

    
      
          
            
  
Welcome to deltascope’s documentation!


Features


	Compare sets of 3D biological images to identify differences


	Automatically align the structure in the image to correct for variation introduced during mounting and imaging


	Generate descriptive graphs that quantify both the average and variation of the data


	Use machine learning techniques to classify samples and identify regions of statistically significant difference




Check out Start Here to find out if deltascope is right for you.




Installation

Package hosted on PyPI [https://pypi.python.org/pypi/deltascope]. See Start Here for more information.

$ pip install deltascope








Support


	Complete documentation is available on Read the Docs [http://deltascope.readthedocs.io/en/latest/].


	Check out the Frequently Asked Question page.


	Submit an issue describing a problem or question on the project’s Github issue tracker [https://github.com/msschwartz21/deltascope/issues].







Contribute


	Issue Tracker: https://github.com/msschwartz21/deltascope/issues


	Source Code: https://github.com/msschwartz21/deltascope







License

This project is licensed under the GNU General Public License.
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Start Here


Is deltascope right for you?

deltascope may be able to help you if:


	your data consists of a set of 3D image stacks


	your data contains a clear structure and shape that has consistent gross morphology between control and experimental samples


	you want to identify extreme or subtle differences in the structure between your experimental groups


	you have up to 4 different channels to compare




deltascope cannot help if:


	your data was collected using cryosections that need to be aligned after imaging


	your experiment changes the gross anatomy of the structure between control and experimental samples







Installation

deltascope can be installed using pip [https://en.wikipedia.org/wiki/Pip_(package_manager)], Python’s package installer. Some deltascope dependencies are not available through pip, so we recommend that you install Anaconda [https://www.anaconda.com/what-is-anaconda/] which automatically includes and installs the remaining dependencies. See Setting up a Python environment for more details.

$ pip install deltascope






Note

If you are unfamiliar with the command line, check out this tutorial [http://www.vikingcodeschool.com/web-development-basics/a-command-line-crash-course]. Additional resources regarding the command line are available here.




Warning

Packages required for deltascope depend on Visual C++ Build Tools, which can be downloaded at build tools [http://landinghub.visualstudio.com/visual-cpp-build-tools].






Setting up a Python environment

If you’re new to scientific computing with Python, we recommend that you install Anaconda [https://www.anaconda.com/what-is-anaconda/] to manage your Python installation. Anaconda is a framework for scientific computing with Python that will install important packages (numpy [http://www.numpy.org/], scipy [https://www.scipy.org/], and matplotlib [https://matplotlib.org/]).


Warning

deltascope is written in Python 3, and requires the installation the Python 3 version of Anaconda.









          

      

      

    

  

    
      
          
            
  
Data Preparation


Biological Questions

deltascope compares biological structures in three dimensions in order to preserve spatial relationship data that is lost in maximum intensity projections (MIPs). In order to apply deltascope to a new biological structure, certain conditions must be satisfied:


	The gross morphology of the structure must be roughly consistent between samples.


	The x, y, and z dimensions of the structure cannot be too similar in extent. For example, in the spinal cord, the anterior-posterior axis is the longest and the medial-lateral axis is the smallest with the dorsal-ventral axis falling between these two dimensions. The different proportional sizes of these axes enables us to consistently align the structure in 3D space regardless of the sample’s orientation during image collection.


	The gross morphology of the structure can be described with a simple polynomial equation. For example, the spinal cord can be described by a line that falls at the midline of the medial-lateral axis: y = mx + b.







File Format

Most microscopes save data in their own proprietary data format: for example, Zeiss, .czi; Leica, .lif. In order to ensure that image data is legible to all components of the workflow, files need to be converted to the HDF5 [https://support.hdfgroup.org/HDF5/] (.h5) format specified by ImageJ. This conversion can be easily executed in Fiji [https://fiji.sc/] using the BioFormats [https://www.openmicroscopy.org/bio-formats/] plugin to import proprietary file formats and the HDF5 plugin [https://imagej.net/HDF5_Vibez] to export HDF5 files. Multichannel collections need to be split into individual channels before being saved as HDF5 files, with coherent file names utilized to preserve file history.




Signal Normalization

Biological fluorescence microscopy data contains variation in signal intensity due to both biological and technical error. For example, the top of the sample is frequently brighter than the bottom because it is closer to the objective and also has not been as bleached by the collection of previous optical sections. If we were to try to select the set of points that represent ‘true signal’ by applying a single intensity threshold, points that represent background at the top of the stack may have the same intensity as points of true signal at the bottom of the stack.

We have implemented an adaptive thresholding protocol that avoids these challenges, utilizing the open-source software, Ilastik [http://ilastik.org/]. This software uses machine learning principles in order to predict the likelihood that a particular pixel contains true signal. The probability is calculated based on user annotation of images, in which regions of true signal and background are labeled. This protocol allows the user to apply their domain knowledge of the sample in order to best distinguish signal from background. Tutorials describing how to install and implement Ilastiks pixel classification workflows [http://ilastik.org/documentation/pixelclassification/pixelclassification] are available on Ilastiks website [http://ilastik.org/documentation/index.html/].







          

      

      

    

  

    
      
          
            
  
deltascope Data Processing


Note

This guide will describe a set of parameters that the user needs to specify when running deltascope. A complete list of all parameters if available on the Parameter Reference page.




Intensity Thresholding


Goal

At this point, each sample/channel should have been processed by Ilastik to create a new c1_10_Probabilities.h5 file. If you open this file in Fiji utilizing the fiji HDF5 plugin, it should contain three dimensions and two channels (signal and background, but for our purposes the two are interchangeable). Each pixel should have a value ranging between 0 and 1. If we are inspecting the signal channel, pixels with a value close to 0 (low p value) are highly likely to be true signal. Correspondingly, pixels with a value close to 1 are likely to be background. The c1_10_Probabilities.h5 file by Ilastik contains two channels (signal and background), which are inverse images. For a given pixel, the background intensity value is 1 minus the signal intensity value. In order to simplify our data, we will apply a threshold that will divide the data into two sets of pixels: signal and background. In the steps that follow, we will only use the set of pixels that correspond to true signal. This set of pixels may be also referred to as a set of points or a point cloud. In order to avoid keeping track of which channel is the signal channel, we assume that after applying a threshold there will be more points will fall in the background group than in the signal group. If this is not true, better Ilastik training or a stricter threshold is reccomended, or deltascope will instead be examining the structure of your background.


