

 Navigation

 	
 index

 	
 next |

 	devdocs 1.0 documentation

rehabstudio Developers’ Documentation

About

This service provides a central platform to host all our development guidelines and agreed Coding Standards.
This helps to ensure we have a known place-to-go to check the agreed ‘rehab way’ of doing things.

All of this is open to debate and change, though this is not the forum for such debate. Slack, Discourse, Email
and human conversation are the media for debate. Agreed policies are then posted here, and must be adhered to
until such time as we agree to change, based on the outcome of debates.

Formats

You can view this documentation online at http://devdocs.rehabstudio.com

You can also view this documentation as ebook or PDF formats.

Your Contributions

We welcome your contributions and suggestions to this suite of documentation. Feel free to submit a pull-request
or simply talk to other developers and let us know your ideas.

See GIT repo https://github.com/rehabstudio/devdocs, these pages are coded in
reStructured Text markup.

For local testing, makefiles are available. These docs will automatically update the live page once a pull request
is merged on GitHub.

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devdocs 1.0 documentation

Coding Standards

Coding standards are extremely important for ensuring a consistent quality of
coding output from the studio. This ensures that your coding skills are up to
standard, that you’re working in the most efficient way, and that anyone who
must pick up your work, will be able to hit the ground running.

These standards are already agreed and must be obeyed until changes are debated
and published here.

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devdocs 1.0 documentation

 	Coding Standards

Frontend Standards

Low-hanging fruit

The long-term objective is that all the code we produce has a single voice. This means easier code maintenance in the future, and increases portability.

General

	Use four spaces for tab indentation.

	Be a good citizen. Consider your colleagues now and in the future.

HTML

	Double-quote all attributes which require values

	Don’t use values for Boolean attributes

	Don’t use closing slashes on empty elements

	1

	

	For styling, a class is always preferred to an id; reserve the id for truly unique features such as an attached JS event.

	Class names should be lowercase and hyphenated.

	If adding a class just as a JS hook, use the js- prefix on the name.

	1

	<div id="unique-1" class="component js-trigger"></div>

	Always use appropriate elements for the task at hand; for example, always use a button to submit a form, never another element that looks like a button but has behaviour added with script.

	1
2
3
4
5

	//Never this
Submit

//Only this
<button type="submit">Submit</button>

CSS

	Order rules by property group, and break each rule onto a separate line.

	Leave a single space between the colon and the first value.

	Single-quote all string values, including inside the URL function.

	Except where specifically required (e.g. a time value for transitions), do not use a unit with a zero value; 0px is the same as 0em, so simply use 0.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	div {
/* Position */
 z-index: 100px;
/* Box Model */
 margin: 0;
/* Appearance */
 background-image: url('foo.png');
/* Behaviour */
 animation: foo 1s;
}

	Don’t use id selectors to apply rules.

	Use a new line for each selector.

	1
2
3
4
5
6

	/* Not this */
#foo, .bar { }

/* Only this */
.foo,
.bar { }

	When using class names, don’t specify the element in the selector unless there is a specific reason for it (e.g. specificity)

	1
2
3
4
5

	/* Not this */
div.foo { }

/* Only this */
.foo { }

	Avoid !important wherever humanly possible.

	Don’t use long selector chains; if you’re going past two selectors, consider using a new class instead.

	1
2
3
4
5

	/* Not this */
div ul li a { }

/* Only this */
.list-link { }

	When listing vendor prefixes, always have the unprefixed property name last.

	1
2

	-webkit-transform: none;
transform: none;

Sass

	Keep all variables in a single variables file and use generic names.

	Using @import creates global scope so avoid duplicating variable names, even between variables and maps.

	Like classes, variables can be used in multiple places, and their function can change. An exception to this would be if you’re using loops and require a variable specifically for the current scope.

	1
2
3
4
5

	/* Not this */
$textWhite: #fff;

/* Only this */
$keyColorMain: #fff;

	Do not nest more than three levels deep. While nesting is powerful, it can have a negative impact on readability and, therefore, maintainability.

	Use source maps for easier debugging (http://devtoolsecrets.com/secret/editing-use-sass-source-maps.html).

