Command Reference.

If you’re missing some cool functionality, you can implement your own command runner and send us a pull request
or include it in files shipped with your assistants. Command runners shipped with assistants must be loaded with
load_cmd command runner. Each command must be a class with two classmethods:

from devassistant.command_runners import command_runners
from devassistant.logger import logger

NOTE: Command runners included in DA itself are decorated with @register_command_runner
wrapper. If you’re shipping your own commands runners with assistants, don’t do this.
class MyCommandRunner(CommandRunner):

@classmethod
def matches(cls, c):

return c.comm_type == ’mycomm’

8 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

@classmethod
def run(cls, c):

input = c.input_res
logger.info(’MyCommandRunner was invoked: {ct}: {ci}’.format(ct=c.comm_type,

ci=input))
return (True, len(input))

This command runner will run all commands with command type mycomm. For example if your assistant contains:

run:
- load_cmd: *file_from_files_section
- $foo: $(echo "using DevAssistant")
- mycomm: You are $foo!

than DevAssistant will print out something like:

INFO: MyCommandRunner was invoked: mycomm: You are using DevAssistant!

When run, this command returns a tuple with logical result and result. This means you can assign the length of a string
to a variable like this:

run:
- $thiswillbetrue, $length~:

- mycomm: Some string.

(Also, LAST_LRES will be set to True and LAST_RES to length of the input string.)

Generally, the matches method should just decide (True/False) whether given command is
runnable or not and the run method should actually run it. The run method should use
devassistant.logger.logger object to log any messages and it can also raise any exception that’s
subclass of devassistant.exceptions.ExecutionException.

The c argument of both methods is a devassistant.lang.Command object. You can use various attributes of
Command:

• comm_type - command type, e.g. mycomm (this will always be stripped of exec flag ~).

• comm - raw command input. The input is raw in the sense that it is uninterpreted. It’s literally the same as what’s
written in assistant yaml file.

• input_res and input_log_res - result and logical result of comm, i.e. interpreted input. This is what you
usually want to use to examine what was passed to your command. See Section Results for rules on interpreting
command input.

• had_exec_flag - True if the command type had exec flag, False otherwise.

Note: input only gets evaluated one time - at time of using input_log_res or input_res. This means, among other
things, that if exec flag is used, the command runner still has to access input_log_res or input_res to actually execute
the input.

1.2.2 Create Your Own Assistant

Create Assistant in Yaml DSL

Tutorial: Creating Your Own Assistant in Yaml DSL

So you want to create your own assistant? There is nothing easier... They say that in all tutorials, right?

1.2. Developer Documentation 9

DevAssistant Documentation, Release 0.10.0

This tutorial will guide you through the process of creating simple assistants of different roles - Creator, Tweak,
Preparer, Extras.

This tutorial doesn’t cover everything. Consult Yaml DSL Reference when you’re missing something you really
need to achieve. If you think that DevAssistant misses some functionality that would be useful, open a bug at
https://www.github.com/devassistant/devassistant/issues or send us a pull request.

General Rules Some things are common for all assistant types:

• Each assistant is one Yaml file, that must contain exactly one mapping - the so-called assistant attributes:

fullname: My Assistant
description: This will be part of help for this assistant
...

• You have to place them in a proper place, see DevAssistant Load Paths and Assistants Loading Mechanism.

• Files (e.g. templates, scripts, PingPong script files etc.) used by assistant should be placed in the same load dir,
e.g. if your assistant is placed at ~/.devassistant/assistants, DevAssistant will look for files under
~/.devassistant/files.

• As mentioned in DevAssistant Load Paths, there are three main load paths in standard DevAssistant installation,
“system”, “local” and “user”. The “system” dir is used for assistants delivered by your distribution/packaging
system and you shouldn’t touch or add files in this path. The “local” path can be used by system admin to
add system-wide assistants while not touching “system” path. Lastly, “user” path can be used by user to install
assistants just for himself.

• When developing new assistants, that you e.g. put in a separate Git repo and want to work on it, commit, push,
etc, it is best to utilize DEVASSISTANT_PATH bash environment variable, see DevAssistant Load Paths for
more info.

Creating a Simple Creator The title says it all. In this section, we will create a “Creator” assistant, that means an
assistant that will take care of kickstarting a new project. We will write an assistant that creates a project containing a
simple Python script that uses argh Python module. Let’s suppose that we’re writing this assistant for an RPM based
system like Fedora, CentOS or RHEL.

To start, we’ll create a file hierarchy for our new assistant, say in ~/programming and modify
DEVASSISTANT_PATH accordingly. Luckily, there is an assistant that does all this - dap:

da pkg install dap
da create dap -n ~/programming/pyargh --crt
export DEVASSISTANT_PATH=~/programming/pyargh/

Running da create dap scaffolds everything that’s needed to create a DAP package that can be distributed on
DevAssistant Package Index, DAPI, see Packaging and Distributing Your Assistant for more information.

Since this assistant is a “creator”, we need to put it somewhere under ~/programming/assistants/crt/.
Assistants can be organized in a hierarchical structure, so you could have e.g.
~/programming/pyargh/assistants/crt/python-scripts.yaml as a superassistant and
~/programming/pyargh/assistants/crt/python-scripts/pyargs.yaml as its sub-
assistant, but for this example we’ll keep things simple and put pyargh.yaml directly under
~/programming/pyargh/assistants/crt/.

Note, that in pre-0.10.0 DevAssistant versions, it was recommended to hook such assistants in already existing hierar-
chies (e.g. using superassistants provided by someone else). Since 0.10.0, this is no longer recommended. The main
reason for this is that we are introducing a simple upstream packaging and distribution format, as well as “DevAs-
sistant package index” - a central repository of upstream assistant packages. See Packaging and Distributing Your

10 Chapter 1. Contents

https://www.github.com/devassistant/devassistant/issues
https://dapi.devassistant.org/dap/dap/
https://dapi.devassistant.org/

DevAssistant Documentation, Release 0.10.0

Assistant for more details. In this concept, each package can only have one superassistant (named as the whole pack-
age is named) in each crt, twk, prep and extra and can only place subassistants into hierarchies defined by these.
Package names have to be unique in the DevAssistant Package Index.

Setting it Up So, let’s start writing ~/programming/pyargh/assistants/crt/pyargh.yaml by pro-
viding some initial metadata:

fullname: Argh Script Template
description: Create a template of simple script that uses argh library
project_type: [python]

If you now save the file and run da create pyargh -h, you’ll see that your assistant was already recognized by
DevAssistant, although it doesn’t provide any functionality yet. (Including project type in your Creator assistant is not
necessary, but it may bring some benefits - see Project Types.

Dependencies Now, we’ll want to add a dependency on python-argh (which is how the package is called e.g.
on Fedora). You can do this just by adding:

dependencies:
- rpm: [python-argh]

Now, if you save the file and actually try to run your assistant with da create pyargh, it will install
python-argh! (Well, assuming it’s not already installed, in which case it will do nothing.) This is really super-cool,
but the assistant still doesn’t do any project setup, so let’s get on with it.

Files Since we want the script to always look the same, we will create a file that our assistant will
copy into proper place. This file should be put into into crt/pyargh subdirectory the files directory
(~/programming/files/crt/pyargh). The file will be called arghscript.py and will have this content:

#!/usr/bin/python2

from argh import *

def main():
return ’Hello world’

dispatch_command(main)

We will need to refer to this file from our assistant, so let’s open argh.yaml again and add a files section:

files:
arghs: &arghs
source: arghscript.py

DevAssistant will automatically search for this file in the correct directory, that is
~/programming/files/crt/pyargh. If an assistant has more subassistants, e.g.
crt/pyargh/someassistant and these assistants need to share some files, it is reasonable to place them
into ~/programming/files/crt/pyargh and refer to them with relative path like ../file.foo from the
subassistants. Note, that the two arghs in arghs: &arghs should be the same because of issue 74.

Run Finally, we will be adding a run section, which is the section that does all the hard work. A run section is a
list of commands. Every command is in fact a Yaml mapping with exactly one key and value. The key determines
command type, while value is the command input. For example, cl is a command type that says that given input
should be run on commandline, log_i is a command type that lets us print the input (message in this case) for user,
etc.

1.2. Developer Documentation 11

https://github.com/devassistant/devassistant/issues/74

DevAssistant Documentation, Release 0.10.0

Let’s start writing our run section:

run:
- log_i: Hello, I’m Argh assistant and I will create an argh project for you.

But wait! We don’t know what the project should be called and where it should be placed... Before we finish the run
section, we’ll need to add some arguments to our assistant.

Oh Wait, Arguments! Creating any type of project typically requires some user input, at least name of the project
to be created. To ask user for this sort of information, we can use DevAssistant arguments like this:

args:
name:
flags: [-n, --name]
required: True
help: ’Name of project to create’

This means that this assistant will have one argument called name. On commandline, it will expect -n foo or
--name foo and since the argument is required, it will refuse to run without it.

You can now try running da create pyargh -h and you’ll see that the argument is printed out in commandline
help.

Since there are some common arguments that the standard installation of DevAssistant ships with so called “snippets”,
that contain (among other things) definitions of frequentyl used arguments. You can use name argument for Creator
assistants like this:

args:
name:
use: common_args

See Common Assistant Behaviour for more information.

Run Again Now that we’re able to obtain project name (let’s assume that it’s an arbitrary path to a directory where
the argh script should be placed), we can continue. First, we will make sure that the directory doesn’t already exist. If
so, we need to exit, because we don’t want to overwrite or break something:

run:
- log_i: Hello, I’m Argh assistant and I will create an argh project for you.
- if $(test -e "$name"):

- log_e: ’"$name" already exists, can’t proceed.’

There are few things to note here:

• There is a simple if condition with a shell command. If the shell command returns a non-zero value, the
condition will evaluate to false, else it will evaluate to true. So in this case, if something exists at path "$name",
the condition will evaluate to true.

• In any command, we can use value of the name argument by prefixing argument name with $ (so $name or
${name}).

• The log_e command type is used to print a message and then abort the assistant execution immediately.

Let’s continue by creating the directory. Add this line to run section:

- cl: mkdir -p "$name"

You may be wondering what will happen, if DevAssistant doesn’t have write permissions or more generally if the
mkdir command just fails. In this case, DevAssistant will exit, printing the output of failed command for user.

12 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

Next, we want to copy our script into the directory. We want to name it the same as name of the directory itself. But
what if directory is a path, not simple name? We have to find out the project name and remember it somehow:

- $proj_name~: $(basename "$name")

What just happened? We assigned output of command basename "$name" to a new variable proj_name that
we can use from now on. Note the ~ at the end of $proj_name~. This is called execution flag and it says that the
command input should be executed as an expression, not taken as a literal. See Expressions for detailed expressions
reference and Variables and Context to find out more about variables.

Note: the execution flag makes DevAssistant execute the input as a so-called “execution section”. The input can either
be a string, evaluated as an expression, or a list of commands, evaluated as another “run” section.

So let’s copy the script and make it executable:

- cl: cp *arghs ${name}/${proj_name}.py
- cl: chmod +x ${name}/${proj_name}.py

One more thing to note here: by using *arghs, we reference a file from the files section.

Now, we’ll use a super-special command:

- dda_c: "$name"

What is dda_c? The first part, dda stands for “dot devassistant file”, the second part, _c, says, that we want to
create this file (there are more things that can be done with .devassistant file, see .devassistant Commands). The
“command” part of this call just says where the file should be stored, which is directory $name in our case.

The .devassistant file serves for storing meta information about the project. Amongst other things, it stores
information about which assistant was invoked. This information can later serve to prepare the environment (e.g.
install python-argh) on another machine. Assuming that we commit the project to a git repository, one just needs
to run da prepare custom -u <repo_url>, and DevAssistant will checkout the project from git and use
information stored in .devassistant to reinstall dependencies. (There is more to this, you can for example add
a custom run section to .devassistant file or add custom dependencies, but this is not covered by this tutorial
(see Project Metainfo: the .devassistant File).

Note: There can be more dependencies sections and run sections in one assistant. To find out more about the rules of
when they’re used and how run sections can call each other, consult dependencies reference and run reference.

