

Welcome to Destructify’s documentation!

Destructify is a Pythonic and pure-Python 3 method to express binary data, allowing you to read and write binary
structures. You simply specify a structure by creating a class as follows:

class ExampleStructure(destructify.Structure):
 some_number = destructify.IntegerField(default=0x13, length=4, byte_order='little', signed=True)
 length = destructify.IntegerField(length=1)
 data = destructify.FixedLengthField(length='length')

Now you can parse your own binary data:

example = ExampleStructure.from_bytes(b"\x01\x02\x03\x04\x0BHello world")
print(example.data) # b'Hello world'

Or write your own data:

example2 = ExampleStructure(data=b'How are you doing?')
print(bytes(example2)) # b'\x13\x00\x00\x00\x12How are you doing?'

Contents:

	Structures
	Simple example

	C-style operations

	Field types

	Controlling a field through attributes

	Streams

	Structure methods

	The Meta class

	Advanced parsing
	Depending on other fields

	Calculating attributes

	Overriding values

	How a structure is read and written

	Decoding/encoding values

	Offset, skip and alignment

	Lazily parsing fields

	Combining offset with lazy

	Custom fields
	Field idempotency

	Subclassing an existing field

	Writing your own field

	Supporting length

	Supporting lazy read

	Testing your field

	GUI & Hex Viewer

	Python API
	Structure

	Field

	ParsingContext

	FieldContext

	Built-in fields specification
	Common attributes

	BytesField

	StringField

	IntegerField

	VariableLengthIntegerField

	BitField

	ConstantField

	StructField

	StructureField

	ArrayField

	ConditionalField

	SwitchField

	EnumField

	Version history
	Releases

Indices and tables

	Index

	Module Index

	Search Page

Structures

Destructify uses structures to define how to parse binary data structures. If you have used Django before,
you may see some resemblance with how models are defined in that project. Don’t worry if you don’t know anything about
Django, as the following is everything you need to know:

	Each structure is a Python class that subclasses Structure

	Each attribute of the structure defines a field in the binary structure

All of this allows you to write a very clean looking specification of binary data structures that is easy to write, but
also trivial to read and comprehend. Some of this even resembles parts of C-style structures, so it can be dead simple
to write some code to interface between C programs and Python programs.

Simple example

Let’s say we have some simple C-style structure that allows you to write your name (in a fixed-length fashion), your
birth year and your balance with some company (ignoring the cents). This might look like the following in C:

struct {
 char name[24];
 uint16_t birth_year;
 int32_t balance;
} Person;

In Destructify, you would specify this as follows:

import destructify

class Person(destructify.Structure):
 name = destructify.StringField(length=5, encoding='utf-8')
 birth_year = destructify.IntegerField(length=2, signed=False)
 balance = destructify.IntegerField(length=4, signed=True)

 class Meta:
 byte_order = 'big'

Each of the attributes above are called fields. Each field is specified as a class attribute, and each attribute
defines how it parses this part of the structure. Also note that ordering matters, and fields are parsed in the order
they are defined in.

You may also have noticed that we have defined a Meta inner class containing the Meta.byte_order
attribute. This is required for the two IntegerField we use. When writing binary data, the byte order, or
endianness [https://en.wikipedia.org/wiki/Endianness] as it is also commonly called, specifies how bytes are read and
written. You can specify this as a default on a per-structure basis or specifically on a per-field basis.

You can now start using this structure. Reading a structure is as easy as calling the class-method
Structure.from_bytes() as follows:

>>> person = Person.from_bytes(b"Bobby\x07\xda\x00\x00\x00\xc8")
<Person: Person(name='Bobby', birth_year=2010, balance=200)>

From the resulting object, you can simply access the different attributes:

>>> person.name
Bobby
>>> person.birth_year
2010

Creating a structure is also very simple, as you can pass all attributes to the constructor of the structure, or change
their value as attribute. Obtaining the binary structure is then as easy as converting the object to bytes:

>>> Person(name="Carly", birth_year=1993, balance=-100)
>>> person.name = "Alice"
>>> bytes(person)
b"Alice\x07\xc9\xff\xff\xff\x9c"

C-style operations

Continuing our above example of a C-style struct, we know that we can also obtain the size of a structure in C using the
sizeof function. We can do the same in Destructify using len:

>>> len(Person)
11

This is only possible when we use fixed-length fields. If we have some field somewhere that is of variable length, we
can’t determine this length anymore:

>>> class FlexibleStructure(destructify.Structure):
... field = destructify.StringField(terminator=b'\0')
...
>>> len(FlexibleStructure)
Traceback (most recent call last):
 (...)
destructify.exceptions.ImpossibleToCalculateLengthError

Similarly, you can use Structure.as_cstruct() to see how you’d write the same structure in a C-style struct. Note
that

Field types

In the first example, we have shown some field types, but Destructify comes with dozens of different built-in fields.
Each of these is used to define how a piece of bytes is to be interpreted and how it is to be written to bytes again.

It is not possible to make a general assumption about all fields, but most fields combine different methods of consuming
and writing data to and from a stream, with a single Python representation. Taking the StringField as an
example, you may have noticed that we are only able to fit 5-byte names in this field. What if we had longer or shorter
names? Luckily, StringField allows you to pass different keyword-arguments to define how this works.

Reading through Built-in fields specification you will discover that all fields have a smorgasbord of different attributes to control
how they read, convert and parse values to and from a stream. To illustrate what we mean, we show you how
BytesField has different operating modes in the next section.

But remember, you can always implement your own field if none of the built-in fields does what you want.

Controlling a field through attributes

Most fields take the BytesField as a base class, as this field has various common options for parsing bytes
from a stream. Two of the most common cases, a fixed-length field, and a field ‘until’ some byte sequence, are possible.
It is even possible to make this a lot more complex, as we try to show in five examples:

	BytesField(length=5)

	This reads exactly the specified amount of bytes from the field, and returns that immediately.

	BytesField(length=20, padding=b' ')

	This is a variant of the previous example, that allows for some variance in the field: 20 bytes are read and all
spaces are removed from right-to-left. When writing, spaces are automatically added as well.

	BytesField(terminator=b'\0')

	This form allows us to read until a single NULL-byte is encountered. This is typically how strings are represented in
C, and are called NULL-terminated strings. The advantage of this is that the value can take any length, as long as it
is terminated with a NULL-byte (and the value itself does not contain any NULL-bytes).

Using this has some disadvantages, as it is not possible to use Field.lazy on such a field: it must be parsed
in its entirety to know its length.

	BytesField(length=20, terminator=b'\0')

	This form combines the two methods by specifying both a fixed amount of bytes, and a terminator. This is a common
model when writing strings to fixed-length buffers in C: it reads 20 bytes from the stream, and then looks for the
terminator.

This is different from specifying a length with padding, as this allows junk to exist in the padding of the field.
That may occur commonly in C: imagine you declare a buffer of fixed length, but do not properly fill it with zeroes.
In that case, some random bytes may exist in the padding, not just NULL-bytes.

Note that this field does not know how to write a value that is too short, as padding has nog been defined yet; but
there is a solution:

	BytesField(length=20, terminator=b'\0', padding=b'\0')

	This is the best of all worlds, allowing us to read 20 bytes, terminate the relevant part at the NULL-terminator while
reading, and allow us to write shorter-length values as these will be padded with NULL-bytes. This is usually how
you’d implement fixed-length C-style strings.

As you can see from these five examples, it highly depends on how your structure looks like what you’d define in the
structure. Again, these are only examples, and you should read Built-in fields specification to get an idea of all of the options
for all of the built-in fields.

Streams

Until now, you may have noticed we have been using Structure.from_bytes() and Structure.to_bytes() to
convert from and to bytes. In fact, these are convenience methods, as Destructify actually works on streams. You can
use this to simply open a file and parse this, without needing to convert it to bytes first:

with open("file.png", "rb") as f:
 structure = MyStructure.from_stream(f)

This allows you to read in large files into a Python structure.

Structure methods

Apart from the way we define the fields in a structure, all structures are normal Python classes and can
add additional functions and calculated properties. This is helpful, as you can use this to create per-instance
methods that allow you to work on a particular instance of your structure, and keep your business logic in one place:

class Person(destructify.Structure):
 name = destructify.StringField(length=5, encoding='utf-8')
 birth_year = destructify.IntegerField(length=2, signed=False)
 balance = destructify.IntegerField(length=4, signed=True)

 class Meta:
 byte_order = 'big'

 def add_to_balance(self, amount):
 """Adds the given amount to the balance of this person."""
 self.balance += amount

 @property
 def age(self):
 """The most naive method of determining the age of the person."""
 import datetime
 return datetime.date.today().year - self.birth_year

Note that we have implemented the last method in this example as a property, showing how you would implement a
calculated property that is not written to the binary structure.

The Structure defines some function of its own, for instance the Structure.to_stream() method. You’re
free to override these functions to do whatever you like. An example would be:

class Person(destructify.Structure):
 ...

 def to_stream(self, *args, **kwargs):
 do_something()
 result = super().to_stream(*args, **kwargs)
 do_more()
 return result

In this example, we do something just before we write the data to a stream. It’s important to call the superclass
method if you want to retain original behaviour and return its value (that’s what that super() call is for). Also
note that we pass the original arguments of the function through to the original function, without defining what these
are precisely.