	If not using Compass or an autoprefixer, make a Mixin for any CSS property which requires vendor prefixes.

	1
2
3
4

	@mixin transform($args…) {
 -webkit-transform: $args;
 transform: $args;
}

	Consider placeholder selectors for repetitive code instead of extending other typed classes. Placeholder selectors will not be written to the stylesheet.

	1
2
3
4
5
6
7
8

	%gutter {
 margin:0;
 padding:0;
}
.btn {
 @extend %gutter;
 background: #c9c9c9;
}

JavaScript

	Always use var to declare variables.

	Each variable on its own line.

	Outer-encase all strings in single-quotes.

	Defined names should be camelCased.

	Use an underscore prefix to name private variables.

	Variables with a Boolean value should be prefixed with is.

	1
2
3

	var _foo = 'Hello World';
var _barBaz = 1234;
var isBoolean = true;

	Use line breaks to show the contents of a function or conditional statement.

	1
2
3
4
5
6
7

	// Not this
if(this){that;}

// Only this
if (this) {
 that;
}

Do not perform calculations or access the DOM when defining loops.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	// Not this
for (var i=0; i < (foo * 5); i++) {alert(i);}

// Only this
var fooTotal = foo * 5;
for (var i=0; i < fooTotal; i++) { alert(i); }

// Not this
for (var i=0; i < $('.foo').length); i++) {alert(i);}

// Only this
for (var i=0,fooLen = $('.foo').length; i < fooLen; i++) { alert(i); }

	Lint your code automatically if your text editor allows, or manually if not. Use JSHint rules (http://jshint.com/).

Comments

	Comment everything, all the time; all code should be minified before going into production, so trying to save space at this point is a false economy.

	Frontend code comments should follow phpDocumentor (http://bit.ly/3FPH7g) standards.

	For CSS, comment uncommon practices or decisions.

	Comment class methods and loose functionality, along with any other complex logic that may benefit from them.

	Document the parameters and return types of your methods and write an accurate description of the purpose of the method.

	If the method is complex and has multiple use syntaxes, document them as examples in the comment block.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	// Ensures value can't go below zero or beyond the maximum possible value.
var newX = Math.min(maxDrag, Math.max(0, newX));
/**
 * Filters the data source to create a subset matching the chosen date.
 *
 * @param string requestDate - Following YYYY-MM-DD syntax.
 * @return array.
 */
filterByDate: function(requestDate, implementOffset) {
}
/**
 * Returns a User record along with nested Goal records, recent
 * activity and any notifications to be shown.
 *
 * Example Usage:
 * APIWrapper.getUserDetails({ facebookToken: '123456' });
 *
 * @param object requestData - Contain either Facebook or Instagram tokens.
 * @return object - jQuery promise (resolved) with User record.
 */
getUserDetails: function(requestData) {
}

Further reading

	https://github.com/necolas/idiomatic-css

	https://github.com/stubbornella/oocss-code-standards

	https://github.com/rwaldron/idiomatic.js

	https://github.com/anthonyshort/idiomatic-sass

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devdocs 1.0 documentation

 	Coding Standards

Backend Standards

PHP

Existing Standards and Code Sniffer

Thankfully, there are already agreed PHP community coding standards, and rehabstudio adopts these.

When coding in CakePHP, please use the CakePHP coding standard, which is available for CodeSniffer, this makes it super simple to integrate into your Grunt/Gulp setup.

	http://book.cakephp.org/2.0/en/contributing/cakephp-coding-conventions.html

	https://github.com/cakephp/cakephp-codesniffer

Should you be working with any other framework, it is acceptable to use PSR2 or PSR1, but you must use one of these 3 standards!

Supplimentary

Furthermore, please observe the following:

	File encoding is UTF-8

	The default permissions for folders are octal 0755, for files octal 0644. Only if the file must be executable (i.e. from console) use octal 0744 for files.

	Never do a SELECT * unless you really need every field return, SELECT * queries have a massive overhead. (This also applies to “find all” commands within frameworks).