Something About Snippets Wait, did we say Git? Wouldn’t it be nice if we could setup a Git repository inside the
project directory and do an initial commit? These things are always the same, which is exactly the type of task that
DevAssistant should do for you.

Previously, we’ve seen usage of argument from snippet. But what if you could use a part of run section from there?
Well, you can. And you’re lucky, since there is a snippet called git.init_add_commit, which does exactly what
we need. This snippet can be found in the git DAP. During development, you can install git DAP using da pkg
install git. For runtime, you’ll need to add it as dependency to meta.yaml - see meta.yaml explained for more
info on dependencies. We’ll use the snippet like this:

- cl: cd "$name"
- use: git.init_add_commit.run

This calls section run from snippet git_init_add_commit in this place. Note, that all variables are “global”
and the snippet will have access to them and will be able to change their values. However, variables defined in called
snippet section will not propagate into current section.

Finished! It seems that everything is set. It’s always nice to print a message that everything went well, so we’ll do
that and we’re done:

1.2. Developer Documentation 13

https://dapi.devassistant.org/dap/git/

DevAssistant Documentation, Release 0.10.0

- log_i: Project "$proj_name" has been created in "$name".

The Whole Assistant ... looks like this:

fullname: Argh Script Template
description: Create a template of simple script that uses argh library
project_type: [python]

dependencies:
- rpm: [python-argh]

files:
arghs: &arghs
source: arghscript.py

args:
name:
use: common_args

run:
- log_i: Hello, I’m Argh assistant and I will create an argh project for you.
- if $(test -e "$name"):

- log_e: ’"$name" already exists, cannot proceed.’
- cl: mkdir -p "$name"
- $proj_name~: $(basename "$name")
- cl: cp *arghs ${name}/${proj_name}.py
- cl: chmod +x *arghs ${name}/${proj_name}.py
- dda_c: "$name"
- cl: cd "$name"
- use: git_init_add_commit.run
- log_i: Project "$proj_name" has been created in "$name".

And can be run like this: da create pyargh -n foo/bar.

Creating a Tweak Assistant This section assumes that you’ve read the previous tutorial and are therefore familiar
with DevAssistant basics. Tweak assistants are meant to work with existing projects. They usually try to look for
.devassistant file of the project, but it is not necessary.

Tweak Assistant Specialties The special behaviour of tweak assistants only applies if you use dda_r in pre_run
section. This command reads .devassistant file from given directory and puts the read variables in global vari-
able context, so they’re available from all the following dependencies and run section.

If tweak assistant reads .devassistant file in pre_run section, DevAssistant tries to search for more
dependencies sections to use. If the project was previously created by crt python django, the en-
gine will install dependencies from sections dependencies_python_django, dependencies_python and
dependencies.

Also, the engine will try to run run_python_django section first, then it will try run_python and then run -
note, that this will only run the first found section and then exit, unlike with dependencies, where all found sections
are used.

– IN PROGRESS –

14 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

Yaml DSL Reference

Note: The Yaml DSL has changed significantly in 0.9.0 in backwards incompatible manner. This documentation is
only for version 0.9.0 and later.

This is a reference manual to writing yaml assistants. Yaml assistants use a special DSL defined on this page. For real
examples, have a look at assistants in our Github repo.

Why the hell another DSL? When we started creating DevAssistant and we were asking people who work in various
languages whether they’d consider contributing assistants for those languages, we hit the “I’m not touching
Python” barrier. Since we wanted to keep the assistants consistent (centralized logging, sharing common func-
tionality, same backtraces, etc...), we created a new DSL. This DSL is very well suited for what it’s supposed
to do, but we understand that some people don’t want to learn it for various reasons. That is why, in 0.10.0,
we introduced a concept called DevAssistant PingPong. Using PingPong, you can write assistants in scripting
languages, while still utilizing DevAssistant as a “library of functions”.

Assistant Roles For list and description of assistant roles see Assistant Roles.

The role is implied by assistant location in one of the load path directories, as mentioned in Assistants Loading
Mechanism.

All the rules mentioned in this document apply to all types of assistants, with exception of sections Tweak Assistants,
Preparer Assistants and Extras Assistants that talk about specifics of Tweak, resp. Preparer, resp. Extras assistants.

Assistant Name Assistant name is a short name used on command line, e.g. python. Historically, it had to be the
only top-level yaml mapping in the file, e.g.:

python:
fullname: Python
description: Some verbose description

Since DevAssistant 0.9.0, it is preferred to omit it and just provide the assistant attributes as the top level mapping:

fullname: Python
description: Some verbose description

Assistant name is derived from the filename by stripping the .yaml extension, e.g. assistant python.yaml file is
named python.

Assistant Attributes Assistant attributes form the top level mapping in Yaml file:

fullname: Python

run:
- cl: mkdir -p $name
- log_i: I’m in $name

List of allowed attributes follows (all of them are optional, and have some sort of reasonable default, it’s up to your
consideration which of them to use):

fullname a verbose name that will be displayed to user (Python Assistant)

description a (verbose) description to show to user (Bla bla create project bla bla)

dependencies (and dependencies_*) specification of dependencies, see below Dependencies

args specification of arguments, see below Arguments

files specification of used files, see below Files

1.2. Developer Documentation 15

https://github.com/devassistant/devassistant-assistants-fedora/

DevAssistant Documentation, Release 0.10.0

project_type type of the project, see Project Types

run (and run_*) specification of actual operations, see Run Sections Reference

pre_run and post_run specification of operations to carry out before/after running main run section, see below
Assistants Invocation; follow the rules specified in Run Sections Reference

files_dir directory where to take files (templates, helper scripts, ...) from. Defaults to
base directory from where this assistant is taken + files. E.g. if this assistant is
~/.devassistant/assistants/crt/path/and/more.yaml, files will be taken from
~/.devassistant/files/crt/path/and/more by default.

icon_path absolute or relative path to icon of this assistant (will be used by GUI). If not present, a default path
will be used - this is derived from absolute assistant path by replacing assistants by icons and .yaml
by .svg - e.g. for ~/.devassistant/assistants/crt/foo/bar.yaml, the default icon path is
~/.devassistant/icons/crt/foo/bar.svg

Assistants Invocation When you invoke DevAssistant with it will run following assistants sections in following
order:

• pre_run

• dependencies

• run (possibly different section for Tweak Assistants)

• post_run

If any of the first three sections fails in any step, DevAssistant will immediately skip to post_run and the whole
invocation will be considered as failed (will return non-zero code on command line and show “Failed” in GUI).

Dependencies Yaml assistants can express their dependencies in multiple sections.

• Packages from section dependencies are always installed.

• If there is a section named dependencies_foo, then dependencies from this section are installed iff foo
argument is used (either via commandline or via gui). For example:

$ da python --foo

• These rules differ for Tweak Assistants

Each section contains a list of mappings dependency type: [list, of, deps]. If you provide more
mappings like this:

dependencies:
- rpm: [foo]
- rpm: ["@bar"]

they will be traversed and installed one by one. Supported dependency types:

rpm the dependency list can contain RPM packages or YUM groups (groups must begin with @ and be quoted, e.g.
"@Group name")

use / call (these two do completely same, call is obsolete and will be removed in 0.9.0) installs dependen-
cies from snippet/another dependency section of this assistant/dependency section of superassistant. For
example:

dependencies:
- use: foo.dependencies
- use: foo.dependencies_bar # will install dependencies from snippet "foo", section "bar"

16 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

- use: self.dependencies_baz # will install dependencies from section "dependencies_baz" of this assistant
- use: super.dependencies # will install dependencies from "dependencies" section of first superassistant that has such section

if, else conditional dependency installation. For more info on conditions see Run Sections Reference. A very
simple example:

dependencies:
- if $foo:
- rpm: [bar]

- else:
- rpm: [spam]

Full example:

dependencies: - rpm: [foo, "@bar"]

dependencies_spam:
- rpm: [beans, eggs]
- if $with_spam:

- use: spam.spamspam
- rpm: ["ham${more_ham}"]

Sometimes your dependencies may get terribly complex - they depend on many parameters, you need to use them
dynamically during run, etc. In these cases, consider using Dependencies Command in run section.

Arguments Arguments are used for specifying commandline arguments or GUI inputs. Every assistant can have
zero to multiple arguments.

The args section of each yaml assistant is a mapping of arguments to their attributes:

args:
name:
flags:
- -n
- --name

help: Name of the project to create.

Available argument attributes:

flags specifies commandline flags to use for this argument. The longer flag (without the --, e.g. name from
--name) will hold the specified commandline/gui value during run section, e.g. will be accessible as $name.

help a help string

required one of {true,false} - is this argument required?

nargs how many parameters this argument accepts, one of {0, ?,*,+} (e.g. {0, 0 or 1, 0 or more, 1 or more})

default a default value (this will cause the default value to be set even if the parameter wasn’t used by user)

action one of {store_true, [default_iff_used, value]} - the store_true value will create a
switch from the argument, so it won’t accept any parameters; the [default_iff_used, value] will
cause the argument to be set to default value value iff it was used without parameters (if it wasn’t used, it
won’t be defined at all)

metavar a name of variable to show in help on command line, e.g. with metavar: META, you’ll get a help line
--some-arg META <help>.

use name of the snippet to load this argument from; any other specified attributes will override those from the snippet
By convention, some arguments should be common to all or most of the assistants. See Common Assistant
Behaviour

1.2. Developer Documentation 17

DevAssistant Documentation, Release 0.10.0

preserved if set, the value of this argument will be saved and will reappear in the next launch of devassistant
GUI. The attribute string is a key under which the argument value will be stored. The key should be of the
form “scope.argname” so that you can either share the value across more assistants or avoid collisions if any
other assistant uses an argument with same name but different meaning. The argument values are stored in
“~/.devassistant/.config”. It is ignored in command-line interface.

Gui Hints GUI needs to work with arguments dynamically, choose proper widgets and offer sensible default values
to user. These are not always automatically retrieveable from arguments that suffice for commandline. For example,
GUI cannot meaningfully prefill argument that says it “defaults to current working directory”. Also, it cannot tell
whether to choose a widget for path (with the “Browse ...” button) or just a plain text field.

Because of that, each argument can have gui_hints attribute. This can specify that this argument is of certain type
(path/str/bool) and has a certain default. If not specified in gui_hints, the default is taken from the argument itself,
if not even there, a sensible “empty” default value is used (home directory/empty string/false). For example:

args:
path:
flags:
- [-p, --path]
gui_hints:

type: path
default: $(pwd)/foo

If you want your assistant to work properly with GUI, it is good to use gui_hints (currently, it only makes sense to
use it for path attributes, as str and bool get proper widgets and default values automatically).

Files This section serves as a list of aliases of files stored in one of the files dirs of DevAssistant. E.g. if
your assistant is assistants/crt/foo/bar.yaml, then files are taken relative to files/crt/foo/bar/
directory. So if you have a file files/crt/foo/bar/spam.foo, you can use:

files:
spam: &spam
source: spam.foo

This will allow you to reference the spam.foo file in run section as *spam without having to know where exactly it
is located in your installation of DevAssistant. Note, that the Yaml anchor name should be the same as mapping name,
e.g. the two spam in spam: &spam should match. This is because of issue 74, that can’t really be reasonably
fixed.

Run Reference for run sections has a separate page: Run Sections Reference.

Creator Assistants Creator assistants are assistants that create something, be it a source file, a configuration file
template or a whole new project. They must be placed under assistants/crt subdirectory or one of the load
paths, as mentioned in Assistants Loading Mechanism.

They usually create .devassistant file (see Project Metainfo: the .devassistant File).

Tweak Assistants Tweak assistants are assistants that are supposed to work with already created project. They
must be placed under assistants/twk subdirectory of one of the load paths, as mentioned in Assistants Loading
Mechanism.

There are few special things about tweak assistants:

18 Chapter 1. Contents

https://github.com/devassistant/devassistant/issues/74

DevAssistant Documentation, Release 0.10.0

• They usually utilize dda_r to read the whole .devassistant file (usually from directory specified by path
variable or from current directory). Since version 0.8.0, every tweak assistant has to do this on its own, be it in
pre_run or run section. This also allows you to work non-devassistant projects - just don’t use dda_r.

The special rules below only apply if you use dda_t in pre_run section.

