

    
      
          
            
  
deepTools: tools for exploring deep sequencing data

[image: _images/start_collage.png]
deepTools is a suite of python tools particularly developed for the
efficient analysis of high-throughput sequencing data, such as ChIP-seq, RNA-seq or MNase-seq.

There are 3 ways for using deepTools:


	Galaxy usage –  our public deepTools Galaxy server [http://deeptools.ie-freiburg.mpg.de] let’s you use the deepTools within the familiar Galaxy framework without the need to master the command line

	command line usage – simply download and install the tools (see Installation and The tools)

	API – make use of your favorite deepTools modules in your own python programs (see deepTools API)



The flow chart below depicts the different tool modules that are
currently available.

[image: _images/start_workflow1.png]
If the file names in the figure mean nothing to you,
please make sure to check our Glossary of NGS terms.
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	Installation

	The tools

	Advanced features

	Example usage

	Changes in deepTools2.0
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	deepTools API

	About





While developing deepTools, we continuously strive to create software
that fulfills the following criteria:


	efficiently extract reads from BAM files and perform various
computations on them

	turn BAM files of aligned reads into bigWig files using different
normalization strategies

	make use of multiple processors (speed!)

	generation of highly customizable images (change colours, size,
labels, file format, etc.)

	enable customized down-stream analyses, meaning that every
data set created can be stored by the user

	modular approach - compatibility, flexibility, scalability (i.e.
we can add more and more modules and make use of established methods)




Tip

For support, questions, or feature requests contact: deeptools@googlegroups.com



Please cite deepTools2 as follows:

Ramírez, Fidel, Devon P. Ryan, Björn Grüning, Vivek Bhardwaj, Fabian Kilpert, Andreas S. Richter,
Steffen Heyne, Friederike Dündar, and Thomas Manke.
“deepTools2: a next generation web server for deep-sequencing data analysis.” Nucleic Acids Research (2016): gkw257.

[image: _images/logo_mpi-ie1.jpg]
This tool suite is developed by the Bioinformatics Facility [http://www1.ie-freiburg.mpg.de/bioinformaticsfac] at the
Max Planck Institute for Immunobiology and Epigenetics,
Freiburg [http://www1.ie-freiburg.mpg.de/].







	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
Installation

Remember – deepTools are available for command line usage as well as for
integration into Galaxy servers!



	Requirements

	Command line installation using pip

	Command line installation without pip

	Galaxy installation
	Installation via Galaxy API (recommended)

	Installation via web browser

	Installation with Docker










Requirements


	Python 2.7 or Python 3.x

	numpy >= 1.8.0

	scipy >= 0.17.0

	py2bit >= 0.1.0

	pyBigWig >= 0.2.1

	pysam >= 0.8

	matplotlib >= 1.4.0



The fastest way to obtain Python 2.7 or Python 3.x together with numpy and scipy is
via the Anaconda Scientific Python
Distribution [https://store.continuum.io/cshop/anaconda/].
Just download the version that’s suitable for your operating system and
follow the directions for its installation. All of the requirements for deepTools can be installed in Anaconda with:

$ conda install -c bioconda deeptools








Command line installation using pip

Install deepTools using the following command:

$ pip install deeptools





All python requirements should be automatically installed.

If you need to specify a specific path for the installation of the tools, make use of pip install‘s numerous options:

$ pip install --install-option="--prefix=/MyPath/Tools/deepTools2.0" git+https://github.com/fidelram/deepTools.git








Command line installation without pip

You are highly recommended to use pip rather than these more complicated steps.


	Install the requirements listed above in the “requirements” section. This is done automatically by pip.



2. Download source code

$ git clone https://github.com/fidelram/deepTools.git





or if you want a particular release, choose one from https://github.com/fidelram/deepTools/releases:

$ wget https://github.com/fidelram/deepTools/archive/1.5.12.tar.gz
$ tar -xzvf





3. The config file will tell you what deepTools expects to be installed properly:

$ cat deepTools/deeptools/config/deeptools.cfg

[external_tools]
sort: sort

[general]
# if set to max/2 (no quotes around)
# half the available processors will
# be used
default_proc_number: max/2
test_root: ../deeptools/test/

# temporary dir:
# deepTools bamCoverage, bamCompare and correctGCbias
# write files to a temporary dir before merging them
# and creating a final file. This can be speed up
# by writting to /dev/shm but for this a large
# physical memory of the server is required. If
# this is the case in your system, uncomment
# the following line. Otherwise, setting the
# variable to 'default', deepTools will use the
# temporary file configured in the system.
# Any other path that wants to be used for temporary
# files can by given as well (ie, /tmp)
#tmp_dir: /dev/shm
tmp_dir: default





4. install the source code (if you don’t have root permission, you can set
a specific folder using the --prefix option)

$ python setup.py install --prefix /User/Tools/deepTools2.0








Galaxy installation

deepTools can be easily integrated into a local Galaxy [http://galaxyproject.org].
All wrappers and dependencies are available in the Galaxy Tool
Shed [http://toolshed.g2.bx.psu.edu/view/bgruening/deeptools].


Installation via Galaxy API (recommended)

First generate an API Key [http://wiki.galaxyproject.org/Admin/API#Generate_the_Admin_Account_API_Key]
for your admin user and run the the installation script:

$ python ./scripts/api/install_tool_shed_repositories.py \
        --api YOUR_API_KEY -l http://localhost/ \
        --url http://toolshed.g2.bx.psu.edu/ \
        -o bgruening -r <revision> --name suite_deeptools \
        --tool-deps --repository-deps --panel-section-name deepTools





The -r argument specifies the version of deepTools. You can get the
latest revision number from the test tool shed or with the following
command:

$ hg identify http://toolshed.g2.bx.psu.edu/repos/bgruening/suite_deeptools





You can watch the installation status under: Top Panel –> Admin –> Manage
installed tool shed repositories




Installation via web browser


	go to the admin page [http://localhost:8080/admin]

	select Search and browse tool sheds

	Galaxy tool shed –> Sequence Analysis –> deeptools

	install deeptools






Installation with Docker

The deepTools Galaxy instance is also available as a docker container, for those wishing to use the Galaxy framework but who also prefer a virtualized solution. This container is quite simple to install:

$ sudo docker pull quay.io/bgruening/galaxy-deeptools





To start and otherwise modify this container, please see the instructions on the docker-galaxy-stable github repository [https://github.com/bgruening/docker-galaxy-stable]. Note that you must use bgruening/galaxy-deeptools in place of bgruening/galaxy-stable in the examples, as the deepTools Galaxy container is built on top of the galaxy-stable container.


Tip

For support, questions, or feature requests contact:
deeptools@googlegroups.com









	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].













          

      

      

    

  

    
      
          
            
  
The tools


Note

With the release of deepTools 2.0, we renamed a couple of tools:



	heatmapper to plotHeatmap

	profiler to plotProfile

	bamCorrelate to multiBamSummary

	bigwigCorrelate to multiBigwigSummary

	bamFingerprint to plotFingerprint.






For more, see Changes in deepTools2.0.





	General principles
	Parameters to decrease the run time

	Filtering BAMs while processing





	Tools for BAM and bigWig file processing
	multiBamSummary

	multiBigwigSummary

	correctGCBias

	bamCoverage

	bamCompare

	bigwigCompare

	computeMatrix





	Tools for QC
	plotCorrelation

	plotPCA

	plotFingerprint

	bamPEFragmentSize

	computeGCBias

	plotCoverage





	Heatmaps and summary plots
	plotHeatmap

	plotProfile

	plotEnrichment





	Miscellaneous
	computeMatrixOperations


















	tool
	type
	input files
	main output file(s)
	application




	multiBamSummary
	data integration
	2 or more BAM
	interval-based table of values
	perform cross-sample analyses of read counts –> plotCorrelation, plotPCA


	multiBigwigSummary
	data integration
	2 or more bigWig
	interval-based table of values
	perform cross-sample analyses of genome-wide scores –> plotCorrelation, plotPCA


	plotCorrelation
	visualization
	bam/multiBigwigSummary output
	clustered heatmap
	visualize the Pearson/Spearman correlation


	plotPCA
	visualization
	bam/multiBigwigSummary output
	2 PCA plots
	visualize the principal component analysis


	plotFingerprint
	QC
	2 BAM
	1 diagnostic plot
	assess enrichment strength of a ChIP sample


	computeGCBias
	QC
	1 BAM
	2 diagnostic plots
	calculate the exp. and obs. GC distribution of reads


	correctGCBias
	QC
	1 BAM, output from computeGCbias
	1 GC-corrected BAM
	obtain a BAM file with reads distributed according to the genome’s GC content


	bamCoverage
	normalization
	BAM
	bedGraph or bigWig
	obtain the normalized read coverage of a single BAM file


	bamCompare
	normalization
	2 BAM
	bedGraph or bigWig
	normalize 2 files to each other (e.g. log2ratio, difference)


	computeMatrix
	data integration
	1 or more bigWig, 1 or more BED
	zipped file for plotHeatmap or plotProfile
	compute the values needed for heatmaps and summary plots


	plotHeatmap
	visualization
	computeMatrix output
	heatmap of read coverages
	visualize the read coverages for genomic regions


	plotProfile
	visualization
	computeMatrix output
	summary plot (“meta-profile”)
	visualize the average read coverages over a group of genomic regions


	plotCoverage
	visualization
	1 or more BAM
	2 diagnostic plots
	visualize the average read coverages over sampled genomic  positions


	bamPEFragmentSize
	information
	1  BAM
	text with paired-end fragment length
	obtain the average fragment length from paired ends


	plotEnrichment
	visualization
	1 or more BAM and 1 or more BED/GTF
	A diagnostic plot
	plots the fraction of alignments overlapping the given features


	computeMatrixOperations
	miscellaneous
	1 or more BAM and 1 or more BED/GTF
	A diagnostic plot
	plots the fraction of alignments overlapping the given features






General principles

A typical deepTools command could look like this:

$ bamCoverage --bam myAlignedReads.bam \
--outFileName myCoverageFile.bigWig \
--outFileFormat bigwig \
--fragmentLength 200 \
--ignoreDuplicates \
--scaleFactor 0.5





You can always see all available command-line options via –help:

$ bamCoverage --help






	Output format of plots should be indicated by the file ending, e.g. MyPlot.pdf will return a pdf file, MyPlot.png a png-file

	All tools that produce plots can also output the underlying data - this can be useful in cases where you don’t like the deepTools visualization, as you can then use the data matrices produced by deepTools with your favorite plotting tool, such as R

	The vast majority of command line options are also available in Galaxy (in a few cases with minor changes to their naming).




Parameters to decrease the run time


	
	numberOfProcessors - Number of processors to be used

	
	For example, setting --numberOfProcessors 10 will split up the

	workload internally into 10 chunks, which will be
processed in parallel.









	
	region - Process only a single genomic region.

	This is particularly useful when you’re still trying    to figure out the best parameter setting. You can focus on a certain genomic region by setting, e.g., --region chr2 or
--region chr2:100000-200000







These parameters are optional and available throughout almost all deepTools.




Filtering BAMs while processing

Several deepTools modules allow for efficient processing of BAM files, e.g. bamCoverage and bamCompare.
We offer several ways to filter those BAM files on the fly so that you don’t need to pre-process them using other tools such as samtools [http://www.htslib.org/]


	
	ignoreDuplicates

	Reads with the same orientation and start position will be considered only once. If reads are paired, the mate is also evaluated





	
	minMappingQuality

	Only reads with a mapping quality score of at least this are considered





	
	samFlagInclude

	Include reads based on the SAM flag, e.g. --samFlagInclude 64 gets reads that are first in a pair. For translating SAM flags into English, go to: https://broadinstitute.github.io/picard/explain-flags.html





	
	samFlagExclude

	Exclude reads based on the SAM flags - see previous explanation.







These parameters are optional and available throughout deepTools.


Note

In version 2.3 we introduced a sampling method to correct the effect of filtering when normalizing using bamCoverage or bamCompare. For previous versions, if you know that your files will be strongly affected by  the filtering  of duplicates or reads of low quality then consider removing  those reads before using bamCoverage or bamCompare, as the filtering  by deepTools is done after the scaling factors are calculated!








Tools for BAM and bigWig file processing


multiBamSummary




multiBigwigSummary




correctGCBias




bamCoverage




bamCompare




bigwigCompare




computeMatrix






Tools for QC


plotCorrelation




plotPCA




plotFingerprint




bamPEFragmentSize




computeGCBias




plotCoverage






Heatmaps and summary plots


plotHeatmap




plotProfile




plotEnrichment






Miscellaneous


computeMatrixOperations







	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].













          

      

      

    

  

    
      
          
            
  
Advanced features

Some of the features of deepTools are not self-explanatory. Below, we provide links to longer expositions on these more advanced features:



	Blacklist Regions

	Metagene analyses

	Read extension

	Unscaled regions

	Offsetting signal to a given position

	Accessing datasets hosted on deepBlue

	plotFingerprint QC metrics












	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].









          

      

      

    

  

    
      
          
            
  
Example usage



	How we use deepTools for ChIP-seq analyses







	Step-by-step protocols

	Gallery of deepTools plots






How we use deepTools for ChIP-seq analyses

To get a feeling for what deepTools can do, we’d like to give you a brief glimpse into how we typically use deepTools for ChIP-seq analyses. For more detailed exampes and descriptions of the tools, simply follow the respective links.


Note

While some tools, such as plotFingerprint, specifically address ChIP-seq-issues, the majority of tools is widely applicable to deep-sequencing data, including RNA-seq.



[image: ../_images/start_workflow.png]
As shown in the flow chart above, our work usually begins with one or
more FASTQ
file(s) of deeply-sequenced samples. After preliminary quality control using
FASTQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/],
we align the reads to the reference genome, e.g., using
bowtie2 [http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml].
The standard output of bowtie2 (and other mapping tools) is in the form of sorted and indexed BAM files
that provide the common input and starting point for all subsequent deepTools analyses.
We then use deepTools to assess the quality of the aligned reads:


	Correlation between BAM files (multiBamSummary and plotCorrelation).
Together, these two modules perform a very basic test to see whether
the sequenced and aligned reads meet your expectations. We use this
check to assess reproducibility - either between replicates
and/or between different experiments that might have used the same
antibody or the same cell type, etc. For instance, replicates should
correlate better than differently treated samples.


Tip

You can also assess the correlation of bigWig files using multiBigwigSummary.







[image: ../_images/heatmap_SpearmanCorr_readCounts.png]

	Coverage check (plotCoverage). To see how many bp in the genome are actually covered by (a good number) of sequencing reads, we use plotCoverage which generates two diagnostic plots that help us decide whether we need to sequence deeper or not. The option --ignoreDuplicates is particularly useful here!



[image: ../_images/ExamplePlotCoverage.png]
For paired-end samples, we often additionally check whether the fragment sizes are more or less what we would expected based on the library preparation. The module bamPEFragmentSize can be used for that.

[image: ../_images/fragmentSize.png]

	GC-bias check (computeGCBias). Many sequencing protocols
require several rounds of PCR-based DNA amplification, which often introduces notable bias, due to many DNA polymerases preferentially amplifying GC-rich templates. Depending on the sample (preparation), the GC-bias can vary    significantly and we routinely check its extent. When we need to compare files with different GC biases, we use the correctGCBias module.
See the paper by Benjamini and Speed [http://nar.oxfordjournals.org/content/40/10/e72] for many insights into this problem.



[image: ../_images/ExampleCorrectGCBias.png]

	Assessing the ChIP strength. We do this quality control step to get a
feeling for the signal-to-noise ratio in samples from ChIP-seq
experiments. It is based on the insights published by Diaz et
al. [http://www.degruyter.com/view/j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml]



[image: ../_images/fingerprints.png]
Once we’re satisfied with the basic quality checks, we normally convert
the large BAM files into a leaner data format, typically
bigWig.
bigWig files have several advantages over BAM files, mainly stemming
from their significantly decreased size:


	useful for data sharing and storage

	intuitive visualization in Genome Browsers (e.g.
IGV [http://www.broadinstitute.org/igv/])

	more efficient downstream analyses are possible



The deepTools modules bamCompare and bamCoverage not only allow for simple conversion of BAM to bigWig (or bedGraph for that matter), but also for normalization, such that different samples can be compared  despite differences in their sequencing depth.

Finally, once all the converted files have passed our visual inspections (e.g., using the Integrative Genomics Viewer [https://www.broadinstitute.org/igv/]), the fun
of downstream analysis with computeMatrix, plotHeatmap and plotProfile can begin!







	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
Step-by-step protocols

This section should give you an overview of how to do many common tasks. We’re using screenshots from Galaxy here.
If you’re using the command-line version you can easily follow the given examples since the vast majority of parameters is either indicated in Galaxy, too. Otherwise, just type the program name and the help option (e.g. /deepTools/bin/bamCoverage --help), which will show you all the parameters and options available. Alternatively, you can follow the respective link to the tool documentation here on readthedocs.


Note

Do let us know if you spot things that are missing or should be explained better! Just send an email to deeptools@googlegroups.com.



All protocols assume that you have uploaded your files into a Galaxy instance with a deepTools installation, e.g., deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de]. If you need help to get started with Galaxy in general, e.g. to upload your data, see Using deepTools within Galaxy and Data import into Galaxy.


Tip

If you would like to try out the protocols with sample data, go to deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de]  –> “Shared Data”  –> “Data Libraries”  –> “deepTools Test Files”. Simply select BED/BAM/bigWig files and click, “to History”. You can also download the test data sets to your computer by clicking “Download” at the top.




How to do...?


	QC and data processing
	I have downloaded/received a BAM file - how do I generate a file I can look at in a genome browser?

	How can I assess the reproducibility of my sequencing replicates?

	How do I know whether my sample is GC biased? And if it is, how do I correct for it?

	How do I get an input-normalized ChIP-seq coverage file?

	How can I compare the ChIP strength for different ChIP experiments?





	Heatmaps and summary plots
	How do I get a (clustered) heatmap of sequencing-depth-normalized read coverages around the transcription start site of all genes?

	How can I compare the average signal for X-specific and autosomal genes for 2 or more different sequencing experiments?
	How to obtain a BED file for X chromosomal and autosomal genes each

	Compute the average values for X and autosomal genes
















QC and data processing


I have downloaded/received a BAM file - how do I generate a file I can look at in a genome browser?


	tool: bamCoverage

	input: your BAM file with aligned reads



Of course, you could also look at your BAM file in the genome browser.
However, generating a bigWig file of read coverages will drastically reduce the size of the file, it also allows you to normalize the coverage to 1x sequencing depth, which makes a visual comparison of multiple files more feasible.

[image: ../_images/GalHow_bamCoverage.png]





How can I assess the reproducibility of my sequencing replicates?

Typically, you’re going to be interested in the correlation of the read coverages for different replicates and different samples. What you want to see is that replicates should correlate better than non-replicates.
The ENCODE consortium recommends [http://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf] that for messenger RNA,
(...) biological replicates [should] display 0.9 correlation for transcripts/features. For more information about correlation calculations, see the background description for plotCorrelation.


	tools: multiBamSummary followed by plotCorrelation

	
	input: BAM files

	
	you can compare as many samples as you want, though the more you use the longer the computation will take











[image: ../_images/GalHow_multiBamSummary.png]
[image: ../_images/GalHow_plotCorrelation.png]

Tip

If you would like to do a similar analysis based on bigWig files, use the tool multiBigwigSummary instead.








How do I know whether my sample is GC biased? And if it is, how do I correct for it?


	input: BAM file

	use the tool computeGCBias on that BAM file (default settings, just make sure your reference genome and genome size are matching)



[image: ../_images/GalHow_computeGCbias.png]

	have a look at the image that is produced and compare it to the examples here



	if your sample shows an almost linear increase in exp/obs coverage (on the log scale of the lower plot), then you should consider correcting the GC bias - if you think that the biological interpretation of this data would otherwise be compromised (e.g. by comparing it to another sample that does not have an inherent GC bias)



	the GC bias can be corrected with the tool correctGCBias using the second output of the computeGCbias tool that you had to run anyway










[image: ../_images/GalHow_correctGCbias.png]

Warning

correctGCbias will add reads to otherwise depleted regions (typically GC-poor regions), that means that you should not remove duplicates in any downstream analyses based on the GC-corrected BAM file. We therefore recommend removing duplicates before doing the correction so that only those duplicate reads are kept that were produced by the GC correction procedure.








How do I get an input-normalized ChIP-seq coverage file?


	input: you need two BAM files, one for the input and one for the ChIP-seq experiment

	tool: bamCompare with ChIP = treatment, input = control sample



[image: ../_images/GalHow_bamCompare.png]





How can I compare the ChIP strength for different ChIP experiments?


	tool: plotFingerprint

	input: as many BAM files of ChIP-seq samples as you’d like to compare (it is helpful to include the input control to see what a hopefully non-enriched sample looks like)



[image: ../_images/GalHow_plotFingerprint.png]

Tip

For more details on the interpretation of the plot, see plotFingerprint or select the tool within the deepTools Galaxy and scroll down for more information.










Heatmaps and summary plots


How do I get a (clustered) heatmap of sequencing-depth-normalized read coverages around the transcription start site of all genes?


	tools: computeMatrix, then plotHeatmap

	
	inputs:

	
	1 bigWig file of normalized read coverages (e.g. the output of bamCoverage or bamCompare)

	1 BED or INTERVAL file of genes, e.g. obtained through Galaxy via “Get Data” –> “UCSC main table browser” –> group: “Genes and Gene Predictions” –> (e.g.) “RefSeqGenes” –> send to Galaxy (see screenshots below)











[image: ../_images/GalHow_clustHM01.png]

	use computeMatrix with the bigWig file and the BED file

	indicate reference-point (and whatever other option you would like to tune, see screenshot below)



[image: ../_images/GalHow_clustHM02.png]

	
	use the output from computeMatrix with plotHeatmap

	
	if you would like to cluster the signals, choose k-means clustering (last option of “advanced options”) with a reasonable number of clusters (usually between 2 to 7)











[image: ../_images/GalHow_clustHM03.png]





How can I compare the average signal for X-specific and autosomal genes for 2 or more different sequencing experiments?

Make sure you’re familiar with computeMatrix and plotProfile before using this protocol.


	
	tools:

	
	Filter data on any column using simple expressions

	computeMatrix

	plotProfile

	(plotting the summary plots for multiple samples)









	
	inputs:

	
	several bigWig files (one for each sequencing experiment you would like to compare)

	two BED files, one with X-chromosomal and one with autosomal genes












How to obtain a BED file for X chromosomal and autosomal genes each


	download a full list of genes via “Get Data” –> “UCSC main table browser” –> group:”Genes and Gene Predictions” –> tracks: (e.g.) “RefSeqGenes” –> send to Galaxy



	filter the list twice using the tool “Filter data on any column using simple expressions”



	first use the expression: c1==”chrX” to filter the list of all genes –> this will generate a list of X-linked genes

	then re-run the filtering, now with c1!=”chrX”, which will generate a list of genes that do not belong to chromosome X (!= indicates “not matching”)













Compute the average values for X and autosomal genes


	use computeMatrix for all of the signal files (bigWig format) at once



	supply both filtered BED files (click on “Add new regions to plot” once) and label them

	indicate the corresponding signal files








	now use plotProfile on the resulting file



	important: display the “advanced output options” and select “save the data underlying the average profile” –> this will generate a table in addition to the summary plot images










[image: ../_images/GalHow_profiles_XvsA02.png]






	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].















          

      

      

    

  

    
      
          
            
  
Gallery of deepTools plots


Note

If you have a nice deepTools plot that you’d like to share, we’ll be
happy to add it to our Gallery! Just send us an email:
deeptools@googlegroups.com




Published example plots


	Normalized ChIP-seq signals and peak regions

	DNase accessibility at enhancers in murine ES cells

	TATA box enrichments around the TSS of mouse genes

	Visualizing the GC content for mouse and fly genes

	CpG methylation around murine transcription start sites in two different cell types

	Histone marks for genes of the mosquito Anopheles gambiae

	Signals of repressive chromatin marks, their enzymes and repeat element conservation scores





We’re trying to collect a wide variety of plots generated using deepTools.
For the plots that we created ourselves, we try to point out the options that were used to create
each image, so perhaps these can serve as inspiration for you.


Normalized ChIP-seq signals and peak regions

This image was published by Ibrahim et al., 2014
(NAR) [http://bioinformatics.oxfordjournals.org/content/early/2014/09/26/bioinformatics.btu568].
They used deepTools to generate extended reads per kilobase per million
reads at 10 base resolution and visualized the resulting coverage files in
IGV.

[image: ../_images/coverage_Ibrahim.png]



DNase accessibility at enhancers in murine ES cells

The following image demonstrates that enhancer regions are typically
small stretches of highly accessible chromatin (more information on
enhancers can be found, for example,
here [http://dx.doi.org/doi:10.1038/nature07829]). In the heatmap,
yellow and blue tiles indicate a large numbers of reads that were
sequenced (indicative of open chromatin) and black spots indicate
missing data points. An appropriate labeling of the y-axis was
neglected.

[image: ../_images/hm_DNase.png]
Fast Facts:


	computeMatrix mode: reference-point

	regions file: BED file with typical enhancer regions from Whyte et al., 2013 [http://dx.doi.org/10.1016/j.cell.2013.03.035] (download here [https://raw.github.com/fidelram/deepTools/master/gallery/Whyte_TypicalEnhancers_ESC.bed])

	signal file: bigWig file with DNase signal from UCSC [http://hgdownload.cse.ucsc.edu/goldenPath/mm9/encodeDCC/wgEncodeUwDnase/wgEncodeUwDnaseEscj7S129ME0SigRep1.bigWig]

	heatmap cosmetics: labels, titles, heatmap height



Command:

$ computeMatrix reference-point \
 -S DNase_mouse.bigwig \
 -R Whyte_TypicalEnhancers_ESC.bed \
 --referencePoint center \
 -a 2000 -b 2000 \ ## regions before and after the enhancer centers
 -out matrix_Enhancers_DNase_ESC.tab.gz

$ plotHeatmap \
 -m matrix_Enhancers_DNase_ESC.tab.gz\
 -out hm_DNase_ESC.png \
 --heatmapHeight 15  \
 --refPointLabel enh.center \
 --regionsLabel enhancers \
 --plotTitle 'DNase signal' \








TATA box enrichments around the TSS of mouse genes

Using the TRAP [http://www.mybiosoftware.com/sequence-analysis/3894]
suite, we produced a bigWig file that contained TRAP scores for the
well-known TATA box motif along the mouse genome. The TRAP score is a
measure for the strength of a protein-DNA interaction at a given DNA
sequence; the higher the score, the closer the motif is to the consensus
motif sequence. The following heatmap demonstrates that:


	TATA-like motifs occur quite frequently

	there is an obvious clustering of TATA motifs slightly upstream of
the TSS of many mouse genes

	there are many genes that do not contain TATA-like motifs at their
promoter



Note that the heatmap shows all mouse RefSeq genes, so ca. 15,000
genes!

[image: ../_images/hm_TATApsem.png]
Fast Facts:


	computeMatrix mode: reference-point

	regions file: BED file with all mouse genes (from UCSC table browser)

	signal file: bigWig file of TATA psem scores

	heatmap cosmetics: color scheme, labels, titles, heatmap height, only showing heatmap + colorbar



Command:

$ computeMatrix reference-point \
 -S TATA_01_pssm.bw \
 -R RefSeq_genes.bed \
 --referencePoint TSS \
 -a 100 -b 100 \
 --binSize 5 \

$ plotHeatmap \
 -m matrix_Genes_TATA.tab.gz  \
 -out hm_allGenes_TATA.png \
 --colorMap hot_r \
 --missingDataColor .4 \
 --heatmapHeight 7 \
 --plotTitle 'TATA motif' \
 --whatToShow 'heatmap and colorbar' \
 --sortRegions ascend








Visualizing the GC content for mouse and fly genes

It is well known that different species have different genome GC
contents. Here, we used two bigWig files where the GC content was
calculated for 50 base windows along the genome of mice and flies and
the resulting scores visualized for gene regions.

The images nicely illustrate the completely opposite GC distributions in
flies and mice: while the gene starts of mammalian genomes are enriched
for Gs and Cs, fly promoters show depletion of GC content.

[image: ../_images/hm_GC.png]






	Fast Facts
	 




	computeMatrix mode
	scale-regions


	regions files
	BED files with mouse and fly genes (from UCSC table browser)


	signal file
	bigwig files with GC content


	heatmap cosmetics
	color scheme, labels, titles, color for missing data was set to white, heatmap height





Fly and mouse genes were scaled to different sizes due to the different
median sizes of the two species’ genes (genes of D.melanogaster
contain many fewer introns and are considerably shorter than mammalian
genes). Thus, computeMatrix had to be run with slightly different
parameters while the plotHeatmap commands were virtually identical
(except for the labels).

$ computeMatrix scale-regions \
 -S GCcontent_Mm9_50_5.bw \
 -R RefSeq_genes_uniqNM.bed \
 -bs 50
 -m 10000 -b 3000 -a 3000 \
 -out matrix_GCcont_Mm9_scaledGenes.tab.gz \
 --skipZeros \
 --missingDataAsZero

$ computeMatrix scale-regions \
 -S GCcontent_Dm3_50_5.bw \
 -R Dm530.genes.bed \
 -bs 50
 -m 3000 -b 1000 -a 1000 \
 -out matrix_GCcont_Dm3_scaledGenes.tab.gz \
 --skipZeros --missingDataAsZero

$ plotHeatmap \
 -m matrix_GCcont_Dm3_scaledGenes.tab.gz \
 -out hm_GCcont_Dm3_scaledGenes.png \
 --colorMap YlGnBu \
 --regionsLabel 'fly genes' \
 --heatmapHeight 15 \
 --plotTitle 'GC content fly' &

$ plotHeatmap \
 -m matrix_GCcont_Mm9_scaledGenes.tab.gz \
 -out hm_GCcont_Mm9_scaledGenes.png \
 --colorMap YlGnBu \
 --regionsLabel 'mouse genes' \
 --heatmapHeight 15 \
 --plotTitle 'GC content mouse' &








CpG methylation around murine transcription start sites in two different cell types

In addition to the methylation of histone tails, the cytosines
can also be methylated (for more information on CpG methylation,
read
here [http://www.nature.com/scitable/topicpage/the-role-of-methylation-in-gene-expression-1070]).
In mammalian genomes, most CpGs are methylated unless they are in
gene promoters that need to be kept unmethylated to allow full
transcriptional activity. In the following heatmaps, we used genes
expressed primarily in ES cells and checked the
percentages of methylated cytosines around their transcription start
sites. The blue signal indicates that very few methylated cytosines are
found. When you compare the CpG methylation signal between ES cells and
neuronal progenitor (NP) cells, you can see that the majority of genes remain unmethylated,
but the general amount of CpG methylation around the TSS increases, as
indicated by the stronger red signal and the slight elevation of the CpG
methylation signal in the summary plot. This supports the notion that
genes stored in the BED file indeed tend to be more expressed in ES
than in NP cells.

This image was taken from Chelmicki & Dündar et al. (2014),
eLife [http://elifesciences.org/content/3/e02024].