Python

Where applicable (in most cases), please adhere to the PEP 8 style guide. The PEP 8 guide itself advises when it is acceptable to disregard this.

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devdocs 1.0 documentation

Useful tools/Tips and Tricks

	Docker
	What is Docker?

	How we use it

	Installation

	Goro
	What is Goro?

	Learning Resources

	Coding Standards

	Workflow

	Command-line Tool

This section contains an overview of some of the tools we use day-to-day at
rehabstudio. Sometimes just documenting that we use them, sometimes noting any
gotchas we’ve found or describing how we at rehabstudio use a certain tool
differently than is normal. Dig in!

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devdocs 1.0 documentation

 	Useful tools/Tips and Tricks

Docker

What is Docker?

Docker is an open platform for developers and sysadmins to build, ship, and
run distributed applications. Consisting of Docker Engine, a portable,
lightweight runtime and packaging tool, and Docker Hub, a cloud service for
sharing applications and automating workflows, Docker enables apps to be
quickly assembled from components and eliminates the friction between
development, QA, and production environments. As a result, IT can ship faster
and run the same app, unchanged, on laptops, data center VMs, and any cloud.

Solomon Hykes, Docker’s Founder & CTO, gives an overview of Docker in this
short video: https://www.youtube.com/watch?v=ZzQfxoMFH0U

How we use it

We’re just beginning to use Docker heavily throughout rehabstudio. We mostly
use docker locally to fulfil the same purpose that Vagrant did previously
(building isolated, reproducible development environments), however, we’re
beginning to use Docker much more heavily in production and deployment
settings also. Keep tuned!

Installation

NOTE: The minimum required version of docker at rehabstudio is 1.3. Docker/boot2docker
1.3.0 added support for mounted volumes when using boot2docker on OSX.

Linux

Docker is best supported on Linux, you can probably find packages for your
preferred distribution here: https://docs.docker.com/installation/.

OSX

Install Docker and boot2docker following the instructions on
this page: https://docs.docker.com/installation/mac/.

Next, we need to forward the appropriate ports so that we can reach the
running appengine development server directly from the host OS:

$ VBoxManage controlvm boot2docker-vm natpf1 "aesdk,tcp,127.0.0.1,8080,,8080"
$ VBoxManage controlvm boot2docker-vm natpf1 "aesdkadmin,tcp,127.0.0.1,8000,,8000"

Please also ensure that the project your working exists inside your /Users
directory in order for the auto-mounting to work.

Note: If you see a message in the terminal that looks something like this:

To connect the Docker client to the Docker daemon, please set: export DOCKER_HOST=tcp://192.168.59.103:2375

you can safely set the environment variable as instructed. You should also
probably add this export command to your .bashrc so that it persists
across terminal windows/reboots.

Windows

Not supported yet (we just haven’t tried, give it a go, it might work). Pull requests very welcome.

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devdocs 1.0 documentation

 	Useful tools/Tips and Tricks

Goro

What is Goro?

Goro is a “content production system” used to build all sites that live
directly on the Google top-level domain (e.g. https://www.google.es/activate).

At its core, Goro is a web application that runs on Google App Engine and
provides a set of tools and processes to site owners in order to cut down the
time it takes to produce a high-quality web site.

Learning Resources

If you cannot access any of these learning resources, Goro itself or even
the Johnny Cage repository then you will need to contact your projects ATL and
request access.

General

	What’s The Deal With Goro? [https://drive.google.com/a/rehabstudio.com/file/d/0BxaSrRJmTkSkendpbmhvYjgzVEhuMHlUdTZRUWtnbDl1UWNB/view]

	Agency Guide: Goro [https://agency-guide.googlegoro.com/resources.html#goro]

	High-level Guidelines [https://help.googlegoro.com/docs/136209884559520/vendor-cheat-sheet.html]

Development

	Johnny Cage repository [https://webmaster.googlesource.com/johnny-cage]

	First Time Developer Guide [https://help.googlegoro.com/docs/1340910078212/first-time-goro-developer-creating-branches-pages-sites-and-images.html]

	Goro Help Centre [https://help.googlegoro.com/index.html]