• They use dependency sections according to the normal rules + they use all the sections that are named according
to project_type loaded from .devassistant, e.g. if project_type is [foo, bar], dependency
sections dependencies, dependencies_foo and dependencies_foo_bar will be used as well as
any sections that would get installed according to specified parameters. The rationale behind this is, that if
you have e.g. eclipse tweak assistant that should work for both python django and python flask
projects, chance is that they have some common dependencies, e.g. eclipse-pydev. So you can just place
these common dependencies in dependencies_python and you’re done (you can possibly place special
per-framework dependencies into e.g. dependencies_python_django).

• By default, they don’t use run section. Assuming that project_type is [foo, bar], they first try to
find run_foo_bar, then run_foo and then just run. The first found is used. If you however use cli/gui
parameter spam and section run_spam is present, then this is run instead.

Preparer Assistants Preparer assistants are assistants that are supposed to checkout sources of upstream projects
and set up environment for them (possibly utilizing their .devassistant file, if they have one). Preparers must
be placed under assistants/prep subdirectory of one of the load paths, as mentioned in Assistants Loading
Mechanism.

Preparer assistants commonly utilize the dda_dependencies and dda_run commands in run section.

Extras Assistants Extras assistants are supposed to carry out arbitrary task that are not related to a specific project.
They must be placed under assistants/extra subdirectory of one of the load paths, as mentioned in Assistants
Loading Mechanism. Otherwise, there is nothing special about extras assistants in terms of execution by DevAssistant.

Run Sections Reference

Run sections are the essence of DevAssistant. They are responsible for performing all the tasks and actions to set up
the environment and the project itself. For Creator and Preparer assistants, the section named run is always invoked,
Tweak Assistants may invoke different sections based on metadata in a .devassistant file.

Note, that pre_run and post_run follow the same rules as run sections. See Assistants Invocation to find out
how and when these sections are invoked.

Every section is a sequence of various commands, mostly invocations of commandline. Each command is a mapping
of command type to command input:

run:
- command_runner: command_input
- command_runner_2: another_command_input

Note, that section is a general term used for any sequence of commands. Sections can have subsections (e.g. in
conditions or loops), assuming they follow some rules (see below).

Introduction to Commands and Variables The list of all supported commands can be found at Command Refer-
ence, we only document the basic usage of the most important commands here. Note, that when you use variables (e.g.
$variable) in command input, they get substituted for their values (undefined variables will remain unchanged).

• command line invocation:

1.2. Developer Documentation 19

DevAssistant Documentation, Release 0.10.0

- cl: mkdir -p $spam

This will invoke a subshell and create a directory named $spam. If the command returns non-zero return code,
DevAssistant will fail.

• logging:

- log_i: Directory $spam created.

This command will log the given message at INFO level - either to terminal or GUI. You can use similar
commands to log at different log levels: log_d for DEBUG, log_w for WARNING, log_e for ERROR and
log_c for CRITICAL. By default, messages of level INFO and higher are logged. Log messages with levels
ERROR and CRITICAL emit the message and then raise an exception.

• conditions:

- if not $foo and $(ls /spam/spam/spam):
- log_i: This gets executed if the condition is satisfied.

- else:
- log_i: Else this section gets executed.

Conditions work as you’d expect in any programming language - if subsection gets executed if the condition
evaluates to true, otherwise else subsection gets executed. The condition itself is an expression, see Expres-
sions for detailed reference of expressions.

• loops:

- for $i word_in $(ls):
- log_i: Found file $i.

Loops probably also work as you’d expect - they’ve got the control variable and an iterable. Loop iterators are
expressions, see Expressions. Note, that you can use two forms of for loop. If you use word_in, DevAssistant
will split the given expression on whitespace and then iterate over that, while if you use in, DevAssistant will
iterate over single characters of the string.

• variable assignment:

- $foo: "Some literal with value of "foo" variable: $foo"

This shows how to assign a literal value to a variable. It is also possible to assign the result of another command
to a variable, see Section Results for how to use the execution flag.

Remember to check Command Reference for a comprehensive description of all commands.

Literal Sections vs. Execution Sections DevAssistant distinguishes two different section types: input sections and
execution sections. Some sections are inherently execution sections:

• all run sections of assistants

• if, else subsections

• for subsections

Generally, execution sections can be either:

• expression (e.g. a Yaml string that gets interpreted as an expression)

or

• section (sequence of commands)

Literal section can be any valid Yaml structure - string, list or mapping.

20 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

Section Results Similarly to expressions, sections return logical result and result:

• literal section

– result is a string/list/mapping with variables substituted for their values

– logical result is False if the structure is empty (empty string, list or mapping), True otherwise

• execution sections

– result is the result of last command of given section

– logical result is the logical result of last command of given section

Some examples follow:

run:
now we’re inherently in an execution section
- if $(ls /foo):

now we’re also in an execution section, e.g. the below sequence is executed
- foo:

the input passed to "foo" command runner is inherently a literal input, e.g. not executed
this means foo command runner will get a mapping with two key-value pairs as input, e.g.:
{’some’: ’string value’, ’with’: [...]}
some: string value
with: [$list, $of, $substituted, $variables]

- $var: this string gets assigned to "var" with $substituted $variables

If you need to assign the result of an expression or execution section to a variable or pass it to a command runner, you
need to use the execution flag: ~:

run:
- $foo~: ($this or $gets) and $executed_as_expression
- foo~:

input of "foo" command runner will be result of the below execution section
- command_runner: literal_section
- command_runner_2~:
similarly, input of command_runner_2 will be result of the below execution section
- cr: ci
- cr2: ci2

Note, that a string starting with the execution flag is also executed as an expression. If you want to create a literal that
starts with ~, just use the escape value for it (~~):

run:
- $foo: ~$(ls) and $bar
- $bar: ~~/some_dir_in_users_home
- log_i: The tilde character (~) only needs to be escaped when starting a string.

Each command specifies its return value in a different way, see Command Reference.

Exceptions If an unexpected error happens in a command runner, then this command runner raises exception. This
means that execution of the current section is immediately terminated - in fact, the whole assistant run is terminated at
that moment. In terminology terms, this is called raising exception even for a run section. As of version 0.10.0, there
is no way to recover from these errors, but it may be added in future versions.

For command line execution of DevAssistant, raising exception means ending DevAssistant with non-zero return code
immediately. In GUI, this means ending the execution of an assistant, but keeping the GUI running.

1.2. Developer Documentation 21

DevAssistant Documentation, Release 0.10.0

Variables and Context The set of all variables existing during an assistant run section is referred to as global
context or just context (it is implemented as dictionary, Python’s associative array type). This means, that it is in fact
mapping of variable names to their values.

Initially, the context is populated with values of arguments from the commandline/gui and some other useful values,
see Global Variables below. You can of course define (and assign to) your own variables or change the values of
current ones - see Variable Assignment. Names of some of the preset variables start and end with double underscores.
You shouldn’t modify these, as they can be used internally by DevAssistant.

Additionally, after each command, variables $LAST_RES and $LAST_LRES are populated with the result of the last
command (these are also the return values of the command) - see Command Reference.

The variable scope works as follows:

• When invoking a different run section (from the current assistant or snippet), the variables get passed by value
(e.g. they don’t get modified for the remainder of this scope).

• Variables defined in subsections (if, else, for) continue to be available until the end of the current run
section.

All variables are global in the sense that if you call a snippet or another section, it can see all the arguments that are
defined.

Quoting When using variables that contain user input, they should always be quoted in the places where they are
used for bash execution. That includes cl* commands, conditions that use bash return values and variable assignment
that uses bash.

Global Variables In all assistants, a few useful global variables are available. These include:

• $__system_name__ - name of the system, e.g. “linux”

• $__system_version__ - version of the system, e.g. “3.13.3-201.fc20.x86_64”

• $__distro_name__ - name of Linux distro, e.g. “fedora”

• $__distro_version__ - version of Linux distro, e.g. “20”

• $__env__ - mapping of environment variables that get passed to subprocess shell

Note: if any of this information is not available, the corresponding variable will be empty. Also note, that you can rely
on all the variables having lowercase content.

Expressions Expressions are used in assignments, conditions and as loop “iterables”. Every expression has a logical
result (meaning success - True or failure - False) and result (meaning output). Logical result is used in conditions
and variable assignments, result is used in variable assignments and loops. Note: when assigned to a variable, the
logical result of an expression can be used in conditions as expected; the result is either True or False.

Syntax and semantics:

• $foo

– if $foo is defined:

* logical result: True iff value is not empty and it is not False

* result: value of $foo

– otherwise:

* logical result: False

* result: empty string

22 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

– note: boolean values (e.g. those acquired by argument with action: store_true) always have an
empty string as a result and their value as logical result

• $(commandline command) (yes, that is a command invocation that looks like running command in a
subshell)

– if commandline command has return value 0:

* logical result: True

– otherwise:

* logical result: False

– regardless of logical result, result always contains both stdout and stderr lines in the order they were printed
by commandline command

– note: Due to the way the expression parser works, DevAssistant may sometimes add spaces around
special characters between $(and). This is a known issue, but we don’t have any system-
atic solution right now. The problem can be worked around by putting quotes (single or double)
around the whole commandline invocation, e.g. you can use $("echo +-"). See issue 271
<https://github.com/devassistant/devassistant/issues/271>.

• as_root $(commandline command) runs commandline command as superuser; DevAssistant may
achieve this differently on different platforms, so the actual way how this is done is considered to be an imple-
mentation detail

• defined $foo - works exactly as $foo, but has logical result True even if the value is empty or False

• not $foo negates the logical result of an expression, while leaving result intact

• $foo and $bar

– logical result is the logical conjunction of the two arguments

– result is an empty string if at least one of the arguments is empty, or the latter argument

• $foo or $bar

– logical result is the logical disjunction of the two arguments

– result is the first non-empty argument or an empty string

• literals - "foo", ’foo’

– logical result True for non-empty strings, False otherwise

– result is the string itself, sans quotes

– Note: If you use an expression that is formed by just a literal, e.g. "foo" , then DevAssistant will fail,
since Yaml parser will strip these. Therefore you have to use ’"foo"’ .

• $foo in $bar

– logical result is True if the result of the second argument contains the result of the second argument (e.g.
“inus” in “Linus Torvalds”) and False otherwise

– result is always the first agument

All these can be chained together, so, for instance, "1.8.1.4" in $(git --version) and defined
$git is also a valid expression

1.2. Developer Documentation 23

DevAssistant Documentation, Release 0.10.0

Snippets

Snippets are the DevAssistant’s way of sharing common pieces of assistant code. For example, if you have two
assistants that need to log identical messages, you want the messages to be in one place, so that you don’t need to
change them twice when a change is needed.

Example Let’s assume we have two assistants like this:

assistants/crt/assistant1.yaml
...
run:
- do: some stuff
- log_i: Creating cool project $name ...
- log_i: Still creating ...
- log_i: I suggest you go have a coffee ...
- do: more stuff

assistants/crt/assistant2.yaml
...
run:
- do: some slightly different stuff
- log_i: Creating cool project $name ...
- log_i: Still creating ...
- log_i: I suggest you go have a coffee ...
- do: more slightly different stuff

So we have two assistants that have three lines of identical code in them - that breaks a widely known programmer
best practice: Don’t do it twice, write a function for it. In DevAssistant terms, we’ll write a run section and place it in
a snippet:

snippets/mysnip.yaml
run:
- log_i: Creating cool project $name ...
- log_i: Still creating ...
- log_i: I suggest you go have a coffee ...

Then we’ll change the two assistants like this (we’ll utilize “use” command runner):

assistants/crt/assistant1.yaml
...
run:
- do: some stuff
- use: mysnip.run
- do: more stuff

assistants/crt/assistant2.yaml
...
run:
- do: some slightly different stuff
- use: mysnip.run
- do: more slightly different stuff

How Snippets Work This section summarizes important notes about how snippets are formed and how they work.

24 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

Syntax and Sections Snippets are very much like assistants. They can (but don’t have to) have args, dependencies*
and run* sections - structured in the same manner as in assistants. A snippet can contain any combination of the above
sections (even empty file is a valid snippet).

Variables When a snippet section is called (this applies to both dependencies* and run*, it gets a copy of all argu-
ments of its caller - e.g. it can use the variables, it can assign to them, but they’ll be unchanged in the calling section
after the snippet finishes.