[image: ../_images/hm_CpG.png]






	Fast Facts
	 




	computeMatrix mode
	reference-point


	regions files
	BED file mouse genes expressed in ES cells


	signal file
	bigWig files with fraction of methylated cytosins (from Stadler et al., 2011 [http://dx.doi.org/10.1038/nature10716])


	heatmap cosmetics
	color scheme, labels, titles, color for missing data was set to customized color, y-axis of profiles were changed, heatmap height





The commands for the bigWig files from the ES and NP cells
were the same:

$ computeMatrix reference-point \
 -S GSE30202_ES_CpGmeth.bw \
 -R activeGenes_ESConly.bed \
 --referencePoint TSS \
 -a 2000 -b 2000 \
 -out matrix_Genes_ES_CpGmeth.tab.gz

$ plotHeatmap \
 -m matrix_Genes_ES_CpGmeth.tab.gz \
 -out hm_activeESCGenes_CpG_ES_indSort.png \
 --colorMap jet \
 --missingDataColor "#FFF6EB" \
 --heatmapHeight 15 \
 --yMin 0 --yMax 100 \
 --plotTitle 'ES cells' \
 --regionsLabel 'genes active in ESC'








Histone marks for genes of the mosquito Anopheles gambiae

This figure was taken from Gómez-Díaz et al. (2014): Insights into the
epigenomic landscape of the human malaria vector *Anopheles gambiae*.
From Genet
Aug15;5:277 [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4133732/].
It shows the distribution of H3K27Me3 (left) and H3K27Ac (right) over
gene features in A. gambiae midguts. The enrichment or
depletion is shown relative to chromatin input. The regions in the map
comprise gene bodies flanked by a segment of 200 bases at the 5′ end of
TSSs and TTSs. Average profile across gene regions ±200 bases for each
histone modification are shown on top.

[image: ../_images/hm_histonesGomez.png]



Signals of repressive chromatin marks, their enzymes and repeat element conservation scores

This image is from Bulut-Karsliogu and De La Rosa-Velázquez et al.
(2014), Mol
Cell. [http://www.sciencedirect.com/science/article/pii/S1097276514004535]
The heatmaps depict various signal types for unscaled peak regions of
proteins and histone marks associated with repressed chromatin. The
peaks were separated into those containing long interspersed elements
(LINEs) on the forward and reverse strand. The signals include
normalized ChIP-seq signals for H3K9Me3, Suv39h1, Suv39h2, Eset, and
HP1alpha-EGFP, followed by LINE and ERV content and repeat conservation
scores.

[image: ../_images/hm_Bulut.png]






	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
Changes in deepTools2.0



	Major changes
	Accommodating additional data types

	Structural updates

	Renamed tools

	Increased efficiency

	New features and tools





	Minor changes
	Changed parameters names and settings

	Bug fixes










Major changes


Note

The major changes encompass features for increased efficiency, new sequencing data types, and additional plots, particularly for QC.



Moreover, deepTools modules can now be used by other python programs.
The deepTools API example is part of the new documentation.


Accommodating additional data types


	correlation and comparisons can now be calculated for bigWig files (in addition to BAM files) using multiBigwigSummary and bigwigCompare

	RNA-seq: split-reads are now natively supported

	MNase-seq: using the new option --MNase in bamCoverage, one can now compute read coverage only taking the 2 central base pairs of each mapped fragment into account.






Structural updates


	All modules have comprehensive and automatic tests that evaluate proper functioning after any modification of the code.

	Virtualization for stability: we now provide a docker image and enable the easy deployment of deepTools via the Galaxy toolshed.

	Our documentation is now version-aware thanks to readthedocs and sphinx.

	The API is public and documented.






Renamed tools


	heatmapper to plotHeatmap

	profiler to plotProfile

	bamCorrelate to multiBamSummary

	bigwigCorrelate to multiBigwigSummary

	bamFingerprint to plotFingerprint






Increased efficiency


	We dramatically improved the speed of bigwig related tools (multiBigwigSummary and computeMatrix) by using the new pyBigWig module [https://github.com/dpryan79/pyBigWig].

	It is now possible to generate one composite heatmap and/or meta-gene image based on multiple bigwig files in one go (see computeMatrix, plotHeatmap, and plotProfile for examples)

	computeMatrix now also accepts multiple input BED files. Each is treated as a group within a sample and is plotted independently.

	We added additional filtering options for handling BAM files, decreasing the need for prior filtering using tools other than deepTools: The --samFlagInclude and --samFlagExclude parameters can, for example, be used to only include (or exclude) forward reads in an analysis.

	We separated the generation of read count tables from the calculation of pairwise correlations that was previously handled by bamCorrelate. Now, read counts are calculated first using multiBamSummary or multiBigWigCoverage and the resulting output file can be used for calculating and plotting pairwise correlations using plotCorrelation or for doing a principal component analysis using plotPCA.






New features and tools


	Correlation analyses are no longer limited to BAM files – bigwig files are possible, too! (see multiBigwigSummary)

	Correlation coefficients can now be computed even if the data contains NaNs.

	
	Added new quality control tools:

	
	use plotCoverage to plot the coverage over base pairs

	use plotPCA for principal component analysis

	bamPEFragmentSize can be used to calculate the average fragment size for paired-end read data









	Added the possibility for hierarchical clustering, besides k-means to plotProfile and plotHeatmap

	plotProfile has many more options to make compelling summary plots








Minor changes


Changed parameters names and settings


	computeMatrix can now read files with DOS newline characters.

	--missingDataAsZero was renamed to --skipNonCoveredRegions for clarity in bamCoverage and bamCompare.

	Read extension was made optional and we removed the need to specify a default fragment length for most of the tools: --fragmentLength was thus replaced by the new optional parameter --extendReads.

	Added option --skipChromosomes to multiBigwigSummary, which can be used to, for example, skip all ‘random’ chromosomes.

	Added the option for adding titles to QC plots.






Bug fixes


	Resolved an error introduced by numpy version 1.10 in computeMatrix.

	Improved plotting features for plotProfile when using as plot type: ‘overlapped_lines’ and ‘heatmap’

	Fixed problem with BED intervals in multiBigwigSummary and multiBamSummary that returned wrongly labeled raw counts.

	multiBigwigSummary now also considers chromosomes as identical when the names between samples differ by ‘chr’ prefix, e.g. chr1 vs. 1.

	Fixed problem with wrongly labeled proper read pairs in a BAM file. We now have additional checks to determine if a read pair is a proper pair: the reads must face each other and are not allowed to be farther apart than 4x the mean fragment length.

	For bamCoverage and bamCompare, the behavior of scaleFactor was updated such that now, if given in combination with the normalization options (--normalizeTo1x or --normalizeUsingRPKM), the given scaling factor will be multiplied with the factor computed by the respective normalization method.









	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].













          

      

      

    

  

    
      
          
            
  
Using deepTools within Galaxy

Galaxy [http://galaxyproject.org/] is a tremendously useful platform developed by the Galaxy Team at Penn State and the Emory University. This platform is meant to offer access to a large variety of bioinformatics tools that can be used without computer programming experiences. That means, that the basic features of Galaxy will apply to every tool, i.e. every tool provided within a Galaxy framework will look very similar and will follow the concepts of Galaxy.

Our publicly available deepTools Galaxy instance can be found here:
deeptools.ie-freiburg.mpg.de [http://deeptools.ie-freiburg.mpg.de/].
This server also contains some additional tools that will enable users to analyse and visualize data from high-throughput sequencing experiments, starting from aligned reads.

Table of content



	Basic features of Galaxy
	The start site

	Details

	Handling failed files

	Workflows











	Data import into Galaxy
	Upload files from your computer

	Import data sets from the Galaxy data library

	Download annotation files from public data bases

	Copy data sets between histories











	Which tools can I find in the deepTools Galaxy?
	deepTools

	Working with text files and tables

	Basic arithmetics for tables










Basic features of Galaxy

Galaxy is a web-based platform for data intensive, bioinformatics-dependent research and it is being developed by Penn State and John Hopkins University. The original Galaxy can be found here [https://galaxyproject.org/].

Since it is impossible to meet all bioinformatics needs – that can range from evolutionary analysis to data from mass spectrometry to high-throughput DNA sequencing (and way beyond) – with one single web server, many institutes have installed their own versions of the Galaxy platform tuned to their specific needs.

Our deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de/] is such a specialized server dedicated to the analysis of high-throughput DNA sequencing data. The overall makeup of this web server, however, is the same as for any other Galaxy installation, so if you’ve used Galaxy before, you will learn to use deepTools in no time!


The start site

Here is a screenshot of what the start site will approximately look like:

[image: ../_images/Gal_startsite.png]
The start site contains 4 main features:







	Top menu
	Your gateway away from the actual analysis part into other sections of Galaxy, e.g. workflows and shared data.


	Tool panel
	What can be done? Find all tools installed in this Galaxy instance


	Main frame
	What am I doing? This is your main working space where input will be required from you once you’ve selected a tool.


	History panel
	What did I do? The history is like a log book: everything you ever did is recorded here.





For those visual learners, here’s an annotated screenshot:

[image: ../_images/Gal_startsite_with_comments.png]



Details

In the default state of the tool panel you see the tool categories, e.g. “Get Data”. If you click on them, you will see the individual tools belonging to each category, e.g. “Upload File from your computer”, “UCSC Main table browser” and “Biomart central server” in case you clicked on “Get Data”. To use a tool such as “Upload File from your computer”, just click on it.

The tool *search* panel is extremely useful as it allows you to enter a key word (e.g. “bam”) that will lead to all the tools mentioning the key word in the tool name.

Once you’ve uploaded any kind of data, you will find the history on the
right hand side filling up with green tiles.
Each tile corresponds to one data set that you either uploaded or created.
The data sets can be images, raw sequencing files, text files, tables - virtually anything.
The content of a data set cannot be modified - every time you want to change something within a data file (e.g. you would like to sort the values or add a line or cut a column), you will have to use a Galaxy tool that will lead to a new data set being produced.
This behaviour is often confusing for Galaxy novices (as histories tend to accumulate data sets very quickly), but it is necessary to enforce the strict policy of documenting every modification to a given data set.
Eventhough your history might be full of data sets with strange names, you will always be able to track back the source and evolution of each file.
Also, every data set can be downloaded to your computer individually.
Alternatively, you can download an entire history or share the history with another user.

Have a look at the following screenshot to get a feeling for how many information Galaxy keeps for you (which makes it very feasible to reproduce any analysis):

[image: ../_images/Gal_screenshot_dataSet.png]
Each data set can have 4 different states that are intuitively color-coded:

[image: ../_images/Gal_screenshot_dataSetStates.png]



Handling failed files


If you encounter a failed file after you’ve run a tool, please do the following steps (in this order):



	click on the center button on the lower left corner of the failed data set (i): did you chose the correct data files?

	if you’re sure that you chose the correct files, hit the re-run button (blue arrow in the lower left corner) - check again whether your files had the correct file format. If you suspect that the format might be incorrectly assigned (e.g. a file that should be a BED file is labelled as a tabular file), click the edit button (the pencil) of the input data file - there you can change the corresponding attributes

	if you’ve checked your input data and the error is persisting, click on the green bug (lower left corner of the failed data set) and send the bug report to us. You do not need to indicate a valid email-address unless you would like us to get in touch with you once the issue is solved.












Workflows

Workflows are Galaxy’s equivalent of protocols.
This is a very useful feature as it allows users to share their protocols and bioinformatic analyses in a very easy and transparent way.
This is the graphical representation of a Galaxy workflow that can easily be modified via drag’n’drop within the workflows manual (you must be registered with deepTools Galaxy to be able to generate your own workflows or edit published ones).

[image: ../_images/Gal_workflow.png]
More help


Hint

If you encounter a failing data set (marked in red), please send a bug report via the Galaxy bug report button and we will get in touch if you indicate your email address.









	http://wiki.galaxyproject.org/Learn
	Help for Galaxy usage in general


	deepTools Galaxy FAQs
	Frequently encountered issues with our specific Galaxy instance


	deeptools@googlegroups.com
	For issues not addressed in the FAQs











	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].













          

      

      

    

  

    
      
          
            
  
Data import into Galaxy

There are three main ways to populate your Galaxy history with data
files plus an additional one for sharing data within Galaxy.



	Upload files from your computer

	Import data sets from the Galaxy data library

	Download annotation files from public data bases

	Copy data sets between histories






Upload files from your computer

The data upload of files smaller than 2 GB that lie on your computer is fairly straight-forward: click on the category “Get data” and choose the tool “Upload file”.
Then select the file via the “Browse” button.

[image: ../_images/Gal_DataUpload.png]
For files greater than 2GB, there’s the option to upload via an FTP server. If your data is available via an URL that links to an FTP server, you can simply
paste the URL in the empty text box.

If you do not have access to an FTP server, you can directly upload to
our Galaxy’s FTP.


	Register with deeptools.ie-freiburg.mpg.de (via “User” ⟶ “register”; registration requires an email address and is free of charge)

	You will also need an FTP client, e.g. filezilla [https://filezilla-project.org/].

	Then login to the FTP client using your deepTools Galaxy user name and password (host: deeptools.ie-freiburg.mpg.de). Down below you see a screenshot of what that looks like with filezilla.

	Copy the file you wish to upload to the remote site (in filezilla, you can simply drag the file to the window on the right hand side)

	Go back to deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de/].

	Click on the tool “Upload file” (⟶ “Files uploaded via FTP”) - here, the files you just copied over via filezilla should appear. Select the files you want and hit “execute”. They will be moved from the FTP server to your history (i.e. they will be deleted from the FTP once the upload was successful).



[image: ../_images/Gal_filezilla.png]



Import data sets from the Galaxy data library

If you would like to play around with sample data, you can import files
that we have saved within the general data storage of the deepTools
Galaxy server. Everyone can import them into his or her own history,
they will not contribute to the user’s disk quota.

You can reach the data library via “Shared Data” in the top menu, then
select “Data Libraries”.

Within the Data Library you will find a folder called “Sample Data” that
contains data that we downloaded from the Roadmap
project [http://www.roadmapepigenomics.org/data] and
UCSC [http://genome.ucsc.edu/]
More precisely, we donwloaded the [FASTQ][] files of various ChIP-seq samples and the corresponding input and mapped the reads to the human reference genome (version hg19) to obtain the [BAM][] files you see.
In addition, you will find bigWig files created using bamCoverage and some annotation files in BED format as well as RNA-seq data.


Note

To keep the file size smallish, all files contain data for chromosome 19 and chromosome X only!



[image: ../_images/Gal_DataLib.png]



Download annotation files from public data bases

In many cases you will want to query your sequencing data results for
known genome annotation, such as genes, exons, transcription start sites
etc. These information can be obtained via the two main sources of
genome annotation, UCSC [http://genome.ucsc.edu/] and BioMart [http://www.biomart.org/].


Warning

UCSC and BioMart cater to different ways of genome annotation, i.e. genes defined in UCSC might not correspond to the same regions in a gene file downloaded from BioMart. (For a brief overview over the issues of genome annotation, you can check out Wikipedia [http://en.wikipedia.org/wiki/Genome_project], if you always wanted to know much more about those issues, this [http://www.ncbi.nlm.nih.gov/pubmed/22510764] might be a good start.)



You can access the data stored at UCSC or BioMart conveniently through our Galaxy instance which will import the resulting files into your history. Just go to “Get data” ⟶ “UCSC” or “BioMart”.

The majority of annotation files will probably be in [BED][] format, however, you can also find other data sets.
UCSC, for example, offers a wide range of data that you can browse via the “group” and “track” menus (for example, you could download the GC content of the genome as a signal file from UCSC via the “group” menu (“Mapping and Sequencing Tracks”).


Warning

The download through this interface is limited to 100,000 lines per file which might not be sufficient for some mammalian data sets.



Here’s a screenshot from downloading a BED-file of all RefSeq genes defined for the human genome (version hg19):

[image: ../_images/Gal_UCSC.png]
And here’s how you would do it for the BioMart approach:

[image: ../_images/Gal_biomart.png]

Tip

Per default, BioMart will not output a BED file like UCSC does. It is therefore important that you make sure you get all the information you need (most likely: chromosome, gene start, gene end, ID, strand) via the “Attributes” section. You can click on the “Results” button at any time to check the format of the table that will be sent to Galaxy (Note that the strand information will be decoded as 1 for “forward” or “plus” strand and -1 for “reverse” or “minus” strand).




Warning

Be aware, that BED files from UCSC will have chromosomes labelled with “chr” while ENSEMBL usually returns just the number – this might lead to incompatibilities, i.e. when working with annotations from UCSC and ENSEMBL, you need to make sure to use the same naming!






Copy data sets between histories

If you have registered with deepTools Galaxy you can have more than one history.

In order to minimize the disk space you’re occupying we strongly suggest to copy data sets between histories when you’re using the same data set in different histories.


Note

Copying data sets is only possible for registered users.



[image: ../_images/Gal_copy.png]
Copying can easily be done via the History panel’s option button ⟶ “Copy dataset”. In the main frame, you should now be able to select the history you would like to copy from on the left hand side and the target history on the right hand side.

More help


Hint

If you encounter a failing data set (marked in red), please send a bug report via the Galaxy bug report button and we will get in touch if you indicate your email address.









	http://wiki.galaxyproject.org/Learn
	Help for Galaxy usage in general


	deepTools Galaxy FAQs
	Frequently encountered issues with our specific Galaxy instance


	deeptools@googlegroups.com
	For issues not addressed in the FAQs











	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
Which tools can I find in the deepTools Galaxy?

As mentioned before, each Galaxy installation can be tuned to the
individual interests.
Our goal is to provide a Galaxy that enables you to quality check, process and normalize and subsequently visualize your data obtained by high-throughput DNA sequencing.


Tip

If you do not know the difference between a BAM and a BED file, that’s fine. You can read up on them in our Glossary of NGS terms.




Tip

For more specific help, check our Galaxy-related FAQ and the Step-by-step protocols.



We provide the following kinds of tools:



	deepTools
	Tools for BAM and bigWig file processing

	Tools for QC of NGS data

	Heatmaps and summary plots





	Working with text files and tables
	Text manipulation

	Filter and Sort

	Join, Subtract, Group





	Basic arithmetics for tables






deepTools

The most important category is called “deepTools” that contains all the main tools we have developed.


Tools for BAM and bigWig file processing







	multiBamSummary
	get read counts for the binned genome or user-specified regions


	multiBigwigSummary
	calculate score summaries for the binned genome or user-specified regions


	correctGCBias
	obtain a BAM file with reads distributed according to the genome’s GC content


	bamCoverage
	obtain the normalized read coverage of a single BAM file


	bamCompare
	normalize 2 BAM files to each other (e.g. log2ratio, difference)


	bigwigCompare
	normalize the scores of two bigWig files to each other (e.g., ratios)


	computeMatrix
	compute the values needed for heatmaps and summary plots








Tools for QC of NGS data







	plotCorrelation
	calculate and visualize the pairwise Spearman or Pearson correlation of read counts (or other scores)


	plotPCA
	perform PCA and visualize the results


	plotFingerprint
	assess the ChIP enrichment strength


	bamPEFragmentSize
	obtain the average fragment length for paired-end samples


	computeGCBias
	assess the GC bias by calculating the expected and observed GC distribution of aligned reads


	plotCoverage
	obtain the normalized read coverage of a single BAM file








Heatmaps and summary plots







	plotHeatmap
	visualize read counts or other scores in heatmaps with one row per genomic region


	plotProfile
	visualize read counts or other scores using average profiles (e.g., meta-gene profiles)





For each tool, you can find example usages and tips within Galaxy once you select the tool.

In addition, you may want to check our pages about Example usage, particularly Step-by-step protocols.






Working with text files and tables

In addition to deepTools that were specifically developed for the handling of NGS data, we have incorporated several standard Galaxy tools that enable you to manipulate tab-separated files such as gene lists, peak lists, data matrices etc.

There are 3 main categories;

[image: ../_images/Gal_textfiles.png]

Text manipulation

Unlike Excel, where you can easily interact with your text and tables via the mouse, data manipulations within Galaxy are strictly based on commands.

If you feel like you would like to do something to certain columns of a data set, go through the tools of this category!

Example actions are:
* adding columns
* extracting columns
* pasting two files side by side
* selecting random lines
* etc.

A very useful tool of this category is called Trim: if you need to remove some characters from a column, this tool’s for you! (for example, sometimes you need to adjust the chromosome naming between two files from different source - using Trim, you can remove the “chr” in front of the chromosome name)




Filter and Sort

In addition to the common sorting and filtering, there’s the very useful tool to select lines that match an expression.
For example, using the expression c1=='chrM' will select all rows from a BED file with regions located on the mitochondrial chromosome.

[image: ../_images/Gal_filter.png]



Join, Subtract, Group

The tools of this category are very useful if you have several data sets that you would like to work with, e.g. by comparing them.

[image: ../_images/Gal_join.png]





Basic arithmetics for tables

We offer some very basic mathematical operations on values stored with tables.
The Summary Statistics can be used to calculate the sum, mean, standard deviation and percentiles for a set of numbers, e.g. for values stored in a specific column.

[image: ../_images/Gal_statistics.png]
More help


Hint

If you encounter a failing data set (marked in red), please send a bug report via the Galaxy bug report button and we will get in touch if you indicate your email address.









	http://wiki.galaxyproject.org/Learn
	Help for Galaxy usage in general


	deepTools Galaxy FAQs
	Frequently encountered issues with our specific Galaxy instance


	deeptools@googlegroups.com
	For issues not addressed in the FAQs











	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
General FAQ

Feel free to contribute your questions via deeptools@googlegroups.com


Note

We also have a Galaxy-related FAQ with questions that are more specific to Galaxy rather than deepTools usage.





	How does deepTools handle data from paired-end sequencing?

	How can I test a tool with little computation time?

	Can I specify more than one chromosome in the --regions option?
	General workaround

	Build-in solutions





	When should I exclude regions from computeGCBias?

	When should I use bamCoverage or bamCompare?

	What should I pay attention to when dealing with RNA-seq data?

	How does computeMatrix handle overlapping genome regions?
	Galaxy-based work around

	Command line-based work arounds





	Why does the maximum value in the heatmap not equal the maximum value in the matrix?

	The heatmap I generated looks very “coarse”, I would like a much more fine-grained image.

	How can I change the automatic labels of the clusters in a k-means clustered heatmap?

	How can I manually specify several groups of regions (instead of clustering)?

	What do I have to pay attention to when working with a draft version of a genome?

	How do I calculate the effective genome size for an organism that’s not in your list?
	Use GEM

	Use faCount

	Use bamCoverage

	Use genomeCoverageBed





	Where can I download the 2bit genome files required for computeGCBias?








How does deepTools handle data from paired-end sequencing?

Generally, all the modules working on BAM files (multiBamSummary, bamCoverage, bamCompare, plotFingerprint, computeGCBias) automatically recognize paired-end sequencing data and will use the fragment size based on the distance between read pairs.
You can by-pass the typical fragment handling on mate pairs with the option --doNotExtendPairedEnds (can be found under “advanced options” in Galaxy).






How can I test a tool with little computation time?

When you’re playing around with the tools to see what kinds of results they will produce, you can limit the operation to one chromosome or a specific region to save time. In Galaxy, you will find this under “advanced output options” –> “Region of the genome to limit the operation to”. The command line option is called --region (CHR:START:END).

The following tools currently have this option:


	multiBamSummary

	plotFingerprint

	computeGCBias, correctGCBias

	bamCoverage, bamCompare



It works as follows: first, the entire genome represented in the BAM file will be regarded and sampled, then all the regions or sampled bins that do not overlap the region indicated by the user will be discarded.


Note

You can limit the operation to only one chromosome (or one specific locus on a chromosome) at a time. If you would like to limit the operation to more than one region, see the answer to the next question.








Can I specify more than one chromosome in the --regions option?

The short answer is: no.

Several programs allow specifying a specific regions.
For these, the input must be in the format of chr:start:end, for example “chr10” or “chr10:456700:891000”.

For these programs, it is not possible to indicate more than one region, e.g. chr10, chr11 - this will not work! Here are some ideas for workarounds if you none-the-less need to do this:


General workaround

Since all the tools that have the --region option work on BAM files, you could filter your reads prior to running the program, e.g. using intersectBed with --abam or samtools view. Then use the resulting (smaller) BAM file with the deepTools program of your choice.

$ samtools view -b -L regionsOfInterest.bed Reads.bam > ReadsOverlappingWithRegionsOfInterest.bam





or

$ intersectBed -abam Reads.bam -b regionsOfInterest.bed > ReadsOverlappingWithRegionsOfInterest.bam








Build-in solutions

computeGCBias and multiBamSummary offer build-in solutions so that you do not need to resort to tools outside of deepTools.


	multiBamSummary has two modes, bins and BED.

	If you make use of the BED mode, you can supply a BED file of regions that you would like to limit the operation to. This will do the same thing as in the general workaround mentioned above.

	computeGCBias has a --filterOut option.

	If you to create a BED file that contains all the regions you are not interested in, you can then supply this file to computeGCBias --filterOut Regions_to_be_ignored.bed and those regions will subsequently be ignored.










When should I exclude regions from computeGCBias?


Note

In general, we recommend to only correct for GC bias (using computeGCBias followed by correctGCBias) if the majority of the genome (e.g., for mouse and human genomes the region between 30-60%) is GC-biased and you want to compare this sample with another sample that is not GC-biased.



Sometimes, a certain GC bias is expected, for example for ChIP samples of H3K4Me3 in mammalian samples where GC-rich promoters are expected to be enriched. To not confound the GC bias caused by the library preparation with the inherent, expected GC-bias, we incorporated the possibility to supply a file of regions to computeGCBias that will be excluded from the GC bias calculation. This file should typically contain those regions that one expects to be significantly enriched. This allows the tool to focus on background regions.






When should I use bamCoverage or bamCompare?

Both tools produce bigWig files, i.e. they translate the read-centered information from a BAM file into scores for genomic regions of a fixed size. The only difference is the number of BAM files that the tools use as input: while bamCoverage will only take one BAM file and produce a coverage file that is mostly normalized for sequencing depth, bamCompare will take two BAM files that can be compared with each other using several mathematical operations.

bamCompare will always normalize for sequencing depth like bamCoverage, but then it will perform additional calculations depending on what the user chose, for example:


	
	ChIP vs. input

	obtain a bigWig file of log2ratios(ChIP/input)





	
	treatment vs. control

	obtain a bigWig file of differences (treatment - control)





	
	replicate 1 and replicate 2

	obtain a bigWig file where the values from two BAM files are summed up (replicate 1 + replicate 2)












What should I pay attention to when dealing with RNA-seq data?

By default, deepTools (since version 2) makes use of the information stored in the so-called CIGAR string of the alignment file (SAM/BAM specification [https://samtools.github.io/hts-specs/SAMv1.pdf]). The CIGAR tells precisely to which bases of the reference a read maps - and, accordingly, which bases are skipped in the case of reads that span introns. These so-called split reads are natively handled by all modules of deepTools 2.0.


Warning

It is generally not recommended to activate the deepTools parameter --extendReads for RNA-seq data.

This is because there is no verified information on the fragment alignment outside the actual read sequence. A simple extension of a read over uncovered parts would probably be wrong for a lot of fragments! Activating the read extension also deactivates the utilization of the CIGAR.








How does computeMatrix handle overlapping genome regions?

If the BED file supplied to computeMatrix contains regions that overlap, the tool will report those regions and issue warnings, but they will just be taken as is. If you would like to prevent this, then clean the BED file before using computeMatrix. There are several methods for modifying your BED file.

Let’s say your file looks like this:

$ cat testBed.bed
chr1        10      20      region1
chr1        7       15      region2
chr1        18      29      region3
chr1        35      40      region4
chr1        10      20      region1Duplicate






Galaxy-based work around

To eliminate entries with identical genome coordinates, first use the tool “Count” and then filter out all entries that are present more than once.

[image: ../_images/Gal_FAQ_filteringDuplicates.png]



Command line-based work arounds


	if you just want to eliminate identical entries (here: region1 and region1Duplicate), use sort and uniq in the shell (note that the label of the identical regions is different - as uniq can only ignore fields at the beginning of a file, use rev to revert the sorted file, then uniq with ignoring the first field (which is now the name column) and then revert back:

$ sort -k1,1 -k2,2n testBed.bed | rev | uniq -f1 | rev
chr1        10      20      region1
chr1        7       15      region2
chr1        18      29      region3
chr1        35      40      region4







	if you would like to merge all overlapping regions into one big one, use the mergeBed from the BEDtools suite:


	again, the BED file must be sorted first



	-n and -nms tell mergeBed to output the number of overlapping regions and the names of them



	in the resulting file, regions 1, 2 and 3 are merged

$ sort -k1,1 -k2,2n testBed.bed | mergeBed -i stdin -n -nms
chr1      7       29      region2;region1;region1Duplicate;region3        4
chr1      35      40      region4 1











	if you would like to keep only regions that do not overlap with any other region in the same BED file, use the same mergeBed routine but subsequently filter out those regions where several regions were merged.


	the awk command will check the last field of each line ($NF) and will print the original line ($0) only if the last field contained a number smaller than 2

$ sort -k1,1 -k2,2n testBed.bed | mergeBed -i stdin -n -nms | awk '$NF < 2 {print $0}'
chr1      35      40      region4 1




















Why does the maximum value in the heatmap not equal the maximum value in the matrix?

Additional processing, such as outlier removal, is done on the matrix prior to plotting the heatmap. We’ve found this beneficial in most cases. You can override this by manually setting --zMax and/or `--zMin, respectively.






The heatmap I generated looks very “coarse”, I would like a much more fine-grained image.


	decrease the bin size when generating the matrix using computeMatrix




	In Galaxy:

	
	go to “advanced options” –> “Length, in base pairs, of the non-overlapping bin for averaging the score over the regions length” –> define a smaller value, e.g. 50 or 25 bp

	make sure that you used a sufficiently small bin size when calculating the bigWig file, though (if generated with deepTools, you can check the option “bin size”)












How can I change the automatic labels of the clusters in a k-means clustered heatmap?

Each cluster is treated exactly the same way as different groups of regions. Therefore, you can use the same option to define the labels of the final heatmap:


	In Galaxy:

	plotHeatmap –> “Advanced output options” –> “Labels for the regions plotted in the heatmap”.



If you indicated 2 clusters for k-means clustering, enter here: C1, C2, –> instead of the full default label (“cluster 1”), the heatmap will be labeled with the abbreviations.

[image: ../_images/Gal_FAQ_clusterLabeling.png]
In the command line, use the --regionsLabel option to define the customized names for the regions.






How can I manually specify several groups of regions (instead of clustering)?

Simply specify multiple BED files (e.g., genes.bed, exons.bed and introns.bed). This works both in Galaxy and on the command line.






What do I have to pay attention to when working with a draft version of a genome?

If your genome isn’t included in our standard dataset then you’ll need the following:


	Effective genome size - this is mostly needed for bamCoverage and bamCompare, see below for details

	Reference genome sequence in 2bit format - this is needed for computeGCBias, see 2bit for details








How do I calculate the effective genome size for an organism that’s not in your list?

At the moment we do not provide a tool for this purpose, so you’ll have to find a solution outside of deepTools for the time being.

The “real” effective genome size is the part of the genome that is uniquely mappable. This means that the value will depend on the genome properties (how many repetitive elements, quality of the assembly etc.) and the length of the sequenced reads as 100 million 36-bp-reads might cover less than 100 million 100-bp-reads.

We currently have these options for you:


	Use an GEM

	Use faCount (only if you let reads be aligned non-uniquely, too!)

	Use bamCoverage

	Use genomeCoverageBed




Use GEM

There is a tool that promises to calculate the mappability for any genome given the read length (k-mer length): GEM-Mappability Calculator [http://algorithms.cnag.cat/wiki/Man:gem-mappability#Mappability.2Falignability] . According to this reply here [https://groups.google.com/forum/#!topic/macs-announcement/-iIDkVwenn8], you can calculate the effective genome size after running this program by counting the numbers of ”!” which stands for uniquely mappable regions.