	Viewing & Editing Files [https://help.googlegoro.com/docs/1340917321586/viewing-and-editing-files.html]

	Using AngularJS in Goro [https://help.googlegoro.com/docs/139879180595642/using-angularjs-in-goro.html]

	Template Context Variables [https://help.googlegoro.com/docs/1341006579375/context-variables.html]

	Template Tags [https://help.googlegoro.com/docs/1341012532686/template-tags.html]

	Using Custom Formbox Forms [https://agency-guide.googlegoro.com/custom-formbox-forms.html]

Linting / Styling

	Brand Studio: Agency Code Review Checklist [https://docs.google.com/presentation/d/1B5xsnId43xqAPLXr5Olxk75-TTiSAQ05jsRbxT8VEA8/edit#slide=id.p]

	Template style guide [https://help.googlegoro.com/docs/1341008397610/template-style-guide.html?goro_mode=export]

	HTML/CSS style guide [https://google.github.io/styleguide/htmlcssguide.xml]

	JavaScript style guide [https://google.github.io/styleguide/javascriptguide.xml]

	AngularJS style guide [https://google.github.io/styleguide/angularjs-google-style.html]

Coding Standards

Projects being built through Goro need to adhere to Google’s linting rules.
There are various different style guides and standards across different
languages. Check out the linting section of the learning resources for more
specifics.

To lint JavaScript files you can use the “Linter Tool” while editing a file on
Goro. Note that this will not catch AngularJS formatting rules, only plain
JavaScript rules. The tool is located next to the “Actions” and “Preview”
buttons. There is also a command-line linter known as gjslint that can be
run with corresponding rulesets. This local linting will speed up development
overall as you’ll not have to deploy files to lint them.

Workflow

Creating and authoring project files can be done entirely through the Goro web
application, however this has many disadvantages:

	You need an active internet connection to be able to develop.

	To ensure your JS files lint you’d need to open each one manually and check.

	Goro doesn’t have real file source control and has a limited history stack.

	The project will have access to only one “branch” and preview area. If there
are multiple developers on the project you’ll quickly tread on each other’s
toes.

To combat the majority of these errors we can use a local development server for
Goro known as Johnny Cage [https://webmaster.googlesource.com/johnny-cage].
Utilising this tool allows us to develop locally for speed and use our own local
build tools such as Grunt or Gulp for things such as file uploading and linting.

Developing locally will also allow us to use our own project git repository.
Doing this lets us treat the Goro branch as a preview environment and a tool for
exporting files.

Command-line Tool

Goro has a CLI that can be installed locally. There is documentation [https://help.googlegoro.com/docs/1341004351675/command-line-utility-reference.html#vendors] that will help you get it installed on Mac /
Linux. The CLI lets you upload files to Goro in bulk rather than uploading
folders through the Goro web application.

There is an additional “tip” in the documentation which shows you how to alias
goro, however, their method listed will only work for your current terminal
session if you’re on anything other than a mac.

NOTE: If you are installing the CLI tool, it only works with versions of keyring
lower than or equal to 8.4.0. At this time you’ll need to update the relevant
line in the requirements.txt of the CLI vendor download.

If you try to run goro from any folder and it fails then you will need to
create your own command. Below is an example goro command that can be placed
into any of your bin folders (~/bin, /usr/local/bin) e.g.
/usr/local/bin/goro:

#! /bin/bash
python /path/to/your/goro/folder/goro.py "$@"

You may need to restart your terminal for changes to take effect. To test things
work as intended, simply try to run goro from any folder.

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devdocs 1.0 documentation

Image Formats

JPEG

JPEG images are best for photographs - unless transparency is required, in which case PNG is more suitable. However, with JPEG we always need to balance quality with filesize.

To accommodate high DPI screens, save the image at double the dimensions required (e.g. if 100x100 on the web, save as 200x200). Use Save for Web and drop the quality as low as possible before any obvious visible artefacting appears in the 50% preview pane. This will have to be done by eye. On some images we can get as low as ~25% without any noticeable artefacting.