Warning

If your data contains more points of signal than background, deltascope will select your background channel as the signal channel. In order to correct this assumption, the inequality in brain.read_data() will need to be changed to equate a large number of points with signal instead of background.






Setting Parameters

In order to divide the image into two sets of pixels (signal and background), we use a parameter, genthresh, to determine which group the pixels fall into. We have found that a value of 0.5 is sufficient to divide the data and have not found that the results vary greatly if it is changed; however, if your data contains a lot of intermediate background values (0.4-0.7), you may benefit from a smaller threshold, e.g. 0.3.

The following code requires a parameter micron, which specifies the dimensions of the image voxel in microns. It is a list of the form [x,y,z]. This information can typically be found in the metadata of a microscope collection file.

This section of the code also includes a deprecated parameter scale, which must be set to [1,1,1].




Code Instructions

The following instructions apply to processing a single sample. Details regarding function parameters can be found under embryo and brain.preprocess_data(). Raw image data will be imported by embryo.add_channel().

import deltascope

#Create an embryo object that facilitates data processing
e = deltascope.embryo(experiment-name,sample-number,directory)

#For each channel in your sample, add a channel with a unique name, e.g. 'c1' or 'c2'
e.add_channel(c1-filepath,c1-name)
e.add_channel(c2-filepath,c2-name)

#Threshold each channel and scale points according to voxel dimension in microns
e.chnls[c1-name].preprocess_data(genthresh,scale,microns)
e.chnls[c2-name].preprocess_data(genthresh,scale,microns)










Sample alignment using principle component analysis (PCA)


Goal


Principle Component Analysis

During typical collections of biological samples, each sample will be oriented slightly differently in relation to the microscope due to variations in the shape and size of the sample as well as human error during the mounting process. As a result of this variation, we cannot directly compare samples in 3D space without realigning them. We have implemented principle component analysis in order to automate the process of alignment without a need for human supervision. Fig. 1 shown below illustrates how PCA can be used to align a set of points in 2D. deltascope uses the same process in 3D to identify biologically meaningful axes present in biological structures.


[image: _images/pca.jpg]
Fig. 1 Principle component analysis (PCA) can be used to identify and align samples along consistent axes. (1) In 2D, PCA first selects the axis that captures the most variability in the data (1st PC). The 2nd PC is selected in a position orthogonal to the 1st PC that captures the remaining variation in the data. (2) The data are then rotated so that the 1st and 2nd PCs correspond with x and y axes respectively. (3) Finally, we have added a step of identifying the center of the data and shifting it to the origin.






Structural Channel Processing

We designate one channel, the structural channel, which we will use for PCA to align samples. Since we are interested in the gross morphology of this channel, we apply two data preprocessing steps to reduce the data down to only essential points. First, we return to brain.raw_data and apply a new threshold, medthresh, which is typically more stringent than genthresh. This step ensures we are only considering points of signal with extremely high likelihood of being real. Second, we apply a median filter to the data twice, which smooths out the structure and eliminates small points of variation that may interfere with the alignment process of the gross structure.

PCA outputs three new dimensions, the 1st, 2nd, and 3rd PCs. These components will be reassigned to the X, Y, and Z axes to help the user maintain orientation in regards to their data. In the case of the zebrafish post-optic commissure shown below (Fig. 2), the 1st PC is reassigned to the X axis and the 2nd and 3rd PCs are assigned to Z and Y respectively. These assignments honor the user’s expectation of the sample’s alignment in 3D space. The assignment of components to axes can be modified using the parameter comporder.


Warning

In order for PCA to consistently align your samples in the same orientation, we are assuming that the three dimensions of your structure are of different relative sizes. Since PCA looks for the axes that capture the most variation in your data, a sample that has axes of the same relative size will not have any distinguishing characteristics that PCA can use to identify and separate different axes.




[image: _images/pcafix.jpg]
Fig. 2 This example illustrates the efficacy of PCA at changing the orientation of the zebrafish post optic commissure. In this case, the 1st PC is significantly longer than the 2nd and 3rd. While these two remaining components are similar in size, the typically longer depth of the 2nd PC distinguishes it from the 3rd PC.






Model Fitting

In addition to rotating the orientation of the data in 3D space, we also want to align the center of all samples at the origin. In order to determine the center of the data, we fit a simple mathematical model to the data that will also be used later in the analysis. The zebrafish post optic commissure shown above forms a parabolic structure, which can be described by y = ax^2 + bx + c. For simplicity, we fit the model in two dimensions, while holding one dimension constant. In the case of the POC, the parabolic structure lies flat in the XZ plane, which means that the structure can be described using exclusively the X and Z dimensions. The dimensions, which will be used to fit the 2D model, are specified in the parameter fitdim. Additionally the deg parameter specifies the degree of the function that fits to the data.






Setting Parameters

medthresh is typically set to 0.25, in comparison to a value of 0.5 for genthresh. If your data contains aberrant signal that does not contribute to the gross morphology of the structure, an even lower medthresh may help limit the negative influence of noisy signal. Additionally, the radius of the median filter can also be tuned to eliminate noisy signal. The typical value for radius is 20, which refers to the number of neighboring points that are considered in the median filter. A smaller value for radius will preserve small variation in signal, while a larger value will cause even more blunting and smoothing of the data. Prior to running the median threshold, it is reccomended that the user load several HDF5 files containing the structure of interest into FIJI and test several median thresholds to determine which best resolves their structure. Utilize the best median threshold radius in radius.

The comporder parameter controls how principle components are reassigned to the typical Cartesian coordinate system (XYZ) that most users are familiar with. It takes the form of an array of length 3 that specifies the index of the component that will be assigned to the X, Y, or Z axis: [x index,y index,z index]. Please note that the index that matches each principle component starts counting at 0, e.g. 1st PC = 0, 2nd PC = 1, and 3rd PC = 2. For example, if we want to assign the 1st PC to the x axis, the 2nd to the Z axis, and the 3rd to the y axis, the comporder parameter would be [0,2,1].