Use faCount

If you are using bowtie2, which reports multimappers (i.e., non-uniquely mapped reads) as a default setting, you can use faCount from UCSC tools to report the total number of bases as well as the number of bases that are missing from the genome assembly indicated by ‘N’. The effective genome size would then be the total number of base pairs minus the total number of ‘N’.
Here’s an example output of faCount on D. melanogaster genome version dm3:

$ UCSCtools/faCount dm3.fa
#seq                len             A       C       G        T       N       cpg
chr2L               23011544        6699731 4811687 4815192  6684734 200     926264
chr2LHet    368872          90881   58504   57899    90588   71000   10958
chr2R               21146708        6007371 4576037 4574750  5988450 100     917644
chr2RHet    3288761         828553  537840   529242  826306  566820  99227
chr3L               24543557        7113242 5153576  5141498 7135141 100     995078
chr3LHet    2555491         725986  473888   479000  737434 139183   89647
chr3R               27905053        7979156 5995211  5980227 7950459 0       1186894
chr3RHet    2517507         678829  447155   446597  691725  253201  84175
chr4                1351857         430227  238155   242039  441336  100     43274
chrU                10049037        2511952 1672330  1672987 2510979 1680789 335241
chrUextra   29004656        7732998 5109465  5084891 7614402 3462900 986216
chrX                22422827        6409325 4742952  4748415 6432035 90100   959534
chrXHet             204112          61961   40017    41813   60321  0        754
chrYHet             347038          74566   45769    47582   74889  104232   8441
chrM                19517           8152    2003     1479    7883   0        132
total               168736537       47352930 33904589 33863611 47246682 6368725 6650479





In this example:
Total no. bp = 168,736,537
Total no. ‘N’ = 6,368,725


Warning

This method only works if multimappers are randomly assigned to their possible locations (in such cases the effective genome size is simply the number of non-N bases).






Use bamCoverage

If you have a sample where you expect the genome to be covered completely, e.g. from genome sequencing, a very trivial solution is to use bamCoverage with a bin size of 1 bp and the --outFileFormat option set to ‘bedgraph’. You can then count the number of non-Zero bins (bases) which will indicate the mappable genome size for this specific sample.




Use genomeCoverageBed

genomeCoverageBed from the BEDtools suite can be used to calculate the number of bases in the genome for which 0 overlapping reads can be found.
As described on the BEDtools website [http://bedtools.readthedocs.org/en/latest/content/tools/genomecov.html] (go to genomeCov description), you need:


	a file with the chromosome sizes of your sample’s organism

	a position-sorted BAM file



$ bedtools genomecov -ibam sortedBAMfile.bam -g genome.size












Where can I download the 2bit genome files required for computeGCBias?

The 2bit files of most genomes can be found here [http://hgdownload.cse.ucsc.edu/gbdb/].
Search for the .2bit ending. Otherwise, fasta files can be converted to 2bit using the UCSC program
faToTwoBit (available for different platforms from UCSC here [http://hgdownload.cse.ucsc.edu/admin/exe/]).







	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
Galaxy-related FAQ



	I’ve reached my quota - what can I do to save some space?

	Copying from one history to another doesn’t work for me - the data set simply doesn’t show up in the target history!

	How can I use a published workflow?

	I would like to use one of your workflows - not in the deepTools Galaxy, but in the local Galaxy instance provided by my institute. Is that possible?

	plotProfile says that one option will only work if “computeMatrix was run with –missingDataAsZero”. How can I find out whether I ran computeMatrix that way?

	How can I have a look at the continuous read coverages from bigWig files? Which genome browser do you recommend?
	IGV (recommended)

	UCSC





	What’s the best way to integrate the deepTools results with other downstream analyses (outside of Galaxy)?

	How can I determine basic parameters of a BAM file, such as the number of reads, read length, duplication rate and average DNA fragment length?






I’ve reached my quota - what can I do to save some space?


	make sure that all the data sets you deleted are permanently eliminated from our disks: go to the history option button and select “Purge deleted data sets”, then hit the “refresh” button on top of your history panel

	download all data sets for which you’ve completed the analysis, then remove the data sets (click on the “x” and then make sure they’re purged (see above)).








Copying from one history to another doesn’t work for me - the data set simply doesn’t show up in the target history!


	Once you’ve copied a data set from one history to another, check two things:

	
	do you see the destination history in your history panel, i.e. does the title of the current history panel match the name of the destination history you selected in the main frame?

	hit the refresh button







[image: ../_images/Gal_historyReload.png]





How can I use a published workflow?

You must register if you want to use the workflows within deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de]. (“User” –> “Register” - all you have to supply is an email address). Make sure to read the Terms of Use, though!

You can find workflows that are public or specifically shared with you by another user via “Shared Data” –> “Published Workflows”. Click on the triangle next to the workflow you’re interested in and select “import”.

[image: ../_images/GalHow_wf01.png]
A green box should appear, there you select “start using this workflow”, which should lead you to your own workflow menu (that you can always access via the top menu “Workflow”). Here, you should now see a workflow labeled “imported: ....”. If you want to use the workflow right away, click on the triangle and select “Run”. The workflow should now be available within the Galaxy main data frame and should be waiting for your input.

[image: ../_images/GalHow_wf02.png]





I would like to use one of your workflows - not in the deepTools Galaxy, but in the local Galaxy instance provided by my institute. Is that possible?

Yes, it is possible. The only requirement is that your local Galaxy has a recent installation of deepTools.

Go to the workflows, click on the ones you’re interested in and go to “Download”. This will save the workflows into .ga files on your computer. Now go to your local Galaxy installation and login. Go to the workflow menu and select “import workflow” (top right hand corner of the page). Click on “Browse” and select the saved workflow. If you have the same tool versions installed in your local Galaxy, these workflows should work right away.






plotProfile says that one option will only work if “computeMatrix was run with –missingDataAsZero”. How can I find out whether I ran computeMatrix that way?

Galaxy keeps track of everything you do. To see which options you chose to generate a specific data set, simply click on the “info” button.

[image: ../_images/Gal_FAQ_info.png]





How can I have a look at the continuous read coverages from bigWig files? Which genome browser do you recommend?

There are 2 popular genome browsers for visualizing continuous data: UCSC [http://genome.ucsc.edu/cgi-bin/hgGateway?redirect=manual&source=genome-euro.ucsc.edu] and IGV [http://www.broadinstitute.org/igv/].


IGV (recommended)

We recommend downloading IGV [http://www.broadinstitute.org/igv/], which is free for academic use. IGV itself needs an up-to-date Java installation and a considerable amount of RAM. It’s usage is rather intuitive and the display can be easily customized. In addition, you can download genome-wide annotation data that can be displayed together with your own data.

To display data in IGV, do the following:


	Go to http://www.broadinstitute.org/igv/, register and download IGV

	Unpack the IGV archive and change to the extracted IGV folder

	Use the igv.bat (Windows), igv.sh (Linux) or igv.command (OSX) to start IGV (for more information please read the included readme.txt file or the IGV documentation).

	Choose the genome version of the file(s) you would like to visualize (e.g. dm3) THIS IS THE MOST IMPORTANT STEP! IGV will not detect the genome version automatically, i.e. if you select mm9 but your file is based on human data, it will still be displayed without an error message (but with the wrong positions, obviously!)

	Go to your deepTools Galaxy server (http://deeptools.ie-freiburg.mpg.de/) and navigate to your data set of choice

	Click on your data set so that you see its details like in the screenshot below (Keep in mind that not all datasets can be visualized in IGV or UCSC. We recommend to use bigWig or BED files for visualization.)



[image: ../_images/Gal_FAQ_IGV_dataset.png]
Now click on “display with IGV local” to visualize your data set in IGV that should already be running on your computer.


Note

“display with IGV Web current” can be used if you do not have an installed IGV. It will start an IGV web start version. We do *not* recommend that option.



Here’s a screenshot of a typical bigWig file display:

[image: ../_images/Gal_FAQ_IGV.png]
For more information, check out the IGV documentation [http://www.broadinstitute.org/software/igv/UserGuide].




UCSC

There is a direct link from within deepTools Galaxy to stream a data set to UCSC. You can find it in the data set tiles: “display at UCSC”, like here:

[image: ../_images/Gal_FAQ_UCSC_dataset.png]
Click on “main” and the UCSC browser should open within a new window, displaying the data set that you chose.
The default setting for bigWig files is the “dense” display that looks like a heatmap.

[image: ../_images/Gal_FAQ_UCSC01.png]
If you would like to display the continuous profile in a “valley-mountain” fashion like the one shown in the IGV screenshot, go to the drop-down menu underneath your custom track and choose “full”.

UCSC has large amounts of public data that you can display which you can find by scrolling down the page, beyond your custom track entry. For more information on how to use the UCSC Genome Browser, go here [https://genome.ucsc.edu/goldenPath/help/hgTracksHelp.html].

Known issues with UCSC


	chromosome naming: UCSC expects chromosome names to be indicated in the format “chr”Number, e.g. chr1. If you mapped your reads to a non-UCSC-standard genome, chances are that chromosomes are labeled just with their number. bigWig files generated from these BAM files will not be recognized by UCSC, i.e. you will see the data set name, but no signal.

	no upload of bigWig files from your hard drive: to minimize the computational strains, UCSC relies on streaming bigWig files (i.e. there’s no need to load the entire file at once, the browser will always just load the data for the specific region a user is looking at).










What’s the best way to integrate the deepTools results with other downstream analyses (outside of Galaxy)?

You can save all the data tables underlying every image produced by deepTools, i.e. if you would like to plot the average profiles in a different way, you could download the corresponding data (after ticking the relevant option under “advanced output options”) and import them into R, Excel, GraphPadPrism etc.

The descriptions of the tools within Galaxy will also contain details on how to save the data and what sort of format to expect.






How can I determine basic parameters of a BAM file, such as the number of reads, read length, duplication rate and average DNA fragment length?

If you downloaded the BAM file from a public repository, chances are that those characteristics are in fact noted there.

If that’s not the case, we recommend to have a look at the tool FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/], which will return all of the above points (except the fragment size).
The fragment size distribution can be obtained using the deepTools’ bamPEFragmentSize (since deepTools 2.0).







	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
Glossary of NGS terms

Like most specialized fields, next-generation sequencing has inspired many an acronyms.
We are trying to keep track of those Abbreviations that we heavily use.
Do make us aware if something is unclear: deeptools@googlegroups.com



	Abbreviations

	NGS and generic terminology
	bin

	Input

	read





	File Formats
	2bit

	BAM

	BED

	bedGraph

	bigWig

	FASTA

	FASTQ

	SAM
	SAM header section

	SAM alignment section














Abbreviations

Reference genomes are usually referred to by their abbreviations, such as:


	hg19 = human genome, version 19

	mm9 = Mus musculus genome, version 9

	dm3 = Drosophila melanogaster, version 3

	ce10 = Caenorhabditis elegans, version 10



For a more comprehensive list of available reference genomes and their abbreviations,
see the UCSC data base [http://hgdownload.soe.ucsc.edu/downloads.html].








	Acronym
	full phrase
	Synonyms/Explanation




	<ANYTHING>-seq
	-sequencing
	indicates that an experiment was completed by DNA sequencing using NGS


	ChIP-seq
	chromatin immunoprecipitation sequencing
	NGS technique for detecting transcription factor binding sites and histone modifications (see entry Input for more information)


	DNase
	deoxyribonuclease I
	DNase I digestion is used to determine active (“open”) chromatin regions


	HTS
	high-throughput sequencing
	next-generation sequencing, massive parallel short read sequencing, deep sequencing


	MNase
	micrococcal nuclease
	MNase digestion is used to determine sites with nucleosomes


	NGS
	next-generation sequencing
	high-throughput (DNA) sequencing, massive parallel short read sequencing, deep sequencing


	RPGC
	reads per genomic content
	normalize reads to 1x sequencing depth, sequencing depth is defined as: (mapped reads x fragment length) / effective genome size


	RPKM
	reads per kilobase per million reads
	normalize read numbers: RPKM (per bin) = reads per bin / ( mapped reads (in millions) x bin length (kb))





For a review of popular *-seq applications, see Zentner and Henikoff [http://genomebiology.com/2012/13/10/250].




NGS and generic terminology

The following are terms that may be new to some:


bin


	synonyms: window, region

	A ‘bin’ is a subset of a larger grouping. Many calculations calculation are performed by first dividing the genome into small regions (bins), on which the calculations are actually performed.






Input


	Control experiment typically done for ChIP-seq experiments

	While ChIP-seq relies on antibodies to enrich for DNA fragments bound to a certain protein, the input sample should be processed exactly the same way, excluding the antibody. This allows one to account for biases introduced by sample handling and the general chromatin structure of the cells






read


	synonym: tag

	This term refers to the piece of DNA that is sequenced (“read”) by the sequencers. We try to differentiate between “read” and “DNA fragment” as the fragments that are put into the sequencer tend to be in the range of 200-1000 bases, of which only the first 50 to 300 bases are typically sequenced. Most of the deepTools will not only take these reads into account, but also extend them to match the original DNA fragment size. (The original size will either be given by you or, if you used paired-end sequencing, be calculated from the distance between the two read mates).








File Formats

Data obtained from next-generation sequencing data must be processed several times.
Most of the processing steps are aimed at extracting only that information
needed for a specific down-stream analysis, with redundant entries often discarded.
Therefore, specific data formats are often associated with different steps of a data processing pipeline.

Here, we just want to give very brief key descriptions of the file, for elaborate information we will link to external websites.
Be aware, that the file name sorting here is alphabetical, not according to their usage within an analysis pipeline that is depicted here:

[image: ../_images/flowChart_FileFormats.png]
Follow the links for more information on the different tool collections mentioned in the figure:

samtools [http://www.htslib.org/] |
UCSCtools [http://hgdownload.cse.ucsc.edu/admin/exe/] |
BEDtools [http://bedtools.readthedocs.org/en/latest/] |


2bit


	compressed, binary version of genome sequences that are often stored in FASTA

	most genomes in 2bit format can be found at UCSC [http://hgdownload.cse.ucsc.edu/gbdb/]

	FASTA files can be converted to 2bit using the UCSC programm faToTwoBit, which is available for different platforms at UCSC [http://hgdownload.cse.ucsc.edu/admin/exe/]

	more information can be found here [http://genome.ucsc.edu/FAQ/FAQformat.html#format7]






BAM


	typical file extension: .bam

	binary file format (complement to SAM)

	contains information about sequenced reads (typically) after alignment to a reference genome

	
	each line = 1 mapped read, with information about:

	
	its mapping quality (how likelihood that the reported alignment is correct)

	its sequencing quality (the probability that each base is correct)

	its sequence

	its location in the genome

	etc.









	highly recommended format for storing data

	to make a BAM file human-readable, one can, for example, use the program samtools view

	for more information, see below for the definition of SAM files






BED


	typical file extension: .bed



	text file



	used for genomic intervals, e.g. genes, peak regions etc.



	the format can be found at UCSC [http://genome.ucsc.edu/FAQ/FAQformat.html#format1]



	for deepTools, the first 3 columns are important: chromosome, start position of the region, end position of the genome



	do not confuse it with the bedGraph format (although they are related)



	example lines from a BED file of mouse genes (note that the start position is 0-based, the end-position 1-based, following UCSC conventions for BED files):

chr1    3204562 3661579 NM_001011874 Xkr4   -
chr1    4481008 4486494 NM_011441    Sox17  -
chr1    4763278 4775807 NM_001177658 Mrpl15 -
chr1    4797973 4836816 NM_008866    Lypla1 +












bedGraph


	typical file extension: .bg, .bedGraph

	text file

	similar to BED file (not the same!), it can only contain 4 columns and the 4th column must be a score

	again, read the UCSC description [https://genome.ucsc.edu/FAQ/FAQformat.html#format1.8]  for more details

	4  example lines from a bedGraph file (like BED files following the UCSC convention, the start position is 0-based, the end-position 1-based in bedGraph files):



chr1 10 20 1.5
chr1 20 30 1.7
chr1 30 40 2.0
chr1 40 50 1.8








bigWig


	typical file extension: .bw, .bigwig

	binary version of a bedGraph or wig file

	contains coordinates for an interval and an associated score

	the score can be anything, e.g. an average read coverage

	UCSC description [https://genome.ucsc.edu/FAQ/FAQformat.html#format6.1] for more details






FASTA


	typical file extension: .fasta

	text file, often gzipped (.fasta.gz)

	very simple format for DNA/RNA or protein sequences, this can be anything from small pieces of DNA or proteins to an entire genome (most likely, you will get the genome sequence of your organism of interest in fasta format)

	see the 2bit file format entry for a compressed alternative

	example from wikipedia [http://en.wikipedia.org/wiki/FASTA_format] showing exactly one sequence:



>gi|5524211|gb|AAD44166.1| cytochrome b [Elephas maximus maximus]
 LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQMSFWGATVITNLFSAIPYIGTNLV
 EWIWGGFSVDKATLNRFFAFHFILPFTMVALAGVHLTFLHETGSNNPLGLTSDSDKIPFHPYYTIKDFLG
 LLILILLLLLLALLSPDMLGDPDNHMPADPLNTPLHIKPEWYFLFAYAILRSVPNKLGGVLALFLSIVIL
 GLMPFLHTSKHRSMMLRPLSQALFWTLTMDLLTLTWIGSQPVEYPYTIIGQMASILYFSIILAFLPIAGX
 IENY








FASTQ


	typical file extension: .fastq, .fq



	text file, often gzipped (–> .fastq.gz)



	
	contains raw read information – 4 lines per read:

	
	read ID

	base calls

	additional information or empty line

	sequencing quality measures - 1 per base call









	note that there is no information about where in the genome the read originated from



	example from the wikipedia page [http://en.wikipedia.org/wiki/Fastq], which contains further information:

@read001                                                                                                            # read ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT        # read sequence
+                                                                                                                           # usually empty line
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65        # ASCII-encoded quality scores







	if you need to find out what type of ASCII-encoding your .fastq file contains, you can simply run FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] – its summery file will tell you








SAM


	typical file extension: .sam

	usually the result of an alignment of sequenced reads to a reference genome

	contains a short header section (entries are marked by @ signs) and an alignment section where each line corresponds to a single read (thus, there can be millions of these lines)



[image: ../_images/glossary_sam.png]

SAM header section



	tab-delimited lines, beginning with @, followed by tag:value pairs

	tag = two-letter string that defines the content and the format of value









SAM alignment section



	each line contains information about its mapping quality, its sequence, its location in the genome etc.

r001 163 chr1 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002 0 chr1 9 30 3S6M1P1I4M * 0 0 AAAAGATAAGGATA *







	the flag in the second field contains the answer to several yes/no assessments that are encoded in a single number



	for more details on the flag, see this thorough explanation [http://ppotato.wordpress.com/2010/08/25/samtool-bitwise-flag-paired-reads/] or this more technical explanation [http://blog.nextgenetics.net/?e=18]



	the CIGAR string in the 6th field represents the types of operations that were needed in order to align the read to the specific genome location:


	insertion

	deletion (small deletions denoted with D, bigger deletions, e.g., for spliced reads, denoted with N)

	clipping (deletion at the ends of a read)











Warning

Although the SAM/BAM format is rather meticulously defined and documented, whether an alignment program will produce a SAM/BAM file that adheres to these principles is completely up to the programmer. The mapping score, CIGAR string, and particularly, all optional flags (fields >11) are often very differently defined depending on the program. If you plan on filtering your data based on any of these criteria, make sure you know exactly how these entries were calculated and set!









	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].















          

      

      

    

  

    
      
          
            
  
deepTools API

deepTools consists of several command line and Galaxy wrappers for summarizing
the information of Next Generation Sequencing data that can be mapped to a reference genome.
Through the API, the engine powering the deepTools commands can be used for other purposes as well.

Our deepTools API example explains step-by-step how to make use of some deepTools modules to achieve analyses outside the scope of the deepTools suite such as counting reads for certain genome regions and computing the FRiP score.



	deepTools API example
	Finding read coverage over a region

	Filtering reads

	Sampling the genome

	Computing the FRiP score

	Using mapReduce to sample paired-end fragment lengths

	Indices and tables





	deeptools package modules
	deeptools.SES_scaleFactor module

	deeptools.bamHandler module

	deeptools.correctReadCounts module

	deeptools.correlation module

	deeptools.correlation_heatmap module

	deeptools.countReadsPerBin module

	deeptools.getFragmentAndReadSize module

	deeptools.getRatio module

	deeptools.getScorePerBigWigBin module

	deeptools.heatmapper module

	deeptools.heatmapper_utilities module

	deeptools.mapReduce module

	deeptools.utilities module

	deeptools.writeBedGraph module

	deeptools.writeBedGraph_bam_and_bw module

	Module contents









Complete information can be found in the following links: Index and Module Index







	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].









          

      

      

    

  

    
      
          
            
  
deepTools API example

The following is a short overview of the most useful methods and classes
from deepTools.
Complete information can be found in the following links: Index and Module Index


Finding read coverage over a region

With deepTools, the read coverage over multiple genomic regions and multiple files can be computed quite quickly using multiple processors.
First, we start with a simple example that is later expanded upon to demonstrate
the use of multipe processors.
In this example we compute the coverage of reads over a small region for bins of 50bp. For this we need the deeptools.countReadsPerBin class.

import deeptools.countReadsPerBin





We also need a BAM file containing the aligned reads.
The BAM file must be indexed to allow quick access to reads
falling into the regions of interest.

bam_file = "file.bam"





Now, the countReadsPerBin object can be initialized.
The first argument to the constructor is a list of BAM files,
which in this case is just one file.
We are going to use a binLength of 50 bases, with subsequent bins adjacent
(i.e., the stepSize between bins is also 50 bases). Overlapping bin
coverages can be used by setting a stepSize smaller than binLength.

cr = countReadsPerBin.CountReadsPerBin([bam_file], binLength=50, stepSize=50)





Now, we can compute the coverage over a region in chromosome 2 from position 0
to 1000.

cr.count_reads_in_region('chr2L', 0, 1000)





array([[ 2.],
       [ 3.],
       [ 1.],
       [ 2.],
       [ 3.],
       [ 2.],
       [ 4.],
       [ 3.],
       [ 2.],
       [ 3.],
       [ 4.],
       [ 6.],
       [ 4.],
       [ 2.],
       [ 2.],
       [ 1.]])





The result is a numpy array with one row per bin and one column per bam file. Since only one BAM file was used, there is only one column.




Filtering reads

If reads should be filtered, the relevant options simply
need to be passed to the constructor. In the following code, the reads are filtered
such that only those with a mapping quality of at least 20 and not aligned to the
reverse strand are kept (samFlag_exclude=16, where 16 is the value for reverse reads, see
the [SAM Flag Calculator](http://broadinstitute.github.io/picard/explain-flags.html)
for more info).
Furthermore, duplicated reads are ignored.

cr = countReadsPerBin.CountReadsPerBin([bam_file], binLength=50, stepSize=50,
                                        minMappingQuality=20,
                                        samFlag_exclude=16,
                                        ignoreDuplicates=True
                                        )
cr.count_reads_in_region('chr2L', 1000000, 1001000)





array([[ 1.],
       [ 1.],
       [ 0.],
       [ 0.],
       [ 0.],
       [ 0.],
       [ 2.],
       [ 3.],
       [ 1.],
       [ 0.],
       [ 1.],
       [ 2.],
       [ 0.],
       [ 0.],
       [ 1.],
       [ 2.],
       [ 1.],
       [ 0.],
       [ 0.],
       [ 0.]])








Sampling the genome

Instead of adjacent bins, as in the previous cases, a genome can
simply be sampled. This is useful to estimate some values,
like depth of sequencing, without having to look at the complete genome. In the following example,
10,000 positions of size 1 base are going to be queried from three bam files to compute the average depth of sequencing.
For this, we set the numberOfSamples parameter in the object constructor. The skipZeros parameter
is added to exclude regions lacking reads in all BAM files.
The run() method is used instead of count_reads_in_region.

cr = countReadsPerBin.CountReadsPerBin([bam_file1, bam_file2, bam_file3],
                                        binLength=1, numberOfSamples=10000,
                                        numberOfProcessors=10,
                                        skipZeros=True)
sequencing_depth = cr.run()
print sequencing_depth.mean(axis=0)





[  1.98923924   2.43743744  22.90102603]





The run() method splits the computation over 10 processors and collates
the results. When the parameter numberOfSamples is used, the regions selected
for the computation of the coverage are not random. Instead, the genome is split into ‘number-of-samples’
equal parts and the start of each part is queried for its coverage. You can also compute coverage over selected regions by inputting a BED file.

Now it is possible to make some diagnostic plots from the results:

fig, axs = plt.subplots(1, 2, figsize=(15,5))
# plot coverage
for col in res.T:
    axs[0].plot(np.bincount(col.astype(int)).astype(float)/total_sites)
    csum = np.bincount(col.astype(int))[::-1].cumsum()
    axs[1].plot(csum.astype(float)[::-1] / csum.max())
axs[0].set_xlabel('coverage')
axs[0].set_ylabel('fraction of bases sampled')
# plot cumulative coverage

axs[1].set_xlabel('coverage')
axs[1].set_ylabel('fraction of bases sampled >= coverage')





[image: ../_images/plot_coverage.png]



Computing the FRiP score

The FRiP score is defined as the fraction of reads that fall into a peak and is
often used as a measure of ChIP-seq quality. For this example, we
need a BED file containing the peak regions. Such files are
usually computed using a peak caller. Also, two bam files are
going to be used, corresponding to two biological replicates.

bed_file = open("peaks.bed", 'r')
cr = countReadsPerBin.CountReadsPerBin([bam_file1, bam_file2],
                                        bedFile=bed_file,
                                        numberOfProcessors=10)
reads_at_peaks = cr.run()
print reads_at_peaks





array([[ 322.,  248.],
       [ 231.,  182.],
       [ 112.,  422.],
       ...,
       [ 120.,   76.],
       [ 235.,  341.],
       [ 246.,  265.]])





The result is a numpy array with a row for each peak region and a column for each BAM file.

reads_at_peaks.shape





(6295, 2)





Now, the total number of reads per peaks per bam file is computed:

total = reads_at_peaks.sum(axis=0)





Next, we need to find the total number of mapped reads in each of the bam files. For
this we use the pysam module.

import pysam
bam1 = pysam.AlignmentFile(bam_file1)
bam2 = pysam.AlignmentFile(bam_file2)





Now, bam1.mapped and bam2.mapped contain the total number of mapped
reads in each of the bam files, respectively.

Finally, we can compute the FRiP score:

frip1 = float(total[0]) / bam1.mapped
frip2 = float(total[1]) / bam2.mapped
print frip1, frip2





0.170030741997, 0.216740390353








Using mapReduce to sample paired-end fragment lengths

deepTools internally uses a map-reduce strategy, in which a computation is split into smaller
parts that are sent to different processors. The output from the different processors is subsequently collated. The following
example is based on the code available for bamPEFragmentSize.py

Here, we retrieve the reads from a BAM file and collect the
fragment length. Reads are retrieved using pysam, and the read object returned
contains the template_length attribute, which is the number of bases from the
leftmost to the rightmost mapped base in the read pair.

First, we will create a function that can collect fragment lengths over a genomic
position from a BAM file. As we will later call this function using
mapReduce, the function accepts only one argument, namely
a tuple with the parameters: chromosome name, start position, end position, and BAM file name.

import pysam
import numpy as np
def get_fragment_length(args):
    chrom, start, end, bam_file_name = args
    bam = pysam.Aligmementfile(bam_file_name)
    f_lens_list = []
    for fetch_start in range(start, end, 1e6):
        # simply get the reads over a region of 10000 bases
        fetch_end = min(end, start + 10000)

        f_lens_list.append(np.array([abs(read.template_length)
                              for read in bam.fetch(chrom, fetch_start, fetch_end)
                              if read.is_proper_pair and read.is_read1]))

    # concatenate all results
    return np.concatenate(fragment_lengths)





Now, we can use mapReduce to call this function and compute fragment lengths
over the whole genome. mapReduce needs to know the chromosome sizes, which
can be easily retrieved from the BAM file. Furthermore, it needs to know
the size of the region(s) sent to each processor. For this
example, a region of 10 million bases is sent to each processor using the genomeChunkLength parameter.
In other words, each processor executes the same get_fragment_length function to collect data over
different 10 million base regions. The arguments to mapReduce are the list of arguments sent to the function, besides
the first obligatory three (chrom start, end). In this case only one extra argument is passed
to the function, the BAM file name. The next two positional arguments are the name of the function to call
(get_fragment_length) and the chromosome sizes.

import deeptools.mapReduce
bam = pysam.Aligmentfile(bamFile)
chroms_sizes = zip(bam.references, bam.lengths)

result = mapReduce.mapReduce((bam_file_name, ),
                              get_fragment_length
                              chrom_sizes,
                              genomeChunkLength=10000000,
                              numberOfProcessors=20,
                              verbose=True)

fragment_lengths =  np.concatenate(result)

print "mean fragment length {}".format(fragment_lengths.mean()"
print "median fragment length {}".format(np.median(fragment_lengths)"





0.170030741997, 0.216740390353








Indices and tables


	Index

	Module Index

	Search Page









	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
deeptools package modules


deeptools.SES_scaleFactor module


	
class deeptools.SES_scaleFactor.Tester

	Bases: object






	
deeptools.SES_scaleFactor.estimateScaleFactor(bamFilesList, binLength, numberOfSamples, normalizationLength, avg_method='median', blackListFileName=None, numberOfProcessors=1, verbose=False, chrsToSkip=[])

	Subdivides the genome into chunks to be analyzed in parallel
using several processors. The code handles the creation of
workers that compute fragment counts (coverage) for different
regions and then collect and integrates the results.





	Parameters:	bamFilesList : list


list of bam files to normalize




binLength : int


the window size in bp, where reads are going to be
counted.




numberOfSamples : int


number of sites to sample from the genome. For more info see
the documentation of the CountReadsPerBin class




normalizationLength : int


length, in bp, to normalize the data.
For a value of 1, on average
1 read per base pair is found




avg_method : str


defines how the different values are to be summarized.
The options are ‘mean’ and ‘median’




chrsToSkip : list


name of the chromosomes to be excluded from the
scale estimation. Usually the chrX is included.




blackListFileName : str


BED file containing blacklisted regions







	Returns:	dict



	Dictionary with the following keys::

	‘size_factors’
‘size_factors_based_on_mapped_reads’
‘size_factors_SES’
‘size_factors_based_on_mean’
‘size_factors_based_on_median’
‘mean’
‘meanSES’
‘median’
‘reads_per_bin’
‘std’
‘sites_sampled’














Examples

>>> test = Tester()
>>> bin_length = 50
>>> num_samples = 4
>>> _dict = estimateScaleFactor([test.bamFile1, test.bamFile2], bin_length, num_samples,  1)
>>> _dict['size_factors']
array([ 1. ,  0.5])
>>> _dict['size_factors_based_on_mean']
array([ 1. ,  0.5])












deeptools.bamHandler module


	
deeptools.bamHandler.openBam(bamFile)

	






deeptools.correctReadCounts module


	
deeptools.correctReadCounts.computeCorrectedReadcounts(tileCoverage, args)

	This function is called by the writeBedGraph workers for every
tile in the genome that is considered

It computes a pvalue based on an expected lambda comming from
the correction of treatment when the input is considered.






	
deeptools.correctReadCounts.computeLambda(tileCoverage, args)

	This function is called by the writeBedGraph workers for every
tile in the genome that is considered






	
deeptools.correctReadCounts.computePvalue(tileCoverage, args)

	This function is called by the writeBedGraph workers for every
tile in the genome that is considered

It computes a pvalue based on an expected lambda comming from
the correction of treatment when the input is considered.






	
deeptools.correctReadCounts.controlLambda(tileCoverage, args)

	




	
deeptools.correctReadCounts.correctReadCounts(bamFilesList, binLength, numberOfSamples, defaultFragmentLength, outFileName, outFileFormat, outFileNameCorr=None, region=None, extendPairedEnds=True, numberOfProcessors=1, Nsigmas=2, maxSignalRatio=10, blackListFileName=None, verbose=False)

	






deeptools.correlation module


	
class deeptools.correlation.Correlation(matrix_file, corr_method=None, labels=None, remove_outliers=False, skip_zeros=False, log1p=False)

	class to work with matrices
having sample data
to compute correlations, plot
them and make scatter plots


	
compute_correlation()

	computes spearman or pearson
correlation for the samples in the matrix

The matrix should contain the values of each sample per column
that’s why the transpose is used.