As it is common to modify some fields just before they have been written, you may also choose to override
Structure.finalize.

The Meta class

You may have noticed that we use a class named Structure.Meta in some of our definitions. You can use this
class to specify some global attributes for your structure. For instance, this allows you to set some defaults on
some fields, e.g. the StructureOptions.byte_order.

The Meta attributes you define, are available in the Structure._meta attribute of the structure. This is a
StructureOptions object.

The following options are available:

	
StructureOptions.structure_name

	The name of the structure. Defaults to the class name of the structure.

	
StructureOptions.byte_order

	The default byte-order for fields in this structure. Is not set by default, and can be little or big.

	
StructureOptions.encoding

	The default character encoding for fields in this structure. Defaults to utf-8.

	
StructureOptions.alignment

	Can be set to a number to align the start of all fields. For instance, if this is 4, the start of all fields
will be aligned to 4-byte multiples; meaning that, after a 2-byte field, a 2-byte gap will automatically be added.
This is useful for e.g. C-style structs, that are automatically aligned.

This alignment does not apply when Field.offset or Field.skip is set. When using subsequent
BitField s, this may also be ignored.

See also

	The Lost Art of Structure Packing [http://www.catb.org/esr/structure-packing/]

	Some background information about alignment of C-style structures.

	
StructureOptions.checks

	This is a list of checks to execute after parsing the Structure, or just before writing it. Every check
must be a function that accepts a ParsingContext.f object, and return a truthy value when the check is
successful. For instance:

class Struct(Structure):
 value = IntegerField(length=1)
 checksum = IntegerField(length=1)

 class Meta:
 checks = [
 lambda f: (f.value1 * 2 % 256) == f.checksum
]

When any of the checks fails, a CheckError is raised.

	
StructureOptions.capture_raw

	If True, requests the ParsingContext to capture raw bytes for all fields in the structure.

Advanced parsing

In the previous chapter, we have covered generally how you’d define a simple structure.
However, there is much more ground to cover there, so we’ll take a deeper dive into how parsing works in Destructify.

Depending on other fields

Until now, we have been using fixed length fields, without any dependency on other fields. However, it is not untypical
for a field to have its length set by some other property. Take the following example:

import destructify

class DependingStructure(destructify.Structure):
 length = destructify.IntegerField(1)
 content = destructify.BytesField(length='length')

Since the BytesField.length attribute is special and allows you to set a string referencing another field,
you can now simply do the following:

>>> DependingStructure(content=b"hello world").to_bytes()
b'\x0bhello world'
>>> DependingStructure.from_bytes(b'\x06hello!')
<DependingStructure: DependingStructure(length=6, content=b'hello!')>

Actually, there’s some magic involved here, and that centers around the ParsingContext class. This class is
passed around while parsing from and writing to a stream, and filled with information about the current process. This
allows you to reference fields that have been parsed before the current field. This is what happens when you pass a
string to the BytesField.length attribute: it is interpreted as a field name and obtained from the context
while parsing and writing the data.

Calculating attributes

The BytesField.length attribute actually allows you to provide a callable as well. This callable takes a single
argument, which is a ParsingContext.f object. This is a special object that allows you to transparently access
other fields during parsing. This allows you to write more advanced calculations if you need to, or add multiple fields
together:

class DoubleLengthStructure(destructify.Structure):
 length1 = destructify.IntegerField(1) # multiples of 10 (for some reason)
 length2 = destructify.IntegerField(1)
 content = destructify.BytesField(length=lambda c: c.length1 * 10 + c.length2)

	
class destructify.this

	

As lambda functions can become quite tiresome to write out, it is also possible to use the special this
object to write this. The this object is a higher-level lazily parsed object that constructs lambda
functions for you. This is better shown by example, as these are equivalent:

this.field + this.field2 * 3
lambda this: this.field + this.field2 * 3

Writing the same structure again, we could also do the following:

import destructify
from destructify import this

class DoubleLengthStructure(destructify.Structure):
 length1 = destructify.IntegerField(1)
 length2 = destructify.IntegerField(1)
 content = destructify.BytesField(length=this.length1 * 10 + this.length2)

Note that this lazy object can do most normal arithmetic, but unfortunately, Python does not allow us to override the
len function to return a lazy object. Therefore, you can use len_ as a lazy alternative.

Overriding values

Having shown how we can read values without much problem, being able to write values is also quite important for
structures. We know from previous examples that this works without much issues:

>>> DependingStructure(content=b"hello world").to_bytes()
b'\x0bhello world'

That begs the question: how does length know that it know that it needs to get the length from the content
field? That is because there’s something else going on in the background: when set to a string, the BytesField
automatically specifies the Field.override of the length field to be set to another value, just before it
is being written.

This is nice and all, but what if the length is actually some calculation that is more advanced than simply taking the
length? For instance, what if the length field includes its own length? This is also very easy!

import destructify

class DependingStructure(destructify.Structure):
 length = destructify.IntegerField(length=4, byte_order='big', signed=False,
 override=lambda c, v: len(c.content) + 4)
 content = destructify.BytesField(length=lambda c: c.length - 4)

As you can spot, we now explicitly state using lambda functions how to get the length when we are reading the field,
and also how to set the length when we are writing the field.

As with the BytesField.length we defined before, the Field.override we have specified, receives a
ParsingContext.f, but also the current value.

Several fields allow you to specify advanced structures such as these, allowing you to dynamically modify how your
structure is built. See Built-in fields specification for a full listing of all the fields and how you can specify calculated
values.

How a structure is read and written

We have now seen how Field.override works, but there are more ways to parse and write more advanced structures.
You can alter the behaviour of a field by e.g. specifying Field.decoder and Field.encoder, or use
functions on the Structure to modify values, while it is being parsed.

All these hooks can become quite complex, so the list below shows how a value is parsed from a stream into a
Structure and vice versa.

The following functions are called on a value while reading from a stream by Structure.from_stream():

	Field.seek_start() searches the start of the value in the stream, implementing e.g. Field.skip

	Field.from_stream() reads the value from the stream and adjusts it to a Python representation

	Field.decode_value() is called on the value retrieved from the stream to convert it to the proper Python value,
implementing Field.decoder.

	Field.get_initial_value() is a function that is intended to adjust the value based on other fields, which is an
empty hook function (at this point).

	Structure.initialize() is called to allow you for some final adjustments

If the field is Field.lazy, parsing goes a little bit differently, as Field.from_stream() and
Field.decode_value() are delayed:

	Field.seek_start() searches the start of the value in the stream

	Field.seek_end() to seek the end of the value in the stream, but only if there’s a next field with a
relative offset

	Field.get_initial_value() is called, passing a Proxy object

	Structure.initialize() is called

And the following methods are called before writing to a stream by Structure.to_stream():

	Field.get_final_value() is called on all values in the structure, implementing Field.override.

	Structure.finalize() is called to allow you to make some final adjustments

	Field.encode_value() is called on the value to convert it to a Python value that can be passed down,
implementing Field.encoder.

	Field.seek_start() searches the start of the value in the stream, implementing e.g. Field.skip

	Field.to_stream() writes the value to the stream

Note that the two lists are intentionally not entirely symmetrical: individual field finalizers/initializers are in both
cases called before the structure finalizer/initializer. Additionally, there’s no equivalent for Field.override
while reading the field, as that makes less sense. The hook is there, however.

In the chapters Custom fields and Built-in fields specification, we’ll dive deeper into overriding these methods.

Decoding/encoding values

In some cases, you only may to modify a field a little bit. For instance, the value that is written to the stream is
off-by-one, or you wish to return a value of a different type. As this is such a common use case, you can simply write
a Field.decoder/Field.encoder pair for post-processing the value. It sits right between the parsing of
the field, and the writing to the structure; from the perspective of the structure, this is how the field returned the
value, whereas the field is unaware of something happening with the value.

Let’s say that we are reading a date, but the value in the stream is in years since 2000, and the month is off-by-one
in the stream. Then, we would write this:

class DateStructure(destructify.Structure):
 year = destructify.BitField(length=7, decoder=lambda v: v + 2000, encoder=lambda v: v - 2000)
 month = destructify.BitField(length=4, decoder=lambda v: v + 1, encoder=lambda v: v - 1)
 day = destructify.BitField(length=5)

You can even change the return type of the value. And since the callable for Field.decoder and
Field.encoder takes a single argument, you can even simply do this:

import ipaddress

class IPStructure(destructify.Structure):
 ip = destructify.IntegerField(length=4, byte_order='big',
 decoder=ipaddress.IPv4Address, encoder=int)

While doing this, you can easily break the idempotency of a field (see Custom fields),
so you are recommended to treat these attributes as
a pair; although it is not required, allowing you to create some esoteric structures.

See Custom fields for how you can change the way a field works more significantly.