Using Snippets and Return Value As noted above, snippets can hold 3 types of content (args, dependencies*
sections and run* sections), each of which can be used in assistants:

snippets/mysnip.yaml

args:
foo:
flags: [-f, --foo]
help: Foo is foo
required: True

dependencies:
- rpm: [python3]

run:
- log_i: Spam spam spam

assistants/crt/assistant1.yaml

args:
foo:
use: mysnip

dependencies:
- use: mysnip.dependencies

run:
- do: stuff
- use: mysnip.run

Return values (RES and LRES) of snippet are determined by the use command runner - RES and LRES of last
command of the snippet section.

Using DevAssistant Yaml DSL is the first option to create assistants. The DSL is fairly simple and understandable and
is very good at what it does. However, it’s not well suited for very complex computations (which you usually don’t
need to do during project setup).

If, for some reason, you need to execute complex algorithms in assistants (or you just don’t want to learn the DSL), you
can consider using the PingPong approach, which basically lets you write assistants in popular scripting languages.

Create Assistant Using Scripting Language (a.k.a DevAssistant PingPong)

How It Works/PingPong Protocol Reference

The DevAssistant PingPong protocol is a simple protocol that DevAssistant (Server) and PingPong script (Client) use
to communicate through a pipe. It’s designed to be as simple and portable as possible.

The overall idea of PingPong is:

1.2. Developer Documentation 25

DevAssistant Documentation, Release 0.10.0

• Server invokes Client script as a subprocess and attaches to its stdin/stdout/stderr, creating a pipe.

• Client waits for Server to initiate the communication.

• Server sends the first message, initiating the communication.

• Server and Client communicate through the pipe.

• At one point, the Client is done and the subprocess exits. Server gathers its output data and acts up on them in
some way.

Right now, only Python implementation of the protocol is available. In future, we’ll be aiming to implement the Client
side (used in PingPong scripts) in other dynamic languages (or you can do it yourself using the reference below and
let us know!)

Why PingPong? The “PingPong” name comes from the similarity to table tennis. There are two players, Server
(DevAssistant) and Client (PingPong script). The Server serves (sends the first message), Client receives it and re-
sponds to server, Server receives the message and responds again to Client, ...

How Does PingPong Integrate With DSL? In terms of integration with DevAssistant Yaml DSL, PingPong is
just another command runner that computes something and then returns a result. This means that you can mix it up
arbitrarily with other DSL commands or even run several PingPong scripts in one assistant.

Reference This part describes DevAssistant PingPong Protocol (DAPP) version 2. There is a reference Python
implementation, called dapp, which you can examine into detail. Note that the reference implementation implements
both Server and Client side. If you’re considering implementing DAPP in another scripting language, you’ll only need
to implement Client side.

Errors Throughout this reference, there are certain situations marked as “being an error”. These situations usually
mean that a (fatal) error was encountered in message format. The side getting the error should terminate immediately,
possibly running cleanup code first.

Message Format These points are general rules that apply to all messages, both sent from Server to Client (S->C)
and Client to Server (C->S).

• Currently, sending random binary data is not supported, everything has to be valid UTF-8 encoded string. Not
being able to decode is an error.

• Each message starts with string START and ends with string STOP. These have to be on separate lines.

• Any non-empty line between previous STOP and following START is an error.

• The lines between START and STOP must a valid Yaml mapping, otherwise it is an error.

• Every message has to contain msg_number, msg_type and dapp_protocol_version.

• dapp_protocol_version must be an integer specifying the DAPP protocol version. Other side using a
different protocol version is an error.

• msg_number must be a unique integer identifying the message during a PingPong script run. Sequence of
message numbers must be increasing; both sides use the same sequence (e.g. Server sends message 1, client
then has to send message with number no lower than 2, then Server has to send a message with number no lower
than the number of message sent by client etc). This rule has one exception, confirmation messages (msg_type
is msg_received) have the same number as the message that they’re confirming. More on the confirmation
messages below.

26 Chapter 1. Contents

https://github.com/devassistant/dapp
https://github.com/devassistant/dapp

DevAssistant Documentation, Release 0.10.0

• If msg_type is different than msg_received, message must contain ctxt. Valid message types are listed
below.

• ctxt has to be a Yaml DSL context (e.g. mapping of variable names to their values). In every message (except
confirmation message), the whole context has to be passed and the receiving communication side must update
its copy of the context.

Message Types and Content

• Both Client and Server send msg_received messages to confirm messages received from the other commu-
nicating side.

• Server sends these messages:

– run - This message must always be the first message in the whole communication, Server sends it to tell
Client to start and pass the initial context. This message shouldn’t contain any special data.

– command_result - Reports result of a command that Client previously invoked. Must contain lres
and res values, these two represent results of the command (see Command Reference for details).

– command_exception - Sent if the command called by Client raised an exception. Must contain
exception value, which is a string representation of the exception.

– no_such_command - Sent if Server (DevAssistant) doesn’t know how to execute the sent command.
Doesn’t contain any extra data.

• Client sends these messages:

– call_command - Client calls a command. Must contain command_type and command_input, as
specified in Command Reference.

– finished - Client ended successfully. Must contain lres and res values. These must be the same
types as return values of DevAssistant commands (again, see Command Reference).

– failed - Client failed. Must contain fail_desc with the description of the failure.

If run from Server to Client isn’t the first message and finished or failed isn’t the last message from Client to
Server, it is an error.

Example Communication To illustrate better how the protocol works, here is a simple example of valid message
sequence. We’re assuming that the Server has already started the Client and Client is now waiting to for Server to
initiate the communication.

Note that all the communication is shown as an already decoded Unicode, but in fact it’s sent as UTF-8 through the
pipe.

Server initiates communication by sending run message:

START
dapp_protocol_version: 2
msg_type: run
msg_number: 1
ctxt:

name: user_input_name
some_list_variable: [foo, bar, baz]

STOP

Client confirms that it got the message:

1.2. Developer Documentation 27

DevAssistant Documentation, Release 0.10.0

START
dapp_protocol_version: 2
msg_type: msg_received
msg_number: 1
STOP

And imediatelly after that it starts to actually do something. At certain points, it needs to call back to Server (DevAs-
sistant) to carry out some tasks implemented in DevAssistant itself. Note, that while computing, the Client process
has done some modifications to the context:

START
dapp_protocol_version: 2
msg_type: call_command
msg_number: 2
ctxt:

name: user_input_name
some_dict_variable: {foo: a, bar: b, baz: c}

command_type: log_i
command_input: This will get logged by DevAssistant to either GUI or console.
STOP

The Server (DevAssistant) first confirms receiving the message by sending msg_received:

START
dapp_protocol_version: 2
msg_type: msg_received
msg_number: 2
STOP

Then the server actually runs the command and sends a message with result to Client:

START
dapp_protocol_version: 2
msg_type: command_result
msg_number: 3
ctxt:

name: user_input_name
some_dict_variable: {foo: a, bar: b, baz: c}

lres: True
res: This will get logged by DevAssistant to either GUI or console.
STOP

(Note that for the log_i command, the res result is actually equal to the input; this is usually not the case, of course).

Again, Client confirms receiving the message:

START
dapp_protocol_version: 2
msg_type: msg_received
msg_number: 3
STOP

And then Client continues to compute. Since this is a simple example, the Client doesn’t call any more commands, but
it could call as many as it’d like. The client is now finished and prepared to exit, so it sends a finished message:

START
dapp_protocol_version: 2
msg_type: command_result
msg_number: 4
ctxt:

name: user_input_name

28 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

some_dict_variable: {foo: a, bar: b, baz: c}
another_variable: some_var

lres: True
res: 42
STOP

Server sends one last confirmation message to Client:

START
dapp_protocol_version: 2
msg_type: msg_received
msg_number: 4
STOP

And everything is done. The Client can safely exit and Server can do anything it wishes with the result.

Tutorial: Assistants Utilizing PingPong

Regardless of which language you want to choose for implementing the PingPong script, you should read this sec-
tion. It provides general information about specifying metadata, dependencies, arguments and file placement for the
PingPong scripts.

DevAssistant distinguishes four different assistant roles - Creator, Tweak, Preparer, Extras. From the point of view
of this tutorial, the roles only differ in file placement and where they’ll be presented to user on command line/in
GUI. Therefore we choose to create a simple Creator. We’ll be implementing an assistant, that creates a simple
reStructuredText document.

Note on terminology: The PingPong script is not the assistant. Even if you’re using the PingPong approach, the
assistant is still a Yaml file (very simple in this case).

General Rules Some things are common for all assistant types:

• Each assistant is one Yaml file, that must contain exactly one mapping - the so-called assistant attributes:

fullname: My Assistant
description: This will be part of help for this assistant
...

• You have to place them in a proper place, see DevAssistant Load Paths and Assistants Loading Mechanism.

• Files (e.g. templates, scripts, PingPong script files etc.) used by assistant should be placed in the same load dir,
e.g. if your assistant is placed at ~/.devassistant/assistants, DevAssistant will look for files under
~/.devassistant/files.

• As mentioned in DevAssistant Load Paths, there are three main load paths in standard DevAssistant installation,
“system”, “local” and “user”. The “system” dir is used for assistants delivered by your distribution/packaging
system and you shouldn’t touch or add files in this path. The “local” path can be used by system admin to
add system-wide assistants while not touching “system” path. Lastly, “user” path can be used by user to install
assistants just for himself.

• When developing new assistants, that you e.g. put in a separate Git repo and want to work on it, commit, push,
etc, it is best to utilize DEVASSISTANT_PATH bash environment variable, see DevAssistant Load Paths for
more info.

Getting Set Up To get started, we’ll create a file hierarchy for our new assistant, say in ~/programming. We’ll
also modify DEVASSISTANT_PATH so that DevAssistant can see this assistant in directory outside of standard load
paths. Luckily, there is assistant that does all this - dap:

1.2. Developer Documentation 29

http://docutils.sourceforge.net/rst.html
https://dapi.devassistant.org/dap/dap/

DevAssistant Documentation, Release 0.10.0

da pkg install dap
da create dap -n ~/programming/rstcreate --crt
export DEVASSISTANT_PATH=~/programming/rstcreate/

Running da create dap scaffolds everything that’s needed to create a DAP package that can be distributed on
DevAssistant Package Index, DAPI, see Packaging and Distributing Your Assistant for more information.

Since this assistant is a Creator, we need to put it somewhere under assistants/crt directory. The related files (if
any), including the PingPong script have to go under files/crt/rstcreate (assuming, of course, we name the
assistant rstcreate.yaml). More details on assistants file locations and subassistants can be found in the tutorial
for the Yaml DSL.

Now go to one of the language-specific tutorials to see how to actually create a simple assistant and the PingPong
script.

Tutorial: Python PingPong Script

This tutorial explains how to write a Python assistant using PingPong protocol. You should start by setting up the
general things explained in general tutorial.

Creating the Yaml Assistant Since one of the points of PingPong is to avoid as much of the Yaml
DSL as possible, this will be very short (and self-explanatory, too!). This is what you should put in
~/programming/rstcreate/assistants/crt/rstcreate.yaml:

fullname: RST Document
description: Create a simple reStructuredText document.

dependencies:
- rpm: [python3, python3-dapp]

args:
title:
flags: [-t, --title]
help: Title of the reStructuredText document.
required: True

files:
ppscript: &ppscript
source: ppscript.py

run:
- pingpong: python3 *ppscript

This is pretty much all you’ll need to write in the Yaml DSL everytime you’ll be writing assistants based on PingPong.
A brief explanation follows (more detailed explanation of the DSL can be found at Tutorial: Creating Your Own
Assistant in Yaml DSL):

• fullname and description are “nice” attributes to show to users.

• dependencies list packages that DevAssistant is supposed to install prior to invoking the PingPong script;
you can add any dependencies that your PingPong script needs here

• args are a Yaml mapping of arguments that the assistant will accept from user (be it on commandline or in
GUI).

• files is a Yaml mapping of files; each file must a have a unique name (ppscript), should be referenced to
by Yaml anchor (&ppscript; shouldn’t be different from ppscript because of issue 74) and has to have
source argument that specifies filename. (Will be searched for in appropriate files subdirectory.