See this example: http://www.broken-links.com/tests/highdpi.html. Images on the right are double dimension, low quality, but on high DPI screens generally appear as good or better than the higher quality on the left, and file size is roughly comparable.

If the image needs to be downloaded by the user (e.g. wallpapers) the approach above won’t work, so save at regular dimensions but again, keep quality as low as possible without the appearance of artefacting.

PNG

PNG are most suited for non-photorealistic images, and photo images in which transparency is required. Transparency can be expensive (file size and performance) so try to keep it contained to smaller images.

If a simple image with no more than 256 colours, with no alpha transparency, save as an 8-bit PNG. Otherwise, use 24-bit. As before, if required to suit high DPI screens, save at double the dimensions.

SVG

SVG is generally the better option for icons, charts and logos as it’s scalable so suits high-DPI screens.

Avoid using filters or gradients where possible as they’re expensive to performance.

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devdocs 1.0 documentation

Prelaunch Checklist

Things that should be checked off (where appropriate) before we consider a site ready to launch.

Front End

	Meta data included and appropriate

	Facebook OpenGraph tags properly set up

	Page titles are descriptive and SEO friendly

	Images have appropriate alt text

	Images have been optimised

	CSS/JS minified

	Favicon created and displayed

	App icons created and displayed

	Analytics installed and reporting

	404 page exists and is informative

	Javascript console messages suppressed/removed

	Unsupported browser/platform messages in place

	Does the site have RTL locales? Have you used direction: rtl; to mirror things?

Back End / Platform

	Default CMS user account created

	Test data removed from DB

	Debug modes turned off

	Setup Sentry logging/reporting

	Lockdown/htpasswd removed

	Ensure GZIP is serving assets.

	Third party

	Facebook Sandbox turned off

	Ensure all third party paid services have billing set up (no trials)

Sysadmin

	Ensure infrastructure backup is in place

	Ensure DB backup is in place

	New server environment is ready for live

	Logging system updated for live

Post Launch

If using any Facebook services, such as sharing, remember to also enter your URL into the Facebook Debugger (https://developers.facebook.com/tools/debug/) after your site goes live, to ensure the Facebook Cache is cleared. This will prevent 403 Authentication Required errors when sharing your site now that .htpassword has been removed.

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devdocs 1.0 documentation

Versioning

Make your life easier with Git

Git is a distributed revision control and source code management system with an emphasis on speed, data integrity and support for distributed, non-linear workflows.

As with most other distributed revision control systems, and unlike most client–server systems, every Git working directory is a full-fledged repository with complete history and full version-tracking capabilities, independent of network access or a central server.

Like the Linux kernel, Git is free software distributed under the terms of the GNU General Public License version 2.

Resources

	GitHub Help [https://help.github.com/]

Generating SSH Keys

	Generating SSH Keys (Linux, Windows, Mac OS X) [https://help.github.com/articles/generating-ssh-keys/]

Create a new repository on the command line

Follow these instructions:

touch README.md
git init
git add README.md
git commit -m "first commit"
git remote add origin https://github.com/user/projectname.git
git push -u origin master

Push an existing repository from the command line

git push <REMOTENAME> <BRANCHNAME>

	More info about pushing to a remote [https://help.github.com/articles/pushing-to-a-remote/]

Why?

	It’s all about team work, code backup and version control

Methodology

All our code must use the GitFlow Methodology <https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow>.

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devdocs 1.0 documentation

Peer Reviews

This document exists as a proposal for future direction. This process is not yet doctrine within rehabstudio.

“Feedback is important for engineers to grow in their jobs. By having a culture of ‘everyone’s code gets reviewed’ you promote a culture of positive, constructive feedback. In teams without review processes, or where reviews are infrequent, code review tends to be a tool for criticism, rather than learning and growth.”
- Alex Gaynor

Resources

	Effective Code Review [http://alexgaynor.net/2013/sep/26/effective-code-review/]

	How to do Effective Peer Code Reviews [http://news.dice.com/2012/10/30/how-to-do-effective-peer-code-reviews/]

	Peer Code Review An Agile Process [http://www.slideshare.net/gsporar/peer-code-review-an-agile-process-2502327]