Offset, skip and alignment

It can happen that information in your structure is scattered throughout the stream. For instance, it can happen that
a header specifies where to find the data in the stream. You can use Field.offset to specify an absolute offset
in the stream, given an integer or a field value:

>>> class OffsetStructure(destructify.Structure):
... offset = destructify.IntegerField(length=4, byte_order='big', signed=False)
... length = destructify.IntegerField(length=4, byte_order='big', signed=False)
... content = destructify.BytesField(offset='offset', length='length')
...
>>> OffsetStructure.from_bytes(b'\0\0\0\x10\0\0\0\x05paddingxhello')
<OffsetStructure: OffsetStructure(offset=16, length=5, content=b'hello')>

If you need to specify a offset from the end of the stream, a negative value is also possible. During writing, this is
a little bit ambiguous, so you must be careful how you’d define this.

Remember that fields are always parsed in their defined order, and a field that follows a offset field, will continue
parsing where the previous field left off.

If you need to skip a few bytes from the previous field, you can use Field.skip. You can use this to skip some
padding without defining a field specifically to parse the padding. This is something that happens commonly when the
stream is aligned to some multibyte offset, which can also be defined globally for the structure:

>>> class AlignedStructure(destructify.Structure):
... field1 = destructify.IntegerField(length=1)
... field2 = destructify.IntegerField(length=1)
...
... class Meta:
... alignment = 4
...
>>> AlignedStructure.from_bytes(b"\x01pad\x02pad")
<AlignedStructure: AlignedStructure(field1=1, field2=2)>

Lazily parsing fields

It can happen that you have a structure that reads huge chunks of data from the stream, but you don’t want to keep all
of this in memory while you are parsing from the stream. You can make fields lazy to defer their parsing
to a later point in time.

To support this, Destructify uses a Proxy object, that is returned by the parser instead of
the actual resulting value. This Proxy object can be used as you’d normally use the value, but it is only resolved from
the stream as soon as it is actually required. For instance:

>>> class LazyStructure(destructify.Structure):
... huge_content = destructify.BytesField(length=200, lazy=True)
...
>>> l = LazyStructure.from_bytes(b"a"*200)
>>> type(l.huge_content)
<class 'Proxy'>
>>> print(l.huge_content)
b'aaaa...aaaa'

We can even show you that we only read once from the stream:

>>> class PrintIO(io.BytesIO):
... def read(self, size=-1):
... print("Reading {} bytes from offset {}".format(size, self.tell()))
... return super().read(size)
...
>>> l = LazyStructure.from_stream(PrintIO(b"a"*200))[0]
>>> print(l.huge_content)
Reading 200 bytes from offset 0
b'aaaa...aaaa'
>>> print(l.huge_content)
b'aaaa...aaaa'

Not all fields can be parsed lazily. For instance, a NULL-terminated BytesField must be parsed in its entirety
before it knows its length. We need to know the field length if the field is followed by another field, so we must then
still parse the field. In this case, the laziness of the field is ignored. To show this in action, see this example:

>>> class LazyLazyStructure(destructify.Structure):
... field1 = destructify.BytesField(terminator=b'\0', lazy=True)
... field2 = destructify.BytesField(terminator=b'\0', lazy=True)
...
>>> s = LazyLazyStructure.from_bytes(b"a\0b\0")
>>> type(s.field1), type(s.field2)
(<class 'bytes'>, <class 'Proxy'>)

Since the length of field1 is required for parsing field2, we parse it regardless of the request to lazily parse
it.

Combining offset with lazy

There is some important synergy between fields that have a offset set to an integer (i.e. do no depend on another field)
and are lazy: this allows the field to be referenced during parsing, even if it is defined out-of-order:

>>> class SynergyStructure(destructify.Structure):
... content = destructify.BytesField(length='length')
... length = destructify.IntegerField(length=1, offset=-1, lazy=True)
...
>>> SynergyStructure.from_bytes(b"blahblah\x04")
<SynergyStructure: SynergyStructure(content=b'blah', length=4)>

This works because all lazy fields with lazy offsets are pre-populated in the parsing structure, making them being able
to be referenced during parsing. In this example, the length field is referenced, therefore parsed and returned
immediately and not through a Proxy object.

This is mostly to allow you to specify a structure that is more logical, though this structure would parse the same
data:

class LessSynergyStructure(destructify.Structure):
 length = destructify.IntegerField(length=1, offset=-1)
 content = destructify.BytesField(length='length', offset=0)

Custom fields

As part of the definition of a Structure, fields are used to interpret and write a small part of a binary
structure. Each field is responsible for the following:

	Finding the start of the field relative to the previous field

	Consuming precisely enough bytes from a stream of bytes

	Converting these bytes to a Python representation

	Converting this back to a bytes representation

	Writing this back to a stream of bytes

Field idempotency

To ensure consistency across all fields, we have chosen to define two idempotency rules that holds for all built-in
fields. Custom fields should attempt to adhere to these as well:

The idempotency of a field

When a value, that is written by a field, is read and written again by that same field, the byte representation
must be the same.

When a value, that is read by a field, is written and read again by that same field, the Python representation
must be the same.

What does it mean? In the most simple case, the byte and Python representation are linked to each other. This means,
for instance, that writing b'foo' to a BytesField, will result in a b'foo' in the stream, and no other
value has the same property.

In some cases, this does not hold. This is the case when different inputs converge to the same representation.
For instance, considering a VariableLengthIntegerField, the byte
representation of a value may be prepended with 0x80 bytes and they do not change the value of the field. So, when
some other writer writes these pointless bytes, Destructify has to ignore them. When writing a value, Destructify will
then opt to write the least amount of bytes possible, meaning that the byte representation differs from the value that
was read. However, Destructify can read this value again and it will be the same Python representation.

Similarly, a field may allow different types to be written to a stream. For instance, the EnumField allows you
to write arbitrary values to Field.to_stream, but will always read them as enum.Enum, and also allows
you to write this enum.Enum back to the stream.

All built-in fields will ensure that the two truths hold. If this is not possible, for instance due to alignment issues,
an error will be raised. Some fields allow you to specify strict=False, which will disable these checks and may
break idempotency.

Subclassing an existing field

If you only need to modify a field a little bit, you can probably come by with decoding/encoding-pairs
(see Decoding/encoding values).
Although these can be quite useful, they have one important limitation: you can’t change the way the
field reads and returns its value. Additionally, if you have to continuously write the same decoding/encoding-pair,
this can become quite tiresome.

In the decoding/encoding example, we wrote a field that could be used to parse IPv4 addresses. Instead of repeating
ourselves when we need to do this multiple times, we could also create an entirely new IPAddressField, setting the
default for the IntegerField.length and changing the return value of the field:

import ipaddress

class IPAddressField(IntegerField):
 def __init__(self, *args, length=4, signed=False, **kwargs):
 super().__init__(*args, length=length, signed=signed, **kwargs)

 def from_stream(self, stream, context):
 value, length = super().from_stream(stream, context)
 return ipaddress.IPv4Address(value), length

 def to_stream(self, stream, value, context):
 return super().to_stream(stream, int(value), context)

Note how we have ordered the super() calls here: we want to read from the stream and then
adjust the value, but we need to adjust the value before we are writing it to the stream.

Overriding Field.from_stream() and Field.to_stream() using Python inheritance is a common occurrence.
Although the example above is very simple, you could adjust how the field works and acts entirely. For instance, the
BitField is a subclass of ByteField, though it works on bits rather than bytes.

Note that there are many more functions you can override. The above example is a valid use-case, though overriding
Field.decode_value() and Field.encode_value() might have been more appropriate. See How a structure is read and written for
an overview of the methods where a value passes through to see where your use-case fits best. Also remember to read the
documentation for Field to see what callbacks are used for what.

Writing your own field

The most complex method of changing how parsing works is by implementing your own field. You do this by inheriting from
Field and implementing Field.from_stream() and Field.to_stream(). You then have full control over
the stream cursor, how it reads values and how it returns those.

In this example, we’ll be implementing
variable-length quantities [https://en.wikipedia.org/wiki/Variable-length_quantity]. Since this field has a
variable-length (what’s in a name) and parsing is entirely different from another field, we have to implement a new
field.

Hint

A field implementing variable-length quantities [https://en.wikipedia.org/wiki/Variable-length_quantity] is
already in Destructify: VariableLengthIntegerField. You do not have to implement it yourself – this
merely serves as an example.

The following code could be used to implement such a field:

class VariableLengthIntegerField(Field):
 def from_stream(self, stream, context):
 result = count = 0
 while True:
 count += 1
 c = stream.read(1)[0] # TODO: verify that 1 byte is read
 result <<= 7
 result += c & 0x7f
 if not c & 0x80:
 break
 return result, count

 def to_stream(self, stream, value, context): # TODO: check that value is positive
 result = [value & 0x7f]
 value >>= 7
 while value > 0:
 result.insert(0, value & 0x7f | 0x80)
 value >>= 7
 return stream.write(bytes(result))

Though actually parsing the field may seem like a complicated beast, the actual parsing is quite easy: you define
how the field is read/written and you are done. When writing a field, you must always take care of the following:

	You must add in some checks to verify that everything is as you’d expect. In the above example, we have omitted these
checks for brevity, but added a comment where you still need to add some checks, for instance, verify that we have
not reached the end of the stream in Field.from_stream() and raise a StreamExhaustedError.

	You must ensure that the stream cursor is at the end of the field when you are done reading and writing. This is the
place where the next field continues off. This is typically true, but if you need to look-ahead this may be an
important gotcha.