30 Chapter 1. Contents

https://dapi.devassistant.org/
https://github.com/devassistant/devassistant/issues/74

DevAssistant Documentation, Release 0.10.0

• run just runs the PingPong script the way it’s supposed to be run (the python3 *ppscript) is exactly what
will get executed to execute the PingPong subprocess (of course after substituting *ppscript with expanded
path to the actual script from files).

Creating the PingPong Script We’ll write the PingPong script in Python 3, using the dapp library. Note, that this
tutorial uses version 0.3.0 of dapp; consult dapp documentation if your version is different (you can find a detailed
documentation of this library at its Github project page).

This is the content of the ~/programming/rstcreate/files/crt/rstcreate/ppscript.py file (see
comments below for explanation):

#!/usr/bin/python3
import os

import dapp

class MyScript(dapp.DAPPClient):
def run(self, ctxt):

call a DA command that replaces funny characters by underscores,
so that we can use title as a filename
_, normalized = self.call_command(ctxt, ’normalize’, ctxt[’title’])
filename = normalized.lower() + ’.rst’

if file already exists, just fail
if os.path.exists(filename):

self.send_msg_failed(ctxt,
’File "{0}" already exists, cannot continue!’.format(filename))

self.call_command(ctxt, ’log_i’, ’Creating file {0} ...’.format(filename))
with open(filename, ’w’) as f:

Issue a debug message that will show if DA is run with --debug
self.call_command(ctxt, ’log_d’, ’Writing to file {0}’.format(filename))
f.write(ctxt[’title’].capitalize())
f.write(’\n’)
f.write(’=’ * len(ctxt[’title’]))

inform user that everything went fine and return
self.call_command(ctxt, ’log_i’, ’File {0} was created.’.format(filename))
return (True, filename)

if __name__ == ’__main__’:
MyScript().pingpong()

• The PingPong script mustn’t write anything to stdout or stderr. If you need to tell something to user, use
log_i command (log_w for warnings and log_d for debug output).

• The whole PingPong script is just a Python 3 script that imports dapp library, subclasses the
dapp.DAPPClient class and runs pingpong() method when script is run (note: the implemented class
has to implement run() method, but pingpong() has to be called!).

• The runmethod takes ctxt as an argument, which is the Yaml DSL context. In short, it is a dictionary mapping
DSL variables to their values. This context has to be passed as the first argument to all functions that interact
with DevAssistant. Note, that all changes that you do to ctxt are permanent and will reflect in any subsequent
Yaml DSL commands following the PingPong script invocation. See Variables and Context for more details on
how context and variables work.

• You can run DevAssistant commands by calling self.call_command method. It takes three parameters:
Yaml DSL context, command type and command input (consult command_ref for details on command types

1.2. Developer Documentation 31

https://github.com/devassistant/dapp
https://github.com/devassistant/dapp

DevAssistant Documentation, Release 0.10.0

and their input). This function returns 2-tuple, logical result (boolean) and result (type depends on command)
(again, consult command_ref).

• You can pass arbitrary dictionaries (== crafted to make commands see a different context) to
call_command() to achieve desired results. Doing this does not alter the Yaml DSL context in any way,
the changes will be limited to the dictionary you pass.

• Similarly, the called commands can change the context that you pass to them as argument (usually they don’t do
this; if they do, they usually just add variables, not remove/change).

• The run() method has to return a 2-tuple, a logical result and result. This is exactly the same as what any
DevAssistant command returns (since pingpong is in fact just a Yaml command). You can choose what you
want to return as result as you wish - in this case, we return the name of the file created.

Wrap-up That is it. Now you can run the assistant with:

da create rstcreate -t "My Article"

And that’s it. Enjoy!

(Why PingPong?)

The PingPong approach is the second approach you can take to write complex assistant functionality. It utilizes a small
subset of the Yaml DSL for describing metadata, dependencies and assistant arguments.

The actual execution part is written in one of the supported Supported Languages. For each of these languages, there
is a binding library available, that allows the PingPong script to make callbacks to DevAssistant. Hence you can write
assistants in a scripting language while still utilizing DevAssistant functionality.

The general part about metadata, dependencies and arguments is described at Tutorial: Assistants Utilizing PingPong
and you should read it regardless of the language you choose to implement the script. Then you should choose a
language-specific tutorial to see how to write the actual PingPong script.

Supported Languages

Currently, only Python PingPong client library has been implemented. It works with Python 2.6, 2.7 and
> 3.3. You can get it at https://pypi.python.org/pypi/dapp, bug reports/feature requests are welcome at
https://github.com/devassistant/dapp/issues. This library is maintained by developers of DevAssistant.

Note on terminology: The PingPong script is not the assistant. Even if you’re using the PingPong approach, the
assistant is still a Yaml file (very simple in this case).

Common Assistant Behaviour

Common Parameters of Assistants and Their Meanings

-e Create Eclipse project, optional. Should create .project (or any other appropriate file) and register project to
Eclipse workspace (~/workspace by default, or the given path if any).

-g Register project on GitHub (uses current user name by default, or given name if any).

-n Name of the project to create, mandatory. Should also be able to accept full or relative path.

-p Path to existing project supplied to tweak assistants (optional, defaults to .).

To include these parameters in your assistant with common help strings etc., include them from
common_args.yaml (-n, -g) or eclipse.yaml (-e) snippet:

32 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

args:
name:
snippet: common_args

Other Conventions

When creating snippets/Python commands, they should operate under the assumption that current working directory
is the project directory (not one dir up or anywhere else). It is the duty of assistant to switch to that directory. The
benefit of this approach is that you just cd once in assistant and then call all the snippets/commands, otherwise you’d
have to put 2x cd in every snippet/command.

Packaging and Distributing Your Assistant

Note: this functionality is under heavy development and is not fully implemented yet.

So now you know how to create an assistant. But what if you want to share your assistant with others?

For that you could send them all the files from your assistant and tell them where they belong. But that would be very
unpleasant and that’s why we’ve invented DAP. DAP is a format of extension for DevAssistant that contains custom
assistants. It means DevAssistant Package.

A DAP is a tar.gz archive with .dap extension. The name of a DAP is always
<package_name>-<version>.dap - i.e. foo-0.0.1.dap.

Directory structure of a DAP

The directory structure of a DAP copies the structure of ~/.devassistant or /usr/share/devassistant
folder. The only difference is, that it can only contain assistants, files and icons that that belongs to it’s namespace.

Each DAP has an unique name (lat’s say foo) and it can only contain assistants foo or foo/*. Therefore, the
directory structure looks like this:

foo-0.0.1/
meta.yaml
assistants/
{crt,twk,prep,extra}/

foo.yaml
foo/

files/
{crt,twk,prep,extra,snippets}/

foo/
snippets/
foo.yaml
foo/

icons/
{crt,twk,prep,extra,snippets}/

foo.{png,svg}
foo/

doc/
foo/

Note several things:

• Each of this is optional, i.e. you don’t create files or snippets folder if you provide no files or snippets.
Only mandatory thing is meta.yaml (see below).

1.2. Developer Documentation 33

DevAssistant Documentation, Release 0.10.0

• Everything goes to the particular folder, just like you’ve learned in the chapter about creating assistants. How-
ever, you can only add stuff named as your DAP (means either a folder or a file with a particular extension). If
you have more levels of assistants, such as crt/foo/bar/spam.yaml, you have to include top-level assis-
tants (in this case both crt/foo.yaml and crt/foo/bar.yaml). And you have to preserve the structure
in other folders as well (i.e. no icons/crt/foo/spam.svg but icons/crt/foo/bar/spam.svg).

• The top level folder is named <package_name>-<version>.

meta.yaml explained There is an important file called meta.yaml in every DAP. It contains mandatory informa-
tion about the DAP as well as additional optional metadata. Let’s see an explained example:

package_name: foo # required
version: 0.0.1 # required
license: GPLv2 # required
authors: [Bohuslav Kabrda <bkabrda@mailserver.com>, ...] # required
homepage: https://github.com/bkabrda/assistant-foo # optional
summary: Some brief one line text # required
bugreports: <a single URL or email address> # optional
dependencies:

for now, dependencies are possible, but the version specifiers are ignored
- bar
- eggs >= 1.0
- spam== 0.1 # as you can see, spaces are optional
- ook < 2.5 # and more can be added, however, don’t use tabs

supported_platforms: [fedora, darwin] # optional
description: |

Some not-so-brief optional text.
It can be split to multiple lines.

BTW you can use **Markdown**.

• package name can contain lowercase letters (ASCII only), numbers, underscore and dash (while it can only
start and end with a letter or digit), it has to be unique, several names are reserved by DevAssitant itself (e.g.
python, ruby)

• version follows this scheme: <num>[.<num>]*[dev|a|b], where 1.0.5 < 1.1dev < 1.1a < 1.1b < 1.1

• license is specified via license tag used in Fedora https://fedoraproject.org/wiki/Licensing:Main?rd=Licensing#Good_Licenses

• authors is a list of authors with their e-mail addresses (_at_ can be used instead of @)

• homepage is an URL to existing webpage that describes the DAP or contains the code (such as in example),
only http(s) or ftp is allowed, no IP addresses

• summary and description are self-descriptive in the given example

• bugreports defines where the user should report bugs, it can be either an URL (issue tracker) or an e-mail
address (mailing list or personal)

• dependencies specifies other DAPs this one needs to run - either non-versioned or versioned, optional; note,
that versions are ignored for now, they’ll start working in one of the future DevAssistant releases

• supported_platforms optionally lists all platforms (Linux distributions etc.), that this DAP is known to work
on. When missing or empty, all platforms are considered supported. You can choose from the following options:
arch, centos, debian, fedora, gentoo, mageia, mandrake, mandriva, redhat, rocks, slackware, suse, turbolinux,
unitedlinux, yellowdog and darwin (for Mac OS).

34 Chapter 1. Contents

https://fedoraproject.org/wiki/Licensing:Main?rd=Licensing#Good_Licenses

DevAssistant Documentation, Release 0.10.0

Assistant for creating assistants packages There is a DevAssistant package containing set of assistants that help
you create this quite complicated directory structure and package your DAP. It’s called dap and you can get it form
DAPI.

install dap from DAPI
$ da pkg install dap

observe available options
$ da crt dap --help

create DAP directory structure named foo with (empty) crt and twk assistants
$ da crt dap -n foo --crt --twk

you can also tweak your DAP directory structure a bit by adding assistants of different kind

observe available options
$ da twk dap add -h

add a snippet
$ da twk dap add --snippet

once ready, you can also pack you assistant
$ da twk dap pack

as well as check if DevAssistant thinks your package is sane
$ da pkg lint foo-0.0.1.dap

Uploading your DAP to DevAssistant Package Index

When you are satisfied, you can share your assistant on DAPI (DevAssistant Package Index).

On DAPI, log in with Github or Fedora account and follow Upload a DAP link in the menu.

There are two basic ways to create your own assistants. You can either learn our Yaml DSL and write pure Yaml
assistants or you can use an approach called “DevAssistant PingPong”. PingPong let’s you write assistants in scripting
languages, while still utilizing DevAssistant functionality, so you don’t have to learn the DSL (to be precise, you only
need to learn a very small portion of it).

1.2.3 Command Reference

This page serves as a reference for commands of the DevAssistant Yaml DSL. These commands are also callable from
PingPong scripts. Every command consists of a command_type and command_input. After it gets executed, it sets
the LAST_LRES and LAST_RES variables. These are also its return values, similar to Expressions logical result and
result.

• LAST_LRES is the logical result of the run - True/False if successful/unsuccessful

• LAST_RES is the “return value” - e.g. a computed value

In the Yaml DSL, commands are called like this:

- command_type: command_input

This reference summarizes commands included in DevAssistant itself in the following format:

command_type - some optional info

• Input: what should the input look like?

1.2. Developer Documentation 35

https://dapi.devassistant.org/dap/dap/
https://dapi.devassistant.org/dap/dap/
http://dapi.devassistant.org/
http://dapi.devassistant.org/
http://dapi.devassistant.org/upload

DevAssistant Documentation, Release 0.10.0

• RES: what is LAST_RES set to after this command?

• LRES: what is LAST_LRES set to after this command?