Finally, the remaining two parameters determines how the model will be fit to the data. fitdim determines which 2 axes will be used to fit the 2D model. It takes the form of a list of 2 of the 3 dimensions specified as a lowercase string, e.g. 'x','y','z'. If we wanted to fit a model in the XZ plane, while holding the Y axis constant, the fitdim parameter would be ['x','z']. deg specifies the degree of the function that will be fit to the data. The default is 2, which specifies a parabolic function. A deg of 1 would fit a linear function, eg. y=mx +  b.


Warning

The ability to specify degrees other than 2 is still being developed. Check here [https://github.com/msschwartz21/deltascopePy/issues/23] for updates.






Code Instructions

#Run PCA on the structural channel, in this case, c1
e.chnls['c1'].calculate_pca_median(e.chnls['c1'].raw_data,medthresh,radius,microns)

#Save the pca object that includes the transformation matrix
pca = e.chnls['c1'].pcamed

#Transform the structural channel using the saved pca object
e.chnls['c1'].pca_transform_3d(e.chnls['c1'].df_thresh,pca,comporder,fitdim,deg=2)

#Save the mathematical model and vertex (center point) of the structural channel
mm = e.chnls['AT'].mm
vertex = e.chnls['AT'].vertex

#Transform any additional channels using the pca object calculated based on the structural channel
e.chnls['c2'].pca_transform_3d(e.chnls['c2'].df_thresh,pca,comporder,fitdim,deg=2,mm=mm,vertex=vertex)










Cylindrical Coordinates


Goal

The ultimate goal with this workflow of data processing is to enable us to study small differences in biological 3D structures when comparing a set of control samples to experimental samples. While our samples are now aligned to all fall in the same region of 3D space, our points are still defined by the xyz coordinates defined by the microscope. In order to detect changes in our structure, we will define the position of points relative to the structure using a cylindrical coordinate system. We will rely on the previously defined mathematical model, brain.mm, to represent the underlying shape of our structure. From there we will define the position of each point relative to the mathematical model (Fig. 3). The first dimension, R, is defined as the shortest distance between the point and the model. Second, alpha is defined as the distance from the point’s intersection with the model to the midline or center of the structure. Third, the position of the point around the model is defined in theta. Following the completion of the transformation, the final dataset is saved to a .psi file.


[image: _images/cordsystem.jpg]
Fig. 3 To enable analysis of data point relative to a biological structure, points are transformed from a Cartesian coordinate system (x,y,z) into a cylindrical coordinate system ($alpha$,$theta$,R) defined relative to the structure.






Code Instructions

This transformation does not require defining any parameters; however, it assumes the data has already been thresholded and aligned using PCA.

#Transform each channel to cylindrical coordinates
e.chnls['c1'].transform_coordinates()
e.chnls['c2'].transform_coordinates()

#Save processed data to .psi file
e.save_psi()






Warning

This processing step is time consuming. We recommend running multiple samples in parallel in order to reduce the total amount of computational time required.








Batch Processing

In order to reduce processing time, we have implemented a basic multiprocessing tool that runs 5 samples in parallel at a time. For more information, see Batch Processing: Transformation.







          

      

      

    

  

    
      
          
            
  
Landmark Calculation

Following the steps described in deltascope Data Processing, your data should be saved as a set of .psi files containing 6 values for each point: x,y,z,alpha,r,theta. Depending on the size and resolution of your original image, you will have thousands of points, which are unwieldy when you are trying to compare sample sets with several images. In order to reduce the size of the data and facilitate direct comparison, we calculate a set of landmarks that describe the data.


What is a landmark?

Landmark points are frequently used in the study of morphology to describe and compare structures. Classically, an individual with expert knowledge of the structure would define a set of points that are present in all structures, but subject to variation. For example, in the human face, landmarks might be placed at the corners of the eyes and mouth as well as the tip of the nose. If we were to compare many different faces, we could use the difference in the position of the landmarks to describe how the faces varied.




Unbiased Landmarks

The challenge with the classical approach to landmark analysis lies in the step of assigning landmarks. If an expert user is selecting regions of the structure to assign landmarks to, they are projecting their own expectations as to where they expect to see variation. We have developed a method of automatically calculating landmarks that describe the structure without bias and allow the user to discover new regions of interest.




How are landmarks calculated?

The calculation of unbiased landmarks relies on Cylindrical Coordinates that were previously defined (Fig. 3). First, the data is divided into equally sized sections along the alpha axis (Fig. 4.1). The user specifies the number of divisions anum and the data is divided accordingly. Next, each alpha subdivision is divided into radial wedges (Fig. 4.2) according to the parameter tsize, which specifies the size of each wedge. Finally, the distribution of points in the r axis is calculated according to the percentiles specified by the user in percbins (Fig. 4.3). Following these three steps, each subdivision can be represented by a single point that describes the distribution of the data in all three dimensions (Fig. 4.4) For more information on these parameters, see Landmark Calculation.


[image: _images/landmarks.png]
Fig. 4 In order to calculate landmarks, we will subdivide the data along the alpha and theta axes before calculating the r value that describes the distribution of the data.




Code Sample

import deltascope
import numpy as np

anum = 30
tstep = np.pi/4

#Create a landmark object
lm = deltascope.landmarks(percbins=[50],rnull=15)
lm.calc_bins(dfs,anum,tstep)

#Calculate landmarks for each sample and append to a single dataframe
outlm = pd.DataFrame()
for k in dfs.keys():
        outlm = lm.calc_perc(dfs[k],k,'stype',outlm)










Selecting anum

The anumSelect can be used to identify the optimum number of sections along alpha. We use two measure of variance to test a range of anum. The first test compares the variance of adjacent landmark wedges. The second test compares the variability of samples in a landmark. As shown in Fig. 5, the optimum value of anum minimizes the variance of both tests.


[image: _images/anumOpt.png]
Fig. 5 We select the value of anum that minimizes both the bin variance and the sample variance.




Code Sample

import deltascope

#Create a optimization object
opt = deltascope.anumSelect(dfs)

tstep = np.pi/4

#Initiate parameter sweep
opt.param_sweep(tstep,amn=2,amx=50,step=1,percbins=[50],rnull=15)

#Plot raw data
opt.plot_rawdata()

poly_degree = 4

#Test polynomial fit
opt.plot_fitted(poly_degree)

best_guess = 30

#Find the optimum value of anum
opt.find_optimum_anum(poly_degree,best_guess)










Graphing Landmark Data

In order to facilitate easy visualization, the graphSet and graphData classes manage graphing commands and any necessary data transformation.