>>> matrix = np.array([[1, 2, 3, np.nan],
...                    [1, 2, 3, 4],
...                    [6, 4, 3, 1]]).T
>>> np.savez_compressed("/tmp/test_matrix.npz", matrix=matrix, labels=['a', 'b', 'c'])





>>> c = Correlation("/tmp/test_matrix.npz", corr_method='pearson')





the results should be  as in R

>>> c.compute_correlation().filled(np.nan)
array([[ 1.        ,  1.        , -0.98198051],
       [ 1.        ,  1.        , -0.98198051],
       [-0.98198051, -0.98198051,  1.        ]])
>>> c.corr_method = 'spearman'
>>> c.corr_matrix = None
>>> c.compute_correlation()
array([[ 1.,  1., -1.],
       [ 1.,  1., -1.],
       [-1., -1.,  1.]])










	
static get_outlier_indices(data, max_deviation=200)

	The method is based on the median absolute deviation. See
Boris Iglewicz and David Hoaglin (1993),
“Volume 16: How to Detect and Handle Outliers”,
The ASQC Basic References in Quality Control:
Statistical Techniques, Edward F. Mykytka, Ph.D., Editor.

returns the list, without the outliers

The max_deviation=200 is like selecting a z-score
larger than 200, just that it is based on the median
and the median absolute deviation instead of the
mean and the standard deviation.






	
load_matrix(matrix_file)

	loads a matrix file saved using the numpy
savez method. Two keys are expected:
‘matrix’ and ‘labels’. The matrix should
contain one sample per row






	
plot_correlation(plot_fiilename, plot_title='', vmax=None, vmin=None, colormap='jet', image_format=None, plot_numbers=False)

	plots a correlation using a symmetric heatmap






	
plot_pca(plot_filename, plot_title='', image_format=None, log1p=False)

	Plot the PCA of a matrix






	
plot_scatter(plot_fiilename, plot_title='', image_format=None, log1p=False)

	Plot the scatter plots of a matrix
in which each row is a sample






	
remove_outliers(verbose=True)

	get the outliers per column using the median absolute
deviation method

Returns the filtered matrix






	
remove_rows_of_zeros()

	




	
save_corr_matrix(file_handle)

	saves the correlation matrix












deeptools.correlation_heatmap module


	
deeptools.correlation_heatmap.plot_correlation(corr_matrix, labels, plotFileName, vmax=None, vmin=None, colormap='jet', image_format=None, plot_numbers=False, plot_title='')

	






deeptools.countReadsPerBin module


	
class deeptools.countReadsPerBin.CountReadsPerBin(bamFilesList, binLength=50, numberOfSamples=None, numberOfProcessors=1, verbose=False, region=None, bedFile=None, extendReads=False, blackListFileName=None, minMappingQuality=None, ignoreDuplicates=False, chrsToSkip=[], stepSize=None, center_read=False, samFlag_include=None, samFlag_exclude=None, zerosToNans=False, smoothLength=0, minFragmentLength=0, maxFragmentLength=0, out_file_for_raw_data=None)

	Bases: object

Collects coverage over multiple bam files using multiprocessing

This function collects read counts (coverage) from several bam files and returns
an numpy array with the results. This class uses multiprocessing to compute the coverage.





	Parameters:	bamFilesList : list


List containing the names of indexed bam files. E.g. [‘file1.bam’, ‘file2.bam’]




binLength : int


Length of the window/bin. This value is overruled by bedFile if present.




numberOfSamples : int


Total number of samples. The genome is divided into numberOfSamples, each
with a window/bin length equal to binLength. This value is overruled
by stepSize in case such value is present and by bedFile in which
case the number of samples and bins are defined in the bed file




numberOfProcessors : int


Number of processors to use. Default is 4




verbose : bool


Output messages. Default: False




region : str


Region to limit the computation in the form chrom:start:end.




bedFile : file_handle


File handle of a bed file containing the regions for which to compute the coverage. This option
overrules binLength, numberOfSamples and stepSize.




blackListFileName : str


A string containing a BED file with blacklist regions.




extendReads : bool, int


Whether coverage should be computed for the extended read length (i.e. the region covered
by the two mates or the regions expected to be covered by single-reads).
If the value is ‘int’, then then this is interpreted as the fragment length to extend reads
that are not paired. For Illumina reads, usual values are around 300.
This value can be determined using the peak caller MACS2 or can be
approximated by the fragment lengths computed when preparing the library for sequencing. If the value
is of the variable is true and not value is given, the fragment size is sampled from the library but
only if the library is paired-end. Default: False




minMappingQuality : int


Reads of a mapping quality less than the give value are not considered. Default: None




ignoreDuplicates : bool


Whether read duplicates (same start, end position. If paired-end, same start-end for mates) are
to be excluded. Default: false




chrToSkip: list


List with names of chromosomes that do not want to be included in the coverage computation.
This is useful to remove unwanted chromosomes (e.g. ‘random’ or ‘Het’).




stepSize : int


the positions for which the coverage is computed are defined as follows:
range(start, end, stepSize). Thus, a stepSize of 1, will compute
the coverage at each base pair. If the stepSize is equal to the
binLength then the coverage is computed for consecutive bins. If seepSize is
smaller than the binLength, then teh bins will overlap.




center_read : bool


Determines if reads should be centered with respect to the fragment length.




samFlag_include : int


Extracts only those reads having the SAM flag. For example, to get only
reads that are the first mates a samFlag of 64 could be used. Similarly, the
samFlag_include can be used to select only reads mapping on the reverse strand
or to get only properly paired reads.




samFlag_exclude : int


Removes reads that match the SAM flag. For example to get all reads
that map to the forward strand a samFlag_exlude 16 should be used. Which
translates into exclude all reads that map to the reverse strand.




zerosToNans : bool


If true, zero values encountered are transformed to Nans. Default false.




minFragmentLength : int


If greater than 0, fragments below this size are excluded.




maxFragmentLength : int


If greater than 0, fragments above this size are excluded.




out_file_for_raw_data : str


File name to save the raw counts computed







	Returns:	numpy array


Each row correspond to each bin/bed region and each column correspond to each of
the bamFiles.










Examples

The test data contains reads for 200 bp.

>>> test = Tester()





The transpose function is used to get a nicer looking output.
The first line corresponds to the number of reads per bin in bam file 1

>>> c = CountReadsPerBin([test.bamFile1, test.bamFile2], 50, 4)
>>> np.transpose(c.run())
array([[ 0.,  0.,  1.,  1.],
       [ 0.,  1.,  1.,  2.]])






	
count_reads_in_region(chrom, start, end, bed_regions_list=None)

	Counts the reads in each bam file at each ‘stepSize’ position
within the interval (start, end) for a window or bin of size binLength.

The stepSize controls the distance between bins. For example,
a step size of 20 and a bin size of 20 will create bins next to
each other. If the step size is smaller than the bin size the
bins will overlap.

If a list of bedRegions is given, then the number of reads
that overlaps with each region is counted.





	Parameters:	chrom : str


Chrom name




start : int


start coordinate




end : int


end coordinate




bed_regions_list: list


List of list of tuples of the form (start, end)
corresponding to bed regions to be processed.
If not bed file was passed to the object constructor
then this list is empty.







	Returns:	numpy array


The result is a numpy array that as rows each bin
and as columns each bam file.










Examples

Initialize some useful values

>>> test = Tester()
>>> c = CountReadsPerBin([test.bamFile1, test.bamFile2], 25, 0, stepSize=50)





The transpose is used to get better looking numbers. The first line
corresponds to the number of reads per bin in the first bamfile.

>>> _array, __ = c.count_reads_in_region(test.chrom, 0, 200)
>>> _array
array([[ 0.,  0.],
       [ 0.,  1.],
       [ 1.,  1.],
       [ 1.,  2.]])










	
getReadLength(read)

	




	
getSmoothRange(tileIndex, tileSize, smoothRange, maxPosition)

	Given a tile index position and a tile size (length), return the a new indices
over a larger range, called the smoothRange.
This region is centered in the tileIndex  an spans on both sizes
to cover the smoothRange. The smoothRange is trimmed in case it is less
than zero or greater than  maxPosition

---------------|==================|------------------
           tileStart
      |--------------------------------------|
      |    <--      smoothRange     -->      |
      |
tileStart - (smoothRange-tileSize)/2





Test for a smooth range that spans 3 tiles.

Examples

>>> c = CountReadsPerBin([], 1, 1, 1, 0)
>>> c.getSmoothRange(5, 1, 3, 10)
(4, 7)





Test smooth range truncated on start.

>>> c.getSmoothRange(0, 10, 30, 200)
(0, 2)





Test smooth range truncated on start.

>>> c.getSmoothRange(1, 10, 30, 4)
(0, 3)





Test smooth range truncated on end.

>>> c.getSmoothRange(5, 1, 3, 5)
(4, 5)





Test smooth range not multiple of tileSize.

>>> c.getSmoothRange(5, 10, 24, 10)
(4, 6)










	
get_coverage_of_region(bamHandle, chrom, regions, fragmentFromRead_func=None)

	Returns a numpy array that corresponds to the number of reads
that overlap with each tile.

>>> test = Tester()
>>> import pysam
>>> c = CountReadsPerBin([], stepSize=1, extendReads=300)





For this case the reads are length 36. The number of overlapping
read fragments is 4 and 5 for the positions tested.

>>> c.get_coverage_of_region(pysam.AlignmentFile(test.bamFile_PE), 'chr2',
... [(5000833, 5000834), (5000834, 5000835)])
array([ 4.,  5.])





In the following example a paired read is extended to the fragment length which is 100
The first mate starts at 5000000 and the second at 5000064. Each mate is
extended to the fragment length independently
At position 500090-500100 one fragment  of length 100 overlap, and after position 5000101
there should be zero reads.

>>> c.zerosToNans = True
>>> c.get_coverage_of_region(pysam.AlignmentFile(test.bamFile_PE), 'chr2',
... [(5000090, 5000100), (5000100, 5000110)])
array([  1.,  nan])





In the following  case the reads length is 50. Reads are not extended.

>>> c.extendReads=False
>>> c.get_coverage_of_region(pysam.AlignmentFile(test.bamFile2), '3R', [(148, 150), (150, 152), (152, 154)])
array([ 1.,  2.,  2.])










	
get_fragment_from_read(read)

	Get read start and end position of a read.
If given, the reads are extended as follows:
If reads are paired end, each read mate is extended to match
the fragment length, otherwise, a default fragment length
is used. If reads are split (give by the CIGAR string) then
the multiple positions of the read are returned.
When reads are extended the cigar information is
skipped.





	Parameters:	read : pysam read object




	Returns:	list of tuples


[(fragment start, fragment end)]




>>> test = Tester()





>>> c = CountReadsPerBin([], 1, 1, 200, extendReads=True)





>>> c.defaultFragmentLength=100





>>> c.get_fragment_from_read(test.getRead("paired-forward"))





[(5000000, 5000100)]

>>> c.get_fragment_from_read(test.getRead("paired-reverse"))





[(5000000, 5000100)]

>>> c.defaultFragmentLength = 200





>>> c.get_fragment_from_read(test.getRead("single-forward"))





[(5001491, 5001691)]

>>> c.get_fragment_from_read(test.getRead("single-reverse"))





[(5001536, 5001736)]

>>> c.defaultFragmentLength = 'read length'





>>> c.get_fragment_from_read(test.getRead("single-forward"))





[(5001491, 5001527)]

>>> c.defaultFragmentLength = 'read length'





>>> c.extendReads = False





>>> c.get_fragment_from_read(test.getRead("paired-forward"))





[(5000000, 5000036)]

Tests for read centering.

>>> c = CountReadsPerBin([], 1, 1, 200, extendReads=True, center_read=True)





>>> c.defaultFragmentLength = 100





>>> assert(c.get_fragment_from_read(test.getRead("paired-forward")) == [(5000032, 5000068)])





>>> c.defaultFragmentLength = 200





>>> assert(c.get_fragment_from_read(test.getRead("single-reverse")) == [(5001618, 5001654)])
















	
static is_proper_pair(read, maxPairedFragmentLength)

	Checks if a read is proper pair meaning that both mates are facing each other and are in
the same chromosome and are not to far away. The sam flag for proper pair can not
always be trusted. Note that if the fragment size is > maxPairedFragmentLength (~2kb
usually) that False will be returned.
:return: bool

>>> import pysam
>>> import os
>>> from deeptools.countReadsPerBin import CountReadsPerBin as cr
>>> root = os.path.dirname(os.path.abspath(__file__)) + "/test/test_data/"
>>> bam = pysam.AlignmentFile("{}/test_proper_pair_filtering.bam".format(root))
>>> iter = bam.fetch()
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "keep" read
True
>>> cr.is_proper_pair(read, 200) # "keep" read, but maxPairedFragmentLength is too short
False
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "improper pair"
False
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "mismatch chr"
False
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "same orientation1"
False
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "same orientation2"
False
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "rev first"
False
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "rev first OK"
True
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "for first"
False
>>> read = next(iter)
>>> cr.is_proper_pair(read, 1000) # "for first"
True










	
run(allArgs=None)

	








	
class deeptools.countReadsPerBin.Tester

	Bases: object


	
getRead(readType)

	prepare arguments for test










	
deeptools.countReadsPerBin.countReadsInRegions_wrapper(args)

	Passes the arguments to countReadsInRegions_worker.
This is a step required given
the constrains from the multiprocessing module.
The args var, contains as first element the ‘self’ value
from the countReadsPerBin object






	
deeptools.countReadsPerBin.remove_row_of_zeros(matrix)

	






deeptools.getFragmentAndReadSize module


	
deeptools.getFragmentAndReadSize.getFragmentLength_worker(chrom, start, end, bamFile, distanceBetweenBins)

	Queries the reads at the given region for the distance between
reads and the read length





	Parameters:	chrom : str


chromosome name




start : int


region start




end : int


region end




bamFile : str


BAM file name




distanceBetweenBins : int


the number of bases at the end of each bin to ignore







	Returns:	np.array


an np.array, where first column is fragment length, the
second is for read length















	
deeptools.getFragmentAndReadSize.getFragmentLength_wrapper(args)

	




	
deeptools.getFragmentAndReadSize.get_read_and_fragment_length(bamFile, return_lengths=False, blackListFileName=None, binSize=50000, distanceBetweenBins=1000000, numberOfProcessors=None, verbose=False)

	Estimates the fragment length and read length through sampling





	Parameters:	bamFile : str


BAM file name




return_lengths : bool

numberOfProcessors : int

verbose : bool

binSize : int

distanceBetweenBins : int




	Returns:	d : dict


tuple of two dictionaries, one for the fragment length and the other
for the read length. The dictionaries summarise the mean, median etc. values

















deeptools.getRatio module


	
deeptools.getRatio.compute_ratio(value1, value2, args)

	




	
deeptools.getRatio.getRatio(tileCoverage, args)

	The mapreduce method calls this function
for each tile. The parameters (args) are fixed
in the main method.

>>> funcArgs= {'valueType': 'ratio', 'scaleFactors': (1,1), 'pseudocount': 1}
>>> getRatio([9, 19], funcArgs)
0.5
>>> getRatio([0, 0], funcArgs)
1.0
>>> getRatio([np.nan, np.nan], funcArgs)
nan
>>> getRatio([np.nan, 1.0], funcArgs)
nan
>>> funcArgs['valueType'] ='subtract'
>>> getRatio([20, 10], funcArgs)
10
>>> funcArgs['scaleFactors'] = (1, 0.5)
>>> getRatio([10, 20], funcArgs)
0.0





The reciprocal ratio is of a and b is:
is a/b if a/b > 1 else -1* b/a
>>> funcArgs[‘valueType’] =’reciprocal_ratio’
>>> funcArgs[‘scaleFactors’] = (1, 1)
>>> funcArgs[‘pseudocount’] = 0
>>> getRatio([2, 1], funcArgs)
2.0
>>> getRatio([1, 2], funcArgs)
-2.0
>>> getRatio([1, 1], funcArgs)
1.0








deeptools.getScorePerBigWigBin module


	
class deeptools.getScorePerBigWigBin.Tester

	Bases: object






	
deeptools.getScorePerBigWigBin.countFragmentsInRegions_worker(chrom, start, end, bigWigFiles, stepSize, binLength, save_data, bedRegions=None)

	returns the average score in each bigwig file at each ‘stepSize’
position within the interval start, end for a ‘binLength’ window.
Because the idea is to get counts for window positions at
different positions for sampling the bins are equally spaced
and not adjacent.

If a list of bedRegions is given, then the number of reads
that overlaps with each region is counted.

Test dataset with two samples covering 200 bp.
>>> test = Tester()

Fragment coverage.
>>> np.transpose(countFragmentsInRegions_worker(test.chrom, 0, 200, [test.bwFile1, test.bwFile2], 50, 25, False)[0])
array([[ 1.,  1.,  2.,  2.],


[ 1.,  1.,  1.,  3.]])


>>> np.transpose(countFragmentsInRegions_worker(test.chrom, 0, 200, [test.bwFile1, test.bwFile2], 200, 200, False)[0])
array([[ 1.5],
       [ 1.5]])





BED regions:
>>> bedRegions = [[test.chrom, [(45, 55)]], [test.chrom, [(95, 105)]], [test.chrom, [(145, 155)]]]
>>> np.transpose(countFragmentsInRegions_worker(test.chrom, 0, 200,[test.bwFile1, test.bwFile2], 200, 200, False,
... bedRegions=bedRegions)[0])
array([[ 1. ,  1.5,  2. ],


[ 1. ,  1. ,  2. ]])







	
deeptools.getScorePerBigWigBin.countReadsInRegions_wrapper(args)

	




	
deeptools.getScorePerBigWigBin.getChromSizes(bigwigFilesList)

	Get chromosome sizes from bigWig file with pyBigWig

Test dataset with two samples covering 200 bp.
>>> test = Tester()

Chromosome name(s) and size(s).
>>> assert(getChromSizes([test.bwFile1, test.bwFile2]) == ([(‘3R’, 200)], set([])))






	
deeptools.getScorePerBigWigBin.getScorePerBin(bigWigFiles, binLength, numberOfProcessors=1, verbose=False, region=None, bedFile=None, blackListFileName=None, stepSize=None, chrsToSkip=[], out_file_for_raw_data=None, allArgs=None)

	This function returns a matrix containing scores (median) for the coverage
of fragments within a region. Each row corresponds to a sampled region.
Likewise, each column corresponds to a bigwig file.

Test dataset with two samples covering 200 bp.
>>> test = Tester()
>>> np.transpose(getScorePerBin([test.bwFile1, test.bwFile2], 50, 3))
array([[ 1.,  1.,  2.,  2.],


[ 1.,  1.,  1.,  3.]])









deeptools.heatmapper module


	
deeptools.heatmapper.chopRegions(exonsInput, left=0, right=0)

	exons is a list of (start, end) tuples. The goal is to chop these into
separate lists of tuples, to take care or unscaled regions. “left” and
“right” denote regions of a given size to exclude from the normal binning
process (unscaled regions).

This outputs three lists of (start, end) tuples:

leftBins: 5’ unscaled regions
bodyBins: body bins for scaling
rightBins: 3’ unscaled regions

In addition are two integers
padLeft: Number of bases of padding on the left (due to not being able to fulfill “left”)
padRight: As above, but on the right side






	
deeptools.heatmapper.chopRegionsFromMiddle(exonsInput, left=0, right=0)

	Like chopRegions(), above, but returns two lists of tuples on each side of
the center point of the exons.

The steps are as follow:



	Find the center point of the set of exons (e.g., [(0, 200), (300, 400), (800, 900)] would be centered at 200)





	If a given exon spans the center point then the exon is split







	The given number of bases at the end of the left-of-center list are extracted





	If the set of exons don’t contain enough bases, then padLeft is incremented accordingly







	As above but for the right-of-center list

	A tuple of (#2, #3, pading on the left, and padding on the right) is returned











	
deeptools.heatmapper.compute_sub_matrix_wrapper(args)

	




	
class deeptools.heatmapper.heatmapper

	Bases: object

Class to handle the reading and
plotting of matrices.


	
static change_chrom_names(chrom)

	Changes UCSC chromosome names to ensembl chromosome names
and vice versa.






	
computeMatrix(score_file_list, regions_file, parameters, blackListFileName=None, verbose=False, allArgs=None)

	Splits into
multiple cores the computation of the scores
per bin for each region (defined by a hash ‘#’
in the regions (BED/GFF) file.






	
static compute_sub_matrix_worker(chrom, start, end, score_file_list, parameters, regions)

	



	Returns:	numpy matrix


A numpy matrix that contains per each row the values found per each of the regions given















	
static coverage_from_array(valuesArray, zones, binSize, avgType)

	




	
static coverage_from_big_wig(bigwig, chrom, zones, binSize, avgType, nansAsZeros=False, verbose=True)

	uses pyBigWig
to query a region define by chrom and zones.
The output is an array that contains the bigwig
value per base pair. The summary over bins is
done in a later step when coverage_from_array is called.
This method is more reliable than querying the bins
directly from the bigwig, which should be more efficient.

By default, any region, even if no chromosome match is found
on the bigwig file, produces a result. In other words
no regions are skipped.


	zones: array as follows zone0: region before the region start,

	
zone1: 5’ unscaled region (if present)
zone2: the body of the region (not always present)
zone3: 3’ unscaled region (if present)
zone4: the region from the end of the region downstream


each zone is a tuple containing start, end, and number of bins





This is useful if several matrices wants to be merged
or if the sorted BED output of one computeMatrix operation
needs to be used for other cases






	
get_individual_matrices(matrix)

	In case multiple matrices are saved one after the other
this method splits them appart.
Returns a list containing the matrices






	
get_num_individual_matrix_cols()

	returns the number of columns  that
each matrix should have. This is done because
the final matrix that is plotted can be composed
of smaller matrices that are merged one after
the other.






	
static matrix_avg(matrix, avgType='mean')

	




	
matrix_from_dict(matrixDict, regionsDict, parameters)

	




	
static my_average(valuesArray, avgType='mean')

	computes the mean, median, etc but only for those values
that are not Nan






	
read_matrix_file(matrix_file)

	




	
save_BED(file_handle)

	




	
save_matrix(file_name)

	saves the data required to reconstruct the matrix
the format is:
A header containing the parameters used to create the matrix
encoded as:
@key:value      key2:value2 etc...
The rest of the file has the same first 5 columns of a
BED file: chromosome name, start, end, name, score and strand,
all separated by tabs. After the fifth column the matrix
values are appended separated by tabs.
Groups are separated by adding a line starting with a hash (#)
and followed by the group name.

The file is gzipped.






	
save_matrix_values(file_name)

	




	
save_tabulated_values(file_handle, reference_point_label='TSS', start_label='TSS', end_label='TES', averagetype='mean')

	Saves the values averaged by col using the avg_type
given


	Args:

	file_handle: file name to save the file
reference_point_label: Name of the reference point label
start_label: Name of the star label
end_label: Name of the end label
averagetype: average type (e.g. mean, median, std)












	
deeptools.heatmapper.trimZones(zones, maxLength, binSize, padRight)

	Given a (variable length) list of lists of (start, end) tuples, trim/remove and tuple that extends past maxLength (e.g., the end of a chromosome)

Returns the trimmed zones and padding








deeptools.heatmapper_utilities module


	
deeptools.heatmapper_utilities.getProfileTicks(hm, referencePointLabel, startLabel, endLabel)

	returns the position and labelling of the xticks that
correspond to the heatmap






	
deeptools.heatmapper_utilities.plot_single(ax, ma, average_type, color, label, plot_type='simple')

	Adds a line to the plot in the given ax using the specified method





	Parameters:	ax : matplotlib axis


matplotlib axis




ma : numpy array


numpy array The data on this matrix is summarized according
to the average_type argument.




average_type : str


string values are sum mean median min max std




color : str


a valid color: either a html color name, hex
(e.g #002233), RGB + alpha tuple or list or RGB tuple or list




label : str


label




plot_type: str


type of plot. Either ‘se’ for standard error, ‘std’ for
standard deviation, ‘overlapped_lines’ to plot each line of the matrix,
fill to plot the area between the x axis and the value or None, just to
plot the average line.







	Returns:	ax


matplotlib axis










Examples

>>> import matplotlib.pyplot as plt
>>> import os
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> matrix = np.array([[1,2,3],
...                    [4,5,6],
...                    [7,8,9]])
>>> ax = plot_single(ax, matrix -2, 'mean', color=[0.6, 0.8, 0.9], label='fill light blue', plot_type='fill')
>>> ax = plot_single(ax, matrix, 'mean', color='blue', label='red')
>>> ax = plot_single(ax, matrix + 5, 'mean', color='red', label='red', plot_type='std')
>>> ax = plot_single(ax, matrix + 10, 'mean', color='#cccccc', label='gray se', plot_type='se')
>>> ax = plot_single(ax, matrix + 20, 'mean', color=(0.9, 0.5, 0.9), label='violet', plot_type='std')
>>> ax = plot_single(ax, matrix + 30, 'mean', color=(0.9, 0.5, 0.9, 0.5), label='violet with alpha', plot_type='std')
>>> leg = ax.legend()
>>> plt.savefig("/tmp/test.pdf")
>>> plt.close()
>>> fig = plt.figure()
>>> os.remove("/tmp/test.pdf")












deeptools.mapReduce module


	
deeptools.mapReduce.blSubtract(t, chrom, chunk)

	If a genomic region overlaps with a blacklisted region, then subtract that region out

returns a list of lists






	
deeptools.mapReduce.getUserRegion(chrom_sizes, region_string, max_chunk_size=1000000.0)

	Verifies if a given region argument, given by the user
is valid. The format of the region_string is chrom:start:end:tileSize
where start, end and tileSize are optional.





	Parameters:	
	chrom_sizes – dictionary of chromosome/scaffold size. Key=chromosome name

	region_string – a string of the form chr:start:end

	max_chunk_size – upper limit for the chunk size






	Returns:	tuple chrom_size for the region start, region end, chunk size







#>>> data = getUserRegion({‘chr2’: 1000}, “chr1:10:10”)
#Traceback (most recent call last):
#    ...
#NameError: Unknown chromosome: chr1
#Known chromosomes are: [‘chr2’]

If the region end is biger than the chromosome size, this
value is used instead
>>> getUserRegion({‘chr2’: 1000}, “chr2:10:1001”)
([(‘chr2’, 1000)], 10, 1000, 990)

Test chunk and regions size reduction to match tile size
>>> getUserRegion({‘chr2’: 200000}, “chr2:10:123344:3”)
([(‘chr2’, 123344)], 9, 123345, 123336)

Test chromosome name mismatch
>>> getUserRegion({‘2’: 200000}, “chr2:10:123344:3”)
([(‘2’, 123344)], 9, 123345, 123336)
>>> getUserRegion({‘chrM’: 200000}, “MT:10:123344:3”)
([(‘chrM’, 123344)], 9, 123345, 123336)






	
deeptools.mapReduce.mapReduce(staticArgs, func, chromSize, genomeChunkLength=None, region=None, bedFile=None, blackListFileName=None, numberOfProcessors=4, verbose=False, includeLabels=False, keepExons=False, transcriptID='transcriptID', exonID='exonID', transcript_id_designator='transcript_id', self_=None)

	Split the genome into parts that are sent to workers using a defined
number of procesors. Results are collected and returned.

For each genomic region the given ‘func’ is called using
the following parameters:


chrom, start, end, staticArgs


The arg are static, pickable variables that need to be sent
to workers.

The genome chunk length corresponds to a fraction of the genome, in bp,
that is send to each of the workers for processing.

Depending on the type of process a larger or shorter regions may be
preferred





	Parameters:	
	chromSize – A list of duples containing the chromosome
name and its length

	region – The format is chr:start:end:tileSize (see function
getUserRegion)

	staticArgs – tuple of arguments that are sent to the given ‘func’

	func – function to call. The function is called using the
following parameters (chrom, start, end, staticArgs)

	bedFile – Is a bed file is given, the args to the func to be
called are extended to include a list of bed
defined regions.

	blackListFileName – A list of regions to exclude from all computations.
Note that this has genomeChunkLength resolution...

	self – In case mapreduce should make a call to an object
the self variable has to be passed.

	includeLabels – Pass group and transcript labels into the calling
function. These are added to the static args
(groupLabel and transcriptName).









If “includeLabels” is true, a tuple of (results, labels) is returned








deeptools.utilities module


	
deeptools.utilities.bam_blacklisted_reads(bam_handle, chroms_to_ignore, blackListFileName=None, numberOfProcessors=1)

	




	
deeptools.utilities.bam_blacklisted_worker(args)

	




	
deeptools.utilities.bam_total_reads(bam_handle, chroms_to_ignore)

	Count the total number of mapped reads in a BAM file, filtering
the chromosome given in chroms_to_ignore list






	
deeptools.utilities.copyFileInMemory(filePath, suffix='')

	copies a file into the special /dev/shm device which
moves the file into memory.
This process speeds ups the multiprocessor access to such files






	
deeptools.utilities.getCommonChrNames(bamFileHandlers, verbose=True)

	Compares the names and lengths of a list of bam file handlers.
The input is list of pysam file handlers.

The function returns a duple containing the common chromosome names
and the common chromome lengths.

Hopefully, only _random and chrM are not common.






	
deeptools.utilities.getGC_content(tb, chrom, fragStart, fragEnd, fraction=True)

	




	
deeptools.utilities.getTLen(read)

	Get the observed template length of a read. For a paired-end read, this is
normally just the TLEN field. For SE reads this is the observed coverage of
the genome (excluding splicing).






	
deeptools.utilities.getTempFileName(suffix='')

	returns a temporary file name.
If the special /dev/shm device is available,
the temporary file would be located in that folder.
/dv/shm is a folder that resides in memory and
which has much faster accession.






	
deeptools.utilities.gtfOptions(allArgs=None)

	This is used a couple places to setup arguments to mapReduce






	
deeptools.utilities.mungeChromosome(chrom, chromList)

	A generic chromosome munging function. “chrom” is munged by adding/removing “chr” such that it appears in chromList

On error, None is returned, but a common chromosome list should be used beforehand to avoid this possibility






	
deeptools.utilities.tbitToBamChrName(tbitNames, bamNames)

	checks if the chromosome names from the two-bit and bam file coincide.
In case they do not coincide, a fix is tried. If successful, then
a mapping table is returned.
tbitNames and bamNames should be lists






	
deeptools.utilities.toBytes(s)

	Like toString, but for functions requiring bytes in python3






	
deeptools.utilities.toString(s)

	This takes care of python2/3 differences






	
deeptools.utilities.which(program)

	method to identify if a program
is on the user PATH variable.
From: http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python








deeptools.writeBedGraph module


	
class deeptools.writeBedGraph.WriteBedGraph(bamFilesList, binLength=50, numberOfSamples=None, numberOfProcessors=1, verbose=False, region=None, bedFile=None, extendReads=False, blackListFileName=None, minMappingQuality=None, ignoreDuplicates=False, chrsToSkip=[], stepSize=None, center_read=False, samFlag_include=None, samFlag_exclude=None, zerosToNans=False, smoothLength=0, minFragmentLength=0, maxFragmentLength=0, out_file_for_raw_data=None)

	Bases: deeptools.countReadsPerBin.CountReadsPerBin

Reads bam files coverages and writes a bedgraph or bigwig file

Extends the CountReadsPerBin object such that the coverage
of bam files is writen to multiple bedgraph files at once.