• Example: example usage

Note: if a command explanation says that command “raises exception” under some circumstances, it means that a
critical error has occured and assistant execution has to be interrupted immediately. See documentation for exceptions
in run sections for details on how this reflects on command line and in GUI. In terms of the underlying Python source
code, this means that exceptions.CommandException has been raised.

Missing something? Commands are your entry point for extending DevAssistant. If you’re missing some functionality
in run sections, just write a command runner and either include it with your assistant or send us a pull request to get
it merged in DevAssistant core.

Builtin Commands

There are three builtin commands that are inherent part of DevAssistant Yaml DSL:

• variable assignment

• condition

• loop

All of these builtin commands utilize expressions in some way - these must follow rules in Expressions.

Variable Assignment

Assign result (and possibly also logical result) of Expressions to a variable(s).

$<var1>[, $<var2>] - if one variable is given, result of expression (command input) is assigned. If two vari-
ables are given, the first gets assigned logical result and the second result.

• Input: an expression

• RES: result of the expression

• LRES: logical result of the expression

• Example:

- $foo: "bar"
- $spam:
- spam
- spam
- spam

- $bar: $baz
- $success, $list~: $(ls "$foo")

Condition

Conditional execution.

if <expression>, else - conditionally execute one or the other section (if can stand alone, of course)

• Input: a subsection to run

• RES: RES of last command in the subsection, if this clause is invoked. If not invoked, RES remains untouched.

36 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

• LRES: LRES of last command in the subsection, if this clause is invoked. If not invoked, LRES remains
untouched.

• Example:

- if defined $foo:
- log_i: Foo is $foo!

- else:
- log_i: Foo is not defined!

Loop

A simple for loop.

for <var>[, <var>] [word_in,in] <expression> - loop over result of the expression. If word_in is
used and <expression> is a string, it will be split on whitespaces and iterated over; with in, string will be split to
single characters and iterated over. For iterations over lists and mappings, word_in and in behave the same. When
iterating over mapping, two control variables may be provided to get both key and its value.

• Input: a subsection to repeat in loop

• RES: RES of last command of last iteration in the subsection. If there are no interations, RES is untouched.

• LRES: LRES of last command of last iteration in the subsection. If there are no interations, RES remains
untouched.

• Example:

- for $i word_in $(ls):
- log_i: File: $i

- $foo:
1: one
2: two

- for $k, $v in $foo:
- log_i: $k, $v

Ask Commands

User interaction commands, let you ask for password and various other input.

ask_confirm

• Input: mapping containing prompt (short prompt for user) and message (a longer description of what the
user should confirm)

• RES: the confirmation (True or False)

• LRES: same as RES

• Example:

- $confirmed~:
- ask_confirm:

message: "Do you think DevAssistant is great?"
prompt: "Please select yes."

ask_input

• Input: mapping containing prompt (short prompt for user)

1.2. Developer Documentation 37

DevAssistant Documentation, Release 0.10.0

• RES: the string that was entered by the user

• LRES: True if non-empty string was provided

• Example:

- $variable:
- ask_input:

prompt: "Your name"

ask_password

• Input: mapping containing prompt (short prompt for user)

• This command works the same way as ask_input, but the entered text is hidden (displayed as bullets)

• RES: the password

• LRES: True if non-empty password was provided

• Example:

- $passwd:
- ask_password:

prompt: "Please provide your password"

Command Line Commands

Run commands in subprocesses and receive their output.

cl, cl_[i,r] (these do the same, but appending i logs the command output on INFO level and appending r runs
command as root; appending p makes DevAssistant pass subcommand error, e.g. execution continues normally even
if subcommand return code is non-zero)

• Input: a string, possibly containing variables and references to files

• RES: stdout + stdin interleaved as they were returned by the executed process

• LRES: always True, raises exception on non-zero return code

• Example:

- cl: mkdir ${name}
- cl: cp *file ${name}/foo
- cl_i: echo "Hey!"
- cl_ir: echo "Echoing this as root"
- cl_r: mkdir /var/lib/foo
- $lres, $res:
- cl_ip: cmd -this -will -log -in -realtime -and -save -lres -and -res -and -then -continue

If you need to set environment variables for multiple subsequent commands, consult Modifying Subprocess Environ-
ment Variables.

Note: when using r, it’s job of DevAssistant core to figure out what to use as authentication method. Consider this an
implementation detail.

A note on changing current working directory: Due to the way Python interpreter works, DevAssistant has to special-
case “cd <dir>” command, since it needs to call a special Python method for changing current working directory of
the running interpreter. Therefore you must always use “cd <dir>” as a single command (do not use “ls foo && cd
foo”); also, using pushd/popd is not supported for now.

38 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

Modifying Subprocess Environment Variables

Globaly set/unset shell variables for subprocesses invoked by Command Line Commands and in Expressions.

env_set, env_unset

• Input: a mapping of variables to set if using env_set, name (string) or names (list) of variables to unset if
using env_unset

• RES: mapping of newly set variable name(s) to their new values (for env_set) or unset variables to their last
values (for env_unset)

• LRES: always True

• Example:

- env_set:
FOO: bar

If FOO is not in local DevAssistant context, DevAssistant does no substitution.
This measn that the shell still gets "echo $FOO" to execute and prints "bar".
- cl_i: echo $FOO
- env_unset: FOO

Note: If some variables to be unset are not defined, their names are just ignored.

Dependencies Command

Install dependencies from given command input.

dependencies

• Input: list of mappings, similar to Dependencies section, but without conditions and usage of sections from
snippets etc.

• RES: command input, but with expanded variables

• LRES: always True if everything is ok, raises exception otherwise

• Example:

- if $foo:
- $rpmdeps: [foo, bar]

- else:
- $rpmdeps: []

- dependencies:
- rpm: $rpmdeps

.devassistant Commands

Commands that operate with .devassistant file.

dda_c - creates a .devassistant file, should only be used in creator assistants

• Input: directory where the file is supposed to be created

• RES: always True, terminates DevAssistant if something goes wrong

• LRES: always empty string

• Example:

1.2. Developer Documentation 39

DevAssistant Documentation, Release 0.10.0

- dda_c: ${path}/to/project

dda_r - reads an existing .devassistant file, should be used by tweak and preparer assistants.Sets some global
variables accordingly, most importantly original_kwargs (arguments used when the project was created) - these
are also made available with dda__ prefix (yes, that’s double underscore).

• Input: directory where the file is supposed to be

• RES: always empty string

• LRES: True, raises exception if something goes wrong

• Example:

- dda_r: ${path}/to/project

dda_w - writes a mapping (dict in Python terms) to .devassistant

• Input: list with directory with .devassistant file as a first item and the mapping to write as the second
item. Variables in the mapping will be substituted, you have to use $$foo (two dollars instead of one) to get
them as variables in .devassistant.

• RES: always empty string

• LRES: True, raises exception if something goes wrong

• Example:

- dda_w:
- ${path}/to/project
- run:

- $$foo: $name # name will get substituted from current variable
- log_i: $$foo

dda_dependencies - installs dependencies from .devassistant file, should be used by preparer assistants.
Utilizes both dependencies of creator assistants that created this project plus dependencies from dependencies
section, if present (this section is evaluated in the context of current assistant, not the creator).

• Input: directory where the file is supposed to be

• RES: always empty string

• LRES: True, raises exception if something goes wrong

• Example:

- dda_dependencies: ${path}/to/project

dda_run - run run section from from .devassistant file, should be used by preparer assistants. This section is
evaluated in the context of current assistant, not the creator.

• Input: directory where the file is supposed to be

• RES: always empty string

• LRES: True, raises exception if something goes wrong

• Example:

- dda_run: ${path}/to/project

40 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

Github Command

Manipulate Github repositories. Two factor authentication is supported out of the box.

Github command (github) has many “subcommands”. Subcommands are part of the command input, see below.

• Input: a string with a subcommand or a two item list, where the first item is a subcommand and the second item
is a mapping that explicitly specifies parameters for the subcommand.

• RES: if command succeeds, either a string with URL of manipulated repo or empty string is returned (depends
on subcommand), else a string with problem description (it is already logged at WARNING level)

• LRES: True if the Github operation succeeds, False otherwise

• Example:

- github: create_repo

- github:
- create_and_push
- login: bkabrda

reponame: devassistant

- github: push

- github: create_fork

Explanation of individual subcommands follows. Each subcommand takes defined arguments, whose default values
are taken from global context. E.g. create_and_push takes an argument login. If it is not specified, assistant
variable github is used.

create_repo Creates a repo with given reponame (defaults to var name) for a user with given login (de-
faults to var github). Optionally accepts private argument to create repo as private (defaults to var
github_private).

create_and_push Same as create_repo, but it also adds a proper git remote to repository in current working
dir and pushes to Github.

push Just does git push -u origin master, no arguments needed.

create_fork Creates a fork of repo at given repo_url (defaults ot var url) under user specified by login
(defaults to var github).

Jinja2 Render Command

Render a Jinja2 template.

jinja_render, jinja_render_dir - render a single template or a directory containing more templates

• Input: a mapping containing

– template - a reference to file (or a directory if using jinja_render_dir) in files section

– destination - directory where to place rendered template (or rendered directory)

– data - a mapping of values used to render the template itself

– overwrite (optional) - overwrite the file if it exists? (defaults to false)

– output (optional) - specify a filename of the rendered template (see below for information on how the
filename is costructed if not provided), not used with jinja_render_dir

• RES: always success string

1.2. Developer Documentation 41

DevAssistant Documentation, Release 0.10.0

• LRES: True, raises exception if something goes wrong

• Example:

- jinja_render:
template: *somefile
destination: ${dest}/foo
overwrite: yes
output: filename.foo
data:

foo: bar
spam: spam

- jinja_render_dir:
template: *somedir
destination: ${dest}/somedir
data:

foo: foo!
spam: my_spam

The filename of the rendered template is created in this way (the first step is omitted with jinja_render_dir:

• if output is provided, use that as the filename

• else if name of the template endswith .tpl, strip .tpl and use it

• else use the template name

For template syntax reference, see Jinja2 documentation.

Logging Commands

Log commands on various levels. Logging on ERROR or CRITICAL logs the message and then terminates the
execution.

log_[d,i,w,e,c] (the letters stand for DEBUG, INFO, WARNING, ERROR, CRITICAL)

• Input: a string, possibly containing variables and references to files

• RES: the logged message (with expanded variables and files)

• LRES: always True

• Example:

- log_i: Hello $name!
- log_e: Yay, something has gone wrong, exiting.

Docker Commands

Control Docker from assistants.

docker_[build,cc,start,stop,attach,find_img,container_ip,container_name]

• Input:

– attach - list or string with names/hashes of container(s) (if string is provided, it’s split on whitespaces
to get names/hashes)

– build - mapping with arguments same as build method from docker_py_api, but path is required and
fileobj is ignored

42 Chapter 1. Contents

http://jinja.pocoo.org/docs/
https://github.com/docker/docker-py/#api

DevAssistant Documentation, Release 0.10.0

– cc - mapping with arguments same as create_container method from docker_py_api, image is
required

– container_ip - string (container hash/name)

– container_name - string (container hash)

– find_img - string (a start of hash of image to find)

– start - mapping with arguments same as start method from docker_py_api, container is required

– stop - mapping with arguments same as stop method from docker_py_api, container is required

• LRES and RES:

– attach - LRES is True if all attached containers end with success, False otherwise; RES is always a
string composed of outputs of all containers

– build - True and hash of built image on success, otherwise raises exception

– cc - True and hash of created container, otherwise raises exception

– container_ip - True and IPv4 container address on success, otherwise raises exception

– container_name - True and container name on success, otherwise raises exception

– find_img - True and image hash on success if there is only one image that starts with provided input;
False and string with space separated image hashes if there are none or more than one images

– start - True and container hash on success, raises exception otherwise

– stop - True and container hash on success, raises exception otherwise

• Example (build an image, create container, start it and attach to output; stop it on DevAssistant shutdown):

run:
build image
- $image~:
- docker_build:

path: .
create container
- $container~:
- docker_cc:

image: $image
start container
- docker_start:

container: $container
- log_i~:
- docker_container_ip: $container

register container to be shutdown on DevAssistant exit
- atexit:
- docker_stop:

container: $container
timeout: 3

attach to container output - this can be interrupted by Ctrl+C in terminal,
but currently not in GUI, see https://github.com/devassistant/devassistant/issues/284
- docker_attach: $container

Vagrant-Docker Commands

Control Docker using Vagrant from assistants.

vagrant_docker

1.2. Developer Documentation 43

https://github.com/docker/docker-py/#api
https://github.com/docker/docker-py/#api
https://github.com/docker/docker-py/#api

DevAssistant Documentation, Release 0.10.0

• Input: string with vagrant command to run, must start with one of up, halt, destroy, reload

• RES: hashes/names of containers from Vagrantfile (not all of these were necessarily manipulated with, for
example if you use halt, all container hashes are returned even if no containers were previously running)

• LRES: True, raises exception if something goes wrong

• Example:

- vagrant_docker: halt
- vagrant_docker: up

SCL Command

Run subsection in SCL environment.

scl [args to scl command] (note: you must use the scriptlet name - usually enable - because it might
vary)

• Input: a subsection

• RES: RES of the last command in the given section

• LRES: LRES of the last command in the given section

• Example:

- scl enable python33 postgresql92:
- cl_i: python --version
- cl_i: pgsql --version

Note: currently, this command can’t be nested, e.g. you can’t run scl enable in another scl enable.