	11 Best Practices of Peer Code Review [pdf] [http://smartbear.com/SmartBear/media/pdfs/WP-CC-11-Best-Practices-of-Peer-Code-Review.pdf]

	Best Kept Secrets of Peer Code Review [pdf] [http://smartbear.com/SmartBear/media/pdfs/best-kept-secrets-of-peer-code-review.pdf]

Proposed Process

	Everybody gets code reviewed, but not every day - rotating/random checks

	Work in feature branches not to be merged into develop without a review

	Keep to 30 minute sessions (no more than 400 lines of code)

	Use a checklist to compare with internal standards

Questions

	Do pre-commit reviews fit with our Git flow?

	How do we review one-man projects?

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devdocs 1.0 documentation

Performance Plan

Responsibilities

Granular detail of the responsibilities at each stage of build.

Strategy

	Source data on target market - mobile, OS, average broadband

Design

	Design appropriately for the target market

	Design appropriately for the target devices, e.g. performance restrictions on phone/tablet

	Export images in the appropriate format, optimised for balance of quality and file size

Production

	Set a performance budget with devs and enforce the budget on change request

Dev Ops

	Use Page Speed module for compression, caching, expires headers

	Enable appropriate number of CDNs/distribution points

	Site should scale appropriately where needs be and have sufficient server specifications to support the core platforms tasks

	Server should be located in the optimum locale for the target market

	Server should be running the minimum services required to run the application

	Implement Sitespeed.io (or similar) into deploy script

Back-end

	Render HTML templates

	Cache assets, db queries and opcode where appropriate

	Optimise code, ensuring the likes of loops and file i/o are as efficient as possible

	Compress images upon upload where possible, according to the nature of the project

Front-end

	Use progressive enhancement

	Optimise code, ensuring the likes of loops are as efficient as possible

	Optimise (minify, concatenate, compress) assets (css, js, img, svg) in workflow

	Ensure that assets are only loaded when required; use lazy or conditional loading

	Log timestamps of key moments for measurement

	Enforce the performance budget

QA

	Use Page Speed Insights (or similar) and developer tools to flag slow page load problems1

	Visually inspection for-over optimisation of SVG

	Run selenium grid across main 4 desktop browsers2

	Automated testing across supported devices, including bandwidth throttling3

	Enforce performance budget

	Ensure no double redirects (particularly where specific mobile content is present)

	Measure performance of external asset servers

	Check that relevant assets are benefiting from server side compression4

Notes

	Analyse what specific elements are causing issue and ensure that optimisations suggested above have been applied.

	Use our own tool and check for any spinning slow page loads (general check but focus on anything identified in page speed insights analysis). Acceptable limits for animated sites are 10 seconds for primary non-cached first page load and no more than 4 seconds for cached page load. Any exceeding of these numbers needs accounted for. Load times for sites with no animation should be no more than 5 and 2 sec respectively. If no CMS present then lower again. Any exceptions need explained. Page load time is that returned by browser developer tools. Performance test runs should be performed against staging site which should be comparable cpu to the live site. A subsequent run is required if CDNs are to be enabled for go live. (up to 1 day required for propagation)

	If it is agreed with customer that users are accessing apps over slower connections but this is an exception to standard QA testing

	Developer responsibility but needs checked by QA.

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	devdocs 1.0 documentation

Docker

Docker images

All reusable Docker images should abide by the following rules:

	Where less frequently used packages are desired, consider making a base image and use that for the generic packages.

	Use the tagging structure, 0.9 for images - this should be reflected in GitHub & Dockerhub releases

Distro

For build tools, where possible we should make use of Alpine Linux as this is a very lean image. Additional packages can be added with:

apk add --update {packages}

When mirroring server environments, the distro should always match the server. For Google App Engine we should use debian:wheezy.

Dockerfile

	All images should be ephemeral

	MAINTAINER set to devops@rehabstudio.com

	WORKDIR should point at the mounted root

	COPY instead of ADD, unless you want to unpack an archive

	RUN should be used efficiently. Multi-line when possible, e.g.