Todo

Code sample for graphing functions









          

      

      

    

  

    
      
          
            
  
Sample Classification


Goal

Previously we went through the process of calculating landmarks in order to identify a reduced set of point that are comparable between samples. In order to learn more about which points distinguish control samples from experimental samples, we can build a statistical model that will use landmarks to classify control and experimental. After we have developed a classification model, we can look at which landmarks were most important for classification and use this information to identify regions of biological difference.




Dimensionality Reduction

Currently, your dataset may have several hundred landmark points that describe the shape and variability of the data. However, it is likely that the number of landmark points outnumbers the number of samples. Statistical modeling techniques are most effective when the number of points is smaller than the number samples that are training the model. In this situation we can think of each landmark point as a dimension of the data. In order to reduce the dimensionality of the data (e.g. the number of landmark points), we will use principle component analysis (PCA) to identify a reduced set of components (new dimensions) that capture all of the variability that is present in the landmark points. Each component is a mixture of landmark points with some points having greater influence than others.




Coding Instructions

import deltascope
import pandas as pd

#Read csv file that contains landmark data for both sample groups
df = pd.read_csv(landmark_file)

#Create the tree classifier object
tc = deltascope.treeClassifier(df)

#Apply pca to automatically reduce the dimensionality to the optimum number of dimensions
tc.apply_pca()

#Fit the classifier based on landmarks
tc.fit_classifier()

#Visualize the landmarks that had the highest impact on the classifier
tc.plot_top_components(index=10)











          

      

      

    

  

    
      
          
            
  
Checklist


	Convert data to HDF5 files containing a single sample/channel per file


	Train Ilastik on each channel and process all files to create ‘_Probability.h5’ files








          

      

      

    

  

    
      
          
            
  
Parameter Reference


Transformation


	
genthresh

	This parameter defines the cutoff point that will divide the brain.raw_data into a set of true signal points and background points based on the probability that each point is true signal. The _Probabilties.h5 dataset is generated after running the Ilastik pixel classification workflow described in Signal Normalization. Pixels with a value of 1 are likely to be background. Correspondingly, pixels with a value close to 0 are most likely to be true signal. We have found that a threshold of 0.5 is sufficient to divide true signal from background; however, if your data contains a lot of intermediate background values (0.4-0.7), you may benefit from a smaller threshold, e.g. 0.3.

Recommended: 0.5






	
microns

	This parameter is a list of the form [x,y,z] that specifies the dimensions of the voxel in microns. The data in brain.raw_data is scaled by microns to control for datasets in which the z dimension is larger than the x and y dimensions.

Example: [0.16,0.16,0.21]






	
scale

	This is a deprecated parameter that should always be set to [1,1,1].

Required: [1,1,1]






	
medthresh

	This parameter serves the same purpose as genthresh; however, it is used exclusively on data used for aligning samples using PCA. This threshold is typically more stringent than genthresh to ensure that any noise in the data does not interfere with the alignment process.

Recommended: 0.25






	
radius

	The radius of the median filter can  be tuned to eliminate noisy signal. The typical value for radius is 20, which refers to the number of neighboring points that are considered in the median filter. A smaller value for radius will preserve small variation in signal, while a larger value will cause even more blunting and smoothing of the data.

Recommended: 20






	
comporder

	This parameter controls how principle components are reassigned to the typical Cartesian coordinate system (XYZ) that most users are familiar with. It takes the form of an array of length 3 that specifies the index of the component that will be assigned to the X, Y, or Z axis: [x index,y index,z index]. Please note that the index that matches each principle component starts counting at 0, e.g. 1st PC = 0, 2nd PC = 1, and 3rd PC = 2.

For example, if we want to assign the 1st PC to the x axis, the 2nd to the Z axis, and the 3rd to the y axis, the comporder parameter would be [0,2,1].

Example: [0,2,1]






	
fitdim

	This parameter determines which 2 axes will be used to fit the 2D model. It takes the form of a list of 2 of the 3 dimensions specified as a lowercase string, e.g. 'x','y','z'.

If we wanted to fit a model in the XZ plane, while holding the Y axis constant, the fitdim parameter would be ['x','z'].

Example: ['x','z']






	
deg

	This parameter specifies the degree of the function that will be fit to the data. The default is 2, which specifies a parabolic function. A deg of 1 would fit a linear function.

Default: 2


Warning

The infrastructure to support degrees other than 2 is not currently in place. Check here [https://github.com/msschwartz21/deltascopePy/issues/23] for updates.










Landmark Calculation


	
anum

	This integer specifies the number of divisions along the alpha axis when calculating landmarks. See Selecting anum for guidance on setting this parameter.

Example: 20






	
tsize

	This parameter sets the size of each radial wedge in the landmark calculation. The program works in radians so this parameter should be a float that can evenly divide into 2Pi. We have found that Pi/4 (45º) is a biologically appropriate division for our typical structures.

Example: 0.79






	
percbins

	This parameter is a list of integers that specifies what percentile should be used to calculate the distribution of points along r.

Example: [50]











          

      

      

    

  

    
      
          
            
  
Useful Resources


Command line tutorials


	A basic introduction to the command line interface [http://www.vikingcodeschool.com/web-development-basics/a-command-line-crash-course]


	An introduction to the command line interface for windows Powershell [https://programminghistorian.org/lessons/intro-to-powershell]


	An introduction to the command line interface for Linux and MacOS Bash [https://programminghistorian.org/lessons/intro-to-bash]







Pip package installer


	An introduction to pip pythons package installer [https://programminghistorian.org/lessons/installing-python-modules-pip]


	A discussion of the differences of pip and conda the package manager that accompanies Anaconda [https://jakevdp.github.io/blog/2016/08/25/conda-myths-and-misconceptions/]







Version control with Git and Github


	A very basic introduction to git and version control [http://rogerdudler.github.io/git-guide/]


	A discussion of why and how to use Github [https://programminghistorian.org/lessons/getting-started-with-github-desktop]


	A cheat sheet for running Git from the command line [https://education.github.com/git-cheat-sheet-education.pdf]







Jupyter Notebook


	A cheat sheet for using Jupyter Notebook [https://www.datacamp.com/community/blog/jupyter-notebook-cheat-sheet]










          

      

      

    

  

    
      
          
            
  
Frequently Asked Questions


My file paths are causing errors?