There is more to implementing a field, as the next chapters will show you, though the basics will always remain the
same. Read the full Python API for Field to see which callbacks are available.

Supporting length

You may have noticed that you can do len(Structure) on a structure and – if possible – get the byte length of
the structure. This is actually implemented by calling len(field) on all fields in the structure. The default
implementation of Field is to raise an ImpossibleToCalculateLengthError, so that when a field does not
specify its length, the Structure that called will raise the same error.

Therefore, you are encouraged to add a __len__ method to your fields when you can tell the length of a field
beforehand (i.e. without a context):

class AlwaysFourBytesField(Field):
 def __len__(self):
 return 4

Note that you must return either a positive integer or raise an error. If your field depends on another field to
determine its length, you should raise an error: you can only implement this field if you know its value regardless
of the parsing state.

Supporting lazy read

The attribute Field.lazy controls how a field is read from the stream: if it is True, the field is not
actually read during parsing, but only on its first access. This requires the field to know how much it needs to skip
to find the start of the next field. This is implemented by Field.seek_end(), which is only called in the case
that the start of the next field must be calculated (this is not the case e.g. if the next field has an absolute
offset).

The default implementation is to check whether len(field) returns a usable result, and skips this amount of bytes.
If the result is not usable, None is returned, and the field is read regardless of the Field.lazy
setting.

However, there are cases where we can simply read a little bit of data to determine the length of the field, and then
skip over the remainder of the field without parsing the entire field. This can be implemented by writing your own
Field.seek_end(), which is more efficient than reading the entire field.

For instance, say that we have want to implement how UTF-8 encodes its length: if the first byte starts with 0b0,
it is a single byte-value, if the first byte starts with 0b110, it is a two-byte value, 0b1110 a three-byte
value and so forth. You could write a field like this:

class UTF8CharacterField(destructify.Field):
 def _get_length_from_first_byte(self, value):
 val = ord(value)
 for length, start_bits in enumerate(0b0, 0b110, 0b1110, 0b11110, 0b111110, 0b1111110):
 if val >> ((8 - start_bits.bit_length()) if start_bits else 7) == start_bits:
 return length
 raise ParseError("Invalid start byte.")

 def seek_end(self, stream, context, offset):
 read = stream.read(1)
 if len(read) != 1:
 raise StreamExhaustedError()
 return stream.seek(self._get_length_from_first_byte(read) - 1, io.SEEK_CUR)

 def from_stream(self, stream, context):
 # left as an exercise to the reader

 def to_stream(self, stream, context):
 # left as an exercise to the reader

This still reads the first byte of the structure, but does not need to parse the entire structure.

Testing your field

Now, the only thing left is writing unittests for this. Since this field is mostly simple idempotent, we can use these
simple tests to verify it all works according to plan, You may notice that the only simple idempotency exception is
that values may be repended with 80 bytes as that does not change its value:

class VariableLengthIntegerFieldTest(DestructifyTestCase):
 def test_basic(self):
 self.assertFieldStreamEqual(b'\x00', 0x00, VariableLengthIntegerField())
 self.assertFieldStreamEqual(b'\x7f', 0x7f, VariableLengthIntegerField())
 self.assertFieldStreamEqual(b'\x81\x00', 0x80, VariableLengthIntegerField())
 self.assertFieldFromStreamEqual(b'\x80\x80\x7f', 0x7f, VariableLengthIntegerField())

 def test_negative_value(self):
 with self.assertRaises(OverflowError):
 self.call_field_to_stream(VariableLengthIntegerField(), -1)

 def test_stream_not_sufficient(self):
 with self.assertRaises(StreamExhaustedError):
 self.call_field_from_stream(VariableLengthIntegerField(), b'\x81\x80\x80')

GUI & Hex Viewer

The Destructify GUI is a method to easily analyze raw binary data, and how it is handled by the structures you have
defined.

Using the GUI is very easy:

import destructify
from mylib import MyStructure

with open("mydata.bin", "rb") as f:
 destructify.gui.show(MyStructure, f)

You can also use the command-line launcher:

python -m destructify.gui mylib.MyStructure mydata.bin

Hint

It is best to provide a dotted path to the location where your structure resides. You can also use -f to
provide a path to the source file containing the structure.

The following screenshot shows how this might look if you are parsing a PNG file:

[image: _images/gui.png]

Python API

Structure

	
class destructify.Structure(_context=None, **kwargs)

	You use Structure as the base class for the definition of your structures. It is a class with a metaclass
of StructureBase that enables the fields to be parsed separately.

	
len(Structure)

	This is a class method that allows you to retrieve the size of the structure, if possible.

	
classmethod from_stream(stream, context=None)

	Reads a stream and converts it to a Structure instance. You can explicitly provide a
ParsingContext, otherwise one will be created automatically.

This will seek over the stream if one of the alignment options is set, e.g. ParsingContext.alignment
or Field.offset. The return value in this case is the difference between the start offset of the stream
and the offset of the highest read byte. In most cases, this will simply equal the amount of bytes consumed
from the stream.

	Parameters

	
	stream – A buffered bytes stream.

	context (ParsingContext) – A context to use while parsing the stream.

	Return type

	Structure, int

	Returns

	A tuple of the constructed Structure and the amount of bytes read (defined as the last
position of the read bytes).

	
classmethod from_bytes(bytes)

	A short-hand method of calling from_stream(), using bytes rather than a stream, and returns the
constructed Structure immediately.

	
classmethod initialize(context)

	This classmethod allows you to modify the ParsingContext, just after all values were read from the
stream and Field.get_initial_value() was called, but before the Structure is created. This can
be used to modify some values of the structure just before it is being created.

	Parameters

	context (ParsingContext) – The context of the initializer

	
to_stream(stream, context=None)

	Writes the current Structure to the provided stream. You can explicitly provide a
ParsingContext, otherwise one will be created automatically.

This will seek over the stream if one of the alignment options is set, e.g. ParsingContext.alignment
or Field.offset. The return value in this case is the difference between the start offset of the stream
and the offset of the highest written byte. In most cases, this will simply equal the amount of bytes written
to the stream.

	Parameters

	
	stream – A buffered bytes stream.

	context (ParsingContext) – A context to use while writing the stream.

	Return type

	int

	Returns

	The number bytes written to the stream (defined as the maximum position of the bytes that were written)

	
to_bytes()

	A short-hand method of calling to_stream(), writing to bytes rather than to a stream. It returns the
constructed bytes immediately.

	
finalize(context)

	Function that allows for modifying the ParsingContext just after filling the context with the
values obtained by Field.get_final_value(), before it will be converted to binary data. This can be used
to modify some values of the structure just before it is being written, e.g. for checksums.

	Parameters

	context (ParsingContext) – The context of the finalizer

	
__bytes__()

	Same as to_bytes(), allowing you to use bytes(structure)

	
classmethod as_cstruct()

	

	
_meta

	This allows you to access the StructureOptions class of this Structure.

	
_context

	If this Structure was created by from_stream(), this contains the ParsingContext that was
used during the processing. Otherwise, this attribute is undefined.

Field

	
class destructify.Field(*, name=None, default=NOT_PROVIDED, override=NOT_PROVIDED, decoder=None, encoder=None, offset=None, skip=None, lazy=False)

	A basic field is incapable of parsing or writing anything, as it is intended to be subclassed.

	
ctype

	A friendly description of the field in the form of a C-style struct definition.

	
preparsable

	Indicates whether this field is preparsable, i.e. the field is lazy and has an absolute offset set.

	
full_name

	The full name of this Field.

	
field_context

	The FieldContext that is used in the ParsingContext for this field. It returns a partially
resolved function call with the current field already set.

	Return type

	type

	
with_name(name)

	Context manager that yields this Field with a different name. If name is None, this is
ignored.

A Field also defines the following methods:

	
len(field)

	You can call len on a field to retrieve its byte length. It can either return a value that makes sense, or it
will raise an ImpossibleToCalculateLengthError when the length depends on something that is not known yet.

Some attributes may affect the length of the structure, while they do not affect the length of the field. This
includes attributes such as skip. These are automatically added when the structure sums up all fields.

If you need to override how the structure sums the length of fields, you can override _length_sum.
You must then manually also include those offsets. This is only used by BitField.

	
initialize()

	Hook that is called after all fields on a structure are loaded, so some additional multi-field things can
be arranged.

	
get_initial_value(value, context)

	Returns the initial value given a context. This is used by Structure.from_stream() to retrieve the
value that is read from the stream. It is called after all fields have been parsed, so inter-field dependencies
can be resolved here.

The value may be a proxy object if lazy is set.

	Parameters

	
	value – The value to retrieve the final value for.

	context (ParsingContext) – The context of this field.

	
get_final_value(value, context)

	Returns the final value given a context. This is used by Structure.to_stream() to retrieve the
value that is to be written to the stream. It is called before any fields have been processed, so inter-field
dependencies can be resolved here.

	Parameters

	
	value – The value to retrieve the final value for.

	context (ParsingContext) – The context of this field.

	
seek_start(stream, context, offset)

	This is called before the field is parsed/written. It should expect the stream to be aligned to the ending
of the previous field. It is intended to seek its starting position. This makes sense if the offset is set, for
instance. In the case this stream is not tellable and no seek is performed, offset is returned unmodified.