The bedgraph files are later merge into one and converted
into a bigwig file if necessary.

The constructor arguments are the same as for CountReadsPerBin. However,
when calling the run method, the following parameters have
to be passed

Examples

Given the following distribution of reads that cover 200 on
a chromosome named ‘3R’:

  0                              100                           200
  |------------------------------------------------------------|
A                                ===============
                                                ===============

B                 ===============               ===============
                                 ===============
                                                ===============





>>> import tempfile
>>> test_path = os.path.dirname(os.path.abspath(__file__)) + "/test/test_data/"





>>> outFile = tempfile.NamedTemporaryFile()
>>> bam_file = test_path +  "testA.bam"





For the example a simple scaling function is going to be used. This function
takes the coverage found at each region and multiplies it to the scaling factor.
In this case the scaling factor is 1.5

>>> function_to_call = scaleCoverage
>>> funcArgs = {'scaleFactor': 1.5}





Restrict process to a region between positions 0 and 200 of chromosome 3R

>>> region = '3R:0:200'





Set up such that coverage is computed for consecutive bins of length 25 bp
>>> bin_length = 25
>>> step_size = 25

>>> num_sample_sites = 0 #overruled by step_size
>>> c = WriteBedGraph([bam_file], binLength=bin_length, region=region, stepSize=step_size)
>>> c.run(function_to_call, funcArgs, outFile.name)
>>> f = open(outFile.name, 'r')
>>> f.readlines()
['3R\t0\t100\t0\n', '3R\t100\t200\t1.5\n']
>>> f.close()
>>> outFile.close()






	
run(func_to_call, func_args, out_file_name, blackListFileName=None, format='bedgraph', smoothLength=0)

	Given a list of bamfiles, a function and a function arguments,
this method writes a bedgraph file (or bigwig) file
for a partition of the genome into tiles of given size
and a value for each tile that corresponds to the given function
and that is related to the coverage underlying the tile.





	Parameters:	func_to_call : str


function name to be called to convert the list of coverages computed
for each bam file at each position into a single value. An example
is a function that takes the ratio between the coverage of two
bam files.




func_args : dict


dict of arguments to pass to func. E.g. {‘scaleFactor’:1.0}




out_file_name : str


name of the file to save the resulting data.




smoothLength : int


Distance in bp for smoothing the coverage per tile.















	
writeBedGraph_worker(chrom, start, end, func_to_call, func_args, bed_regions_list=None)

	Writes a bedgraph based on the read coverage found on bamFiles

The given func is called to compute the desired bedgraph value
using the funcArgs





	Parameters:	chrom : str


Chrom name




start : int


start coordinate




end : int


end coordinate




func_to_call : str


function name to be called to convert the list of coverages computed
for each bam file at each position into a single value. An example
is a function that takes the ratio between the coverage of two
bam files.




func_args : dict


dict of arguments to pass to func.




smoothLength : int


Distance in bp for smoothing the coverage per tile.




bed_regions_list: list


List of tuples of the form (chrom, start, end)
corresponding to bed regions to be processed.
If not bed file was passed to the object constructor
then this list is empty.







	Returns:	temporary file with the bedgraph results for the region queried.







Examples

>>> test_path = os.path.dirname(os.path.abspath(__file__)) + "/test/test_data/"
>>> bamFile1 = test_path +  "testA.bam"
>>> bin_length = 50
>>> number_of_samples = 0 # overruled by step_size
>>> func_to_call = scaleCoverage
>>> funcArgs = {'scaleFactor': 1.0}





>>> c = WriteBedGraph([bamFile1], bin_length, number_of_samples, stepSize=50)
>>> tempFile = c.writeBedGraph_worker( '3R', 0, 200, func_to_call, funcArgs)
>>> f = open(tempFile, 'r')
>>> f.readlines()
['3R\t0\t100\t0\n', '3R\t100\t200\t1\n']
>>> f.close()
>>> os.remove(tempFile)














	
deeptools.writeBedGraph.bedGraphToBigWig(chromSizes, bedGraphPath, bigWigPath, sort=True)

	takes a bedgraph file, orders it and converts it to
a bigwig file using pyBigWig.






	
deeptools.writeBedGraph.getGenomeChunkLength(bamHandlers, tile_size)

	Tries to estimate the length of the genome sent to the workers
based on the density of reads per bam file and the number
of bam files.

The chunk length should be a multiple of the tileSize






	
deeptools.writeBedGraph.ratio(tile_coverage, args)

	tileCoverage should be an list of two elements






	
deeptools.writeBedGraph.scaleCoverage(tile_coverage, args)

	tileCoverage should be an list with only one element






	
deeptools.writeBedGraph.writeBedGraph_wrapper(args)

	Passes the arguments to writeBedGraph_worker.
This is a step required given
the constrains from the multiprocessing module.
The args var, contains as first element the ‘self’ value
from the WriteBedGraph object








deeptools.writeBedGraph_bam_and_bw module


	
deeptools.writeBedGraph_bam_and_bw.getCoverageFromBigwig(bigwigHandle, chrom, start, end, tileSize, missingDataAsZero=False)

	




	
deeptools.writeBedGraph_bam_and_bw.writeBedGraph(bamOrBwFileList, outputFileName, fragmentLength, func, funcArgs, tileSize=25, region=None, blackListFileName=None, numberOfProcessors=None, format='bedgraph', extendPairedEnds=True, missingDataAsZero=False, smoothLength=0, fixed_step=False, verbose=False)

	Given a list of bamfiles, a function and a function arguments,
this method writes a bedgraph file (or bigwig) file
for a partition of the genome into tiles of given size
and a value for each tile that corresponds to the given function
and that is related to the coverage underlying the tile.






	
deeptools.writeBedGraph_bam_and_bw.writeBedGraph_worker(chrom, start, end, tileSize, defaultFragmentLength, bamOrBwFileList, func, funcArgs, extendPairedEnds=True, smoothLength=0, missingDataAsZero=False, fixed_step=False)

	Writes a bedgraph having as base a number of bam files.

The given func is called to compute the desired bedgraph value
using the funcArgs

tileSize






	
deeptools.writeBedGraph_bam_and_bw.writeBedGraph_wrapper(args)

	






Module contents







	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
About

Please cite deepTools as follows:


Ramírez, Fidel, Devon P. Ryan, Björn Grüning, Vivek Bhardwaj, Fabian Kilpert,
Andreas S. Richter, Steffen Heyne, Friederike Dündar,
and Thomas Manke. deepTools2: A next Generation Web Server for Deep-Sequencing Data Analysis [http://nar.oxfordjournals.org/content/early/2016/04/12/nar.gkw257.abstract].
Nucleic Acids Research (2016). doi:10.1093/nar/gkw257 [http://doi.org/10.1093/nar/gkw257].


Where deepTools are used:


	DEEP consortium

	public Galaxy server hosted at https://usegalaxy.org/.

	public Galaxy instance hosted by the Max-Planck-Institute for Immunobiology and Epigenetics: deeptools.ie-freiburg.mpg.de

	in-house Galaxy instance of the Max-Planck-Institute for Immunobiology and Epigenetics

	Galaxy instance of the University of Freiburg, Germany

	Galaxy instance of the ICGMB, Strasbourg, France

	Galaxy instance of LCSB and HPC @ Uni.lu, Belval, Luxembourg



[image: ../_images/logo_mpi-ie.jpg]
This tool suite is developed by the Bioinformatics Facility [http://www1.ie-freiburg.mpg.de/bioinformaticsfac] at the
Max Planck Institute for Immunobiology and Epigenetics,
Freiburg [http://www1.ie-freiburg.mpg.de/].







	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].
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computeGCBias



	Required arguments

	Optional arguments

	Output options

	Diagnostic plot options

	Background
	Excluding regions from the read distribution calculation





	Usage example





Computes the GC-bias using Benjamini’s method [Benjamini & Speed (2012). Nucleic Acids Research, 40(10). doi: 10.1093/nar/gks001]. The GC-bias is visualized and the resulting table can be used tocorrect the bias with correctGCBias.

usage: 
 computeGCBias -b file.bam --effectiveGenomeSize 2150570000 -g mm9.2bit -l 200 --GCbiasFrequenciesFile freq.txt [options]






Required arguments





	
–bamfile, -b
	Sorted BAM file.

	
–effectiveGenomeSize


	 	The effective genome size is the portion of the genome that is mappable. Large fractions of the genome are stretches of NNNN that should be discarded. Also, if repetitive regions were not included in the mapping of reads, the effective genome size needs to be adjusted accordingly. Common values are: mm9: 2150570000, hg19:2451960000, dm3:121400000 and ce10:93260000. See Table 2 of http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030377 or http://www.nature.com/nbt/journal/v27/n1/fig_tab/nbt.1518_T1.html for several effective genome sizes. This value is needed to detect enriched regions that, if not discarded can bias the results.

	
–genome, -g
	Genome in two bit format. Most genomes can be found here: http://hgdownload.cse.ucsc.edu/gbdb/ Search for the .2bit ending. Otherwise, fasta files can be converted to 2bit using the UCSC programm called faToTwoBit available for different plattforms at http://hgdownload.cse.ucsc.edu/admin/exe/

	
–fragmentLength, -l


	 	Fragment length used for the sequencing. If paired-end reads are used, the fragment length is computed based from the bam file







Optional arguments





	
–sampleSize
	Number of sampling points to be considered.

	
–extraSampling


	 	BED file containing genomic regions for which extra sampling is required because they are underrepresented in the genome.

	
–version
	show program’s version number and exit

	
–region, -r
	Region of the genome to limit the operation to - this is useful when testing parameters to reduce the computing time. The format is chr:start:end, for example –region chr10 or –region chr10:456700:891000.

	
–blackListFileName, -bl


	 	A BED or GTF file containing regions that should be excluded from all analyses. Currently this works by rejecting genomic chunks that happen to overlap an entry. Consequently, for BAM files, if a read partially overlaps a blacklisted region or a fragment spans over it, then the read/fragment might still be considered. Please note that you should adjust the effective genome size, if relevant.

	
–numberOfProcessors, -p


	 	Number of processors to use. Type “max/2” to use half the maximum number of processors or “max” to use all available processors.

	
–verbose, -v
	Set to see processing messages.







Output options





	
–GCbiasFrequenciesFile, -freq


	 	Path to save the file containing the observed and expected read frequencies per %GC-content. This file is needed to run the correctGCBias tool. This is a text file.

	
–plotFileFormat


	 	Possible choices: png, pdf, svg, eps

image format type. If given, this option overrides the image format based on the plotFile ending. The available options are: “png”, “eps”, “pdf” and “svg”









Diagnostic plot options





	
–biasPlot
	If given, a diagnostic image summarizing the GC-bias will be saved.

	
–regionSize
	To plot the reads per %GC over a regionthe size of the region is required. By default, the bin size is set to 300 bases, which is close to the standard fragment size for Illumina machines. However, if the depth of sequencing is low, a larger bin size will be required, otherwise many bins will not overlap with any read







Background

computeGCBias is based on a paper by Benjamini and Speed [http://nar.oxfordjournals.org/content/40/10/e72].
The basic assumption of the GC bias diagnosis is that an ideal sample should show a uniform distribution of sequenced reads across the genome, i.e. all regions of the genome should have similar numbers of reads, regardless of their base-pair composition.
In reality, the DNA polymerases used for PCR-based amplifications during the library preparation of the sequencing protocols prefer GC-rich regions. This will influence the outcome of the sequencing as there will be more reads for GC-rich regions just because of the DNA polymerase’s preference.

computeGCbias will first calculate the expected GC profile by counting the number of DNA fragments of a fixed size per GC fraction where GC fraction is defined as the number of G’s or C’s in a genome region of a given length.
The result is basically a histogram depicting the frequency of DNA fragments for each type of genome region with a GC fraction between 0 to 100 percent. This will be different for each reference genome, but is independent of the actual sequencing experiment.

The profile of the expected DNA fragment distribution is then compared to the observed GC profile, which is generated by counting the number of sequenced reads per GC fraction.

In an ideal experiment, the observed GC profile would, of course, look like the expected profile.
This is indeed the case when applying computeGCBias to simulated reads.

[image: ../../_images/GC_bias_simulated_reads_2L.png]
As you can see, both plots based on simulated reads do not show enrichments or depletions for specific GC content bins, there is an almost flat line around the log2ratio of 0 (= ratio(observed/expected) of 1). The fluctuations on the ends of the x axis are due to the fact that only very, very few regions in the Drosophila genome have such extreme GC fractions so that the number of fragments that are picked up in the random sampling can vary.

Now, let’s have a look at real-life data from genomic DNA sequencing. Panels A and B can be clearly distinguished and the major change that took place between the experiments underlying the plots was that the samples in panel A were prepared with too many PCR cycles and a standard polymerase whereas the samples of panel B were subjected to very few rounds of amplification using a high fidelity DNA polymerase.

[image: ../../_images/QC_GCplots_input.png]

Note

The expected GC profile depends on the reference genome as different organisms have very different GC contents. For example, one would expect more fragments with GC fractions between 30% to 60% in mouse samples (average GC content of the mouse genome: 45 %) than for genome fragments from, for example, Plasmodium falciparum (average genome GC content P. falciparum: 20%).




Excluding regions from the read distribution calculation

In some cases, it will make sense to exclude certain regions from the calculation of the read distributions to increase the accuracy of the computation.
There are several kinds of regions that are either not expected to show a read distribution matching the background or where the uncertainty of the reference genome might be too big. Please consider the following points:


	repetitive regions: if multi-reads (reads that map to more than one genomic position) were excluded from the [BAM][] file, it will help to exclude known repetitive regions. You can get BED files of known repetitive regions from UCSC Table Browser [http://genome.ucsc.edu/cgi-bin/hgTables?command=start] (see the screenshot below for an example of human repetitive elements).



[image: ../../_images/QC_GCregionexclusion_UCSCscreenshot.png]

	regions of low mappability: these are regions where the mapping of the reads notoriously fails and we recommend to exclude known regions with mappability issues from the GC computation. You can download the mappability tracks for different read lengths from UCSC, e.g. for mouse [http://hgdownload.cse.ucsc.edu/gbdb/mm9/bbi/] and human [http://hgdownload.cse.ucsc.edu/gbdb/hg19/bbi]. In the github deepTools folder “scripts”, you can find a shell script called mappabilityBigWig_to_unmappableBed.sh which will turn the [bigWig][] mappability file from UCSC into a BED file.

	ChIP-seq peaks: in ChIP-seq samples it is expected that certain regions should show more reads than expected based on the background distribution, therefore it makes absolute sense to exclude those regions from the GC bias calculation. We recommend to run a simple, non-conservative peak calling on the uncorrected [BAM][] file first to obtain a BED file of peak regions that should then subsequently be supplied to computeGCbias.








Usage example

$ computeGCBias -b H3K27Me3.bam --effectiveGenomeSize 2695000000
   --genome genome.2bit -l 200 -freq freq_test.txt
   --region X --biasPlot test_gc.png





[image: ../../_images/ExampleComputeGCBias.png]






	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
multiBigwigSummary



	Named Arguments

	commands

	Sub-commands:
	bins
	Required arguments

	Optional arguments

	Output optional options

	deepBlue arguments





	BED-file
	Required arguments

	Optional arguments

	Output optional options

	GTF/BED12 options

	deepBlue arguments









	Example

	multiBigwigSummary in Galaxy





Given typically two or more bigWig files, multiBigwigSummary computes the average scores for each of the files in every genomic region.
This analysis is performed for the entire genome by running the program in bins mode, or for certain user selected regions in BED-file
mode. Most commonly, the default output of multiBigwigSummary (a compressed numpy array, .npz) is used by other tools such as plotCorrelation or plotPCA for visualization and diagnostic purposes.

Note that using a single bigWig file is only recommended if you want to produce a bedGraph file (i.e., with the --outRawCounts option; the default output file cannot be used by ANY deepTools program if only a single file was supplied!).

A detailed sub-commands help is available by typing:


multiBigwigSummary bins -h

multiBigwigSummary BED-file -h






usage: multiBigwigSummary [-h] [--version]  ...






Named Arguments





	
–version
	show program’s version number and exit







commands





	

	Possible choices: bins, BED-file







Sub-commands:


bins

The average score is based on equally sized bins (10 kilobases by default), which consecutively cover the entire genome. The only exception is the last bin of a chromosome, which is often smaller. The output of this mode is commonly used to assess the overall similarity of different bigWig files.

multiBigwigSummary -b file1.bw file2.bw -out results.npz






Required arguments





	
–bwfiles, -b
	List of bigWig files, separated by spaces.

	
–outFileName, -out


	 	File name to save the compressed matrix file (npz format)needed by the “plotHeatmap” and “plotProfile” tools.







Optional arguments





	
–labels, -l
	User defined labels instead of default labels from file names. Multiple labels have to be separated by spaces, e.g., –labels sample1 sample2 sample3

	
–chromosomesToSkip


	 	List of chromosomes that you do not want to be included.  Useful to remove “random” or “extra” chr.

	
–binSize, -bs
	Size (in bases) of the windows sampled from the genome.

	
–distanceBetweenBins, -n


	 	By default, multiBigwigSummary considers adjacent bins of the specified –binSize. However, to reduce the computation time, a larger distance between bins can be given. Larger distances results in fewer considered bins.

	
–version
	show program’s version number and exit

	
–region, -r
	Region of the genome to limit the operation to - this is useful when testing parameters to reduce the computing time. The format is chr:start:end, for example –region chr10 or –region chr10:456700:891000.

	
–blackListFileName, -bl


	 	A BED or GTF file containing regions that should be excluded from all analyses. Currently this works by rejecting genomic chunks that happen to overlap an entry. Consequently, for BAM files, if a read partially overlaps a blacklisted region or a fragment spans over it, then the read/fragment might still be considered. Please note that you should adjust the effective genome size, if relevant.

	
–numberOfProcessors, -p


	 	Number of processors to use. Type “max/2” to use half the maximum number of processors or “max” to use all available processors.

	
–verbose, -v
	Set to see processing messages.







Output optional options





	
–outRawCounts
	Save average scores per region for each bigWig file to a single tab-delimited file.







deepBlue arguments

Options used only for remote bedgraph/wig files hosted on deepBlue





	
–deepBlueURL
	For remote files bedgraph/wiggle files hosted on deepBlue, this specifies the server URL. The default is “http://deepblue.mpi-inf.mpg.de/xmlrpc”, which should not be changed without good reason.

	
–userKey
	For remote files bedgraph/wiggle files hosted on deepBlue, this specifies the user key to use for access. The default is “anonymous_key”, which suffices for public datasets. If you need access to a restricted access/private dataset, then request a key from deepBlue and specify it here.

	
–deepBlueTempDir


	 	If specified, temporary files from preloading datasets from deepBlue will be written here (note, this directory must exist). If not specified, where ever temporary files would normally be written on your system is used.

	
–deepBlueKeepTemp


	 	If specified, temporary bigWig files from preloading deepBlue datasets are not deleted. A message will be printed noting where these files are and what sample they correspond to. These can then be used if you wish to analyse the same sample with the same regions again.









BED-file

The user provides a BED file that contains all regions that should be considered for the analysis. A common use is to compare scores (e.g. ChIP-seq scores) between different samples over a set of pre-defined peak regions.

multiBigwigSummary -b file1.bw file2.bw -out results.npz --BED selection.bed






Required arguments





	
–bwfiles, -b
	List of bigWig files, separated by spaces.

	
–outFileName, -out


	 	File name to save the compressed matrix file (npz format)needed by the “plotHeatmap” and “plotProfile” tools.

	
–BED
	Limits the analysis to the regions specified in this file.







Optional arguments





	
–labels, -l
	User defined labels instead of default labels from file names. Multiple labels have to be separated by spaces, e.g., –labels sample1 sample2 sample3

	
–chromosomesToSkip


	 	List of chromosomes that you do not want to be included.  Useful to remove “random” or “extra” chr.

	
–version
	show program’s version number and exit

	
–region, -r
	Region of the genome to limit the operation to - this is useful when testing parameters to reduce the computing time. The format is chr:start:end, for example –region chr10 or –region chr10:456700:891000.

	
–blackListFileName, -bl


	 	A BED or GTF file containing regions that should be excluded from all analyses. Currently this works by rejecting genomic chunks that happen to overlap an entry. Consequently, for BAM files, if a read partially overlaps a blacklisted region or a fragment spans over it, then the read/fragment might still be considered. Please note that you should adjust the effective genome size, if relevant.

	
–numberOfProcessors, -p


	 	Number of processors to use. Type “max/2” to use half the maximum number of processors or “max” to use all available processors.

	
–verbose, -v
	Set to see processing messages.







Output optional options





	
–outRawCounts
	Save average scores per region for each bigWig file to a single tab-delimited file.







GTF/BED12 options





	
–metagene
	When either a BED12 or GTF file are used to provide         regions, perform the computation on the merged exons,         rather than using the genomic interval defined by the         5-prime and 3-prime most transcript bound (i.e., columns         2 and 3 of a BED file). If a BED3 or BED6 file is used         as input, then columns 2 and 3 are used as an exon.

	
–transcriptID
	When a GTF file is used to provide regions, only         entries with this value as their feature (column 2)         will be processed as transcripts.

	
–exonID
	When a GTF file is used to provide regions, only         entries with this value as their feature (column 2)         will be processed as exons. CDS would be another common         value for this.

	
–transcript_id_designator


	 	Each region has an ID (e.g., ACTB) assigned to it,         which for BED files is either column 4 (if it exists)         or the interval bounds. For GTF files this is instead         stored in the last column as a key:value pair (e.g., as         ‘transcript_id “ACTB”’, for a key of transcript_id         and a value of ACTB). In some cases it can be         convenient to use a different identifier. To do so, set         this to the desired key.







deepBlue arguments

Options used only for remote bedgraph/wig files hosted on deepBlue





	
–deepBlueURL
	For remote files bedgraph/wiggle files hosted on deepBlue, this specifies the server URL. The default is “http://deepblue.mpi-inf.mpg.de/xmlrpc”, which should not be changed without good reason.

	
–userKey
	For remote files bedgraph/wiggle files hosted on deepBlue, this specifies the user key to use for access. The default is “anonymous_key”, which suffices for public datasets. If you need access to a restricted access/private dataset, then request a key from deepBlue and specify it here.

	
–deepBlueTempDir


	 	If specified, temporary files from preloading datasets from deepBlue will be written here (note, this directory must exist). If not specified, where ever temporary files would normally be written on your system is used.

	
–deepBlueKeepTemp


	 	If specified, temporary bigWig files from preloading deepBlue datasets are not deleted. A message will be printed noting where these files are and what sample they correspond to. These can then be used if you wish to analyse the same sample with the same regions again.











	example usage:

	multiBigwigSummary bins -b file1.bw file2.bw -out results.npz



multiBigwigSummary BED-file -b file1.bw file2.bw -out results.npz
–BED selection.bed




Example

In the following example, the average values for our test ENCODE
ChIP-Seq datasets are computed for consecutive genome bins (default size: 10kb) by using the bins mode.

$ deepTools2.0/bin/multiBigwigSummary bins \
 -b testFiles/H3K4Me1.bigWig testFiles/H3K4Me3.bigWig testFiles/H3K27Me3.bigWig testFiles/Input.bigWig \
 --labels H3K4me1 H3K4me3 H3K27me3 input \
 -out scores_per_bin.npz --outRawCounts scores_per_bin.tab

$ head scores_per_bin.tab
    #'chr'  'start' 'end'   'H3K4me1'       'H3K4me3'       'H3K27me3'      'input'
    19      0       10000   0.0     0.0     0.0     0.0
    19      10000   20000   0.0     0.0     0.0     0.0
    19      20000   30000   0.0     0.0     0.0     0.0
    19      30000   40000   0.0     0.0     0.0     0.0
    19      40000   50000   0.0     0.0     0.0     0.0
    19      50000   60000   0.0221538461538 0.0     0.00482142857143        0.0522717391304
    19      60000   70000   4.27391282051   1.625   0.634116071429  1.29124347826
    19      70000   80000   13.0891675214   24.65   1.8180625       2.80073695652
    19      80000   90000   1.74591965812   0.29    4.35576785714   0.92987826087





To compute the average values for a set of genes, use the BED-file mode.

$ deepTools2.0/bin/multiBigwigSummary BED-file \
 --bwfiles testFiles/*bigWig \
 --BED testFiles/genes.bed \
 --labels H3K27me3 H3K4me1 H3K4me3 HeK9me3 input \
 -out scores_per_transcript.npz --outRawCounts scores_per_transcript.tab

 $ head scores_per_transcript.tab
 #'chr'     'start' 'end'   'H3K27me3'      'H3K4me1'       'H3K4me3'       'HeK9me3'       'input'
19  60104   70951   0.663422099099  4.37103606574   14.9609108509   0.596631607217  1.34274297191
19  60950   70966   0.714223982699  4.54650763906   16.2336261981   0.62173674295   1.41719308888
19  62114   70944   0.747578769617  4.84009060023   18.2951302378   0.648723472352  1.51324474371
19  63820   70951   0.781816722009  5.30500631048   22.5579862572   0.682862029229  1.55490104062
19  65057   66382   0.528301886792  5.45886792453   0.523018867925  0.555471698113  1.97056603774
19  65821   66416   0.411764705882  3.0     0.636974789916  0.168067226891  1.67226890756
19  65821   70945   0.844600775761  4.79176424668   31.1346604215   0.693073728066  1.47911787666
19  66319   66492   0.774566473988  1.59537572254   0.0     0.0     0.578034682081
19  66345   71535   0.877430197151  5.49036608863   43.978805395    0.746026011561  1.43545279383





The default output of multiBamSummary (a compressed numpy array: *.npz) can be visualized using plotCorrelation or plotPCA.

The optional output (--outRawCounts) is a simple tab-delimited file that can be used with any other program. The first three columns define the region of the genome for which the reads were summarized.




multiBigwigSummary in Galaxy

Below is the screenshot showing how to use multiBigwigSummary on the deeptools galaxy.

[image: ../../_images/bigwiCorr_galaxy.png]






	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
computeMatrixOperations



	Named Arguments

	Commands

	Sub-commands:
	info
	Required arguments





	subset
	Required arguments

	Optional arguments





	filterStrand
	Required arguments





	rbind
	Required arguments





	cbind
	Required arguments





	sort
	Required arguments

	Optional arguments









	Details

	Examples





This tool performs a variety of operations on files produced by computeMatrix.

detailed help:


computeMatrixOperations info -h


or


computeMatrixOperations subset -h


or


computeMatrixOperations filterStrand -h


or


computeMatrixOperations rbind -h


or


computeMatrixOperations cbind -h



	or

	computeMatrixOperations sort -h





usage: computeMatrixOperations [-h] [--version]  ...






Named Arguments





	
–version
	show program’s version number and exit







Commands





	

	Possible choices: info, subset, filterStrand, rbind, cbind, sort







Sub-commands:


info

Print group and sample information

An example usage is:
  computeMatrixOperations info -m input.mat.gz






Required arguments





	
–matrixFile, -m


	 	Matrix file from the computeMatrix tool.









subset

Actually subset the matrix. The group and sample orders are honored, so one can also reorder files.

An example usage is:
  computeMatrixOperations subset -m input.mat.gz -o output.mat.gz --groups "group 1" "group 2" --samples "sample 3" "sample 10"






Required arguments





	
–matrixFile, -m


	 	Matrix file from the computeMatrix tool.

	
–outFileName, -o


	 	Output file name







Optional arguments





	
–groups
	Groups to include. If none are specified then all will be included.

	
–samples
	Samples to include. If none are specified then all will be included.









filterStrand

Filter entries by strand.

Example usage:
  computeMatrixOperations filterStrand -m input.mat.gz -o output.mat.gz --strand +






Required arguments





	
–matrixFile, -m


	 	Matrix file from the computeMatrix tool.

	
–outFileName, -o


	 	Output file name

	
–strand, -s
	Possible choices: +, -, .

Strand











rbind

merge multiple matrices by concatenating them head to tail. This assumes that the same samples are present in each in the same order.

Example usage:
  computeMatrixOperations rbind -m input1.mat.gz input2.mat.gz -o output.mat.gz






Required arguments





	
–matrixFile, -m


	 	Matrix files from the computeMatrix tool.

	
–outFileName, -o


	 	Output file name









cbind

merge multiple matrices by concatenating them left to right. No assumptions are made about the row order. Regions not present in the first file specified are ignored. Regions missing in subsequent files will result in NAs. Note that if you cbind matrices where the samples have different widths, then the x-axis tick positions for the left-most samples will be correct and those on the right-most samples will be incorrect. The labels may also be incorrect for all but the left-most samples. This is due to ticks and labels being the same in all samples (the tick positions are scaled according to the number of data-points per row in a sample)

Example usage:
  computeMatrixOperations cbind -m input1.mat.gz input2.mat.gz -o output.mat.gz






Required arguments





	
–matrixFile, -m


	 	Matrix files from the computeMatrix tool.

	
–outFileName, -o


	 	Output file name









sort

Sort a matrix file to correspond to the order if entries in the desired input files. The groups of regions designated by the files must be present in the order found in the output of computeMatrix (otherwise, use the subset command first).

Example usage:
  computeMatrixOperations sort -m input.mat.gz -R regions1.bed regions2.bed regions3.gtf -o input.sorted.mat.gz






Required arguments





	
–matrixFile, -m


	 	Matrix file from the computeMatrix tool.

	
–outFileName, -o


	 	Output file name

	
–regionsFileName, -R


	 	File name(s), in BED or GTF format, containing the regions. If multiple bed files are given, each one is considered a group that can be plotted separately. Also, adding a “#” symbol in the bed file causes all the regions until the previous “#” to be considered one group. Alternatively for BED files, putting deepTools_group in the header can be used to indicate a column with group labels. Note that these should be sorted such that all group entries are together.







Optional arguments





	
–transcriptID
	When a GTF file is used to provide regions, only entries with this value as their feature (column 2) will be processed as transcripts.

	
–transcript_id_designator


	 	Each region has an ID (e.g., ACTB) assigned to it, which for BED files is either column 4 (if it exists) or the interval bounds. For GTF files this is instead stored in the last column as a key:value pair (e.g., as ‘transcript_id “ACTB”’, for a key of transcript_id and a value of ACTB). In some cases it can be convenient to use a different identifier. To do so, set this to the desired key.










example usages:
computeMatrixOperations subset -m input.mat.gz -o output.mat.gz –group “group 1” “group 2” –samples “sample 3” “sample 10”


Details

computeMatrixOperations can perform a variety of operations on one or more files produced by computeMatrix (N.B., the output is always written to a new file):







	Subcommand
	What it does




	info
	Prints out the sample and region group names in the order in which they appear.




	subset
	Subsets a file by the desired samples/region group names. This can also change the order of these samples/region groups.




	filterStrand
	Filters the file to only include regions annotated as being on a particular strand.




	rbind
	Concatenates multiple matrices together, top to bottom.




	cbind
	Merges multiple matrices, left to right.




	sort
	Sorts the given file so regions are in the order of occurence in the input BED/GTF file(s).







These operations are useful when you want to run computeMatrix on multiple files (thereby keeping all of the values together) and later exclude regions/samples or add new ones. Another common use would be if you require the output of computeMatrix to be sorted to match the order of regions in the input file.