Running Commands as Another User

Run subsection as a different user (how this command runner does this is considered an implementation detail). as
<username> (note: use as root, to run subsection under superuser)

• Input: a subsection

• RES: output of the whole subsection

• LRES: LRES of the last command in the given section

• Example:

- as root:
- cl: ls /root

- as joe:
- log_i~: $(echo "this is run as joe")

Note: This command invokes DevAssistant under another user and passes the whole section to it. This means some
behaviour differences from e.g. scl command, where each command is run in current assistant. Most importantly,
RES of this command is RES of all commands from given subsection.

Using Another Section

Runs a section specified by command input at this place.

use This can be used to run:

44 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

• another section of this assistant (e.g. use: self.run_foo)

• section of superassistant (e.g. use: super.run) - searches all superassistants (parent of this, parent of the
parent, etc.) and runs the first found section of given name

• section from snippet (e.g. use: snippet_name.run_foo)

• Input: a string with section name

• RES: RES of the last command in the given section

• LRES: LRES of the last command in the given section

• Example:

- use: self.run_foo
- use: super.run
- use: a_snippet.run_spam

This way, the whole context (all variables) are passed into the section run (by value, so they don’t get modified).

Another, more function-like usage is also available:

- use:
sect: self.run_foo

args:
foo: $bar
baz: $spam

Using this approach, the assistant/snippet and section name is taken from sect and only arguments listed in args
are passed to the section (plus all “magic” variables, e.g. those starting and ending with double underscore).

Normalizing User Input

Replace “weird characters” (whitespace, colons, equals...) by underscores and unicode chars by their ascii counter-
parts.

• Input: a string or a mapping containing keys what and ok_chars (ok_chars is a string containing charac-
ters that should not be normalized)

• RES: a string with weird characters (e.g. brackets/braces, whitespace, etc) replaced by underscores

• LRES: True

• Example:

- $dir~:
- normalize: foo!@#$%^bar_ěšč

- cl: mkdir $dir # creates dir named foo______bar_esc
- $dir~:
- normalize:

what: f-o.o-@#$baz
ok_chars: "-."

- cl: mkdir $dir # creates dir named f-o.o-___baz

Setting up Project Directory

Creates a project directory (possibly with a directory containing it) and sets some global variables.

• Input: a mapping of input options, see below

• RES: path of project directory or a directory containing it, if create_topdir is False

1.2. Developer Documentation 45

DevAssistant Documentation, Release 0.10.0

• LRES: True, raises exception if something goes wrong

• Example:

- $dir: foo/bar/baz
- setup_project_dir:

from: $dir
create_topdir: normalized

Note: as a side effect, this command runner sets 3 global variables for you (their names can be altered by using
arguments contdir_var, topdir_var and topdir_normalized_var):

• contdir - the dir containing project directory (e.g. foo/bar in the example above)

• topdir - the project directory (e.g. baz in the example above)

• topdir_normalized - normalized name (by Normalizing User Input) of the project directory

Arguments:

• from (required) - a string or a variable containing string with directory name (possibly a path)

• create_topdir - one of True (default), False, normalized - if False, only creates the directory
containing the project, not the project directory itself (e.g. it would create only foo/bar in example above,
but not the baz directory); if True, it also creates the project directory itself; if normalized, it creates the
project directory itself, but runs it’s name through Normalizing User Input first

• normalize_ok_chars - string containing characters that should not be normalized, assuming that
create_topdir: normalized is used

• contdir_var, topdir_var, topdir_normalized_var - names to which the global variables should
be assigned to - note: you have to use variable names without dollar sign here

• accept_path - either True (default) or False - if False, this will terminate DevAssistant if a path is
provided

• on_existing - one of fail (default), pass - if fail, this will terminate DevAssistant if directory spec-
ified by from already exists; if pass, nothing will happen; note, that this is always considered pass, if
create_topdir is False (in which case the assistant is in full control and responsible for checking every-
thing itself)

Running Commands After Assistant Exits

Register commands to be run when assistant exits (this is not necessarily DevAssistant exit).

• Input: section (list of commands to run)

• RES: the passed list of commands (raw, unformatted)

• LRES: True

• Example:

- $server: $(get server pid)
- atexit:
- cl: kill $server
- log_i: Server gets killed even if the assistant failed at some point.’

Sections registered by atexit are run at the very end of assistant execution even after the post_run section. There
are some differencies compared to post_run:

46 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

• atexit command creates a “closure”, meaning the values of variables in time of the actual section invocation
are the same as they were at the time the atexit command was used (meaning that even if you change variable
values during the run section after running atexit, the values are preserved).

• You can use multiple atexit command calls to register multiple sections. These are run in the order in which
they were registered.

• Even if some of the sections registered with atexit fail, the others are still invoked.

DevAssistant PingPong

Run DevAssistant PingPong scripts.

• Input: a string to line on commandlie

• RES: Result computed by the PingPong script

• LRES: Logical result computed by the PingPong script

• Example:

- pingpong: python3 *file_from_files_section

Loading Custom Command Runners

Load DevAssistant command runner(s) from a file.

• Input: string or mapping, see below

• RES: List of classnames of loaded command runners

• LRES: True if at least one command runner was loaded, False otherwise

• Example:

files:
my_cr: &my_cr

source: cr.py

run:
- load_cmd: *my_cr
assuming that there is a command runner that runs "mycommand" in the file,
we can do this as of now until the end of this assistant
this is equivalent of
- load_cmd:
from_file: *my_cr
- mycommand: foo

load command runner from file provided in hierarchy of a different assistant
- make it prefixed to make sure it doesn’t conflict with any core command runners
- load only BlahCommandRunner even if the file includes more runners
- load_cmd:

from_file: crt/someotherassistant/crs.py
prefix: foo
only: BlahCommandRunner

- foo.blah: input # runs ok
- blah: input # will fail, the command runner was registered with "foo" prefix

Note: since command runners loaded by load_cmd have higher priority than DevAssistant builtin command runners,
you can use this to override the builtins. E.g. you can have a command runner that overrides log_i. If someone

1.2. Developer Documentation 47

DevAssistant Documentation, Release 0.10.0

wants to use this command runner of yours but also keep the original one, he can provide a prefix, so that your
logging command is only available as some_prefix.log_i.

1.2.4 Project Metainfo: the .devassistant File

Note: .devassistant file changed some of its contents and semantics in version 0.9.0.

Project created by DevAssistant usually get a .devassistant file, see .devassistant Commands for information
on creating and manipulating it by assistants. This file contains information about a project, such as project type or
paramaters used when this project was created. It can look like this:

devassistant_version: 0.9.0
original_kwargs:

name: foo
github: bkabrda

project_type: [python, django]
dependencies:
- rpm: [python-django]

When .devassistant is used

Generally, there are two use cases for .devassistant:

• Tweak assistants read the .devassistant file to get project type (which is specified by project_type
entry) and decide what to do with this type of project (by choosing a proper run section to execute and proper
dependencies section, see Tweak Assistants).

• When you use the custom preparer with URL to this project (da prepare custom -u <url>), DevAs-
sistant will checkout the project, read the data from .devassistant and do few things:

– It will install any dependendencies that it finds in .devassistant. These dependencies look like
normal dependencies section in assistant, e.g.:

dependencies:
- rpm: [python-spam]

– It will also run a run section from .devassistant, if it is there. Again, this is a normal run section:

run:
- log_i: Hey, I’m running from .devassistant after checkout!

Generally, when using custom assistant, you have to be extra careful, since someone could put rm -rf ~
or similar evil command in the run section. So use it only with projects whose upstream you trust.

1.2.5 Project Types

This is a list of official project types that projects should use in their .devassistant file and Creator assistants
should state. If you choose one of the official project types, there is a good chance that Tweak and Preparer assistants
written by others will work well with projects created by your Creator.

The project type is given as a list of strings - these describe the project from the most general type to the most specific.
E.g:

project_type: [python, django]

48 Chapter 1. Contents

DevAssistant Documentation, Release 0.10.0

If you don’t use project_type in your Creator assistant, it will be automatically generated: If your assistant is
crt/footest/foobar.yaml, project type in .devassistant will be [footest, foobar]. This means
that Tweak and Preparer assistants written by others may not work well with your project, but otherwise it does no
harm.

Current List of Types

Current project types list follows. If you want anything added in here, open a bug for us at
https://github.com/devassistant/devassistant/issues. Note: the list is currently not very thorough and it is meant
to grow as we get requested by assistant developers.

• c

• cpp

• java

• nodejs

– express

• perl

– dancer

• php

• python

– django

– flask

– gtk3

– lib

• ruby

– rails

1.2.6 Contributing to DevAssistant

We are very happy that you want to contribute to DevAssistant, and we want to make this as easy as possible for you
- that’s what DevAssistant is all about anyway. To save both you and ourselves a lot of time and energy, here we list
some rules we would like you to follow to make the pull request process as quick and painless as possible.

Have a look at our code first

Every programmer has a different programming style, a different way of thinking, and that’s good. However, if several
people contribute to the same project, and each one of them keeps to their style while ignoring the others, it becomes
very hard to read the code afterwards. Please, before you start coding your solution, have a look at similar parts of
DevAssistant’s code to see how we approached it, and try to follow that if possible. You will make future maintenance
much easier for everyone, and we will be able to review your pull requests faster as well.

Use PEP8

We follow PEP8, and we ask you to do that as well. It makes the code much more readable and maintainable. Our
only exception is that lines can be as long as 99 characters.

1.2. Developer Documentation 49

https://github.com/devassistant/devassistant/issues

DevAssistant Documentation, Release 0.10.0

Write tests

Good code has tests. The code you wrote works now, but once someone changes something, it may all break apart.
There are a few general good practices to go by if you’re writing code:

• If you write some new feature, please write tests that make sure it works when everything is okay, and that it
fails the expected way when it isn’t.

• If you fix something, please create tests that ensure that the code really works the new way, and that it doesn’t
work the way it used to work before.

If you go by these rules, there is very little chance that your code breaks some other part of DevAssistant, and at the
same time, you make your part of code less likely to break in the future.

For testing, we use pytest.

When testing, use mocking (namely flexmock)

Often when you need to test some object’s behaviour, you need to “pretend” that something works somehow, for
example that the network is up or that a specific file exists. That is okay, but it is not okay to actually connect to the
internet for testing, or create or delete specific files in the file system. This could break something, or might not work
on our test server.

Of course, sometimes you may need to create a nameless temporary file with tempfile.mkstemp(), which is
something we do often, and it is a perfectly acceptable practice. However, you should not touch for example the
~/.devassistant/config file, which actually belongs to the user, and by writing it, you could delete or damage
the user’s config.

To overcome these problems, we are using flexmock, which is a library that allows you to modify the behaviour of the
environment so that you don’t have to rely on the values on the user’s machine. By calling flexmock on an object, you
can either change some of its methods or attributes, or you can completely replace it with a flexmock object whose
behaviour you fully control.

