

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

deriv

An open source derivative calculator REST API (and Java library). Check out the frontend [https://www.github.com/horeilly1101/deriv-frontend].

[image: _images/deriv.svg]Build Status [https://travis-ci.com/horeilly1101/deriv]
[image: _images/badge.svg]codecov [https://codecov.io/gh/horeilly1101/deriv]
[image: _images/badge1.svg]Known Vulnerabilities [https://snyk.io/test/github/horeilly1101/deriv]

In Development

I began this project wanting to make a symbolic derivative calculator that could differentiate arbitrary functions of
the form f : R^n -> R. And I did that. But after taking some time to reflect on the project, I realized that
I actually ended up setting the groundwork for something far more interesting. Why limit myself to functions
just of the form described above? Why not try to differentiate vector-valued functions, or, better yet,
tensor-valued functions?

So that’s what I’m working on right now. Wish me luck.

Server

The server is built using Spark [http://sparkjava.com/], and you can run the server by running
Server.java in the server package. The server will then be available
at localhost:4567. There are three different requests you can make. The first is
localhost:4567/differentiate/:expression/:var, where :expression is the expression to be differentiated
(e.g. x^2 * ln(x)) and :var is the variable that :expression should be differentiated with respect to
(e.g. x). This request returns a JSON object of the form

{
 "data" :
 {
 "expression" : expression,
 "result" : differentiated expression,
 "var" : var
 }
}

The second is localhost:4567/evaluate/:expression/:var/:val, where :expression is the expression to be
evaluated (e.g. x^2 * ln(x)), :var is the variable that should be evaluated (e.g. x), and :val is the number
that :expression should be evaluated with (e.g. 5). This request returns a JSON object of the form

{
 "data" :
 {
 "expression" : expression,
 "result" : evaluated expression,
 "var" : var,
 "val" : val
 }
}

And the third is localhost:4567/simplify/:expression, where :expression is the expression to be simplified
(e.g. x^2 + 4x * x + 4/x * x^3). This request returns a JSON object of the form

{
 "data" :
 {
 "input" : input expression,
 "result" : simplified expression
 }
}

If the given arguments in a URL are invalid, an error JSON object will be returned in all cases.

Note: you should be careful to use the proper ASCII encoding references when writing your expressions in the URL.
For example, you can’t use “/” to represent division when querying the server, as that is a reserved character.
Instead, use %2F, its ASCII encoding reference. You can find a comprehensive list of URL encoding references
here [https://www.w3schools.com/tags/ref_urlencode.asp], but I’ve put the important ones (for this project) down
below.

In particular, you should not allow forward slashes, brackets, carrots, or blank spaces in your URLs.

Symbol	URL Code
:———–:	———-
/	%2F
^	%5E
[%5B
]	%5D
blank space	%20

Library

There are two main ways to use this project as a Java library.

Calculator

Check out com.deriv.expression.Calculator. If you instantiate a Calculator object, you can evaluate,
differentiate, and simplify expressions by just providing a string representation of an expression. If you decide
to do this, you will find it helpful to be as specific as possible with your string expressions (i.e. place
parentheses liberally), as they can quickly become ambiguous.

// Instantiate a Calculator object
Calculator calc = new Calculator();

// Example 1: prints "(2 * x)"
System.out.println(calc.differentiate("x^2", "x").get());

// Example 2: prints "8"
System.out.println(calc.evaluate("3x + 2", "x", "2").get());

// Example 3: prints "(sin(x) / x + (cos(x) * ln(x)))"
System.out.println(calc.differentiate("sin(x)ln(x)", "x").get());

// Example 4: prints "sin(x ^ 2)"
System.out.println(calc.evaluate("sin(x)", "x", "x^2").get());

And since most methods on Calculator return an Optional<Expression>, you have access to the Expression API
to do with what you wish.

Static Constructors

You can also create expressions with the available static constructors. See the docs and unit tests for
available constructors and more instructions on how to use them.

// Example 1: 3x
mult(constant(3), x());

// Example 2: x^2 + x + 1
add(poly(x(), 2), x(), multID());

// Example 3: sin(y^x)
sin(power(var("y"), x()));

// Example 4: ln(5) + e^z
add(ln(constant(5)), power(e(), var("z")));

Design

Polymorphic Expressions

Definition: Expression is the data structure that allows us to put functions together and take their
derivatives. Every function is an implementation of an Expression—this is the key design detail that glues
the project together. It is implemented by

	Mult: a mult is a list of expressions, multiplied together

	Add: an add is a list of expressions, added together

	Log: a log is a base and a result (i.e. log(base, result))

	Power: a power is a base and an exponent (i.e. base ^ exponent)

	Trig: a trig is a trig function name and an expression

	Constant: a constant is an int (unfortunately, arbitrary constants are technically variables)

	Variable: a string name (e.g. “x”, “y”, etc.)

	Tensor: a tensor is a list of expressions

The above classes allow deriv to differentiate just about any function you can think of. (The only functions not
available are integrals, inverse functions, and more obscure functions, but these may all be added later on.) It’s
interesting to note that the hardest part of this project has been simplifying the expressions before they’re
instantiated. The design, derivatives, evaluations—all of that was easy compared to the simplification stage.

Differentiation Algorithms

For the most part, I used the standard recursive algorithms that you learn in an introductory calculus class (e.g.
product rule, linearity), but there were a few cases where I had to derive nonstandard algorithms to compute
derivatives, to ensure as much generality as possible. That being noted, I doubt there is anything revolutionary
in my approach.

Beyond the above, there are a few cases where I decided to optimize with parallelism. For instance, I opted for
parallel streams whenever linearity was necessary (e.g. when differentiating the sum of expressions). However,
the most interesting use of parallelism can be found in com.deriv.expression.Mult, where I use Fork/Join
to compute the derivatives of products in parallel. There were also a few other places where I tested parallel
algorithms, but found that they did not really improve the runtime. For simplicity, I used sequential algorithms
in such cases.

Caching

Checkout the steps branch if you would like to use an (outdated) version of this project that provides derivative
steps and caching. Currently, the master branch does not support this, as I have had to reorganize the project
to account for Tensors.

Note that, when I say caching, I’m referring to the storing of derivatives that have already been computed, which is
more complicated than it first appears. Most of the differentiation algorithms used in this project recursively
compute the derivatives of composed expressions using a divide and conquer approach. So it’s not enough to simply
store the result whenever we call differentiate() in the calculator or the server—we need to store the results
throughout the entire process, and then combine them “on the way back up” the recursion. At some point I will update
this to work with Tensors, but it’s not a priority.

Parsing

The scanner is built using jflex [http://jflex.de/manual.html], and the parser is built using
CUP [http://jflex.de/manual.html]. You can find the grammar rules for expressions in
FlexScanner.jflex and
CupParser.cup. Given the style of these two files, the
grammar should be pretty easy to understand, even if you aren’t familiar with jflex or CUP.

The order of operations should work as intended, as should smaller details like adding and subtracting
negative numbers and using implicit multiplication. Also, multiplication, division, addition, and
subtraction are left associative, while exponentiation is right associative. This property of the
grammar is meant to increase clarity.

Notes

	Dependencies are handled with Maven.

	All code was written in IntelliJ IDEA.

	Effective Java by Joshua Bloch inspired many of the design decisions, as did Rice University’s COMP 215 and 310.

	Uses JSON-Java [https://github.com/stleary/JSON-java] to create JSON objects.

	I built a frontend to interact with the API [https://www.github.com/horeilly1101/deriv-frontend].

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