Examples

Suppose that we have a strand-specific RNAseq dataset and would like to plot only the strand-specific signal across spliced transcripts. The general steps would be as follows:


	Run bamCoverage on each sample twice, once with –filterRNAstrand forward and again with –filterRNAstrand reverse. This will result in twice the number of bigWig files as samples.

	Run computeMatrix scale-regions with all of these bigWig files, including the –metagene option and a BED12 and/or a GTF file. This produces a file containing the signal separated by strand for each transcript.

	Get the list of sample names stored in the matrix file:



$ computeMatrixOperations info -m foo.mat.gz
Groups:
    genes
Samples:
    SRR648667.forward
    SRR648668.forward
    SRR648669.forward
    SRR648670.forward
    SRR648667.reverse
    SRR648668.reverse
    SRR648669.reverse
    SRR648670.reverse






	Create two new files, each containing only the samples containing signal from a given strand.



$ computeMatrixOperations subset -m foo.mat.gz -o forward.mat.gz --samples SRR648667.forward SRR648668.forward SRR648669.forward SRR648670.forward
$ computeMatrixOperations subset -m foo.mat.gz -o reverse.mat.gz --samples SRR648667.reverse SRR648668.reverse SRR648669.reverse SRR648670.reverse






	These files can then be subset to contain only transcripts on a particular strand. Note that it’s best to double check that the --strand - setting produces the intended results. There are many peculiar variants of RNAseq library preparation and the settings for one type may not be appropriate for another (to check this, use the different --strand options on the same matrix and then run plotHeatmap, one of them will be obviously correct and the other largely blank).



$ computeMatrixOperations filterStrand -m forward.mat.gz -o forward.subset.mat.gz --strand -
$ computeMatrixOperations filterStrand -m reverse.mat.gz -o reverse.subset.mat.gz --strand +






	Finally, the files can be merged back together, head to tail. The samples are already in the correct order, as indicated by step 3.



$ computeMatrixOperations rbind -m forward.subset.mat.gz reverse.subset.mat.gz -o merged.mat.gz






	If desired, the transcripts can then be resorted to match the order of the input GTF file.



$ computeMatrixOperations sort -m merged.mat.gz -o sorted.mat.gz -R genes.gtf





The resulting file can then be used with plotHeatmap or plotProfile. Note that we could have skipped the subset step and run computeMatrix independently on the forward and reverse bigWig files.


Tip

The cbind subcommand can be used to merge, left to right, matrices using very different signal types. For example, a scale-region matrix can be merged in this way with a reference-point matrix. When these are plotted, however, the tick labels on the Y-axis will only be correct for the left-most columns. The deepTools plot functions using the same X-axis ticks and labels for each profile/heatmap, so the left-most plots will have correct labels and the others may note. The plotted data is nonetheless correct, so simply ignore these. Note further that the tick positions will be scaled according to the sample width, so the ticks will always appear in the same relative position, but not the same absolute position within each group of samples.









	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
plotFingerprint

This quality control will most likely be of interest for you if you are dealing with ChIP-seq samples as a pressing question in ChIP-seq experiments is “Did my ChIP work?”, i.e. did the antibody-treatment enrich sufficiently so that the ChIP signal can be separated from the background signal? (After all, around 90% of all DNA fragments in a ChIP experiment will represent the genomic background).


Note

We’ve termed the plots described here “fingerprints” because we feel that they help us judging individual ChIP-seq files, but the original idea came from Diaz et al. [https://github.com/songlab/chance/wiki/CHANCE-Manual#checking-the-strength-of-enrichment-in-the-ip]





	Required arguments

	Output

	Read processing options

	Optional arguments

	Background
	What the plots tell you

	Quality control metrics





	Usage example





This tool samples indexed BAM files and plots a profile of cumulative read coverages for each. All reads overlapping a window (bin) of the specified length are counted; these counts are sorted and the cumulative sum is finally plotted.

usage: An example usage is: plotFingerprint -b treatment.bam control.bam -plot fingerprint.png






Required arguments





	
–bamfiles, -b
	List of indexed BAM files







Output





	
–plotFile, -plot


	 	File name of the output figure. The file ending will be used to determine the image format. The available options are typically: “png”, “eps”, “pdf” and “svg”, e.g. : fingerprint.png.

	
–outRawCounts
	Output file name to save the read counts per bin.







Read processing options





	
–extendReads, -e


	 	This parameter allows the extension of reads to fragment size. If set, each read is extended, without exception.
NOTE: This feature is generally NOT recommended for spliced-read data, such as RNA-seq, as it would extend reads over skipped regions.
Single-end: Requires a user specified value for the final fragment length. Reads that already exceed this fragment length will not be extended.
Paired-end: Reads with mates are always extended to match the fragment size defined by the two read mates. Unmated reads, mate reads that map too far apart (>4x fragment length) or even map to different chromosomes are treated like single-end reads. The input of a fragment length value is optional. If no value is specified, it is estimated from the data (mean of the fragment size of all mate reads).

	
–ignoreDuplicates


	 	If set, reads that have the same orientation and start position will be considered only once. If reads are paired, the mate’s position also has to coincide to ignore a read.

	
–minMappingQuality


	 	If set, only reads that have a mapping quality score of at least this are considered.

	
–centerReads
	By adding this option, reads are centered with respect to the fragment length. For paired-end data, the read is centered at the fragment length defined by the two ends of the fragment. For single-end data, the given fragment length is used. This option is useful to get a sharper signal around enriched regions.

	
–samFlagInclude


	 	Include reads based on the SAM flag. For example, to get only reads that are the first mate, use a flag of 64. This is useful to count properly paired reads only once, as otherwise the second mate will be also considered for the coverage.

	
–samFlagExclude


	 	Exclude reads based on the SAM flag. For example, to get only reads that map to the forward strand, use –samFlagExclude 16, where 16 is the SAM flag for reads that map to the reverse strand.

	
–minFragmentLength


	 	The minimum fragment length needed for read/pair inclusion. This option is primarily useful in ATACseq experiments, for filtering mono- or di-nucleosome fragments.

	
–maxFragmentLength


	 	The maximum fragment length needed for read/pair inclusion.







Optional arguments





	
–labels, -l
	List of labels to use in the output. If not given, the file names will be used instead. Separate the labels by spaces.

	
–binSize, -bs
	Window size in base pairs to sample the genome.

	
–numberOfSamples, -n


	 	Number of bins that sampled from the genome, for which the overlapping number of reads is computed.

	
–plotFileFormat


	 	Possible choices: png, pdf, svg, eps

image format type. If given, this option overrides the image format based on the ending given via –plotFile ending. The available options are: “png”, “eps”, “pdf” and “svg”



	
–plotTitle, -T


	 	Title of the plot, to be printed on top of the generated image. Leave blank for no title.

	
–skipZeros
	If set, then regions with zero overlapping readsfor all given BAM files are ignored. This will result in a reduced number of read counts than that specified in –numberOfSamples

	
–outQualityMetrics


	 	Quality metrics can optionally be output to this file. The file will have one row per input BAM file and columns containing a number of metrics. Please see the online documentation for a longer explanation: http://deeptools.readthedocs.io/en/latest/content/feature/plotFingerprint_QC_metrics.html .

	
–JSDsample
	Reference sample against which to compute the Jensen-Shannon distance and the CHANCE statistics. If this is not specified, then these will not be calculated. If –outQualityMetrics is not specified then this will be ignored. The Jensen-Shannon implementation is based on code from Sitanshu Gakkhar at BCGSC. The CHANCE implementation is based on code from Matthias Haimel.

	
–version
	show program’s version number and exit

	
–region, -r
	Region of the genome to limit the operation to - this is useful when testing parameters to reduce the computing time. The format is chr:start:end, for example –region chr10 or –region chr10:456700:891000.

	
–blackListFileName, -bl


	 	A BED or GTF file containing regions that should be excluded from all analyses. Currently this works by rejecting genomic chunks that happen to overlap an entry. Consequently, for BAM files, if a read partially overlaps a blacklisted region or a fragment spans over it, then the read/fragment might still be considered. Please note that you should adjust the effective genome size, if relevant.

	
–numberOfProcessors, -p


	 	Number of processors to use. Type “max/2” to use half the maximum number of processors or “max” to use all available processors.

	
–verbose, -v
	Set to see processing messages.







Background

This tool is based on a method developed by Diaz et al. [http://www.ncbi.nlm.nih.gov/pubmed/22499706].
It determines how well the signal in the ChIP-seq sample can be differentiated from the background distribution of reads in the control sample.
For factors that will enrich well-defined, rather narrow regions (e.g. transcription factors such as p300), the resulting plot can be used to assess the strength of a ChIP, but the broader the enrichments are to be expected, the less clear the plot will be.
Vice versa, if you do not know what kind of signal to expect, the fingerprint plot will give you a straight-forward indication of how careful you will have to be during your downstream analyses to separate biological noise from meaningful signal.

Similar to multiBamSummary, plotFingerprint randomly samples genome regions (bins) of a specified length and sums the per-base coverage in indexed [BAM][] (or bigWig) files that overlap with those regions.
These values are then sorted according to their rank and the cumulative sum of read counts is plotted.


What the plots tell you

An ideal [input][] with perfect uniform distribution of reads along the genome (i.e. without enrichments in open chromatin etc.) and infinite sequencing coverage should generate a straight diagonal line. A very specific and strong ChIP enrichment will be indicated by a prominent and steep rise of the cumulative sum towards the highest rank. This means that a big chunk of reads from the ChIP sample is located in few bins which corresponds to high, narrow enrichments typically seen for transcription factors.

Here you see 3 different fingerprint plots.
We chose these examples to show you how the nature of the ChIP signal (narrow and high vs. wide and not extremely high) is reflected in the “fingerprint” plots.

[image: ../../_images/QC_fingerprint.png]



Quality control metrics

For a detailed explanation of the QC metrics, please see: plotFingerprint QC metrics.






Usage example

The following example generates the fingerprints for the invididual ENCODE histone mark ChIP-seq data sets and their corresponding input (focusing on chromosome 19 and thus adjusting the number of 500 bp bins that are being sampled using --numberOfSamples to avoid overlapping bins).

$ deepTools2.0/bin/plotFingerprint \
 -b testFiles/*bam \
--labels H3K27me3 H3K4me1 H3K4me3 H3K9me3 input \
--minMappingQuality 30 --skipZeros \
--region 19 --numberOfSamples 50000 \
-T "Fingerprints of different samples"  \
--plotFile fingerprints.png \
--outRawCounts fingerprints.tab





[image: ../../_images/fingerprints1.png]
The table that you can obtain via --outRawCounts simply contains the sum of the per-base coverage inside each sampled genome bin. For the plot above, each column is sorted in increasing order and then the cumulative sum is plotted.

$ head fingerprints.tab
  'H3K27me3'  'H3K4me1'       'H3K4me3'       'H3K9me3'       'input'
      1       0       0       0       0
      0       0       0       0       1
      0       1       0       0       0
      12      0       0       3       3
      3       0       1       1       0
      6       4       0       1       0
      1       0       0       0       0
      4       1       1       1       0
      1       0       0       0       0











	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
bamCompare

bamCompare can be used to generate a bigWig or bedGraph file based on two BAM files that are compared to each other while being simultaneously normalized for sequencing depth.

[image: ../../_images/norm_IGVsnapshot_indFiles.png]
If you are not familiar with BAM, bedGraph and bigWig formats, you can read up on that in our Glossary of NGS terms

This tool compares two BAM files based on the number of mapped reads. To compare the BAM files, the genome is partitioned into bins of equal size, then the number of reads found in each bin is counted per file, and finally a summary value is reported. This value can be the ratio of the number of reads per bin, the log2 of the ratio, or the difference. This tool can normalize the number of reads in each BAM file using the SES method proposed by Diaz et al. (2012) “Normalization, bias correction, and peak calling for ChIP-seq”. Statistical Applications in Genetics and Molecular Biology, 11(3). Normalization based on read counts is also available. The output is either a bedgraph or bigWig file containing the bin location and the resulting comparison value. By default, if reads are paired, the fragment length reported in the BAM file is used. Each mate, however, is treated independently to avoid a bias when a mixture of concordant and discordant pairs is present. This means that each end will be extended to match the fragment length.

usage:  bamCompare -b1 treatment.bam -b2 control.bam -o log2ratio.bw






Required arguments





	
–bamfile1, -b1


	 	Sorted BAM file 1. Usually the BAM file for the treatment.

	
–bamfile2, -b2


	 	Sorted BAM file 2. Usually the BAM file for the control.







Output





	
–outFileName, -o


	 	Output file name.

	
–outFileFormat, -of


	 	Possible choices: bigwig, bedgraph

Output file type. Either “bigwig” or “bedgraph”.









Optional arguments





	
–scaleFactorsMethod


	 	Possible choices: readCount, SES

Method to use to scale the samples. Default “readCount”.



	
–sampleLength, -l


	 	Only relevant when SES is chosen for the scaleFactorsMethod. To compute the SES, specify the length (in bases) of the regions (see –numberOfSamples) that will be randomly sampled to calculate the scaling factors. If you do not have a good sequencing depth for your samples consider increasing the sampling regions’ size to minimize the probability that zero-coverage regions are used.

	
–numberOfSamples, -n


	 	Only relevant when SES is chosen for the scaleFactorsMethod. Number of samplings taken from the genome to compute the scaling factors.

	
–scaleFactors
	Set this parameter manually to avoid the computation of scaleFactors. The format is scaleFactor1:scaleFactor2.For example, –scaleFactor 0.7:1 will cause the first BAM file tobe multiplied by 0.7, while not scaling the second BAM file (multiplication with 1).

	
–ratio
	Possible choices: log2, ratio, subtract, add, mean, reciprocal_ratio, first, second

The default is to output the log2ratio of the two samples. The reciprocal ratio returns the the negative of the inverse of the ratio if the ratio is less than 0. The resulting values are interpreted as negative fold changes. NOTE: Only with –ratio subtract can –normalizeTo1x or –normalizeUsingRPKM be used. Instead of performing a computation using both files, the scaled signal can alternatively be output for the first or second file using the ‘–ratio first’ or ‘–ratio second’



	
–pseudocount
	small number to avoid x/0. Only useful together with –ratio log2 or –ratio ratio .

	
–version
	show program’s version number and exit

	
–binSize, -bs
	Size of the bins, in bases, for the output of the bigwig/bedgraph file.

	
–region, -r
	Region of the genome to limit the operation to - this is useful when testing parameters to reduce the computing time. The format is chr:start:end, for example –region chr10 or –region chr10:456700:891000.

	
–blackListFileName, -bl


	 	A BED or GTF file containing regions that should be excluded from all analyses. Currently this works by rejecting genomic chunks that happen to overlap an entry. Consequently, for BAM files, if a read partially overlaps a blacklisted region or a fragment spans over it, then the read/fragment might still be considered. Please note that you should adjust the effective genome size, if relevant.

	
–numberOfProcessors, -p


	 	Number of processors to use. Type “max/2” to use half the maximum number of processors or “max” to use all available processors.

	
–verbose, -v
	Set to see processing messages.







Read coverage normalization options





	
–normalizeTo1x


	 	Report read coverage normalized to 1x sequencing depth (also known as Reads Per Genomic Content (RPGC)). Sequencing depth is defined as: (total number of mapped reads * fragment length) / effective genome size.
The scaling factor used is the inverse of the sequencing depth computed for the sample to match the 1x coverage. To use this option, the effective genome size has to be indicated after the option. The effective genome size is the portion of the genome that is mappable. Large fractions of the genome are stretches of NNNN that should be discarded. Also, if repetitive regions were not included in the mapping of reads, the effective genome size needs to be adjusted accordingly. Common values are: mm9: 2,150,570,000; hg19:2,451,960,000; dm3:121,400,000 and ce10:93,260,000. See Table 2 of http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030377 or http://www.nature.com/nbt/journal/v27/n1/fig_tab/nbt.1518_T1.html for several effective genome sizes.

	
–normalizeUsingRPKM


	 	Use Reads Per Kilobase per Million reads to normalize the number of reads per bin. The formula is: RPKM (per bin) =  number of reads per bin / ( number of mapped reads (in millions) * bin length (kb) ). Each read is considered independently,if you want to only count either of the mate pairs inpaired-end data, use the –samFlag option.

	
–ignoreForNormalization, -ignore


	 	A list of space-delimited chromosome names containing those chromosomes that should be excluded for computing the normalization. This is useful when considering samples with unequal coverage across chromosomes, like male samples. An usage examples is –ignoreForNormalization chrX chrM.

	
–skipNonCoveredRegions, –skipNAs


	 	This parameter determines if non-covered regions (regions without overlapping reads) in a BAM file should be skipped. The default is to treat those regions as having a value of zero. The decision to skip non-covered regions depends on the interpretation of the data. Non-covered regions may represent, for example, repetitive regions that should be skipped.

	
–smoothLength
	The smooth length defines a window, larger than the binSize, to average the number of reads. For example, if the –binSize is set to 20 and the –smoothLength is set to 60, then, for each bin, the average of the bin and its left and right neighbors is considered. Any value smaller than –binSize will be ignored and no smoothing will be applied.







Read processing options





	
–extendReads, -e


	 	This parameter allows the extension of reads to fragment size. If set, each read is extended, without exception.
NOTE: This feature is generally NOT recommended for spliced-read data, such as RNA-seq, as it would extend reads over skipped regions.
Single-end: Requires a user specified value for the final fragment length. Reads that already exceed this fragment length will not be extended.
Paired-end: Reads with mates are always extended to match the fragment size defined by the two read mates. Unmated reads, mate reads that map too far apart (>4x fragment length) or even map to different chromosomes are treated like single-end reads. The input of a fragment length value is optional. If no value is specified, it is estimated from the data (mean of the fragment size of all mate reads).

	
–ignoreDuplicates


	 	If set, reads that have the same orientation and start position will be considered only once. If reads are paired, the mate’s position also has to coincide to ignore a read.

	
–minMappingQuality


	 	If set, only reads that have a mapping quality score of at least this are considered.

	
–centerReads
	By adding this option, reads are centered with respect to the fragment length. For paired-end data, the read is centered at the fragment length defined by the two ends of the fragment. For single-end data, the given fragment length is used. This option is useful to get a sharper signal around enriched regions.

	
–samFlagInclude


	 	Include reads based on the SAM flag. For example, to get only reads that are the first mate, use a flag of 64. This is useful to count properly paired reads only once, as otherwise the second mate will be also considered for the coverage.

	
–samFlagExclude


	 	Exclude reads based on the SAM flag. For example, to get only reads that map to the forward strand, use –samFlagExclude 16, where 16 is the SAM flag for reads that map to the reverse strand.

	
–minFragmentLength


	 	The minimum fragment length needed for read/pair inclusion. This option is primarily useful in ATACseq experiments, for filtering mono- or di-nucleosome fragments.

	
–maxFragmentLength


	 	The maximum fragment length needed for read/pair inclusion.







Warning

The filtering by deepTools is done after the scaling factors are calculated!




Warning

If you know that your files will be strongly affected by the kind of filtering you would like to apply (e.g., removal of duplicates with --ignoreDuplicates or ignoring reads of low quality) then consider removing those reads beforehand.









	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].









          

      

      

    

  

    
      
          
            
  
bigwigCompare

This tool compares two bigWig files based on the number of mapped reads. To compare the bigWig files, the genome is partitioned into bins of equal size, then the number of reads found in each BAM file are counted per bin and finally a summary value is reported. This value can be the ratio of the number of readsper bin, the log2 of the ratio, the sum or the difference.

usage: bigwigCompare [-h] [--version] [--binSize INT bp]
                     [--region CHR:START:END]
                     [--blackListFileName BED file [BED file ...]]
                     [--numberOfProcessors INT] [--verbose] --outFileName
                     FILENAME [--outFileFormat {bigwig,bedgraph}]
                     [--deepBlueURL DEEPBLUEURL] [--userKey USERKEY]
                     [--deepBlueTempDir DEEPBLUETEMPDIR] [--deepBlueKeepTemp]
                     --bigwig1 Bigwig file --bigwig2 Bigwig file
                     [--scaleFactors SCALEFACTORS] [--pseudocount PSEUDOCOUNT]
                     [--ratio {log2,ratio,subtract,add,mean,reciprocal_ratio,first,second}]
                     [--skipNonCoveredRegions]






Named Arguments





	
–bigwig1, -b1
	Bigwig file 1. Usually the file for the treatment.

	
–bigwig2, -b2
	Bigwig file 2. Usually the file for the control.

	
–scaleFactors
	Set this parameter to multipy the bigwig values by a constant. The format is scaleFactor1:scaleFactor2. For example 0.7:1 to scale the first bigwig file by 0.7 while not scaling the second bigwig file

	
–pseudocount
	small number to avoid x/0. Only useful when ratio = log2 or ratio

	
–ratio
	Possible choices: log2, ratio, subtract, add, mean, reciprocal_ratio, first, second

The default is to output the log2ratio of the two samples. The reciprocal ratio returns the the negative of the inverse of the ratio if the ratio is less than 0. The resulting values are interpreted as negative fold changes. NOTE: Only with –ratio subtract can –normalizeTo1x or –normalizeUsingRPKM be used. Instead of performing a computation using both files, the scaled signal can alternatively be output for the first or second file using the ‘–ratio first’ or ‘–ratio second’



	
–skipNonCoveredRegions, –skipNAs


	 	This parameter determines if non-covered regions (regions without a score) in the bigWig files should be skipped. The default is to treat those regions as having a value of zero. The decision to skip non-covered regions depends on the interpretation of the data. Non-covered regions in a bigWig file may represent repetitive regions that should be skipped. Alternatively, the interpretation of non-covered regions as zeros may be wrong and this option should be used







Optional arguments





	
–version
	show program’s version number and exit

	
–binSize, -bs
	Size of the bins, in bases, for the output of the bigwig/bedgraph file.

	
–region, -r
	Region of the genome to limit the operation to - this is useful when testing parameters to reduce the computing time. The format is chr:start:end, for example –region chr10 or –region chr10:456700:891000.

	
–blackListFileName, -bl


	 	A BED or GTF file containing regions that should be excluded from all analyses. Currently this works by rejecting genomic chunks that happen to overlap an entry. Consequently, for BAM files, if a read partially overlaps a blacklisted region or a fragment spans over it, then the read/fragment might still be considered. Please note that you should adjust the effective genome size, if relevant.

	
–numberOfProcessors, -p


	 	Number of processors to use. Type “max/2” to use half the maximum number of processors or “max” to use all available processors.

	
–verbose, -v
	Set to see processing messages.







Output





	
–outFileName, -o


	 	Output file name.

	
–outFileFormat, -of


	 	Possible choices: bigwig, bedgraph

Output file type. Either “bigwig” or “bedgraph”.









deepBlue arguments

Options used only for remote bedgraph/wig files hosted on deepBlue





	
–deepBlueURL
	For remote files bedgraph/wiggle files hosted on deepBlue, this specifies the server URL. The default is “http://deepblue.mpi-inf.mpg.de/xmlrpc”, which should not be changed without good reason.

	
–userKey
	For remote files bedgraph/wiggle files hosted on deepBlue, this specifies the user key to use for access. The default is “anonymous_key”, which suffices for public datasets. If you need access to a restricted access/private dataset, then request a key from deepBlue and specify it here.

	
–deepBlueTempDir


	 	If specified, temporary files from preloading datasets from deepBlue will be written here (note, this directory must exist). If not specified, where ever temporary files would normally be written on your system is used.

	
–deepBlueKeepTemp


	 	If specified, temporary bigWig files from preloading deepBlue datasets are not deleted. A message will be printed noting where these files are and what sample they correspond to. These can then be used if you wish to analyse the same sample with the same regions again.












	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].









          

      

      

    

  

    
      
          
            
  
plotHeatmap



	Required arguments

	Output options

	Clustering arguments

	Optional arguments

	Details

	Usage examples
	Multiple colors for heatmaps

	No box around heatmaps









This tool creates a heatmap for scores associated with genomic regions. The program requires a matrix file generated by the tool computeMatrix.

usage: plotHeatmap [--matrixFile MATRIXFILE] --outFileName OUTFILENAME
                   [--outFileSortedRegions FILE] [--outFileNameMatrix FILE]
                   [--dpi DPI] [--kmeans KMEANS] [--hclust HCLUST] [--help]
                   [--version] [--sortRegions {descend,ascend,no}]
                   [--sortUsing {mean,median,max,min,sum,region_length}]
                   [--sortUsingSamples SORTUSINGSAMPLES [SORTUSINGSAMPLES ...]]
                   [--averageTypeSummaryPlot {mean,median,min,max,std,sum}]
                   [--missingDataColor MISSINGDATACOLOR]
                   [--colorMap COLORMAP [COLORMAP ...]] [--alpha ALPHA]
                   [--colorList COLORLIST [COLORLIST ...]]
                   [--colorNumber COLORNUMBER] [--zMin ZMIN [ZMIN ...]]
                   [--zMax ZMAX [ZMAX ...]] [--heatmapHeight HEATMAPHEIGHT]
                   [--heatmapWidth HEATMAPWIDTH]
                   [--whatToShow {plot, heatmap and colorbar,plot and heatmap,heatmap only,heatmap and colorbar}]
                   [--boxAroundHeatmaps BOXAROUNDHEATMAPS]
                   [--xAxisLabel XAXISLABEL] [--startLabel STARTLABEL]
                   [--endLabel ENDLABEL] [--refPointLabel REFPOINTLABEL]
                   [--regionsLabel REGIONSLABEL [REGIONSLABEL ...]]
                   [--samplesLabel SAMPLESLABEL [SAMPLESLABEL ...]]
                   [--plotTitle PLOTTITLE] [--yAxisLabel YAXISLABEL]
                   [--yMin YMIN [YMIN ...]] [--yMax YMAX [YMAX ...]]
                   [--legendLocation {best,upper-right,upper-left,upper-center,lower-left,lower-right,lower-center,center,center-left,center-right,none}]
                   [--perGroup] [--plotFileFormat] [--verbose]






Required arguments





	
–matrixFile, -m


	 	Matrix file from the computeMatrix tool.

	
–outFileName, -out


	 	File name to save the image to. The file ending will be used to determine the image format. The available options are: “png”, “eps”, “pdf” and “svg”, e.g., MyHeatmap.png.







Output options





	
–outFileSortedRegions


	 	File name into which the regions are saved after skipping zeros or min/max threshold values. The order of the regions in the file follows the sorting order selected. This is useful, for example, to generate other heatmaps while keeping the sorting of the first heatmap. Example: Heatmap1sortedRegions.bed

	
–outFileNameMatrix


	 	If this option is given, then the matrix of values underlying the heatmap will be saved using this name, e.g. MyMatrix.tab.

	
–dpi
	Set the DPI to save the figure.







Clustering arguments





	
–kmeans
	Number of clusters to compute. When this option is set, the matrix is split into clusters using the k-means algorithm. Only works for data that is not grouped, otherwise only the first group will be clustered. If more specific clustering methods are required, then save the underlying matrix and run the clustering using other software. The plotting  of the clustering may fail with an error if a cluster has very few members compared to the total number or regions.

	
–hclust
	Number of clusters to compute. When this option is set, then the matrix is split into clusters using the hierarchical clustering algorithm, using “ward linkage”. Only works for data that is not grouped, otherwise only the first group will be clustered. –hclust could be very slow if you have >1000 regions. In those cases, you might prefer –kmeans or if more clustering methods are required you can save the underlying matrix and run the clustering using  other software. The plotting of the clustering may fail with an error if a cluster has very few members compared to the total number of regions.







Optional arguments





	
–version
	show program’s version number and exit

	
–sortRegions
	Possible choices: descend, ascend, no

Whether the heatmap should present the regions sorted. The default is to sort in descending order based on the mean value per region.



	
–sortUsing
	Possible choices: mean, median, max, min, sum, region_length

Indicate which method should be used for sorting. For each row the method is computed.



	
–sortUsingSamples


	 	List of sample numbers (order as in matrix), that are used for sorting by –sortUsing, no value uses all samples, example: –sortUsingSamples 1 3

	
–averageTypeSummaryPlot


	 	Possible choices: mean, median, min, max, std, sum

Define the type of statistic that should be plotted in the summary image above the heatmap. The options are: “mean”, “median”, “min”, “max”, “sum” and “std”.



	
–missingDataColor


	 	If –missingDataAsZero is not set, such cases will be colored in black by default. Using this parameter, a different color can be set. A value between 0 and 1 will be used for a gray scale (black is 0). For a list of possible color names see: http://packages.python.org/ete2/reference/reference_svgcolors.html. Other colors can be specified using the #rrggbb notation.

	
–colorMap
	Color map to use for the heatmap. If more than one heatmap is being plotted the color of each heatmap can be enter individually (e.g. –colorMap Reds Blues). Color maps are recycled if the number of color maps is smaller than the number of heatmaps being plotted. Available values can be seen here: http://matplotlib.org/users/colormaps.html The available options are: ‘Spectral’, ‘summer’, ‘coolwarm’, ‘Set1’, ‘Set2’, ‘Set3’, ‘Dark2’, ‘hot’, ‘RdPu’, ‘YlGnBu’, ‘RdYlBu’, ‘gist_stern’, ‘cool’, ‘gray’, ‘GnBu’, ‘gist_ncar’, ‘gist_rainbow’, ‘Wistia’, ‘CMRmap’, ‘bone’, ‘RdYlGn’, ‘spring’, ‘terrain’, ‘PuBu’, ‘spectral’, ‘gist_yarg’, ‘BuGn’, ‘bwr’, ‘cubehelix’, ‘YlOrRd’, ‘Greens’, ‘PRGn’, ‘gist_heat’, ‘Paired’, ‘hsv’, ‘Pastel2’, ‘Pastel1’, ‘BuPu’, ‘copper’, ‘OrRd’, ‘brg’, ‘gnuplot2’, ‘jet’, ‘gist_earth’, ‘Oranges’, ‘PiYG’, ‘YlGn’, ‘Accent’, ‘gist_gray’, ‘flag’, ‘BrBG’, ‘Reds’, ‘RdGy’, ‘PuRd’, ‘Blues’, ‘Greys’, ‘autumn’, ‘pink’, ‘binary’, ‘winter’, ‘gnuplot’, ‘RdBu’, ‘prism’, ‘YlOrBr’, ‘rainbow’, ‘seismic’, ‘Purples’, ‘ocean’, ‘PuOr’, ‘PuBuGn’, ‘nipy_spectral’, ‘afmhot’

	
–alpha
	The alpha channel (transparency) to use for the heatmaps. The default is 1.0 and values must be between 0 and 1.

	
–colorList
	List of colors to use to create a colormap. For example, if –colorList black,yellow,blue is set (colors separated by comas) then a color map that starts with black, continues to yellow and finishes in blue is created. If this option is selected, it overrides the –colorMap chosen. The list of valid color names can be seen here: http://matplotlib.org/examples/color/named_colors.html  Hex colors are valid (e.g #34a2b1). If individual colors for different heatmaps need to be specified they need to be separated by space as for example: –colorList “white,#cccccc” “white,darkred” As for –colorMap, the color lists are recycled if their number is smaller thatn the number ofplotted heatmaps.  The number of transitions is defined by the –colorNumber option.

	
–colorNumber
	N.B., –colorList is required for an effect. This controls the number of transitions from one color to the other. If –colorNumber is the number of colors in –colorList then there will be no transitions between the colors.

	
–zMin, -min
	Minimum value for the heatmap intensities. Multiple values, separated by spaces can be set for each heatmap. If the number of zMin values is smaller thanthe number of heatmaps the values are recycled.