Try changing each individual slash in your path to have two slashes.




What is a .psi file?

A .psi file is similar in structure to a comma separated value (.csv) file with the addition of header text that defines metadata for the file. For example:

# PSI Format 1.0
#
# column[0] = "Id"
# column[1] = "x"
# column[2] = "y"
# column[3] = "z"
# column[4] = "ac"
# symbol[4] = "A"
# type[4] = float
# column[5] = "r"
# symbol[5] = "R"
# type[5] = float
# column[6] = "theta"
# symbol[6] = "T"
# type[6] = float
52337 0 0
1 0 0
0 1 0
0 0 1











          

      

      

    

  

    
      
          
            
  
Batch Processing: Transformation

mp-transformation.py can be run from the command line after setting parameters in mp-transformation-config.json. When you run the script, you only need to provide the path to the config file as an argument

$ python mp-transformation.py "C:\\path\\to\\mp-transformation-config.json"





In addition to the parameters described in Parameter Reference, mp-transformation-config.json requires a set of additional parameters:


	
rootdir

	Required: String specifying the complete path to a directory where an output folder should be created






	
expname

	Required: String specifying the experiment name that will be incorporated into output files






	
c1-dir

	Required: String specifying the path to the directory containing the _Probabilities.files for the structural channel






	
c1-key

	Required: String that will serve as a key for the structural channel and will name the output files






	
c2-dir

	Optional: Same as c1-dir, but for an additional channel






	
c2-key

	Optional: Same as c1-key, but for an additional channel






	
c3-dir

	Optional: Same as c1-dir, but for an additional channel






	
c3-key

	Optional: Same as c1-key, but for an additional channel






	
c4-dir

	Optional: Same as c1-dir, but for an additional channel






	
c4-key

	Optional: Same as c1-key, but for an additional channel






	
twoD

	A boolean value that specifies, which PCA transformation functions will be used.

True: brain.calculate_pca_median_2d() and brain.pca_transform_2d() will be used to hold one axis constant, while the other two are realigned with PCA

False: brain.calculate_pca_median() and brain.pca_transform_3d() will be used to transform and realign samples in all three dimensions






API


	
deltascope.mpTransformation.check_nums(P)

	Check that the numbers of files selected by the same list index match
Raises an error if file numbers are mismatched

:param paramClass P: Object containing all variables from config file






	
class deltascope.mpTransformation.paramsClass(path)

	A class to read and validate parameters for multiprocessing transformation.
Validated parameters can be read as attributes of the object


	
add_outdir(path)

	Add out directory as an attribute of the class


	Parameters

	path (str) – Complete path to the output directory










	
check_config(D, path)

	Check that each parameter in the config file is correct and raise an error if it isn’t


	Parameters

	
	D (dict) – Dictionary containing parameters from the config file


	path (str) – Complete filepath to the config file

















	
deltascope.mpTransformation.process(num, P=None)

	Run through the processing steps for a single sample through saving psi files


	Parameters

	num (int) – Index of the file that is currently being processed





:param paramClass P: Object containing all variables from config file











          

      

      

    

  

    
      
          
            
  
API


	
class deltascope.brain

	Object to manage biological data and associated functions.


	
add_aligned_df(df)

	Adds dataframe of aligned data


Warning

Calculates model, but assumes that the dimensions of the fit are x and z




	Parameters

	df (pd.DataFrame) – Dataframe of aligned data



	Returns

	brain.df_align










	
add_thresh_df(df)

	Adds dataframe of thresholded and transformed data to brain.df_thresh


	Parameters

	df (pd.DataFrame) – dataframe of thesholded and transformed data



	Returns

	brain.df_thresh










	
align_data(df_fit, fit_dim, deg=2, mm=None, vertex=None, flip=None)

	Apply PCA transformation matrix and align data so that the vertex is at the origin

Creates brain.df_align and brain.mm


	Parameters

	
	df (pd.DataFrame) – dataframe containing thresholded xyz data


	comp_order (array) – Array specifies the assignment of components to x,y,z. Form [x component index, y component index, z component index], e.g. [0,2,1]


	fit_dim (array) – Array of length two containing two strings describing the first and second axis for fitting the model, e.g. [‘x’,’z’]


	deg (int) – (or None) Degree of the function that should be fit to the model. deg=2 by default


	mm – (math_model or None) Math model for primary channel


	vertex (array) – (or None) Array of type [vx,vy,vz] (brain.vertex) indicating the translation values


	flip (Bool) – (or None) Boolean value to determine if the data should be rotated by 180 degrees









	
df_align

	Dataframe containing point data aligned using PCA






	
mm

	Math model object fit to data in brain object










	
calc_coord(row)

	Calculate alpah, r, theta for a particular row


	Parameters

	row (pd.Series) – row from dataframe in the form of a pandas Series



	Returns

	pd.Series populated with coordinate of closest point on the math model, r, theta, and ac (arclength)










	
calculate_pca_median(data, threshold, radius, microns)

	Calculate PCA transformation matrix, brain.pcamed, based on data (brain.pcamed) after applying median filter and threshold


	Parameters

	
	data (array) – 3D array containing raw probability data


	threshold (float) – Value between 0 and 1 indicating the lower cutoff for positive signal


	radius (int) – Radius of neighborhood that should be considered for the median filter


	microns (array) – Array with three values representing the x,y,z micron dimensions of the voxel









	
median

	Pandas dataframe containing data that has been processed with a median filter twice and thresholded






	
pcamed

	PCA object managing the transformation matrix and any resulting transformations










	
calculate_pca_median_2d(data, threshold, radius, microns)

	Calculate PCA transformation matrix for 2 dimensions of data, brain.pcamed, based on data after applying median filter and threshold


Warning

fit_dim is not used to determine which dimensions to fit. Defaults to x and z




	Parameters

	
	data (array) – 3D array containing raw probability data


	threshold (float) – Value between 0 and 1 indicating the lower cutoff for positive signal


	radius (int) – Radius of neighborhood that should be considered for the median filter


	microns (array) – Array with three values representing the x,y,z micron dimensions of the voxel













	
create_dataframe(data, scale)