Note that the relative offset is passed in, but the absolute offset is expected as a result.

	Parameters

	
	stream (io.BufferedIOBase) – The IO stream to consume from.

	context (ParsingContext) – The context used for the parsing.

	offset (int) – The current relative offset in the stream

	Returns

	The new absolute offset in the stream

	
seek_end(stream, context, offset)

	This is called when the field is lazy and we need to find the end of the field. This is not called
when the field is actually read, as from_stream() is expected to align to the end of the field.

This method should be as efficient as possible with retrieving the length. For instance, if it is possible to
read a few bytes and then determine how long this field is, that is fine. If it is not possible without reading
the entire field, this method should return None.

The default implementation is to call len(self) and use that if possible.

	Parameters

	
	stream (io.BufferedIOBase) – The IO stream to consume from.

	context (ParsingContext) – The context used for the parsing.

	offset (int) – The current relative offset in the stream

	Returns

	The new absolute offset in the stream, or None if this field can not be processed without parsing it
entirely.

	
decode_value(value, context)

	This value is called just after the value is retrieved from from_stream(). It should return an adjusted
value that is the true representation of the value

	Parameters

	
	value – The value to retrieve the decoded value for.

	context (ParsingContext) – The context of this field.

	
encode_value(value, context)

	This value is called just before the value is passed to to_stream(). It should return an adjusted
value that is accepted by to_stream(). This is typically used in conjunction with encoder.

	Parameters

	
	value – The value to retrieve the encoded value for.

	context (ParsingContext) – The context of this field.

	
from_stream(stream, context)

	Given a stream of bytes object, consumes a given bytes object to Python representation. The given stream
is already at the start of the field. This method must ensure that the stream is after the end position of the
field after reading. In other words, the following will typically hold true:

stream_at_start.tell() + result[1] == stream_at_end.tell()

The default implementation is to raise a NotImplementedError and subclasses must override this function.

	Parameters

	
	stream (io.BufferedIOBase) – The IO stream to consume from. The current position is already set to the start
position of the field.

	context (ParsingContext) – The context of this field.

	Returns

	a tuple: the parsed value in its Python representation, and the amount of consumed bytes

	
to_stream(stream, value, context)

	Writes a value to the stream, and returns the amount of bytes written. The given stream will already be
at the start of the field, and this method must ensure that the stream cursor is after the end position of the
field. In other words:

stream_at_start.tell() + result == stream_at_end.tell()

The default implementation is to raise a NotImplementedError and subclasses must override this function.

	Parameters

	
	stream (io.BufferedIOBase) – The IO stream to write to.

	value – The value to write

	context (ParsingContext) – The context of this field.

	Returns

	the amount of bytes written

	
decode_from_stream(stream, context)

	Shortcut method to calling from_stream() and decode_value() in succession. Not intended to
be overridden.

	
encode_to_stream(stream, value, context)

	Shortcut method to calling encode_value() and to_stream() in succession. Not intended to
be overridden.

ParsingContext

	
class destructify.ParsingContext(structure=None, *, parent=None, flat=False, stream=None, capture_raw=False)

	A context that is passed around to different methods during reading from and writing to a stream. It is used
to contain context for the field that is being parsed.

While parsing, it is important to have some context; some fields depend on other fields during writing and during
reading. The ParsingContext object is passed to several methods for this.

When using this module, you will get a ParsingContext when you define a property of a field that depends
on another field. This is handled by storing all previously parsed fields in the context, or (if applicable) the
Structure the field is part of. You can access this as follows:

context['field_name']

But, as a shorthand, you can also access it as an attribute of the f object:

context.f.field_name

	
context[key]

	Returns the value of the specified key, either from the already parsed fields, or from the underlying structure,
depending on the situation.

	
f

	This object is typically used in lambda closures in Field declarations.

The f attribute allows you to access fields from this context, using attribute access. This is similar to
using context[key], but provides a little bit cleaner syntax. This object is separated from the scope of
ParsingContext to avoid any name collisions with field names. (For instance, a field named f would
be impossible to reach otherwise).

	
f.name

	Access the current value of the named field in the ParsingContext, equivalent to
ParsingContext[name]

	
f[name]

	Alias for attribute access to allow accessing names that are dynamic or collide with the namespace (see below)

Two attributes are offered for parent and root access, and a third one to access the ParsingContext.
These names still collide with field names you may want to specify, but the f-object is guaranteed to not add
any additional name collisions in minor releases.

	
f._

	Returns the ParsingContext.f attribute of the ParsingContext.parent object, so you can write
f.parent.parent.field, which is equivalent to context.parent.parent['field'].

If you need to access a field named _, you must use f['_']

	
f._root

	Returns the ParsingContext.f attribute of the ParsingContext.root object, so you can write
f.root.field, which is equivalent to context.root['field']

If you need to access a field named _root, you must use f['_root']

	
f._context

	Returns the actual ParsingContext. Used in cases where a f-object is only provided.

If you need to access a field named _context, you must use f['_context']

	
parent

	Access to the parent context (useful when parsing a Structure inside a Structure). May be None if this is
the uppermost context.

	
flat

	Indicates that the parent context should be considered part of this context as well. This allows you to reference
fields in both contexts transparently without the need of calling parent.

	
root

	Retrieves the uppermost ParsingContext from this ParsingContext. May return itself.

	
fields

	This is a dictionary of field names to FieldContext. You can use this to access information of how
the fields were parsed. This is typically for debugging purposes, or displaying information about parsing
structures.

	
done

	Boolean indicating whether the parsing was done. If this is True, lazy fields can no longer become
non-lazy.

	
field_values

	Represents a immutable view on all field values from fields. This is highly inefficient if you
only need to access a single value (use context[key]). The resulting dictionary is immutable.

This attribute is essentially only useful when constructing a new Structure where all field values are
needed.

	
initialize_from_meta(meta, structure=None)

	Adds fields to the context based on the provided StructureOptions. If structure is provided, the values
in the structure are passed as values to the field contexts

When you are implementing a field yourself, you get a ParsingContext when reading from and writing to a
stream.

FieldContext

	
class destructify.FieldContext(field, context, value=NOT_PROVIDED, *, field_name=None, parsed=False, offset=None, length=None, lazy=False, raw=None)

	This class contains information about the parsing state of the specified field.

	
field

	The field this FieldContext applies to.

	
field_name

	If set, this is the name of the field that is used in the context, regardless of what field has as
Field.name set. If this is set, this is used with Field.with_name() when parsing lazily.

	
value

	The current value of the field. This only makes sense when has_value is True. This can be
a proxy object if lazy is true.

	
has_value

	Indicates whether this field has a value. This is true only if the value is set or when lazy is true.

	
parsed

	Indicates whether this field has been written to or read from the stream. This is also true when lazy is
true.

	
resolved

	Indicates whether this fields no longer requires stream access, i.e. it is parsed and lazy is false.

	
offset

	Indicates the offset in the stream of this field. Is only set when parsed is true.

	
length

	Indicates the length of this field. Is normally set when parsed is true, but may be not set when
lazy is true and the length was not required to be calculated.

	
lazy

	Indicates whether this field is lazily loaded. When a lazy field is resolved during parsing of the structure,
i.e. while ParsingContext.done is false, resolving this field will affect value, length
and set lazy to false. After ParsingContext.done has become true, these attributes will not be
updated.

	
raw

	If ParsingContext.capture_raw is true, this field will contain the raw bytes of the field.

	
subcontext

	This may be set if the field created a subcontext to parse its inner field(s).

Built-in fields specification

Destructify comes with a smorgasbord of built-in field types. This means that you can specify the most common structures
right out of the box.

Common attributes

All fields are subclasses of Field and therefore come with some properties by default. These are the following
and can be defined on every class:

	
Field.name

	The field name. This is set automatically by the Structure’s metaclass when it is initialized.

	
Field.default

	The field’s default value. This is used when the Structure is initialized if it is provided. If it is not
provided, the field determines its own default value.

You can set it to one of the following:

	A callable with zero arguments

	A callable taking a ParsingContext.f object

	A value

All of the following are valid usages of the default attribute:

Field(default=None)
Field(default=3)
Field(default=lambda: datetime.datetime.now())
Field(default=lambda c: c.value)

You can check whether a default is set using the Field.has_default attribute. The default given a context is
obtained by calling Field.get_default(context)

	
Field.override

	Using Field.override, you can change the value of the field in a structure, just before it is being written to a
stream. This is useful if you, for instance, wish to override a field’s value based on some other property in the
structure. For instance, you can change a length field based on the actual length of a field.

You can set it to one of the following:

	A value

	A callable taking a ParsingContext.f object and the current value of the field

For instance:

Field(override=3)
Field(override=lambda c, v: c.value if v is None else v)

You can check whether an override is set using the Field.has_override attribute. The override given a context is
obtained by calling Field.get_overridden_value(value, context). Note, however, that you probably want to call
Field.get_final_value() instead.

	
Field.decoder

	
Field.encoder

	Sometimes, a field value can be different than the value in the binary structure. This can happen, for instance, if
the value in the structure is off-by-one. Rather than overriding Field.override while writing, you can use
Field.encoder and Field.decoder to change the way a value is written to and read from the stream,
respectively.