RUN apt-get install -y curl \
 wget \
 perl

	CMD should be in the format CMD [“exec”, “param1”, “param2”], not CMD exec param1 param2

	ENTRYPOINT don’t use this unless you have a specific need to

	VOLUME to be used where data should be added to a volume on mount. The container shouldn’t rely on anything being mounted from host though

	USER shouldn’t be specified unless you’re doing some user-specific actions inside the container. The default user (e.g. root) is fine for most containers.

	ONBUILD shouldn’t be used unless there’s a really good reason to do so

	Use a .dockerignore when it makes sense - exclude what doesn’t need added to the container

	Cleanup after yourself. Once you have installed whatever packages you desire, RUN a clean up, e.g. rm -rf /var/lib/apt/lists/* (This can be appended at the end of a multi-line apt-get install, making the install and cleanup a single RUN)

Mounting Volumes

For those using VirtualBox (likely most of the OSX folks) remember that you can not specify local folders outside of /Users/... to mount. This means that if you’re trying to docker run -v /var/host/www:/var/container/www ... you will likely have some weird results. You can either specify directories that live inside your /Users/ directory, or you can open the VirtualBox UI and add whatever folders you require as a shared folder.

Basically, it’s best if you just keep everything in /Users/... for now.

Security

It is important to remember that a docker container can be inspected and as such shouldn’t contain any sensitive data, such as secrets. Where necessary, use a .dockerignore file to exclude sensitive (or useless...) files from the container, such as .env files.

If you need to make use of keys in your container, it’s a good idea to do so at run time and mount said keys as a volume.

Repo

	All public images should live in a GitHub repo

	The repo should be named docker-{DISTRO}-{NAME}

Docker Hub

The following steps should be taken for images on the rehabstudio docker hub:

	Use https://imagelayers.io/ and include an embed

	In the long description:

	Include examples as to how to build and run the container

	Run examples should also include instructions on how to mount volumes, if relevant

	Mention that issues / comments should be raised on the GitHub page, not the Dockerhub page

README

The README.md should follow these rules:

	Include a Dockerhub embed

	Have a Usage section

	Mention any variants, if applicable (e.g. -alpine)

	Specify which docker version has been tested

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 previous |

 	devdocs 1.0 documentation

Security

OWASP Top 10

All staff should be aware of the OWASP Top 10 - details of which can be found
here: https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

General Security Considerations

All projects should have its security properly scoped and signed off by
internal and external security teams prior to build. Some common security
considerations are as follows:

	
	What are the threat scenarios specific to your project?

	
	How secure is data in transport and at rest?

	What data is stored/shared?

	What legalities apply to this project?

	What priviledges are available in this app & can they be abused?

	How is data destroyed?

	
	Is access effectively managed?

	
	Onboarding

	Offboarding

	Inter-team permissions

	Deployments restricted to core members

	Apps locked down prior to launch

	Logs and backups secured

	
	Have all common attack vectors been considered? e.g.

	
	SQL injection

	Cross site scripting

	Email Form Header Injection

	Malicious File Upload and Execution

	User Authentication

	Error suppression

	
	Is the server secured?

	
	Access management

	Secure logs

	IDS

	Firewall properly configured

	Can handle expected load

	Is DDOS protection required?

	SSL

	
	Have all frameworks, third party libraries and APIs been approved?

	
	Licensing

	Maintenance & support

	Ensure the latest stable versions are used

	Where applicable, state specific versions when using package management
to avoid any issues caused by automatic package updates

Security Scanning Tools

All projects should have a security suite ran against it. The following tools
are freely available and commonly used by staff:

	Nikto https://cirt.net/Nikto2

	Skipfish https://code.google.com/archive/p/skipfish/

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	devdocs 1.0 documentation

Index

 Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_static/comment.png

_static/down.png

tools/hubspot.html

 Navigation

 		
 index

 		devdocs 1.0 documentation »

HubSpot

What is HubSpot?

HubSpot [http://www.hubspot.com/] is an “inbound marketing software platform” which offers features for internet marketing, such as emails, blogging and social media. This piece of software is mostly used by the marketing team.