	Creates a pandas dataframe containing the x,y,z and signal/probability value for each point in the brain.raw_data array


	Parameters

	
	data (array) – Raw probability data in 3D array


	scale (array) – Array of length three containing the micron values for [x,y,z]






	Returns

	Pandas DataFrame with xyz and probability value for each point










	
find_arclength(xc)

	Calculate arclength by integrating the derivative of the math model in xy plane


[image: \int_{vertex}^{point} \sqrt{1 + (2ax + b)^2}]



	Parameters

	row (float) – Postion in the x axis along the curve



	Returns

	Length of the arc along the curve between the row and the vertex



	Return type

	float










	
find_distance(t, point)

	Find euclidean distance between math model(t) and data point in the xy plane


	Parameters

	
	t (float) – float value defining point on the line


	point (array) – array [x,y] defining data point






	Returns

	distance between the two points



	Return type

	float










	
find_min_distance(row)

	Find the point on the curve that produces the minimum distance between the point and the data point using scipy.optimize.minimize(brain.find_distance())


	Parameters

	row (pd.Series) – row from dataframe in the form of a pandas Series



	Returns

	point in the curve (xc, yc, zc) and r



	Return type

	floats










	
find_r(row, zc, yc, xc)

	Calculate r using the Pythagorean theorem


	Parameters

	
	row (pd.Series) – row from dataframe in the form of a pandas Series


	yc (float) – Y position of the closest point in the curve to the data point


	zc (float) – Z position of the closest point in the curve to the data point


	xc (float) – X position of hte closest point in the curve to the data point






	Returns

	r, distance between the point and the model



	Return type

	float










	
find_theta(row, zc, yc)

	Calculate theta for a row containing data point in relationship to the xz plane


	Parameters

	
	row (pd.Series) – row from dataframe in the form of a pandas Series


	yc (float) – Y position of the closest point in the curve to the data point


	zc (float) – Z position of the closest point in the curve to the data point






	Returns

	theta, angle between point and the model plane



	Return type

	float










	
fit_model(df, deg, fit_dim)

	Fit model to dataframe


	Parameters

	
	df (pd.DataFrame) – Dataframe containing at least x,y,z


	deg (int) – Degree of the function that should be fit to the model


	fit_dim (array) – Array of length two containing two strings describing the first and second axis for fitting the model, e.g. [‘x’,’z’]






	Returns

	math model



	Return type

	math_model










	
flip_data(df)

	Rotate data by 180 degrees


	Parameters

	df (dataframe) – Pandas dataframe containing x,y,z data



	Returns

	Rotated dataframe










	
integrand(x)

	Function to integrate to calculate arclength


	Parameters

	x (float) – integer value for x



	Returns

	arclength value for integrating



	Return type

	float










	
pca_transform_2d(df, pca, comp_order, fit_dim, deg=2, mm=None, vertex=None, flip=None)

	Transforms df in 2D based on the PCA object, pca, whose transformation matrix has already been calculated

Calling brain.align_data() creates brain.df_align


Warning

fit_dim is not used to determine which dimensions to fit. Defaults to x and z




	Parameters

	
	df (pd.DataFrame) – Dataframe containing thresholded xyz data


	pca (pca_object) – A pca object containing a transformation object, e.g. brain.pcamed


	comp_order (array) – Array specifies the assignment of components to x,y,z. Form [x component index, y component index, z component index], e.g. [0,2,1]


	fit_dim (array) – Array of length two containing two strings describing the first and second axis for fitting the model, e.g. [‘x’,’z’]


	deg (int) – (or None) Degree of the function that should be fit to the model. deg=2 by default


	mm – (math_model or None) Math model for primary channel


	vertex (array) – (or None) Array of type [vx,vy,vz] (brain.vertex) indicating the translation values


	flip (Bool) – (or None) Boolean value to determine if the data should be rotated by 180 degrees













	
pca_transform_3d(df, pca, comp_order, fit_dim, deg=2, mm=None, vertex=None, flip=None)

	Transforms df in 3D based on the PCA object, pca, whose transformation matrix has already been calculated


	Parameters

	
	df (pd.DataFrame) – Dataframe containing thresholded xyz data


	pca (pca_object) – A pca object containing a transformation object, e.g. brain.pcamed


	comp_order (array) – Array specifies the assignment of components to x,y,z. Form [x component index, y component index, z component index], e.g. [0,2,1]


	fit_dim (array) – Array of length two containing two strings describing the first and second axis for fitting the model, e.g. [‘x’,’z’]


	deg (int) – (or None) Degree of the function that should be fit to the model. deg=2 by default


	mm – (math_model or None) Math model for primary channel


	vertex (array) – (or None) Array of type [vx,vy,vz] (brain.vertex) indicating the translation values


	flip (Bool) – (or None) Boolean value to determine if the data should be rotated by 180 degrees













	
plot_projections(df, subset)

	Plots the x, y, and z projections of the input dataframe in a matplotlib plot


	Parameters

	
	df (pd.DataFrame) – Dataframe with columns: ‘x’,’y’,’z’


	subset (float) – Value between 0 and 1 indicating what percentage of the df to subsample






	Returns

	Matplotlib figure with three labeled scatterplots










	
preprocess_data(threshold, scale, microns)

	Thresholds and scales data prior to PCA

Creates brain.threshold, brain.df_thresh, and brain.df_scl


	Parameters

	
	threshold (float) – Value between 0 and 1 to use as a cutoff for minimum pixel value


	scale (array) – Array with three values representing the constant by which to multiply x,y,z respectively


	microns (array) – Array with three values representing the x,y,z micron dimensions of the voxel









	
threshold

	Value used to threshold the data prior to calculating the model






	
df_thresh

	Dataframe containing only points with values above the specified threshold






	
df_scl

	Dataframe containing data from brain.df_thresh after a scaling value has been applied










	
process_alignment_data(data, threshold, radius, microns)

	Applies a median filter twice to the data which is used for alignment

Ensures than any noise in the structural data does not interfere with alignment


	Parameters

	
	data (array) – Raw data imported by the function brain.read_data()


	threshold (float) – Value between 0 and 1 to use as a cutoff for minimum pixel value


	radius (int) – Integer that determines the radius of the circle used for the median filter


	microns (array) – Array with three values representing the x,y,z micron dimensions of the voxel