You can set it to a callable taking the current value of the field:

Field(decoder=lambda v: v * 2, encoder=lambda v: v // 2)

The Field.decoder is used when reading from the stream. It is called from Field.decode_value().

Field.encoder is used when writing to the stream. It is called from Field.encode_value()

	
Field.offset

	
Field.skip

	The offset of the field absolutely in the stream (in the case of offset),
or the offset of the field relative to the previous field (in the case of skip). offset can be a
negative value to indicate an offset from the end of the stream.

You can’t set both at the same time. You can set each to one of the following:

	A callable with zero arguments

	A callable taking a ParsingContext.f object

	A string that represents the field name that contains the value

	An integer

Fields are always processed in the order they are defined, so a field following a field that has one of these
attributes set, will continue from the then-current position.

When you set offset or skip, StructureOptions.alignment is ignored for this field.

The value of skip is automatically accounted for when using len(Structure). If offset is set,
len(Structure) is not possible anymore.

	
Field.lazy

	A lazy field is not parsed from the stream during the parsing of the bytes; its parsing is deferred until the value
is evaluated. This is done by returning a Proxy object from the module
lazy-object-proxy [https://pypi.org/project/lazy-object-proxy/] that references the offset of the field in the
stream and the stream itself. The first time the Proxy object is evaluated, the stream is read and the data is
parsed. This Proxy object can be used almost the same as an actual value.

This requires that the stream is not closed when not all lazy fields have been parsed. Additionally, the stream must
be seekable to find the appropriate data.

Note that specifying lazy does not prohibit the parser to parse the field anyway, and return the actual
value rather than a Proxy object. Some cases where this happens:

	The lazy attribute has no effect when a value can not be retrieved lazily, i.e. Field.seek_end()
returns None, and the next field defines no absolute offset. In this case, the field must still be
parsed to retrieve its full length, and is therefore parsed immediately.

	When lazy fields are referenced and subsequently parsed during parsing, the Structure will be
built with the actual value rather than the Proxy object.

Additionally, lazy fields that have an absolute offset set (to an integer value), can be referenced
during parsing, even if they are defined later.

This attribute has no effect when writing to a stream; a lazy value will be resolved by Structure.to_stream().

BytesField

	
class destructify.BytesField(*args, length=None, terminator=None, step=1, terminator_handler='consume', strict=True, padding=None, **kwargs)

	A BytesField can be used to read bytes from a stream. This is most commonly used as a base class for other
methods, as it can be used for the most common use cases.

There are three typical ways to use this field:

	Setting a BytesField.length to read a specified amount of bytes from a stream.

	Setting a BytesField.terminator to read until the specified byte from a stream.

	Setting both BytesField.length and BytesField.terminator to first read the specified amount of
bytes from a stream and then find the terminator in this amount of bytes.

	
length

	This specifies the length of the field. This is the amount of data that is read from the stream and written to
the stream. The length may also be negative to indicate an unbounded read, i.e. until the end of stream.

You can set this attribute to one of the following:

	A callable with zero arguments

	A callable taking a ParsingContext.f object

	A string that represents the field name that contains the length

	An integer

For instance:

class StructureWithLength(Structure):
 length = UnsignedByteField()
 value = BytesField(length='length')

The length given a context is obtained by calling FixedLengthField.get_length(value, context).

When the class is initialized on a Structure, and the length property is specified using a string, the
default implementation of the Field.override on the named attribute of the Structure is changed
to match the length of the value in this Field.

Continuing the above example, the following works automatically:

>>> bytes(StructureWithLength(value=b"123456"))
b'\x06123456'

However, explicitly specifying the length would override this:

>>> bytes(StructureWithLength(length=1, value=b"123456"))
b'\x01123456'

This behaviour can be changed by manually specifying a different Field.override on length.

	
strict

	This boolean (defaults to True) enables raising errors in the following cases:

	A StreamExhaustedError when there are not sufficient bytes to completely fill the field while reading.

	A StreamExhaustedError when the terminator is not found while reading.

	A WriteError when there are not sufficient bytes to fill the field while writing and
padding is not set.

	A WriteError when the field must be padded, but the bytes that are to be written are not a multiple of
the size of padding.

	A WriteError when there are too many bytes to fit in the field while writing.

	A WriteError when the terminator is missing from the value, when using the
terminator_handler include

Disabling BytesField.strict is not recommended, as this may cause inadvertent errors.

	
padding

	When set, this value is used to pad the bytes to fill the entire field while writing, and chop this off the
value while reading. Padding is removed right to left and must be aligned to the end of the value (which matters
for multibyte paddings).

While writing in strict mode, and the remaining bytes are not a multiple of the length of this value,
a WriteError is raised. If strict mode is not enabled, the padding will simply be appended to the
value and chopped of whenever required. However, this can’t be parsed back by Destructify (as the padding is not
aligned to the end of the structure).

This can only be set when length is used.

	
terminator

	The terminator to read until. It can be multiple bytes.

When this is set, padding is ignored while reading from a stream, but may be used to pad bytes that are
written.

	
step

	The size of the steps for finding the terminator. This is useful if you have a multi-byte terminator that is
aligned. For instance, when reading NULL-terminated UTF-16 strings, you’d expect two NULL bytes aligned to two
bytes (from the start). Defaults to 1.

Example usage:

>>> class TerminatedStructure(Structure):
... foo = BytesField(terminator=b'\0')
... bar = BytesField(terminator=b'\r\n')
...
>>> TerminatedStructure.from_bytes(b"hello\0world\r\n")
<TerminatedStructure: TerminatedStructure(foo=b'hello', bar=b'world')>

	
terminator_handler

	A string defining what to do with the terminator as soon as it is encountered. You have three options:

	consume

	This is the default handler, and consumes the terminator, leaving it off the resulting value.

	include

	This handler will include the entire terminator into the resulting value. You must also write it back
yourself.

	until

	This handler is only available when you are not using length, allowing you to consume up until, but not
including the terminator. This means that the next field will include the terminator.

This class can be used trivially to extend functionality. For instance, StringField is a subclass of this
field.

FixedLengthField

	
class destructify.FixedLengthField(length, *args, **kwargs)

	This class is identical to BytesField, but specifies the length as a required first argument. It is intended
to read a fixed amount of BytesField.length bytes.

TerminatedField

	
class destructify.TerminatedField(terminator=b'x00', *args, **kwargs)

	This class is identical to BytesField, but specifies the terminator as its first argument, defaulting
to a single NULL-byte. It is intended to continue reading until BytesField.terminator is hit.

StringField

	
class destructify.StringField(*args, encoding=None, errors='strict', **kwargs)

	The StringField is a subclass of BytesField that converts the resulting bytes object to a
str object, given the encoding and errors attributes.

See BytesField for all available attributes.

	
encoding

	The encoding of the string. This defaults to the value set on the StructureOptions, which defaults to
utf-8, but can be any encoding supported by Python.

	
errors

	The error handler for encoding/decoding failures. Defaults to Python’s default of strict.

IntegerField

	
class destructify.IntegerField(length, byte_order=None, *args, signed=False, **kwargs)

	The IntegerField is used for fixed-length representations of integers.

Note

The IntegerField is not to be confused with the IntField, which is based on StructField.

	
length

	The length (in bytes) of the field. When writing a number that is too large to be held in this field, you will
get an OverflowError.

	
byte_order

	The byte order (i.e. endianness) of the bytes in this field. If you do not specify this, you must specify a
byte_order on the structure.

	
signed

	Boolean indicating whether the integer is to be interpreted as a signed or unsigned integer.

VariableLengthIntegerField

	
class destructify.VariableLengthIntegerField(*, name=None, default=NOT_PROVIDED, override=NOT_PROVIDED, decoder=None, encoder=None, offset=None, skip=None, lazy=False)

	Implementation of a variable-length quantity [https://en.wikipedia.org/wiki/Variable-length_quantity] structure.

BitField

	
class destructify.BitField(length, *args, realign=False, **kwargs)

	A subclass of FixedLengthField, reading bits rather than bytes. The field writes and reads integers.

When using the BitField, you must be careful to align the field to whole bytes. You can use multiple
BitField s consecutively without any problem, but the following would raise errors:

class MultipleBitFields(Structure):
 bit0 = BitField(length=1)
 bit1 = BitField(length=1)
 byte = FixedLengthField(length=1)

You can fix this by ensuring all consecutive bit fields align to a byte in total, or, alternatively, you can specify
realign on the last BitField to realign to the next byte.

	
length

	The amount of bits to read.

	
realign

	This specifies whether the stream must be realigned to entire bytes after this field. If set, after bits have
been read, bits are skipped until the next whole byte. This means that the intermediate bits are ignored. When
writing and this boolean is set, it is padded with zero-bits until the next byte boundary.

Note that this means that the following:

class BitStructure(Structure):
 foo = BitField(length=5, realign=True)
 bar = FixedLengthField(length=1)

Results in this parsing structure:

76543210 76543210
fffff bbbbbbbb

Thus, ignoring bits 2-0 from the first byte.

A BitField has some important gotchas and exceptions to normal fields:

	StructureOptions.alignment is ignored when two BitField follow each other, and the previous
field does not specify realign.

	Field.skip and Field.offset must be specified in entire bytes, and require the field to be aligned.