	
–zMax, -max
	Maximum value for the heatmap intensities. Multiple values, separated by spaces can be set for each heatmap. If the number of zMax values is smaller thanthe number of heatmaps the values are recycled.

	
–heatmapHeight


	 	Plot height in cm. The default for the heatmap height is 28. The minimum value is 3 and the maximum is 100.

	
–heatmapWidth
	Plot width in cm. The default value is 4 The minimum value is 1 and the maximum is 100.

	
–whatToShow
	Possible choices: plot, heatmap and colorbar, plot and heatmap, heatmap only, heatmap and colorbar

The default is to include a summary or profile plot on top of the heatmap and a heatmap colorbar. Other options are: “plot and heatmap”, “heatmap only”, “heatmap and colorbar”, and the default “plot, heatmap and colorbar”.



	
–boxAroundHeatmaps


	 	By default black boxes are plot around heatmaps. This can be turned off by setting –boxAroundHeatmaps no

	
–xAxisLabel, -x


	 	Description for the x-axis label.

	
–startLabel
	[only for scale-regions mode] Label shown in the plot for the start of the region. Default is TSS (transcription start site), but could be changed to anything, e.g. “peak start”. Same for the –endLabel option. See below.

	
–endLabel
	[only for scale-regions mode] Label shown in the plot for the region end. Default is TES (transcription end site).

	
–refPointLabel


	 	[only for reference-point mode] Label shown in the plot for the reference-point. Default is the same as the reference point selected (e.g. TSS), but could be anything, e.g. “peak start”.

	
–regionsLabel, -z


	 	Labels for the regions plotted in the heatmap. If more than one region is being plotted, a list of labels separated by spaces is required. If a label itself contains a space, then quotes are needed. For example, –regionsLabel label_1, “label 2”.

	
–samplesLabel
	Labels for the samples plotted. The default is to use the file name of the sample. The sample labels should be separated by spaces and quoted if a label itselfcontains a space E.g. –samplesLabel label-1 “label 2”

	
–plotTitle, -T


	 	Title of the plot, to be printed on top of the generated image. Leave blank for no title.

	
–yAxisLabel, -y


	 	Y-axis label for the top panel.

	
–yMin
	Minimum value for the Y-axis. Multiple values, separated by spaces can be set for each profile. If the number of yMin values is smaller thanthe number of plots, the values are recycled.

	
–yMax
	Maximum value for the Y-axis. Multiple values, separated by spaces can be set for each profile. If the number of yMin values is smaller thanthe number of plots, the values are recycled.

	
–legendLocation


	 	Possible choices: best, upper-right, upper-left, upper-center, lower-left, lower-right, lower-center, center, center-left, center-right, none

Location for the legend in the summary plot. Note that “none” does not work for the profiler.



	
–perGroup
	The default is to plot all groups of regions by sample. Using this option instead plots all samples by group of regions. Note that this is only useful if you have multiple groups of regions. by sample rather than group.

	
–plotFileFormat


	 	Possible choices: png, pdf, svg, eps

Image format type. If given, this option overrides the image format based on the plotFile ending. The available options are: “png”, “eps”, “pdf” and “svg”



	
–verbose
	If set, warning messages and additional information are given.






An example usage is: plotHeatmap -m <matrix file>


Details


Note

With the release of deepTools 2.3 is is now possible to set the color and scale of each heatmap
individually. Also, we added the option to remove the boxes around the heatmaps.



plotHeatmap does not change the values that computeMatrix calculated, it simply translates them into heatmaps and summary plots.
It offers a large variety of parameters to explore various visualizations and customize the resulting image (see the commands above).

In addition, you can retrieve all the data tables underlying the various plots including the regions that were used to generate the final plot.
The following tables summarizes the kinds of optional outputs that are available with the three tools.










	optional output type
	command
	computeMatrix
	plotHeatmap
	plotProfile


	values underlying the heatmap
	--outFileNameMatrix
	yes
	yes
	no


	values underlying the profile
	--outFileNameData
	no
	yes
	yes


	sorted and/or filtered regions
	--outFileSortedRegions
	yes
	yes
	yes






Tip

For more details on the optional output, see the examples for computeMatrix.






Usage examples

The following example creates a heatmap over hg19 transcripts for our test ENCODE datasets. Note that the matrix contains multiple groups of regions (in this case, one for each chromosome used).

# run compute matrix to collect the data needed for plotting
$ computeMatrix scale-regions -S H3K27Me3-input.bigWig \
                                 H3K4Me1-Input.bigWig  \
                                 H3K4Me3-Input.bigWig \
                              -R genes19.bed genesX.bed \
                              --beforeRegionStartLength 3000 \
                              --regionBodyLength 5000 \
                              --afterRegionStartLength 3000
                              --skipZeros -o matrix.mat.gz

$ plotHeatmap -m matrix.mat.gz \
      -out ExampleHeatmap1.png \





[image: ../../_images/ExampleHeatmap1.png]
As mentioned above, plotHeatmap has many options, including the ability to do k-means clustering and change the color map.

$ plotHeatmap -m matrix_two_groups.gz \
     -out ExampleHeatmap2.png \
     --colorMap RdBu \
     --whatToShow 'heatmap and colorbar' \
     --zMin -3 --zMax 3 \
     --kmeans 4





[image: ../../_images/ExampleHeatmap2.png]

Tip

More examples can be found in our Gallery [http://deeptools.readthedocs.org/en/latest/content/example_gallery.html#normalized-chip-seq-signals-and-peak-regions].




Multiple colors for heatmaps

Since deepTools version 2.3 it is now possible to adjust the color and scale of each heatmap. There are two ways
to adjust the colors, one by specifying each of the colormaps (e.g. –colorMap RdBlGr winter terrain) and the
other is by giving each of the colors in the heatmap (e.g. –colorList ‘red,blue’ ‘white,green’, ‘white, blue, red’).
For the second example, the number of transitions between the colors is given by the –colorNumber which by default
is 256.

The following is an example using the –colorList method is used. Also the scale of each heatmap is modified
using –zMin and –zMax.

$ plotHeatmap -m matrix_two_groups.gz \
     -out ExampleHeatmap3.png \
     --colorList 'black, yellow' 'white,blue' '#ffffff,orange,#000000'
     --whatToShow 'heatmap and colorbar' \
     --zMin -2 -2 0 --zMax 2 2 3
     --kmeans 4
     --dpi 100





[image: ../../_images/ExampleHeatmap3.png]



No box around heatmaps

In version 2.3 we also added the option to remove the box around heatmaps. In the following example
we combine different colormap colors, different scales and the new  –boxAroundHeatmaps option.

$ plotHeatmap -m matrix_two_groups.gz \
     -out ExampleHeatmap4.png \
     --colorMap Oranges_r Blues_r Greens
     --whatToShow 'heatmap and colorbar' \
     --zMin -4 -4 0 --zMax 0 0 5
     --kmeans 4
     --dpi 100
     --boxAroundHeatmaps no





[image: ../../_images/ExampleHeatmap4.png]

Tip

More examples can be found in our Gallery [http://deeptools.readthedocs.org/en/latest/content/example_gallery.html#normalized-chip-seq-signals-and-peak-regions].









	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].













          

      

      

    

  

    
      
          
            
  
plotCorrelation



	Required arguments

	Optional arguments

	Output optional options

	Heatmap options

	Background
	Correlation calculation

	Hierarchical clustering





	Examples





Tool for the analysis and visualization of sample correlations based on the output of multiBamSummary or
multiBigwigSummary. Pearson or Spearman methods are available to compute correlation
coefficients. Results can be saved as multiple
scatter plots depicting the pairwise correlations or as a clustered heatmap,
where the colors represent the correlation coefficients and the clusters are joined using the Nearest Point Algorithm (also known as “single”).
Optionally, the values can be saved as tables, too.

detailed help:


plotCorrelation -h




usage: plotCorrelation [-h] --corData FILE --plotFile FILE --corMethod
                       {spearman,pearson} --whatToPlot {heatmap,scatterplot}
                       [--skipZeros]
                       [--labels sample1 sample2 [sample1 sample2 ...]]
                       [--plotTitle PLOTTITLE] [--plotFileFormat FILETYPE]
                       [--removeOutliers] [--version]
                       [--outFileCorMatrix FILE] [--zMin ZMIN] [--zMax ZMAX]
                       [--colorMap] [--plotNumbers]






Required arguments





	
–corData, -in
	Compressed matrix of values generated by multiBigwigSummary or multiBamSummary

	
–plotFile, -o
	File to save the heatmap to. The file extension determines the format, so heatmap.pdf will save the heatmap in PDF format. The available formats are: .png, .eps, .pdf and .svg.

	
–corMethod, -c


	 	Possible choices: spearman, pearson

Correlation method.



	
–whatToPlot, -p


	 	Possible choices: heatmap, scatterplot

Choose between a heatmap or pairwise scatter plots









Optional arguments





	
–skipZeros
	By setting this option, genomic regions that have zero or missing (nan) values in all samples are excluded.

	
–labels, -l
	User defined labels instead of default labels from file names. Multiple labels have to be separated by spaces, e.g. –labels sample1 sample2 sample3

	
–plotTitle, -T


	 	Title of the plot, to be printed on top of the generated image. Leave blank for no title.

	
–plotFileFormat


	 	Possible choices: png, pdf, svg, eps

Image format type. If given, this option overrides the image format based on the plotFile ending. The available options are: png, eps, pdf and svg.



	
–removeOutliers


	 	If set, bins with very large counts are removed. Bins with abnormally high reads counts artificially increase pearson correlation; that’s why, multiBamSummary tries to remove outliers using the median absolute deviation (MAD) method applying a threshold of 200 to only consider extremely large deviations from the median. The ENCODE blacklist page (https://sites.google.com/site/anshulkundaje/projects/blacklists) contains useful information about regions with unusually high countsthat may be worth removing.

	
–version
	show program’s version number and exit







Output optional options





	
–outFileCorMatrix


	 	Save matrix with pairwise correlation values to a tab-separated file.







Heatmap options





	
–zMin, -min
	Minimum value for the heatmap intensities. If not specified, the value is set automatically

	
–zMax, -max
	Maximum value for the heatmap intensities.If not specified, the value is set automatically

	
–colorMap
	Color map to use for the heatmap. Available values can be seen here: http://matplotlib.org/examples/color/colormaps_reference.html

	
–plotNumbers
	If set, then the correlation number is plotted on top of the heatmap. This option is only valid when plotting a heatmap.






example usages:
plotCorrelation -in results_file –whatToPlot heatmap –corMethod pearson -o heatmap.png


Background

plotCorrelation computes the overall similarity between two or more files based on read coverage (or other scores) within genomic regions, which must be calculated using either multiBamSummary or multiBigwigSummary.


Correlation calculation

The result of the correlation computation is a table of correlation coefficients that indicates how “strong” the relationship between two samples is and it will consist of numbers between -1 and 1. (-1 indicates perfect anti-correlation, 1 perfect correlation.)

[image: ../../_images/QC_bamCorrelate_intro.png]
We offer two different functions for the correlation computation: Pearson or Spearman.

The Pearson method measures the metric differences between samples and is therefore influenced by outliers. More precisely, it is defined as the covariance of two variables divided by the product of their standard deviation.

The Spearman method is based on rankings.
If you imagine a race with 3 participants where the winner and runner-up are very close together while the third person broke her leg and comes in way, way after the first two, then Pearson would be strongly influenced by the fact that the third person had a great distance to the first ones while Spearman would only care about the fact that person 1 came in first, person 2 came in second and person 3 got the third rank, the distances between them are ignored.


Tip

Pearson is an appropriate measure for data that follows a normal distribution, while Spearman does not make this assumption and is generally less driven by outliers, but with the caveat of also being less sensitive.






Hierarchical clustering

If you use the heatmap output of plotCorrelation, this will automatically lead to a clustering of the samples based on the correlation coefficients. This helps to determine whether the different sample types can be separated, i.e., samples of different conditions are expected to be more dissimilar to each other than replicates within the same condition.

The distances of the sample pairs are based on the correlation coefficients, r, where distance = 1 - r. The similarity of the samples is assessed using the nearest point algorithm, i.e., the shortest distance between any 2 members of the tree is considered to decide whether to join a cluster or not. For more details of the algorithm, go here [http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.cluster.hierarchy.linkage.html].






Examples

Here’s an example of RNA-seq data from different human cell lines that we had downloaded from https://genome.ucsc.edu/ENCODE/dataMatrix/encodeDataMatrixHuman.html.

[image: ../../_images/QC_bamCorrelate_RNAseq.png]
As you can see, both correlation calculations more or less agree on which samples are nearly identical (the replicates, indicated by 1 or 2 at the end of the label). The Spearman correlation, however, seems to be more robust and meets our expectations more closely as the two different cell types (HUVEC and IMR90) are clearly separated.

In the following example, a correlation analysis is performed based on the coverage file computed by multiBamSummary or multiBigwigSummary for our test ENCODE ChIP-Seq datasets.

Scatterplot

Here we make pairwose scatterplots of the average scores per transcript that we calculated using multiBigwigSummary and include the Pearson correlation coefficients for each comparison.

$ deepTools2.0/bin/plotCorrelation \
-in scores_per_transcript.npz \
--corMethod pearson --skipZeros \
--plotTitle "Pearson Correlation of Average Scores Per Transcript" \
--whatToPlot scatterplot \
-o scatterplot_PearsonCorr_bigwigScores.png   \
--outFileCorMatrix PearsonCorr_bigwigScores.tab





[image: ../../_images/scatterplot_PearsonCorr_bigwigScores.png]
$ cat PearsonCorr_bigwigScores.tab
    'H3K27me3'      'H3K4me1'       'H3K4me3'       'HeK9me3'       'input'
    'H3K27me3'      1.0000  -0.1032 -0.1269 -0.0339 -0.0395
    'H3K4me1'       -0.1032 1.0000  0.3985  -0.1863 0.3328
    'H3K4me3'       -0.1269 0.3985  1.0000  -0.0480 0.2822
    'HeK9me3'       -0.0339 -0.1863 -0.0480 1.0000  -0.0353
    'input' -0.0395 0.3328  0.2822  -0.0353 1.0000





Heatmap

In addition to scatterplots, heatmaps can be generated where the pairwise correlation coefficients are depicted by varying color intensities and are clustered using hierarchical clustering.

The example here calculates the Spearman correlation coefficients of read counts.
The dendrogram indicates which samples’ read counts are most similar to each other.

$ deepTools2.0/bin/plotCorrelation \
    -in readCounts.npz \
    --corMethod spearman --skipZeros \
    --plotTitle "Spearman Correlation of Read Counts" \
    --whatToPlot heatmap --colorMap RdYlBu --plotNumbers \
    -o heatmap_SpearmanCorr_readCounts.png   \
    --outFileCorMatrix SpearmanCorr_readCounts.tab





[image: ../../_images/heatmap_SpearmanCorr_readCounts1.png]






	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
correctGCBias


Hint

For background information about the GC bias assessment and correction, see computeGCBias.



This tool corrects the GC-bias using the method proposed by [Benjamini & Speed (2012). Nucleic Acids Research, 40(10)]. It will remove reads from regions with too high coverage compared to the expected values (typically GC-rich regions) and will add reads to regions where too few reads are seen (typically AT-rich regions). The tool computeGCBias needs to be run first to generate the frequency table needed here.

usage: An example usage is:
 correctGCBias -b file.bam --effectiveGenomeSize 2150570000 -g mm9.2bit --GCbiasFrequenciesFile freq.txt -o gc_corrected.bam [options]






Required arguments





	
–bamfile, -b
	Sorted BAM file to correct.

	
–effectiveGenomeSize


	 	The effective genome size is the portion of the genome that is mappable. Large fractions of the genome are stretches of NNNN that should be discarded. Also, if repetitive regions were not included in the mapping of reads, the effective genome size needs to be adjusted accordingly. Common values are: mm9: 2150570000, hg19:2451960000, dm3:121400000 and ce10:93260000. See Table 2 of http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030377 or http://www.nature.com/nbt/journal/v27/n1/fig_tab/nbt.1518_T1.html for several effective genome sizes. This value is needed to detect enriched regions that, if not discarded, could bias the results.

	
–genome, -g
	Genome in two bit format. Most genomes can be found here: http://hgdownload.cse.ucsc.edu/gbdb/  Search for the .2bit ending. Otherwise, fasta files can be converted to 2bit using faToTwoBit available here: http://hgdownload.cse.ucsc.edu/admin/exe/

	
–GCbiasFrequenciesFile, -freq


	 	Indicate the output file from computeGCBias containing the observed and expected read frequencies per GC-content.







Output options





	
–correctedFile, -o


	 	Name of the corrected file. The ending will be used to decide the output file format. The options are ”.bam”, ”.bw” for a bigWig file, ”.bg” for a bedGraph file.







Optional arguments





	
–version
	show program’s version number and exit

	
–binSize, -bs
	Size of the bins, in bases, for the output of the bigwig/bedgraph file.

	
–region, -r
	Region of the genome to limit the operation to - this is useful when testing parameters to reduce the computing time. The format is chr:start:end, for example –region chr10 or –region chr10:456700:891000.

	
–numberOfProcessors, -p


	 	Number of processors to use. Type “max/2” to use half the maximum number of processors or “max” to use all available processors.

	
–verbose, -v
	Set to see processing messages.







Usage example


Note

correctGCBias requires the output of computeGCBias and a genome file in 2bit format. Most genomes can be found here: http://hgdownload.cse.ucsc.edu/gbdb/. Search for the .2bit ending. Otherwise, FASTA files can be converted to 2bit using faToTwoBit, which is available here: http://hgdownload.cse.ucsc.edu/admin/exe/



$ correctGCBias -b H3K27Me3.bam
   --effectiveGenomeSize 2695000000
   --genome genome.2bit
   --GCbiasFrequenciesFile freq_test.txt # output of computeGCBias
   -o gc_corrected.bam






Warning

The GC-corrected BAM file will most likely contain several duplicated reads in regions where the coverage had to increased in order to match the expected read density. This means that you should absolutely avoid using any filtering of duplicate reads during your downstream analyses!









	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
computeMatrix



	Named Arguments

	Commands

	Sub-commands:
	scale-regions
	Required arguments

	Output options

	Optional arguments

	GTF/BED12 options

	deepBlue arguments





	reference-point
	Required arguments

	Output options

	Optional arguments

	GTF/BED12 options

	deepBlue arguments









	Details

	Examples
	Example 1: single input files (reference-point mode)

	Example 2: multiple input files (scale-regions mode)









This tool calculates scores per genome regions and prepares an intermediate file that can be used with plotHeatmap and plotProfiles.
Typically, the genome regions are genes, but any other regions defined in a BED file can be used.
computeMatrix accepts multiple score files (bigWig format) and multiple regions files (BED format).
This tool can also be used to filter and sort regions according
to their score.

To learn more about the specific parameters, type:

$ computeMatrix reference-point –help or

$ computeMatrix scale-regions –help



usage: computeMatrix [-h] [--version]  ...






Named Arguments





	
–version
	show program’s version number and exit







Commands





	

	Possible choices: scale-regions, reference-point







Sub-commands:


scale-regions

In the scale-regions mode, all regions in the BED file are stretched or shrunken to the length (in bases) indicated by the user.

An example usage is:
  computeMatrix scale-regions -S <biwig file> -R <bed file> -b 1000






Required arguments





	
–regionsFileName, -R


	 	File name, in BED format, containing the regions to plot. If multiple bed files are given, each one is considered a group that can be plotted separately. Also, adding a “#” symbol in the bed file causes all the regions until the previous “#” to be considered one group.

	
–scoreFileName, -S


	 	bigWig file(s) containing the scores to be plotted. BigWig files can be obtained by using the bamCoverage or bamCompare tools. More information about the bigWig file format can be found at http://genome.ucsc.edu/goldenPath/help/bigWig.html







Output options





	
–outFileName, -out


	 	File name to save the gzipped matrix file needed by the “plotHeatmap” and “plotProfile” tools.

	
–outFileNameMatrix


	 	If this option is given, then the matrix of values underlying the heatmap will be saved using the indicated name, e.g. IndividualValues.tab.This matrix can easily be loaded into R or other programs.

	
–outFileSortedRegions


	 	File name in which the regions are saved after skiping zeros or min/max threshold values. The order of the regions in the file follows the sorting order selected. This is useful, for example, to generate other heatmaps keeping the sorting of the first heatmap. Example: Heatmap1sortedRegions.bed







Optional arguments





	
–version
	show program’s version number and exit

	
–regionBodyLength, -m


	 	Distance in bases to which all regions will be fit.

	
–startLabel
	Label shown in the plot for the start of the region. Default is TSS (transcription start site), but could be changed to anything, e.g. “peak start”. Note that this is only useful if you plan to plot the results yourself and not, for example, with plotHeatmap, which will override this.

	
–endLabel
	Label shown in the plot for the region end. Default is TES (transcription end site). See the –startLabel option for more information.

	
–beforeRegionStartLength, -b, –upstream


	 	Distance upstream of the start site of the regions defined in the region file. If the regions are genes, this would be the distance upstream of the transcription start site.

	
–afterRegionStartLength, -a, –downstream


	 	Distance downstream of the end site of the given regions. If the regions are genes, this would be the distance downstream of the transcription end site.

	
–unscaled5prime


	 	Number of bases at the 5-prime end of the region to exclude from scaling. By default, each region is scaled to a given length (see the –regionBodyLength option). In some cases it is useful to look at unscaled signals around region boundaries, so this setting specifies the number of unscaled bases on the 5-prime end of each boundary.

	
–unscaled3prime


	 	Like –unscaled3prime, but for the 3-prime end.

	
–binSize, -bs
	Length, in bases, of the non-overlapping bins for averaging the score over the regions length.

	
–sortRegions
	Possible choices: descend, ascend, no, keep

Whether the output file should present the regions sorted. The default is to not sort the regions. Note that this is only useful if you plan to plot the results yourself and not, for example, with plotHeatmap, which will override this. Note also that unsorted output will be in whatever order the regions happen to be processed in and not match the order in the input files. If you require the output order to match that of the input regions, then either specify “keep” or use computeMatrixOperations to resort the results file.



	
–sortUsing
	Possible choices: mean, median, max, min, sum, region_length

Indicate which method should be used for sorting. The value is computed for each row.Note that the region_length option will lead to a dotted line within the heatmap that indicates the end of the regions.



	
–sortUsingSamples


	 	List of sample numbers (order as in matrix), that are used for sorting by –sortUsing, no value uses all samples, example: –sortUsingSamples 1 3

	
–averageTypeBins


	 	Possible choices: mean, median, min, max, std, sum

Define the type of statistic that should be used over the bin size range. The options are: “mean”, “median”, “min”, “max”, “sum” and “std”. The default is “mean”.



	
–missingDataAsZero


	 	If set, missing data (NAs) will be treated as zeros. The default is to ignore such cases, which will be depicted as black areas in a heatmap. (see the –missingDataColor argument of the plotHeatmap command for additional options).

	
–skipZeros
	Whether regions with only scores of zero should be included or not. Default is to include them.

	
–minThreshold
	Numeric value. Any region containing a value that is less than or equal to this will be skipped. This is useful to skip, for example, genes where the read count is zero for any of the bins. This could be the result of unmappable areas and can bias the overall results.

	
–maxThreshold
	Numeric value. Any region containing a value greater than or equal to this will be skipped. The maxThreshold is useful to skip those few regions with very high read counts (e.g. micro satellites) that may bias the average values.

	
–blackListFileName, -bl


	 	A BED file containing regions that should be excluded from all analyses. Currently this works by rejecting genomic chunks that happen to overlap an entry. Consequently, for BAM files, if a read partially overlaps a blacklisted region or a fragment spans over it, then the read/fragment might still be considered.

	
–quiet, -q
	Set to remove any warning or processing messages.

	
–scale
	If set, all values are multiplied by this number.

	
–numberOfProcessors, -p


	 	Number of processors to use. Type “max/2” to use half the maximum number of processors or “max” to use all available processors.







GTF/BED12 options





	
–metagene
	When either a BED12 or GTF file are used to provide         regions, perform the computation on the merged exons,         rather than using the genomic interval defined by the         5-prime and 3-prime most transcript bound (i.e., columns         2 and 3 of a BED file). If a BED3 or BED6 file is used         as input, then columns 2 and 3 are used as an exon.

	
–transcriptID
	When a GTF file is used to provide regions, only         entries with this value as their feature (column 2)         will be processed as transcripts.

	
–exonID
	When a GTF file is used to provide regions, only         entries with this value as their feature (column 2)         will be processed as exons. CDS would be another common         value for this.

	
–transcript_id_designator


	 	Each region has an ID (e.g., ACTB) assigned to it,         which for BED files is either column 4 (if it exists)         or the interval bounds. For GTF files this is instead         stored in the last column as a key:value pair (e.g., as         ‘transcript_id “ACTB”’, for a key of transcript_id         and a value of ACTB). In some cases it can be         convenient to use a different identifier. To do so, set         this to the desired key.







deepBlue arguments

Options used only for remote bedgraph/wig files hosted on deepBlue





	
–deepBlueURL
	For remote files bedgraph/wiggle files hosted on deepBlue, this specifies the server URL. The default is “http://deepblue.mpi-inf.mpg.de/xmlrpc”, which should not be changed without good reason.

	
–userKey
	For remote files bedgraph/wiggle files hosted on deepBlue, this specifies the user key to use for access. The default is “anonymous_key”, which suffices for public datasets. If you need access to a restricted access/private dataset, then request a key from deepBlue and specify it here.

	
–deepBlueTempDir


	 	If specified, temporary files from preloading datasets from deepBlue will be written here (note, this directory must exist). If not specified, where ever temporary files would normally be written on your system is used.

	
–deepBlueKeepTemp


	 	If specified, temporary bigWig files from preloading deepBlue datasets are not deleted. A message will be printed noting where these files are and what sample they correspond to. These can then be used if you wish to analyse the same sample with the same regions again.









reference-point

Reference-point refers to a position within a BED region (e.g., the starting point). In this mode, only those genomicpositions before (upstream) and/or after (downstream) of the reference point will be plotted.

An example usage is:
  computeMatrix reference-point -S <biwig file> -R <bed file> -a 3000 -b 3000






Required arguments





	
–regionsFileName, -R


	 	File name, in BED format, containing the regions to plot. If multiple bed files are given, each one is considered a group that can be plotted separately. Also, adding a “#” symbol in the bed file causes all the regions until the previous “#” to be considered one group.

	
–scoreFileName, -S


	 	bigWig file(s) containing the scores to be plotted. BigWig files can be obtained by using the bamCoverage or bamCompare tools. More information about the bigWig file format can be found at http://genome.ucsc.edu/goldenPath/help/bigWig.html







Output options





	
–outFileName, -out


	 	File name to save the gzipped matrix file needed by the “plotHeatmap” and “plotProfile” tools.

	
–outFileNameMatrix


	 	If this option is given, then the matrix of values underlying the heatmap will be saved using the indicated name, e.g. IndividualValues.tab.This matrix can easily be loaded into R or other programs.

	
–outFileSortedRegions


	 	File name in which the regions are saved after skiping zeros or min/max threshold values. The order of the regions in the file follows the sorting order selected. This is useful, for example, to generate other heatmaps keeping the sorting of the first heatmap. Example: Heatmap1sortedRegions.bed







Optional arguments





	
–version
	show program’s version number and exit

	
–referencePoint


	 	Possible choices: TSS, TES, center

The reference point for the plotting could be either the region start (TSS), the region end (TES) or the center of the region. Note that regardless of what you specify, plotHeatmap/plotProfile will default to using “TSS” as the label.



	
–beforeRegionStartLength, -b, –upstream


	 	Distance upstream of the reference-point selected.

	
–afterRegionStartLength, -a, –downstream


	 	Distance downstream of the reference-point selected.

	
–nanAfterEnd
	If set, any values after the region end are discarded. This is useful to visualize the region end when not using the scale-regions mode and when the reference-point is set to the TSS.

	
–binSize, -bs
	Length, in bases, of the non-overlapping bins for averaging the score over the regions length.

	
–sortRegions
	Possible choices: descend, ascend, no, keep

Whether the output file should present the regions sorted. The default is to not sort the regions. Note that this is only useful if you plan to plot the results yourself and not, for example, with plotHeatmap, which will override this. Note also that unsorted output will be in whatever order the regions happen to be processed in and not match the order in the input files. If you require the output order to match that of the input regions, then either specify “keep” or use computeMatrixOperations to resort the results file.



	
–sortUsing
	Possible choices: mean, median, max, min, sum, region_length

Indicate which method should be used for sorting. The value is computed for each row.Note that the region_length option will lead to a dotted line within the heatmap that indicates the end of the regions.



	
–sortUsingSamples


	 	List of sample numbers (order as in matrix), that are used for sorting by –sortUsing, no value uses all samples, example: –sortUsingSamples 1 3

	
–averageTypeBins


	 	Possible choices: mean, median, min, max, std, sum

Define the type of statistic that should be used over the bin size range. The options are: “mean”, “median”, “min”, “max”, “sum” and “std”. The default is “mean”.



	
–missingDataAsZero


	 	If set, missing data (NAs) will be treated as zeros. The default is to ignore such cases, which will be depicted as black areas in a heatmap. (see the –missingDataColor argument of the plotHeatmap command for additional options).

	
–skipZeros
	Whether regions with only scores of zero should be included or not. Default is to include them.

	
–minThreshold
	Numeric value. Any region containing a value that is less than or equal to this will be skipped. This is useful to skip, for example, genes where the read count is zero for any of the bins. This could be the result of unmappable areas and can bias the overall results.

	
–maxThreshold
	Numeric value. Any region containing a value greater than or equal to this will be skipped. The maxThreshold is useful to skip those few regions with very high read counts (e.g. micro satellites) that may bias the average values.

	
–blackListFileName, -bl


	 	A BED file containing regions that should be excluded from all analyses. Currently this works by rejecting genomic chunks that happen to overlap an entry. Consequently, for BAM files, if a read partially overlaps a blacklisted region or a fragment spans over it, then the read/fragment might still be considered.

	
–quiet, -q
	Set to remove any warning or processing messages.

	
–scale
	If set, all values are multiplied by this number.

	
–numberOfProcessors, -p


	 	Number of processors to use. Type “max/2” to use half the maximum number of processors or “max” to use all available processors.







GTF/BED12 options





	
–metagene
	When either a BED12 or GTF file are used to provide         regions, perform the computation on the merged exons,         rather than using the genomic interval defined by the         5-prime and 3-prime most transcript bound (i.e., columns         2 and 3 of a BED file). If a BED3 or BED6 file is used         as input, then columns 2 and 3 are used as an exon.

	
–transcriptID
	When a GTF file is used to provide regions, only         entries with this value as their feature (column 2)         will be processed as transcripts.

	
–exonID
	When a GTF file is used to provide regions, only         entries with this value as their feature (column 2)         will be processed as exons. CDS would be another common         value for this.

	
–transcript_id_designator


	 	Each region has an ID (e.g., ACTB) assigned to it,         which for BED files is either column 4 (if it exists)         or the interval bounds. For GTF files this is instead         stored in the last column as a key:value pair (e.g., as         ‘transcript_id “ACTB”’, for a key of transcript_id         and a value of ACTB). In some cases it can be         convenient to use a different identifier. To do so, set         this to the desired key.







deepBlue arguments

Options used only for remote bedgraph/wig files hosted on deepBlue





	
–deepBlueURL
	For remote files bedgraph/wiggle files hosted on deepBlue, this specifies the server URL. The default is “http://deepblue.mpi-inf.mpg.de/xmlrpc”, which should not be changed without good reason.