	Returns

	Dataframe containing data processed with the median filter and threshold










	
read_data(filepath)

	Reads 3D data from file and selects appropriate channel based on the
assumption that the channel with the most zeros has zero as the value for no signal


	Parameters

	filepath (str) – Filepath to hdf5 probability file



	Returns

	Creates the variable brain.raw_data






	
raw_data

	Array of shape [z,y,x] containing raw probability data










	
setup_test_data(size=None, gthresh=0.5, scale=[1, 1, 1], microns=[0.16, 0.16, 0.21], mthresh=0.2, radius=20, comp_order=[0, 2, 1], fit_dim=['x', 'z'], deg=2)

	Setup a test dataset to use for testing transform coordinates
:param int size: Number of points to sample for the test dataset






	
subset_data(df, sample_frac=0.5)

	Takes a random sample of the data based on the value between 0 and 1 defined for sample_frac

Creates the variable brain.subset


	Parameters

	
	pd.DataFrame – Dataframe which will be sampled


	sample_frac (float) – (or None) Value between 0 and 1 specifying proportion of the dataset that should be randomly sampled for plotting









	
subset

	Random sample of the input dataframe










	
transform_coordinates()

	Transform coordinate system so that each point is defined relative to math model by (alpha,theta,r) (only applied to brain.df_align)


	Returns

	appends columns r, xc, yc, zc, ac, theta to brain.df_align














	
deltascope.calc_variance(anum, dfs)

	Calculate the variance between samples according to bin position and variance between adjacent bins


	Parameters

	
	anum (int) – Number of bins which the arclength axis should be divided into


	dfs (dict) – Dictionary of dfs which are going to be processed






	Returns

	Two arrays: svar (anum,tnum) and bvar (anum*tnum,snum)



	Return type

	np.array










	
deltascope.calculate_area_error(pdf, Lkde, x)

	Calculate area between PDF and each kde in Lkde


	Parameters

	
	pdf (array) – Array of probability distribution function that is the same shape as kdes in Lkde


	Lkde (list) – List of arrays of Kdes


	x (array) – Array of datapoints used to generate pdf and kdes






	Returns

	List of error values for each kde in Lkde










	
deltascope.calculate_models(Ldf)

	Calculate model for each dataframe in list and add to new dataframe


	Parameters

	Ldf (list) – List of dataframes containing aligned data



	Returns

	pd.Dataframe with a,b,c values for parabolic model










	
deltascope.convert_to_arr(xarr, tarr, DT, mdf, Ldf=[])

	Convert a pandas dataframe containing landmarks as columns and samples as rows into a 3D numpy array

The columns of mdf determine which landmarks will be saved into the array. Any additional dataframes that need to be converted can be included in Ldf


	Parameters

	
	xarr (np.array) – Array containing all unique x values of landmarks in the dataset


	tarr (np.array) – Array containing all unique t values of landmarks in the dataset


	DT (str) – Either r or pts indicating which data type should be saved to the array


	mdf (pd.DataFrame) – Main landmark dataframe containing landmarks as columns and samples as rows


	Ldf (list) – List of additional pd.DataFrames that should also be converted to arrays






	Returns

	Array of the main dataframe and list of arrays converted from Ldf










	
class deltascope.embryo(name, number, outdir)

	Class to managed multiple brain objects in a multichannel sample


	Parameters

	
	name (str) – Name of this sample set


	number (str) – Sample number corresponding to this embryo


	outdir (str) – Path to directory for output files









	
chnls

	Dictionary containing the brain object for each channel






	
outdir

	Path to directory for output files






	
name

	Name of this sample set






	
number

	Sample number corresponding to this embryo






	
add_channel(filepath, key)

	Add channel to embryo.chnls dictionary


	Parameters

	
	filepath (str) – Complete filepath to image


	key (str) – Name of the channel













	
add_psi_data(filepath, key)

	Read psi data into a channel dataframe


	Parameters

	
	filepath (str) – Complete filepath to data


	key (str) – Descriptive key for channel dataframe in dictionary













	
process_channels(mthresh, gthresh, radius, scale, microns, deg, primary_key, comp_order, fit_dim)

	Process all channels through the production of the brain.df_align dataframe


	Parameters

	
	mthresh (float) – Value between 0 and 1 to use as a cutoff for minimum pixel value for median data


	gthresh (float) – Value between 0 and 1 to use as a cutoff for minimum pixel value for general data


	radius (int) – Size of the neighborhood area to examine with median filter


	scale (array) – Array with three values representing the constant by which to multiply x,y,z respectively


	microns (array) – Array with three values representing the x,y,z micron dimensions of the voxel


	deg (int) – Degree of the function that should be fit to the model


	primary_key (str) – Key for the primary structural channel which PCA and the model should be fit too


	comp_order (array) – Array specifies the assignment of components to x,y,z. Form [x component index, y component index, z component index], e.g. [0,2,1]


	fit_dim (array) – Array of length two containing two strings describing the first and second axis for fitting the model, e.g. [‘x’,’z’]













	
save_projections(subset)

	Save projections of both channels into png files in embryo.outdir following the naming scheme [embryo.name]_[embryo.number]_[channel name]_MIP.png


	Parameters

	subset (float) – Value between 0 and 1 to specify the fraction of the data to randomly sample for plotting










	
save_psi()

	Save all channels into psi files following the naming scheme [embryo.name]_[embryo.number]_[channel name].psi










	
deltascope.find_anchors(df, dim)

	
	Parameters

	dim (str) – either y or z










	
deltascope.generate_kde(data, var, x, absv=False)

	Generate list of KDEs from either dictionary or list of data


	Parameters

	
	data – pd.DataFrames to convert


	var (str) – Name of column to select from df


	x (array) – Array of datapoints to evaluate KDE on


	absv (bool) – (or None) Set to True to use absolute value of selected data for KDE calculation






	Type

	dict or list



	Returns

	List of KDE arrays










	
class deltascope.landmarks(percbins=[10, 50, 90], rnull=15)