	Field.lazy does not work, due to complexities with parsing partial bytes.

	len(BitField) returns the value in bits rather than in bytes. len(Structure) works properly, but
requires that all fields are aligned, including the last field.

ConstantField

	
class destructify.ConstantField(value, base_field=None, *args, **kwargs)

	The ConstantField is intended to read/write a specific magic string from and to a stream. If anything else is
read or written, an exception is raised. Note that the Field.default is also set to the magic.

	
value

	The magic bytes that must be checked against.

	
base_field

	The field to read the value from. If this is not set, and value is a bytes object, a
FixedLengthField as its default. If the value is of any other object, you must specify this yourself.

StructField

	
class destructify.StructField(format=None, byte_order=None, *args, multibyte=True, **kwargs)

	The StructField enables you to use Python struct constructs if you wish to. Note that using complex
formats in this field kind-of defeats the purpose of this module.

	
format

	The format to be passed to the struct module. See
Struct Format Strings [https://docs.python.org/3/library/struct.html#format-strings] in the manual of Python
for information on how to construct these.

You do not need to include the byte order in this attribute. If you do, it acts as a default for the
byte_order attribute if you do not specify one.

	
byte_order

	The byte order to use for the struct. If this is not specified, and none is provided in the format field,
it defaults to the byte_order specified in the meta of the destructify.structures.Structure.

	
multibyte

	When set to False, the Python representation of this field is the first result of the tuple as returned
by the struct module. Otherwise, the tuple is the result.

Subclasses of StructField

This project also provides several default implementations for the different types of structs. For each of the
formats described in Struct Format Strings [https://docs.python.org/3/library/struct.html#format-strings], there
is a single-byte class. Note that you must specify your own

Each of the classes is listed in the table below.

Hint

Use a IntegerField when you know the amount of bytes you need to parse. Classes below are typically used
for system structures and the IntegerField is typically used for network structures.

	Base class

	Format

	CharField

	c

	ByteField

	b

	UnsignedByteField

	B

	BoolField

	?

	ShortField

	h

	UnsignedShortField

	H

	IntField

	i

	UnsignedIntField

	I

	LongField

	l

	UnsignedLongField

	L

	LongLongField

	q

	UnsignedLongLongField

	Q

	SizeField

	n

	UnsignedSizeField

	N

	HalfPrecisionFloatField

	e

	FloatField

	f

	DoubleField

	d

StructureField

	
class destructify.StructureField(structure, *args, length=None, **kwargs)

	The StructureField is intended to create a structure that nests other structures. You can use this for
complex structures, or when combined with for instance an ArrayField to create arrays of structures, and
when combined with SwitchField to create type-based structures.

	
structure

	The Structure class that is initialized for the sub-structure.

	
length

	The length of this structure. This allows you to limit the structure’s length. This is particularly useful when
you have a Structure that contains an unbounded read, but the encapsulating structure limits this.

	A callable with zero arguments

	A callable taking a ParsingContext.f object

	A string that represents the field name that contains the size

	An integer

When specified using a string, this field does not override the value of the referenced field due to
complications in calculating the length.

During reading and writing, if the specified length is larger than the structure, the remaining bytes are skipped.
If it is shorter, the structure parsing will break.

Example usage:

>>> class Sub(Structure):
... foo = FixedLengthField(length=11)
...
>>> class Encapsulating(Structure):
... bar = StructureField(Sub)
...
>>> s = Encapsulating.from_bytes(b"hello world")
>>> s
<Encapsulating: Encapsulating(bar=<Sub: Sub(foo=b'hello world')>)>
>>> s.bar
<Sub: Sub(foo=b'hello world')>
>>> s.bar.foo
b'hello world'

This field providesthe ParsingContext of the substructure in FieldContext.subcontext.

ArrayField

	
class destructify.ArrayField(base_field, count=None, length=None, until=None, *args, **kwargs)

	A field that repeats the provided base field multiple times. The implementation will build a structure-like parsing
context with field names that are the element indexes.

	
base_field

	The field that is to be repeated.

	
count

	This specifies the amount of repetitions of the base field.

You can set it to one of the following:

	A callable with zero arguments

	A callable taking a ParsingContext.f object

	A string that represents the field name that contains the size

	An integer

The count given a context is obtained by calling ArrayField.get_count(value, context).

When this attribute is set using a string, and the referenced field does not have an override set, the override
of this field will be set to take the length of the value of this field.

When writing, the count must exactly match the amount of items in the provided iterable.

Example usage:

>>> class ArrayStructure(Structure):
... count = UnsignedByteField()
... foo = ArrayField(TerminatedField(terminator=b'\0'), count='count')
...
>>> s = ArrayStructure.from_bytes(b"\x02hello\0world\0")
>>> s.foo
[b'hello', b'world']

	
length

	This specifies the size of the field, if you do not know the count of the fields, but do know the size.

You can set it to one of the following:

	A callable with zero arguments

	A callable taking a ParsingContext.f object

	A string that represents the field name that contains the size

	An integer

The length given a context is obtained by calling ArrayField.get_length(value, context).

You can specify a negative length if you want to read until the stream ends. Note that this is currently
implemented by swallowing a StreamExhaustedError from the base field.

When specified using a string, this field does not override the value of the referenced field due to
complications in calculating the length.

When writing using a positive length, the written amount of bytes must be exactly the specified length.

	
until

	This is a function taking a context and the value of the most-recent parsed element. If this function returns
true, the parsing stops.

This function is ignored during writing.

ConditionalField

	
class destructify.ConditionalField(base_field, condition, *args, fallback=None, **kwargs)

	A field that may or may not be present. When the condition evaluates to true, the base_field
field is parsed, otherwise the field is None.

	
base_field

	The field that is conditionally present.

	
condition

	This specifies the condition on whether the field is present.

You can set it to one of the following:

	A callable with zero arguments

	A callable taking a ParsingContext.f object

	A string that represents the field name that evaluates to true or false. Note that b'\0' evaluates to true.

	A value that is to be evaluated

The condition given a context is obtained by calling ConditionalField.get_condition(value, context).

	
fallback

	The value that is used in the structure when loading from the stream and no value was present in the stream.
Defaults to None, but could be any value.

SwitchField

	
class destructify.SwitchField(cases, switch, *args, other=None, **kwargs)

	The SwitchField can be used to represent various types depending on some other value. You set the different
cases using a dictionary of value-to-field-types in the cases attribute. The switch value defines
the case that is applied. If none is found, an error is raised, unless other is set.

	
cases

	A dictionary of all cases mapping to a specific Field.

	
switch

	This specifies the switch, i.e. the key for cases.

You can set it to one of the following:

	A callable with zero arguments

	A callable taking a ParsingContext.f object

	A string that represents the field name that evaluates to the value of the condition

	A value that is to be evaluated

	
other

	The ‘default’ case that is used when the switch is not part of the cases. If not specified, and
an unknown value is encountered, an exception is raised.

Hint

A confusion is easily made by setting Field.default instead of other, though their purposes are
entirely different.

Example:

class ConditionalStructure(Structure):
 type = EnumField(IntegerField(1), enum=Types)
 perms = SwitchField(cases={
 Types.FIRST: StructureField(Structure1),
 Types.SECOND: StructureField(Structure2),
 }, other=StructureField(Structure0), switch='type')

EnumField

	
class destructify.EnumField(base_field, enum, *args, **kwargs)

	A field that takes the value as evaluated by the base_field and parses it as the provided enum.

While writing, the value can be of a enum member of specified enum, a string referencing an enum member, or
the value that is to be written. Note that providing a string that is not a valid enum member, will be passed to the
field directly.

During parsing, a value must be a valid enum member, or the enum must properly handle the case of missing members.

	
base_field

	The field that returns the value that is provided to the enum.Enum

	
enum

	The enum.Enum class.

You can also use an EnumField to handle flags:

>>> class Permissions(enum.IntFlag):
... R = 4
... W = 2
... X = 1
...
>>> class EnumStructure(Structure):
... perms = EnumField(UnsignedByteField(), enum=Permissions)
...
>>> EnumStructure.from_bytes(b"\x05")
<EnumStructure: EnumStructure(perms=<Permissions.R|X: 5>)>

Version history

Releases

v0.2.0 (2019-03-23)

This release adds more field types and further improves on existing code. It also extends the documentation
significantly.

	Added Destructify GUI, contributed by mvdnes [https://github.com/mvdnes].

	Added StructureOptions.encoding

	Added StructureOptions.alignment, Field.offset and Field.skip, implemented by
Field.seek_start

	Added Field.lazy

	Added Field.decoder, Field.encoder and Structure.initialize()

	Added BytesField.terminator_handler

	Added ConditionalField.fallback

	Added ArrayField.until

	New field BytesField, merging the features of FixedLengthField and TerminatedField. These
fields will remain as subclasses.

	New field: ConstantField

	New field: SwitchField

	New field: VariableLengthIntegerField

	Merged FixedLengthStringField and TerminatedStringField into StringField

	Removed hook functions Field.from_bytes() and Field.to_bytes()

	Removed all byte-order specific subclasses from StructField.

	Add option to ParsingContext to capture the raw bytes, available in ParsingContext.fields

	Add ParsingContext.fields for information about the parsing structure.