This document will mostly cover tips on how to use the emailer tool/rehabstudio email template.

The rehabstudio email template

The rehabstudio template can be used for two different purposes. Sending out invites (Event template) or articles/information within a newsletter (Newsletter template).

Event Template

The Event template is used to deliver invites for an event to recipients. This template consists of:

		Intro detailing the event.

		Call to action button for sign up.

		The venue details, location and time.

Newsletter Template

The Newsletter template is for sending articles or information, i.e a monthly newsletter. This template consists of:

		Intro detailing the newsletter context.

		Article slots, which can be modified depending on the number of articles to include.

The 2 in 1 template allows you to switch between the Event or Newsletter email layouts. Each layout includes a spotlight, monthly links and footer section. The spotlight and monthly links can be hidden if not needed.

Name of template: rehabstudio_new_mailer.html

Getting started on HubSpot

Create a new email using the HubSpot template

To create a new email with HubSpot:

		Click ‘Create new email’.

		Select the new template titled rehabstudio_new_mailer.html.

		Give the email a title, then click ‘Create’.

The Editor

This section allows you to edit the contents of the email template. Each part of the content is stored in a module. You can manipulate the modules by showing or hiding them.

The rehabstudio_new_mailer.html template has a number of custom modules, with options to either show or hide sections. This will depend on the type of email your building. The options can be found in the ‘Edit Modules’ panel and are highlighted in orange.

Important! - you may have to refresh the page to see changes within the ‘Edit Modules’ panel and template.

Choose type of email

This option will determine if you are making either an Event or an Newsletter. Selecting one will change the layout of the email, opening more options for further editing.

		
		Event (Display Event layout)

		
		
		Hide venue content

		
		Hides the events time and location, if you just want to show the event content.

		
		Hide invite content

		
		Hides the invite content, if you just want to display the events venue details (time and date).

		
		Newsletter (Display Newsletter layout)

		
		
		Choose the amount of slots

		
		This option will allow you to pick how many article slots you want on the newsletter template.

Important! Refresh the page after applying the number of slots to see added blocks.

		
		Other options

		
		
		Display the staff spotlight

		
		Show or hide the staff spotlight section.

		
		Display the monthly links

		
		Show or hide the monthly links section.

Editing the content

Editing the content of the email is simple. Just point and click on the item you want to edit.

Replacing Images (Retina Images)

HubSpot automatically compresses images within emails so they load faster for the end users. But the compression makes the images appear blurry and grainy, especially on retina screens. To fix this issue, HubSpot gives you the ability to disable it’s compression by adding a simple query parameter called '?noresize'.

To make sure images are retina ready, just follow the simple steps within the following document.

		How to add high-resolution images to your email [https://docs.google.com/a/rehabstudio.com/document/d/15j4ebfgOlPttL9gsMy_a65usBE4lzKsM2yVNlzlUgSA/edit?usp=sharing]

Important! Make sure the images are uploaded twice the size and then resized within email editor.

Adding links to arrow images

The arrow images located in the newsletter layout works differently from other images. To add a link, you simply:

		Click on the ‘Arrow image’.

		Click the ‘Insert/edit link’ button.

		Add link.

		Click the ‘Update link’ button.

Footer

To edit the address section of the footer, from the navigation bar you:

		Select ‘Content’, click ‘Content settings’.

		Select ‘Email’ on the left panel (5th from top).

		Then input the correct details under ‘Email Footer Information’.

		Save changes.

Important! Always check the correct address is being used on the email before sending. This setting will change the address on all emails using the rehabstudio_new_mailer.html template. If incorrect, simply follow the steps above and save.

Additional information

Mailto link

The mailto link opens the default mail program with the TO field already filled out. This link can be added to text or the arrow images. To add a mailto link, you simply write ‘mailto:someone@yoursite.com’ (replacing someone@yoursite.com with the desired email) into the add link section.

Important! Adding the mailto link to other images other than the arrow images will not work. HubSpot adds a http:// protocol which opens a new tab on the browser, instead of opening the default mail program.

 © Copyright 2015, rehabstudio.
 Created using Sphinx 1.2.3.