	Class to handle calculation of landmarks to describe structural data


	Parameters

	
	percbins (list) – (or None) Must be a list of integers between 0 and 100


	rnull (int) – (or None) When the r value cannot be calculated it will be set to this value









	
brain.lm_wt_rf

	pd.DataFrame, which wildtype landmarks will be added to






	
brain.lm_mt_rf

	pd.DataFrame, which mutant landmarks will be added to






	
brain.rnull

	Integer specifying the value which null landmark calculations will be set to






	
brain.percbins

	Integer specifying the percentiles which will be used to calculate landmarks






	
calc_bins(Ldf, ac_num, tstep)

	Calculates alpha and theta bins based on ac_num and tstep

Creates landmarks.acbins and landmarks.tbins


Warning

tstep does not handle scenarios where 2pi is not evenly divisible by tstep




	Parameters

	
	Ldf (dict) – Dict dataframes that are being used for the analysis


	ac_num (int) – Integer indicating the number of divisions that should be made along alpha


	tstep (float) – The size of each bin used for alpha









	
acbins

	List containing the boundaries of each bin along alpha based on ac_num






	
tbins

	List containing the boundaries of each bin along theta based on tstep










	
calc_mt_landmarks(df, snum, wt)

	
Warning

Deprecated function, but attempted to calculate mutant landmarks based on the number of points found in the wildtype standard








	
calc_perc(df, snum, dtype, out)

	Calculate landmarks for a dataframe based on the bins and percentiles that have been previously defined


	Parameters

	
	df (pd.DataFrame) – Dataframe containing columns x,y,z,alpha,r,theta


	snum (str) – String containing a sample identifier that can be converted to an integer


	dtype (str) – String describing the sample group to which the sample belongs, e.g. control or experimental






	Returns

	pd.DataFrame with new landmarks appended










	
calc_wt_reformat(df, snum)

	
Warning

Deprecated function, but includes code pertaining to calculating point based data












	
class deltascope.math_model(model)

	Object to contain attributes associated with the math model of a sample


	Parameters

	model (array) – Array of coefficients calculated by np.polyfit






	
cf

	Array of coefficients for the math model






	
p

	Poly1d function for the math model to allow calculation and plotting of the model










	
class deltascope.paramsClass(path=None, dparams=None)

	A class to read and validate parameters for multiprocessing transformation.
Validated parameters can be read as attributes of the object


	
add_outdir(path)

	Add out directory as an attribute of the class


	Parameters

	path (str) – Complete path to the output directory










	
check_config(D, path)

	Check that each parameter in the config file is correct and raise an error if it isn’t


	Parameters

	
	D (dict) – Dictionary containing parameters from the config file


	path (str) – Complete filepath to the config file

















	
deltascope.process_sample(num, root, outdir, name, chs, prefixes, threshold, scale, deg, primary_key, comp_order, fit_dim, flip_dim)

	Process single sample through brain class and saves df to csv


Warning

Out of date and will probably fail




	Parameters

	
	num (str) – Sample number


	root (str) – Complete path to the root directory for this sample set


	name (str) – Name describing this sample set


	outdir (str) – Complete path to output directory


	chs (array) – Array containing strings specifying the directories for each channel


	prefixes (array) – Array containing strings specifying the file prefix for each channel


	threshold (float) – Value between 0 and 1 to use as a cutoff for minimum pixel value


	scale (array) – Array with three values representing the constant by which to multiply x,y,z respectively


	deg (int) – Degree of the function that should be fit to the model


	primary_key (str) – Key for the primary structural channel which PCA and the model should be fit too













	
deltascope.read_psi(filepath)

	Reads psi file at the given filepath and returns data in a pandas DataFrame


	Parameters

	filepath (str) – Complete filepath to file



	Returns

	pd.Dataframe containing data










	
deltascope.read_psi_to_dict(directory, dtype)

	Read psis from directory into dictionary of dfs with filtering based on dtype


	Parameters

	
	directory (str) – Directory to get psis from


	dtype (str) – Usually ‘AT’ or ‘ZRF1’






	Returns

	Dictionary of pd.DataFrame










	
deltascope.reformat_to_cart(df)

	Take a dataframe in which columns contain the bin parameters and convert to a cartesian coordinate system


	Parameters

	df (pd.DataFrame) – Dataframe containing columns with string names that contain the bin parameter



	Returns

	pd.DataFrame with each landmark as a row and columns: x,y,z,r,r_std,t,pts










	
deltascope.rescale_variable(Ddfs, var, newvar)

	Rescale variable from -1 to 1 and save in newvar column on original dataframe


	Parameters

	
	Ddfs (dict) – Dictionary of pd.DataFrames


	var (str) – Name of column to select from dfs


	newvar (str) – Name to use for new data in appended column






	Returns

	Dictionary of dataframes containing column of rescaled data










	
deltascope.subplot_lmk(ax, p, avg, sem, parr, xarr, tarr, dtype, Pn={'alpha': 0.3, 'cmap': 'Greys_r', 'mtc': 'r', 'tarr': None, 'wtc': 'b', 'xarr': None, 'zfb': 1, 'zln': 2, 'zpt': 3})

	Plot a ribbon of average and standard error of the mean onto the subplot, ax


	Parameters

	
	ax (plt.Subplot) – Matplotlib subplot onto which the data should be plotted


	p (list) – List of two theta values that should be plotted


	avg (np.array) – Array of shape (xvalues,tvalues) containing the average values of the data


	sem (np.array) – Array of shape (xvalues,tvalues) containing the standard error of the mean values of the data


	parr (np.array) – Array of shape (xvalues,tvalues) containing the p values for the data


	dtype (str) – String describing sample type


	Pn – Dictionary containing the following values: ‘zln’:2,’zpt’:3,’zfb’:1,’wtc’:’b’,’mtc’:’r’,’alpha’:0.3,’cmap’:’Greys_r’






	Type

	dict or None










	
deltascope.write_data(filepath, df)

	Writes data in PSI format to file after writing header using write_header(). Closes file at the conclusion of writing data.


	Parameters

	
	filepath (str) – Complete filepath to output file


	df (pd.DataFrame) – dataframe containing columns x,y,z,ac,r,theta













	
deltascope.write_header(f)

	Writes header for PSI file with columns Id,x,y,z,ac,r,theta


	Parameters

	f (file) – file object created by ‘open(filename,’w’)`
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