	Added ParsingContext.f for raw attribute access; this is now passed to lambdas.

	Added this for quick construction of lambdas

	Substream is now a wrapper instead of a full-fetched BufferedReader

	Numerous bugfixes for consistent building of fields.

v0.1.0 (2019-02-17)

This release features several new field types, and bugfixes from the previous release. Also some backwards-incompatible
changes were made.

	Added StructureOptions.byte_order

	Added Structure.as_cstruct()

	Added Structure.__len__()

	Added Structure.full_name()

	FieldContext is now ParsingContext

	New field: ConditionalField

	New field: EnumField

	New field: BitField

	New field: IntegerField, renamed struct-based field to IntField

	New field: FixedLengthStringField

	New field: TerminatedStringField

	Support strict, negative lengths and padding in structify.fields.FixedLengthField

	Support length in structify.fields.ArrayField, renamed ArrayField.size to ArrayField.count

	Support step structify.fields.TerminatedField

	Fixed structify.fields.StructureField to use structify.Substream

	Fixed double-closing a structify.Substream

v0.0.1 (2018-04-07)

Initial release.

 Python Module Index

 d

 		 	

 		
 d	

 	
 	
 destructify	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	_ (destructify.ParsingContext.f attribute)

 	__bytes__() (destructify.Structure method)

 	_context (destructify.ParsingContext.f attribute)

 	(destructify.Structure attribute)

 	
 	_meta (destructify.Structure attribute)

 	_root (destructify.ParsingContext.f attribute)

A

 	
 	alignment (destructify.StructureOptions attribute)

 	
 	ArrayField (class in destructify)

 	as_cstruct() (destructify.Structure class method)

B

 	
 	base_field (destructify.ArrayField attribute)

 	(destructify.ConditionalField attribute)

 	(destructify.ConstantField attribute)

 	(destructify.EnumField attribute)

 	
 	BitField (class in destructify)

 	byte_order (destructify.IntegerField attribute)

 	(destructify.StructField attribute)

 	(destructify.StructureOptions attribute)

 	BytesField (class in destructify)

C

 	
 	capture_raw (destructify.StructureOptions attribute)

 	cases (destructify.SwitchField attribute)

 	checks (destructify.StructureOptions attribute)

 	condition (destructify.ConditionalField attribute)

 	
 	ConditionalField (class in destructify)

 	ConstantField (class in destructify)

 	count (destructify.ArrayField attribute)

 	ctype (destructify.Field attribute)

D

 	
 	decode_from_stream() (destructify.Field method)

 	decode_value() (destructify.Field method)

 	decoder (destructify.Field attribute)

 	
 	default (destructify.Field attribute)

 	destructify (module), [1], [2], [3], [4], [5]

 	done (destructify.ParsingContext attribute)

E

 	
 	encode_to_stream() (destructify.Field method)

 	encode_value() (destructify.Field method)

 	encoder (destructify.Field attribute)

 	encoding (destructify.StringField attribute)

 	(destructify.StructureOptions attribute)

 	
 	enum (destructify.EnumField attribute)

 	EnumField (class in destructify)

 	errors (destructify.StringField attribute)

F

 	
 	f (destructify.ParsingContext attribute)

 	fallback (destructify.ConditionalField attribute)

 	Field (class in destructify)

 	field (destructify.FieldContext attribute)

 	field_context (destructify.Field attribute)

 	field_name (destructify.FieldContext attribute)

 	field_values (destructify.ParsingContext attribute)

 	FieldContext (class in destructify)

 	
 	fields (destructify.ParsingContext attribute)

 	finalize() (destructify.Structure method)

 	FixedLengthField (class in destructify)

 	flat (destructify.ParsingContext attribute)

 	format (destructify.StructField attribute)

 	from_bytes() (destructify.Structure class method)

 	from_stream() (destructify.Field method)

 	(destructify.Structure class method)

 	full_name (destructify.Field attribute)

G

 	
 	get_final_value() (destructify.Field method)

 	
 	get_initial_value() (destructify.Field method)

H

 	
 	has_value (destructify.FieldContext attribute)

I

 	
 	initialize() (destructify.Field method)

 	(destructify.Structure class method)

 	
 	initialize_from_meta() (destructify.ParsingContext method)

 	IntegerField (class in destructify)

L

 	
 	lazy (destructify.Field attribute)

 	(destructify.FieldContext attribute)

 	length (destructify.ArrayField attribute)

 	(destructify.BitField attribute)

 	(destructify.BytesField attribute)

 	(destructify.FieldContext attribute)

 	(destructify.IntegerField attribute)

 	(destructify.StructureField attribute)

M

 	
 	multibyte (destructify.StructField attribute)

N

 	
 	name (destructify.Field attribute)

O

 	
 	offset (destructify.Field attribute)

 	(destructify.FieldContext attribute)

 	
 	other (destructify.SwitchField attribute)

 	override (destructify.Field attribute)

P

 	
 	padding (destructify.BytesField attribute)

 	parent (destructify.ParsingContext attribute)

 	
 	parsed (destructify.FieldContext attribute)

 	ParsingContext (class in destructify)

 	preparsable (destructify.Field attribute)

R

 	
 	raw (destructify.FieldContext attribute)

 	realign (destructify.BitField attribute)

 	
 	resolved (destructify.FieldContext attribute)

 	root (destructify.ParsingContext attribute)

S

 	
 	seek_end() (destructify.Field method)

 	seek_start() (destructify.Field method)

 	signed (destructify.IntegerField attribute)

 	skip (destructify.Field attribute)

 	step (destructify.BytesField attribute)

 	strict (destructify.BytesField attribute)

 	StringField (class in destructify)

 	
 	StructField (class in destructify)

 	Structure (class in destructify)

 	structure (destructify.StructureField attribute)

 	structure_name (destructify.StructureOptions attribute)

 	StructureField (class in destructify)

 	subcontext (destructify.FieldContext attribute)

 	switch (destructify.SwitchField attribute)

 	SwitchField (class in destructify)

T

 	
 	TerminatedField (class in destructify)

 	terminator (destructify.BytesField attribute)

 	terminator_handler (destructify.BytesField attribute)

 	
 	this (class in destructify)

 	to_bytes() (destructify.Structure method)

 	to_stream() (destructify.Field method)

 	(destructify.Structure method)

U

 	
 	until (destructify.ArrayField attribute)

V

 	
 	value (destructify.ConstantField attribute)

 	(destructify.FieldContext attribute)

 	
 	VariableLengthIntegerField (class in destructify)

W

 	
 	with_name() (destructify.Field method)

 _static/comment-bright.png

_images/gui.png
Copy bytes (he) Copy value
00000000 89 50 4= 47 0d 0a la 0a 00 00 00 0d 49 48 44 52

[| I Vaue I ostion I =]

00000060 fength 1 e N
00000050 width 25 16 4
e P X :
00000020 compression_method 0 2 1
00000020 filter_method 0 27 1
Sesoonio lace method InteraceMethodNoltersce 28 i
i S

00000180 ac 2370836866 383

00000160 92 87 [4°] 017 2

000001c0 e 59
00000140 ef ac
00000120 52 be
00000120 a7 bE
00000200 2¢ 51
00000210 c3 70
00000220 8 ds
00000230 £0 6e
00000240 42 c8
00000250 3e £1
00000260 26 3e
00000270 2b 80
00000280 40 06
00000290 08 51
00000220 1 8

I>.PLX. {.4.5E>2
18>.C..1%20.l
I4+. BXH. .. 10,0,]
18-....2.0.042] 2]
1.Q.(10¥.0.....5.1
I...D.F. LGol
00000260 58 28 1X(.Q28, RN
0000020 0c o8 I....Iwl.3.L..0.]

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Destructify’s documentation!

 		
 Structures

 		
 Simple example

 		
 C-style operations

 		
 Field types

 		
 Controlling a field through attributes

 		
 Streams

 		
 Structure methods

 		
 The Meta class

 		
 Advanced parsing

 		
 Depending on other fields

 		
 Calculating attributes

 		
 Overriding values

 		
 How a structure is read and written

 		
 Decoding/encoding values

 		
 Offset, skip and alignment

 		
 Lazily parsing fields

 		
 Combining offset with lazy

 		
 Custom fields

 		
 Field idempotency

 		
 Subclassing an existing field

 		
 Writing your own field

 		
 Supporting length

 		
 Supporting lazy read

 		
 Testing your field

 		
 GUI & Hex Viewer

 		
 Python API

 		
 Structure

 		
 Field

 		
 ParsingContext

 		
 FieldContext

 		
 Built-in fields specification

 		
 Common attributes

 		
 BytesField

 		
 FixedLengthField

 		
 TerminatedField

 		
 StringField

 		
 IntegerField

 		
 VariableLengthIntegerField

 		
 BitField

 		
 ConstantField

 		
 StructField

 		
 Subclasses of StructField

 		
 StructureField

 		
 ArrayField

 		
 ConditionalField

 		
 SwitchField

 		
 EnumField

 		
 Version history

 		
 Releases

 		
 v0.2.0 (2019-03-23)

 		
 v0.1.0 (2019-02-17)

 		
 v0.0.1 (2018-04-07)

_static/up-pressed.png

_static/up.png

_static/plus.png