An example:

import os
from flexmock import flexmock

def test_something(self):
flexmock(os.path).should_receive(’isfile’).with_args(’/foo/bar/baz’).and_return(True)
do_something_assuming_foobarbaz_is_a_valid_file()

What you did here is modify the behaviour of the method os.path.isfile() so that it returns True when called
with the argument /foo/bar/baz. This works only within the current code block, so you can mock something in
one test, and then just forget about it. The next test will have clean environment again.

Here is flexmock documentation.

Just a note here: Mocking doesn’t work well in setup and teardown methods, because they are different code blocks.

Parameterize tests

It makes perfect sense to feed multiple values to a method to see how it works in different situations. Very often it’s
done like this:

def test_something(self):
for value, number in [(’foo’, 1), (’bar’, 2), (’baz’, 3)]:

do_something(value, number)

50 Chapter 1. Contents

http://pytest.org/latest/contents.html#toc
http://has207.github.io/flexmock/user-guide.html

DevAssistant Documentation, Release 0.10.0

That’s not exactly how we want to do it. For one, if it fails, you can’t quickly see what the values were when the test
failed, so you have to use a debugger or put some print statements in the code. Another thing is that it’s harder to read
and more prone to error. The preferred way of achieving the same functionality is this:

@pytest.mark.parametrize((’value’, ’number’), [
(’foo’, 1),
(’bar’, 2),
(’baz’, 3),

])
def test_something(self, value, number):

do_something(value, number)

The second example is much better especially if you’re doing more than just calling one method - for example mocking,
running a setup/teardown method etc. Pytest also automatically outputs the test parameters if a test fails, so debugging
is much easier. We strongly encourage you to use the second example, and might not accept your pull request if you
don’t, unless you present a good reason why.

Use six for Python 2 + 3 compatibility

DevAssistant works with both major versions of Python currently in production, and we want to keep only one code-
base, therefore we need an interoperability library, namely six. This library is much more powerful and easy to use
than, say, importing __future__, so please, use six and nothing else.

In a majority of cases, we use six for these things:

• importing libraries that were moved or renamed

• testing if a variable contains a string/unicode/bytes

• testing what version of python DevAssistant is running on.

To import a library that was renamed in Python 3, you use the six.moves.builtins module:

from six.moves.builtins import urllib

This imports a module mimicking Python 3’s urllib module, so both in Python 2 and Python 3, you then call:

urllib.request.urlretrieve(url)

The variable containing the information if the code is running under Python 3 is found here:

import six
six.PY3

There is also the six.PY2 constant, but that was added to six quite recently, so for better backwards compatibility,
we kindly ask you to use not six.PY3 instead.

Use pyflakes to sanitize your code

Pyflakes (as well as pylint), are two great tools for improving the quality of your code. We especially urge you to use
pyflakes to find unused imports, undeclared variables and other errors detectable without actually running the code.

1.2. Developer Documentation 51

DevAssistant Documentation, Release 0.10.0

Always talk to us when:

Your contribution changes dependencies

We try to keep DevAssistant’s dependency chain as small as possible, so if your code adds a dependency, it is a big
deal for us. For this reason, we urge you to talk to us first (here’s how). If we decide that the new dependency is
necessary, we’ll gladly give you a green light and accept your contribution. If we think that your idea can do without
adding the new package, we’ll do our best to help you modify your idea.

However, if you do not talk to us and implement your feature right away, there is a risk that we will reject your
contribution and you will have to throw your existing code away and start from scratch.

You want to implement a large feature

We welcome large contributions, and are very happy that you take the interest and time to make them. However, we
have certain plans where DevAssistant should go, or what it should look like, and there’s quite a good chance that if
you don’t discuss your idea with us, you might write something quite different, which we won’t be willing to accept.

To avoid this kind of situations, always consult your intentions with us before you start coding - we’re more than open
to new ideas, but we want to know about them first.

You want to include your contribution in an upcoming release

We do have a release plan, but this doesn’t mean we couldn’t occasionally wait a few days for your feature to be
included. If you tell us about your contribution, and we decide that we want it in, we’ll hold a release for you to finish
and submit your code. Of course, the sooner you tell us, the better the outcome will be.

1.2.7 Talk to Us!

If you want to see where DevAssistant development is going and you want to influence it and send your suggestions
and comments, you should join our ML: https://lists.fedoraproject.org/mailman/listinfo/devassistant. We also have
IRC channel #devassistant on Freenode and you can join our Google+ community.

1.2.8 Overall Design

DevAssistant consists of several parts:

Core Core of DevAssistant is written in Python. It is responsible for interpreting Yaml Assistants and it provides an
API that can be used by any consumer for the interpretation.

CL Interface CL interface allows users to interact with DevAssistant on commandline; it consumes the Core API.

GUI (work in progress) GUI allows users to interact with Developer Assistant from GTK based GUI; it consumes the
Core API.

Assistants Assistants are Yaml files with special syntax and semantics (defined in Yaml DSL Reference). They are
indepent of the Core, therefore any software distribution can carry its own assistants and drop them into the
directory from where DevAssistant loads them - they will be loaded on next invocation. Note, that there is also
a possibility to write assistants in Python, but this is no longer supported and will be removed in near future.

52 Chapter 1. Contents

https://devassistant.org/contact
https://lists.fedoraproject.org/mailman/listinfo/devassistant
https://plus.google.com/communities/112692240128429771916

DevAssistant Documentation, Release 0.10.0

1.2.9 Assistants

Internally, each assistant is represented by instance of devassistant.yaml_assistant.YamlAssistant.
Instances are constructed by DevAssistant in runtime from parsed yaml files. Each assistant can have zero or more
subassistants. This effectively forms a tree-like structure. For example:

MainAssistant
/ \

/ \
Python Ruby
/ \ / \

/ \ / \
Django Flask Rails Sinatra

This structure is defined by filesystem hierarchy as explained in Assistants Loading Mechanism

Each assistant can optionally define arguments that it accepts (either on commandline, or from GUI). For example,
you can run the leftmost path with:

$ da create python [python assistant arguments] django [django assistant arguments]

If an assistant has any subassistants, one of them must be used. E.g. in the example above, you can’t use just Python
assistant, you have to choose between Django and Flask. If Django would get a subassistant, it wouldn’t be usable on
its own any more, etc.

Assistant Roles

The create in the above example means, that we’re running an assistant that creates a project.

There are four assistant roles:

creator (create or crt on command line) creates new projects

tweak (tweak or twk on command line) works with existing projects

preparer (prepare or prep on command line) prepares environment for development of upstream projects

extras (extras or extra on command line) performs arbitrary tasks not related to a specific project

The main purpose of having roles is separating different types of tasks. It would be confusing to have e.g. python
django assistant (that creates new project) side-by-side with eclipse assistant (that registers existing project into
Eclipse).

1.2.10 Writing Assistants: Yaml or Scripting Languages

There are two ways to write assistants. You can either use our Yaml based DSL or write assistants in popular scripting
languages (for list of supported languages see Supported Languages). This method is referred to as DevAssistant
PingPong.

1.2.11 Contributing

If you want to contribute (bug reporting, new assistants, patches for core, improving documentation, ...), please use
our Github repo:

• code: https://github.com/devassistant/devassistant

• issue tracker: https://github.com/devassistant/devassistant/issues

1.2. Developer Documentation 53

https://github.com/devassistant/devassistant
https://github.com/devassistant/devassistant/issues

DevAssistant Documentation, Release 0.10.0

If you have DevAssistant installed (version 0.8.0 or newer), there is a fair chance that you have devassistant
preparer. Just run da prepare devassistant and it will checkout our sources and do all the boring stuff that
you’d have to do without DevAssistant.

If you don’t have DevAssistant installed, you can checkout the sources like this (just copy&paste this to get the job
done):

git clone https://github.com/devassistant/devassistant

You can find list of core Python dependencies in file requirements.txt. If you want to write and run tests (you
should!), install dependencies from requirements-devel.txt:

pip install --user -r requirements-devel.txt

If you develop on Python 2, you’ll also need to install extra dependencies:

pip install --user -r requirements-py2.txt

Regardless of Python version, you’ll need polkit for requesting root privileges for dependency installation etc. If
you want to play around with GUI, you have to install pygobject, too. To run guitest, you also need to install
behave from PyPI and dogtail (not on PyPI, get it from Fedora Hosted or from your favorite package manager). (See
how hard this is compared to da prepare devassistant?)

54 Chapter 1. Contents

https://pypi.python.org/pypi/behave
https://fedorahosted.org/dogtail/

CHAPTER 2

Overview

This is documentation for version 0.10.0.

DevAssistant - start developing with ease

DevAssistant (http://devassistant.org) can help you with creating and setting up basic projects in various languages,
installing dependencies, setting up environment etc.

It is based on idea of per-{language/framework/...} “assistants” (plugins) with hierarchical structure.

Note: prior to version 0.10.0, DevAssistant has been shipped with a default set of assistants that only worked on
Fedora. We decided to drop this default set and create DAPI, DevAssistant Package Index, https://dapi.devassistant.org/
- an upstream PyPI/Rubygems-like repository of packaged assistants. DAPI’s main aim is to create a community
around DevAssistant and provide various assistants with good support for various platforms - a task that DevAssistant
core team alone is not able to achieve for a large set of assistants.

This all means that if you get DevAssistant from upstream repo or from PyPI, you will have no assistants installed
by default. To get assistants, search DAPI through web browser or run da pkg search <term> and da pkg
install <assistant package> . This will install one or more DAPs (DevAssistant Packages) with the desired
assistants.

If you want to create your own assistants and upload them to DAPI, see
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant.html and
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant/packaging_and_distributing.html.

There are four main modes of DevAssistant execution. Explanations are provided to better illustrate what each mode
is supposed to do:

create Create new projects - scaffold source code, install dependencies, initialize SCM repos ...

tweak Work with existing projects - add source files, import to IDEs, push to GitHub, ...

prepare Prepare environment for working with existing upstream projects - install dependencies, set up services, ...

extras Tasks not related to a specific project, e.g. enabling services, setting up IDEs, ...

These are some examples of what you can do:

search for assistants that have "Django" in their description
$ da pkg search django
python - Python assistants (library, Django, Flask, GTK3)

install the found "python" DAP, assuming it supports your OS/distro
$ da pkg install python

find out if the installed package has documentation
$ da doc python

55

http://devassistant.org
https://dapi.devassistant.org/
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant.html
http://docs.devassistant.org/en/latest/developer_documentation/create_assistant/packaging_and_distributing.html

DevAssistant Documentation, Release 0.10.0

INFO: DAP "python" has these docs:
...
INFO: usage.txt
...
show help
$ da doc python usage.txt

if the documentation doesn’t say it specifically, find out if there is a "create"
assistant in the installed "python" DAP
$ da create -h
...
{..., python, ...}
...

there is, so let’s find out if it has any subassistants
$ da create python -h
...
{..., django, ...}
...

we found out that there is "django" subassistant, let’s find out how to use it
$ da create python django -h
<help text with commandline options>

help text tells us that django assistant doesn’t have subassistants and is runnable, let’s do it
$ da create python django -n ~/myproject # sets up Django project named "myproject" inside your home dir

using the same approach with "pkg search", "pkg install" and "da tweak -h",
we find, install and read help for "tweak" assistant that imports projects to eclipse
$ da tweak eclipse -p ~/myproject # run in project dir or use -p to specify path

using the same approach, we find, install and read help for assistant
that tries to prepare environment for a custom upstream project, possibly utilizing
its ".devassistant" file
$ da prepare custom -u scm_url -p directory_to_save_to

sometimes, DevAssistant can really do a very special thing for you ...
$ da extras make-coffee

Should you have some questions, feel free to ask us at Freenode channel #devassistant or on our mail-
ing list (https://lists.fedoraproject.org/mailman/listinfo/devassistant). You can also join our G+ com-
munity (https://plus.google.com/u/0/communities/112692240128429771916) or follow us on Twitter
(https://twitter.com/dev_assistant).

DevAssistant works on Python 2.6, 2.7 and >= 3.3.

This whole project is licensed under GPLv2+.

56 Chapter 2. Overview

https://lists.fedoraproject.org/mailman/listinfo/devassistant
https://plus.google.com/u/0/communities/112692240128429771916
https://twitter.com/dev_assistant

	Contents
	User Documentation
	Developer Documentation

	Overview