	
–userKey
	For remote files bedgraph/wiggle files hosted on deepBlue, this specifies the user key to use for access. The default is “anonymous_key”, which suffices for public datasets. If you need access to a restricted access/private dataset, then request a key from deepBlue and specify it here.

	
–deepBlueTempDir


	 	If specified, temporary files from preloading datasets from deepBlue will be written here (note, this directory must exist). If not specified, where ever temporary files would normally be written on your system is used.

	
–deepBlueKeepTemp


	 	If specified, temporary bigWig files from preloading deepBlue datasets are not deleted. A message will be printed noting where these files are and what sample they correspond to. These can then be used if you wish to analyse the same sample with the same regions again.











	An example usage is:

	computeMatrix reference-point -S <bigwig file(s)> -R <bed file(s)> -b 1000






Details

computeMatrix has two main modes of use:


	for computing the signal distribution relative to a point (reference-point), e.g., the beginning or end of each genomic region

	for computing the signal over a set of regions (scale-regions) where all regions are scaled to the same size



[image: ../../_images/computeMatrix_modes.png]
computeMatrix is tightly connected to plotHeatmap and plotProfile: it takes the values of all the signal files and all genomic regions that you would like to plot and computes the corresponding data matrix.

See plotHeatmap and plotProfile for example plots.

[image: ../../_images/computeMatrix_overview.png]
In addition to generating the intermediate, gzipped file for plotHeatmap and plotProfile, computeMatrix can also be used to simply output the values underlying the heatmap or to filter and sort BED files using, for example, the --skipZeros and the --sortUsing parameters.

The following tables summarizes the kinds of optional outputs that are available with the three tools.










	optional output type
	command
	computeMatrix
	plotHeatmap
	plotProfile


	values underlying the heatmap
	--outFileNameMatrix
	yes
	yes
	no


	values underlying the profile
	--outFileNameData
	no
	yes
	yes


	sorted and/or filtered regions
	--outFileSortedRegions
	yes
	yes
	yes






Tip

computeMatrix can use multiple threads (-p option), which significantly decreases the time for calculating the values.






Examples

The following examples should give you an idea of some of the most often used settings for computeMatrix. As you can see, computeMatrix offers myriad tweaks and may turn out to be more useful to you than “just” to calculate heatmap matrices.


Example 1: single input files (reference-point mode)

Here, we start with a single bigWig and a single BED file, i.e., computeMatrix will:


	take the beginning of the regions specified in the BED file

	add the values indicated with --beforeRegionStartLength (-b) and --afterRegionStartLength (-a)

	split the resulting region up into 50 bp bins (can be changed via (--binSize)

	calculate the mean score based on the scores given in the bigWig file (the kind of score can be changed via --averageTypeBins)

	write out the values where each row corresponds to one region in the BED file (note that you can, for example, skip regions with zero coverage; sorting is also possible)



$ computeMatrix reference-point \ # choose the mode
       --referencePoint TSS \ # alternatives: TES, center
       -b 3000 -a 10000 \ # define the region you are interested in
       -R testFiles/genes.bed \
       -S testFiles/log2ratio_H3K4Me3_chr19.bw  \
       --skipZeros \
       -o matrix1_H3K4me3_l2r_TSS.gz \ # to be used with plotHeatmap and plotProfile
       --outFileSortedRegions regions1_H3K4me3_l2r_genes.bed





Let’s have a closer look at the regions’ output:

$ wc -l testFiles/genes.bed # original file
   18257 testFiles/genes.bed
$ wc -l regions1_H3K4me3_l2r_genes.bed # file generated by computeMatrix
   12423 regions1_H3K4me3_l2r_genes.bed





As you can see, the number of regions is drastically reduced. The remaining genes happen to be the ones on chromosome 19 for which there was at least one overlapping read. This makes sense since the bigWig file used above only contained reads for chromosome 19.

# the original file contained genes for chr.19 and chr.X
$ cut -f 1 testFiles/genes.bed | sort | uniq -c
    12439 19
    5818 X

# the regions used for the computation of the matrix for the heatmap are all located on chr.19 due to the --skipZeros setting (see above)
$ cut -f 1 regions1_H3K4me3_l2r_genes.bed | sort | uniq -c
    1 #genes
    12422 19








Example 2: multiple input files (scale-regions mode)

$ deepTools2.0/bin/computeMatrix scale-regions \
  -R genes_chr19_firstHalf.bed genes_chr19_secondHalf.bed \ # separate multiple files with spaces
  -S testFiles/log2ratio_*.bw  \ or use the wild card approach
  -b 3000 -a 3000 \
  --regionBodyLength 5000 \
  --skipZeros -o matrix2_multipleBW_l2r_twoGroups_scaled.gz \
  --outFileNameMatrix matrix2_multipleBW_l2r_twoGroups_scaled.tab \
  --outFileSortedRegions regions2_multipleBW_l2r_twoGroups_genes.bed





Note that the reported regions will have the same coordinates as the ones in the originally supplied file, not the region that was used for the heatmap matrix.

The groups of regions supplied by two individual files will be merged into one:

$ head -n 2 regions2_multipleBW_l2r_twoGroups_genes.bed
19  60104   70951   ENST00000592209 0.0     -       genes_chr19_firstHalf
19  60950   70966   ENST00000606728 0.0     -       genes_chr19_firstHalf

$ tail -n 3 regions2_multipleBW_l2r_twoGroups_genes.bed
19  59108549        59110722        ENST00000596427 0.0     -       genes_chr19_secondHalf
19  59110333        59110802        ENST00000464061 0.0     +       genes_chr19_secondHalf
#genes_chr19_secondHalf






Tip

More examples can be found in our Gallery [http://deeptools.readthedocs.org/en/latest/content/example_gallery.html#normalized-chip-seq-signals-and-peak-regions].









	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].
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If you are not familiar with BAM, bedGraph and bigWig formats, you can read up on that in our Glossary of NGS terms

This tool takes an alignment of reads or fragments as input (BAM file) and generates a coverage track (bigWig or bedGraph) as output. The coverage is calculated as the number of reads per bin, where bins are short consecutive counting windows of a defined size. It is possible to extended the length of the reads to better reflect the actual fragment length. bamCoverage offers normalization by scaling factor, Reads Per Kilobase per Million mapped reads (RPKM), and 1x depth (reads per genome coverage, RPGC).

usage: An example usage is:$ bamCoverage -b reads.bam -o coverage.bw






Required arguments





	
–bam, -b
	BAM file to process







Output





	
–outFileName, -o


	 	Output file name.

	
–outFileFormat, -of


	 	Possible choices: bigwig, bedgraph

Output file type. Either “bigwig” or “bedgraph”.









Optional arguments





	
–scaleFactor
	The computed scaling factor (or 1, if not applicable) will be multiplied by this.

	
–MNase
	Determine nucleosome positions from MNase-seq data. Only 3 nucleotides at the center of each fragment are counted. The fragment ends are defined by the two mate reads. Only fragment lengthsbetween 130 - 200 bp are considered to avoid dinucleosomes or other artifacts. By default, any fragments smaller or larger than this are ignored. To over-ride this, use the –minFragmentLength and –maxFragmentLength options, which will default to 130 and 200 if not otherwise specified in the presence of –MNase. NOTE: Requires paired-end data. A bin size of 1 is recommended.

	
–Offset
	Uses this offset inside of each read as the signal. This is useful in cases like RiboSeq or GROseq, where the signal is 12, 15 or 0 bases past the start of the read. This can be paired with the –filterRNAstrand option. Note that negative values indicate offsets from the end of each read. A value of 1 indicates the first base of the alignment (taking alignment orientation into account). Likewise, a value of -1 is the last base of the alignment. An offset of 0 is not permitted. If two values are specified, then they will be used to specify a range of positions. Note that specifying something like –Offset 5 -1 will result in the 5th through last position being used, which is equivalent to trimming 4 bases from the 5-prime end of alignments.

	
–filterRNAstrand


	 	Possible choices: forward, reverse

Selects RNA-seq reads (single-end or paired-end) in the given strand.



	
–version
	show program’s version number and exit

	
–binSize, -bs
	Size of the bins, in bases, for the output of the bigwig/bedgraph file.

	
–region, -r
	Region of the genome to limit the operation to - this is useful when testing parameters to reduce the computing time. The format is chr:start:end, for example –region chr10 or –region chr10:456700:891000.

	
–blackListFileName, -bl


	 	A BED or GTF file containing regions that should be excluded from all analyses. Currently this works by rejecting genomic chunks that happen to overlap an entry. Consequently, for BAM files, if a read partially overlaps a blacklisted region or a fragment spans over it, then the read/fragment might still be considered. Please note that you should adjust the effective genome size, if relevant.

	
–numberOfProcessors, -p


	 	Number of processors to use. Type “max/2” to use half the maximum number of processors or “max” to use all available processors.

	
–verbose, -v
	Set to see processing messages.







Read coverage normalization options





	
–normalizeTo1x


	 	Report read coverage normalized to 1x sequencing depth (also known as Reads Per Genomic Content (RPGC)). Sequencing depth is defined as: (total number of mapped reads * fragment length) / effective genome size.
The scaling factor used is the inverse of the sequencing depth computed for the sample to match the 1x coverage. To use this option, the effective genome size has to be indicated after the option. The effective genome size is the portion of the genome that is mappable. Large fractions of the genome are stretches of NNNN that should be discarded. Also, if repetitive regions were not included in the mapping of reads, the effective genome size needs to be adjusted accordingly. Common values are: mm9: 2,150,570,000; hg19:2,451,960,000; dm3:121,400,000 and ce10:93,260,000. See Table 2 of http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030377 or http://www.nature.com/nbt/journal/v27/n1/fig_tab/nbt.1518_T1.html for several effective genome sizes.

	
–normalizeUsingRPKM


	 	Use Reads Per Kilobase per Million reads to normalize the number of reads per bin. The formula is: RPKM (per bin) =  number of reads per bin / ( number of mapped reads (in millions) * bin length (kb) ). Each read is considered independently,if you want to only count either of the mate pairs inpaired-end data, use the –samFlag option.

	
–ignoreForNormalization, -ignore


	 	A list of space-delimited chromosome names containing those chromosomes that should be excluded for computing the normalization. This is useful when considering samples with unequal coverage across chromosomes, like male samples. An usage examples is –ignoreForNormalization chrX chrM.

	
–skipNonCoveredRegions, –skipNAs


	 	This parameter determines if non-covered regions (regions without overlapping reads) in a BAM file should be skipped. The default is to treat those regions as having a value of zero. The decision to skip non-covered regions depends on the interpretation of the data. Non-covered regions may represent, for example, repetitive regions that should be skipped.

	
–smoothLength
	The smooth length defines a window, larger than the binSize, to average the number of reads. For example, if the –binSize is set to 20 and the –smoothLength is set to 60, then, for each bin, the average of the bin and its left and right neighbors is considered. Any value smaller than –binSize will be ignored and no smoothing will be applied.







Read processing options





	
–extendReads, -e


	 	This parameter allows the extension of reads to fragment size. If set, each read is extended, without exception.
NOTE: This feature is generally NOT recommended for spliced-read data, such as RNA-seq, as it would extend reads over skipped regions.
Single-end: Requires a user specified value for the final fragment length. Reads that already exceed this fragment length will not be extended.
Paired-end: Reads with mates are always extended to match the fragment size defined by the two read mates. Unmated reads, mate reads that map too far apart (>4x fragment length) or even map to different chromosomes are treated like single-end reads. The input of a fragment length value is optional. If no value is specified, it is estimated from the data (mean of the fragment size of all mate reads).

	
–ignoreDuplicates


	 	If set, reads that have the same orientation and start position will be considered only once. If reads are paired, the mate’s position also has to coincide to ignore a read.

	
–minMappingQuality


	 	If set, only reads that have a mapping quality score of at least this are considered.

	
–centerReads
	By adding this option, reads are centered with respect to the fragment length. For paired-end data, the read is centered at the fragment length defined by the two ends of the fragment. For single-end data, the given fragment length is used. This option is useful to get a sharper signal around enriched regions.

	
–samFlagInclude


	 	Include reads based on the SAM flag. For example, to get only reads that are the first mate, use a flag of 64. This is useful to count properly paired reads only once, as otherwise the second mate will be also considered for the coverage.

	
–samFlagExclude


	 	Exclude reads based on the SAM flag. For example, to get only reads that map to the forward strand, use –samFlagExclude 16, where 16 is the SAM flag for reads that map to the reverse strand.

	
–minFragmentLength


	 	The minimum fragment length needed for read/pair inclusion. This option is primarily useful in ATACseq experiments, for filtering mono- or di-nucleosome fragments.

	
–maxFragmentLength


	 	The maximum fragment length needed for read/pair inclusion.







Usage hints


	A smaller bin size value will result in a higher resolution of the coverage track but also in a larger file size.

	The 1x normalization (RPGC) requires the input of a value for the effective genome size, which is the mappable part of the reference genome. Of course, this value is species-specific. The command line help of this tool offers suggestions for a number of model species.

	It might be useful for some studies to exclude certain chromosomes in order to avoid biases, e.g. chromosome X, as male mice contain a pair of each autosome, but usually only a single X chromosome.

	By default, the read length is NOT extended! This is the preferred setting for spliced-read data like RNA-seq, where one usually wants to rely on the detected read locations only. A read extension would neglect potential splice sites in the unmapped part of the fragment.
Other data, e.g. Chip-seq, where fragments are known to map contiguously, should be processed with read extension (--extendReads [INTEGER]).

	For paired-end data, the fragment length is generally defined by the two read mates. The user provided fragment length is only used as a fallback for singletons or mate reads that map too far apart (with a distance greater than four times the fragment length or are located on different chromosomes).




Warning

If you already normalized for GC bias using correctGCbias, you should absolutely NOT set the parameter --ignoreDuplicates!




Warning

If you know that your files will be strongly affected by the kind of filtering you would like to apply (e.g., removal of duplicates with --ignoreDuplicates or ignoring reads of low quality) then consider removing those reads beforehand.




Note

Like BAM files, bigWig files are compressed, binary files. If you would like to see the coverage values, choose the bedGraph output via --outFileFormat.






Usage example for ChIP-seq

This is an example for ChIP-seq data using additional options (smaller bin size for higher resolution, normalizing coverage to 1x mouse genome size, excluding chromosome X during the normalization step, and extending reads):

bamCoverage --bam a.bam -o a.SeqDepthNorm.bw \
    --binSize 10
    --normalizeTo1x 2150570000
    --ignoreForNormalization chrX
    --extendReads





If you had run the command with --outFileFormat bedgraph, you could easily peak into the resulting file.

$ head SeqDepthNorm_chr19.bedgraph
19  60150   60250   9.32
19  60250   60450   18.65
19  60450   60650   27.97
19  60650   60950   37.29
19  60950   61000   27.97
19  61000   61050   18.65
19  61050   61150   27.97
19  61150   61200   18.65
19  61200   61300   9.32
19  61300   61350   18.65





As you can see, each row corresponds to one region. If consecutive bins have the same number of reads overlapping, they will be merged.




Usage examples for RNA-seq

Note that some BAM files are filtered based on SAM flags (Explain SAM flags [https://broadinstitute.github.io/picard/explain-flags.html]).


Regular bigWig track

bamCoverage -b a.bam -o a.bw








Separate tracks for each strand

Sometimes it makes sense to generate two independent bigWig files for all reads on the forward and reverse strand, respectively.
As of deepTools version 2.2, one can simply use the --filterRNAstrand option, such as --filterRNAstrand forward or --filterRNAstrand reverse.
This handles paired-end and single-end datasets. For older versions of deepTools, please see the instructions below.


Note

The --filterRNAstrand option assumes the sequencing library generated from ILLUMINA dUTP/NSR/NNSR methods, which are the most commonly used method for
library preparation, where Read 2 (R2) is in the direction of RNA strand (reverse-stranded library). However other methods exist, which generate read
R1 in the direction of RNA strand (see this review [http://www.nature.com/nmeth/journal/v7/n9/full/nmeth.1491.html]). For these libraries,
--filterRNAstrand will have an opposite behavior, i.e. --filterRNAstrand forward will give you reverse strand signal and vice-versa.




Versions before 2.2

To follow the examples, you need to know that -f will tell samtools view to include reads with the indicated flag, while -F will lead to the exclusion of reads with the respective flag.

For a stranded `single-end` library

# Forward strand
bamCoverage -b a.bam -o a.fwd.bw --samFlagExclude 16

# Reverse strand
bamCoverage -b a.bam -o a.rev.bw --samFlagInclude 16





For a stranded `paired-end` library

Now, this gets a bit cumbersome, but future releases of deepTools will make this more straight-forward.
For now, bear with us and perhaps read up on SAM flags, e.g. here [http://ppotato.wordpress.com/2010/08/25/samtool-bitwise-flag-paired-reads/].

For paired-end samples, we assume that a proper pair should have the mates on opposing strands where the Illumina strand-specific protocol produces reads in a R2-R1 orientation. We basically follow the recipe given in this biostars tutorial [https://www.biostars.org/p/92935/].

To get the file for transcripts that originated from the forward strand:

# include reads that are 2nd in a pair (128);
# exclude reads that are mapped to the reverse strand (16)
$ samtools view -b -f 128 -F 16 a.bam > a.fwd1.bam

# exclude reads that are mapped to the reverse strand (16) and
# first in a pair (64): 64 + 16 = 80
$ samtools view -b -f 80 a.bam > a.fwd2.bam

# combine the temporary files
$ samtools merge -f fwd.bam fwd1.bam fwd2.bam

# index the filtered BAM file
$ samtools index fwd.bam

# run bamCoverage
$ bamCoverage -b fwd.bam -o a.fwd.bigWig

# remove the temporary files
$ rm a.fwd*.bam





To get the file for transcripts that originated from the reverse strand:

# include reads that map to the reverse strand (128)
# and are second in a pair (16): 128 + 16 = 144
$ samtools view -b -f 144 a.bam > a.rev1.bam

# include reads that are first in a pair (64), but
# exclude those ones that map to the reverse strand (16)
$ samtools view -b -f 64 -F 16 a.bam > a.rev2.bam

# merge the temporary files
$ samtools merge -f rev.bam rev1.bam rev2.bam

# index the merged, filtered BAM file
$ samtools index rev.bam

# run bamCoverage
$ bamCoverage -b rev.bam -o a.rev.bw

# remove temporary files
$ rm a.rev*.bam











	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].















          

      

      

    

  

    
      
          
            
  
plotCoverage



	Named Arguments

	Required arguments

	Optional arguments

	Read processing options

	What the plots tell you

	Usage example





This tool is useful to assess the sequencing depth of a given sample.
It samples 1 million bp, counts the number of overlapping reads and can report
a histogram that tells you how many bases are covered how many times.
Multiple BAM files are accepted, but they all should correspond to the same genome assembly.


	detailed usage help:

	$ plotCoverage  -h





usage: plotCoverage --bamfiles FILE1 FILE2 [FILE1 FILE2 ...] --plotFile
                    PLOTFILE [--help]
                    [--labels sample1 sample2 [sample1 sample2 ...]]
                    [--plotTitle PLOTTITLE] [--skipZeros]
                    [--numberOfSamples NUMBEROFSAMPLES] [--outRawCounts FILE]
                    [--plotFileFormat FILETYPE] [--region CHR:START:END]
                    [--blackListFileName BED file [BED file ...]]
                    [--numberOfProcessors INT] [--verbose]
                    [--extendReads [INT bp]] [--ignoreDuplicates]
                    [--minMappingQuality INT] [--centerReads]
                    [--samFlagInclude INT] [--samFlagExclude INT]
                    [--minFragmentLength INT] [--maxFragmentLength INT]
                    [--version]






Named Arguments





	
–version
	show program’s version number and exit







Required arguments





	
–bamfiles, -b
	List of indexed BAM files separated by spaces.

	
–plotFile, -o
	File name to save the plot to.







Optional arguments





	
–labels, -l
	User defined labels instead of default labels from file names. Multiple labels have to be separated by spaces, e.g. –labels sample1 sample2 sample3

	
–plotTitle, -T


	 	Title of the plot, to be printed on top of the generated image. Leave blank for no title.

	
–skipZeros
	By setting this option, genomic regions that have zero or nan values in _all_ samples are excluded.

	
–numberOfSamples, -n


	 	Number of 1 bp regions to sample. Default 1 million.

	
–outRawCounts
	Save raw counts (coverages) to file.

	
–plotFileFormat


	 	Possible choices: png, pdf, svg, eps

Image format type. If given, this option overrides the image format based on the plotFile ending. The available options are: png, eps, pdf and svg.



	
–region, -r
	Region of the genome to limit the operation to - this is useful when testing parameters to reduce the computing time. The format is chr:start:end, for example –region chr10 or –region chr10:456700:891000.

	
–blackListFileName, -bl


	 	A BED or GTF file containing regions that should be excluded from all analyses. Currently this works by rejecting genomic chunks that happen to overlap an entry. Consequently, for BAM files, if a read partially overlaps a blacklisted region or a fragment spans over it, then the read/fragment might still be considered. Please note that you should adjust the effective genome size, if relevant.

	
–numberOfProcessors, -p


	 	Number of processors to use. Type “max/2” to use half the maximum number of processors or “max” to use all available processors.

	
–verbose, -v
	Set to see processing messages.







Read processing options





	
–extendReads, -e


	 	This parameter allows the extension of reads to fragment size. If set, each read is extended, without exception.
NOTE: This feature is generally NOT recommended for spliced-read data, such as RNA-seq, as it would extend reads over skipped regions.
Single-end: Requires a user specified value for the final fragment length. Reads that already exceed this fragment length will not be extended.
Paired-end: Reads with mates are always extended to match the fragment size defined by the two read mates. Unmated reads, mate reads that map too far apart (>4x fragment length) or even map to different chromosomes are treated like single-end reads. The input of a fragment length value is optional. If no value is specified, it is estimated from the data (mean of the fragment size of all mate reads).

	
–ignoreDuplicates


	 	If set, reads that have the same orientation and start position will be considered only once. If reads are paired, the mate’s position also has to coincide to ignore a read.

	
–minMappingQuality


	 	If set, only reads that have a mapping quality score of at least this are considered.

	
–centerReads
	By adding this option, reads are centered with respect to the fragment length. For paired-end data, the read is centered at the fragment length defined by the two ends of the fragment. For single-end data, the given fragment length is used. This option is useful to get a sharper signal around enriched regions.

	
–samFlagInclude


	 	Include reads based on the SAM flag. For example, to get only reads that are the first mate, use a flag of 64. This is useful to count properly paired reads only once, as otherwise the second mate will be also considered for the coverage.

	
–samFlagExclude


	 	Exclude reads based on the SAM flag. For example, to get only reads that map to the forward strand, use –samFlagExclude 16, where 16 is the SAM flag for reads that map to the reverse strand.

	
–minFragmentLength


	 	The minimum fragment length needed for read/pair inclusion. This option is primarily useful in ATACseq experiments, for filtering mono- or di-nucleosome fragments.

	
–maxFragmentLength


	 	The maximum fragment length needed for read/pair inclusion.






example usages:
plotCoverage –bamfiles file1.bam file2.bam -out results.png


What the plots tell you

The tool generates a panel of two plots.
The first one simply represents the frequencies of the found read coverages, which helps you judge how relevant the mean coverage value (printed next to the sample name) is. If the distribution of read coverages is more or less homoskedatic and, ideally, normally distributed (most likely it won’t be), then the mean is a very appropriate proxy for sequencing depth.

The second plot helps you answer the question what is the fraction of the genome that has a depth of sequencing of 2?

[image: ../../_images/plotCoverage_annotated.png]



Usage example

 $ plotCoverage -b H3K4Me1.bam H3K4Me3.bam H3K27Me3.bam H3K9Me3.bam
    --plotFile example_coverage
    -n 1000000
    --plotTitle "example_coverage" \
    --outRawCounts coverage.tab \
    --ignoreDuplicates \
    --minMappingQuality 10 \
    --region 19

# have a look at the optional tabular output: each row represents the number of reads overlapping with a sampled bp
$ head coverage.tab
    'H3K27me3'        'H3K4me1'       'H3K4me3'       'H3K9me3'
    0 0       0       0
    0 0       0       0
    0 0       0       0
    0 0       0       0
    0 0       0       0
    0 0       0       0
    0 0       0       0
    0 0       0       0
    0 0       0       0

$ cut -f1 coverage.tab | sort -n | uniq -c
    1 'H3K27me3'
    548190 0 # the vast majority of sampled bp had 0 overlapping reads
    127914 1
    35703 2
    12271 3
    4584 4
    1717 5
     659 6
     251 7
     106 8
      49 9
      16 10
       6 11
       3 12
       2 13
       3 14
       1 15
       1 16
       2 17
       1 19
       1 21
       2 22
       1 23
       1 24
       2 28
       1 35
       1 40 # there was one bp with 40 overlapping reads!
       1 44





[image: ../../_images/ExamplePlotCoverage1.png]
As you can see, the coverage of our test data sets is very poor – on average, there is fewer than 1 read per bp!







	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
multiBamSummary



	Named Arguments

	commands

	Sub-commands:
	bins
	Required arguments

	Optional arguments

	Output optional options

	Read processing options





	BED-file
	Required arguments

	Optional arguments

	Output optional options

	Read processing options

	GTF/BED12 options









	Example





multiBamSummary computes the read coverages for genomic regions for typically two or more BAM files.
The analysis can be performed for the entire genome by running the program in ‘bins’ mode.
If you want to count the read coverage for specific regions only, use the BED-file mode instead.
The standard output of multiBamSummary is a compressed numpy array (.npz).
It can be directly used to calculate and visualize pairwise correlation values between the read coverages using the tool ‘plotCorrelation’.
Similarly, plotPCA can be used for principal component analysis of the read coverages using the .npz file.
Note that using a single bigWig file is only recommended if you want to produce a bedGraph file (i.e., with the --outRawCounts option; the default output file cannot be used by ANY deepTools program if only a single file was supplied!).

A detailed sub-commands help is available by typing:


multiBamSummary bins -h

multiBamSummary BED-file -h






usage: multiBamSummary [-h] [--version]  ...






Named Arguments





	
–version
	show program’s version number and exit







commands

subcommands





	

	Possible choices: bins, BED-file

subcommands









Sub-commands:


bins

The coverage calculation is done for consecutive bins of equal size (10 kilobases by default). This mode is useful to assess the genome-wide similarity of BAM files. The bin size and distance between bins can be adjusted.

multiBamSummary bins --bamfiles file1.bam file2.bam -out results.npz






Required arguments





	
–bamfiles, -b
	List of indexed bam files separated by spaces.

	
–outFileName, -out


	 	File name to save the coverage matrix. This matrix can be subsequently plotted using plotCorrelation or or plotPCA.







Optional arguments





	
–labels, -l
	User defined labels instead of default labels from file names. Multiple labels have to be separated by a space, e.g. –labels sample1 sample2 sample3

	
–binSize, -bs
	Length in bases of the window used to sample the genome.

	
–distanceBetweenBins, -n


	 	By default, multiBamSummary considers consecutive bins of the specified –binSize. However, to reduce the computation time, a larger distance between bins can by given. Larger distances result in fewer bins considered.

	
–version
	show program’s version number and exit

	
–region, -r
	Region of the genome to limit the operation to - this is useful when testing parameters to reduce the computing time. The format is chr:start:end, for example –region chr10 or –region chr10:456700:891000.

	
–blackListFileName, -bl


	 	A BED or GTF file containing regions that should be excluded from all analyses. Currently this works by rejecting genomic chunks that happen to overlap an entry. Consequently, for BAM files, if a read partially overlaps a blacklisted region or a fragment spans over it, then the read/fragment might still be considered. Please note that you should adjust the effective genome size, if relevant.

	
–numberOfProcessors, -p


	 	Number of processors to use. Type “max/2” to use half the maximum number of processors or “max” to use all available processors.

	
–verbose, -v
	Set to see processing messages.







Output optional options





	
–outRawCounts
	Save the counts per region to a tab-delimited file.







Read processing options





	
–extendReads, -e


	 	This parameter allows the extension of reads to fragment size. If set, each read is extended, without exception.
NOTE: This feature is generally NOT recommended for spliced-read data, such as RNA-seq, as it would extend reads over skipped regions.
Single-end: Requires a user specified value for the final fragment length. Reads that already exceed this fragment length will not be extended.
Paired-end: Reads with mates are always extended to match the fragment size defined by the two read mates. Unmated reads, mate reads that map too far apart (>4x fragment length) or even map to different chromosomes are treated like single-end reads. The input of a fragment length value is optional. If no value is specified, it is estimated from the data (mean of the fragment size of all mate reads).

	
–ignoreDuplicates


	 	If set, reads that have the same orientation and start position will be considered only once. If reads are paired, the mate’s position also has to coincide to ignore a read.

	
–minMappingQuality


	 	If set, only reads that have a mapping quality score of at least this are considered.

	
–centerReads
	By adding this option, reads are centered with respect to the fragment length. For paired-end data, the read is centered at the fragment length defined by the two ends of the fragment. For single-end data, the given fragment length is used. This option is useful to get a sharper signal around enriched regions.

	
–samFlagInclude


	 	Include reads based on the SAM flag. For example, to get only reads that are the first mate, use a flag of 64. This is useful to count properly paired reads only once, as otherwise the second mate will be also considered for the coverage.

	
–samFlagExclude


	 	Exclude reads based on the SAM flag. For example, to get only reads that map to the forward strand, use –samFlagExclude 16, where 16 is the SAM flag for reads that map to the reverse strand.

	
–minFragmentLength


	 	The minimum fragment length needed for read/pair inclusion. This option is primarily useful in ATACseq experiments, for filtering mono- or di-nucleosome fragments.

	
–maxFragmentLength


	 	The maximum fragment length needed for read/pair inclusion.









BED-file

The user provides a BED file that contains all regions that should be considered for the coverage analysis. A common use is to compare ChIP-seq coverages between two different samples for a set of peak regions.

multiBamSummary BED-file --BED selection.bed --bamfiles file1.bam file2.bam -out results.npz






Required arguments





	
–bamfiles, -b
	List of indexed bam files separated by spaces.

	
–outFileName, -out


	 	File name to save the coverage matrix. This matrix can be subsequently plotted using plotCorrelation or or plotPCA.

	
–BED
	Limits the coverage analysis to the regions specified in these files.







Optional arguments





	
–labels, -l
	User defined labels instead of default labels from file names. Multiple labels have to be separated by a space, e.g. –labels sample1 sample2 sample3

	
–version
	show program’s version number and exit

	
–region, -r
	Region of the genome to limit the operation to - this is useful when testing parameters to reduce the computing time. The format is chr:start:end, for example –region chr10 or –region chr10:456700:891000.

	
–blackListFileName, -bl


	 	A BED or GTF file containing regions that should be excluded from all analyses. Currently this works by rejecting genomic chunks that happen to overlap an entry. Consequently, for BAM files, if a read partially overlaps a blacklisted region or a fragment spans over it, then the read/fragment might still be considered. Please note that you should adjust the effective genome size, if relevant.

	
–numberOfProcessors, -p


	 	Number of processors to use. Type “max/2” to use half the maximum number of processors or “max” to use all available processors.

	
–verbose, -v
	Set to see processing messages.







Output optional options





	
–outRawCounts
	Save the counts per region to a tab-delimited file.







Read processing options





	
–extendReads, -e


	 	This parameter allows the extension of reads to fragment size. If set, each read is extended, without exception.
NOTE: This feature is generally NOT recommended for spliced-read data, such as RNA-seq, as it would extend reads over skipped regions.
Single-end: Requires a user specified value for the final fragment length. Reads that already exceed this fragment length will not be extended.
Paired-end: Reads with mates are always extended to match the fragment size defined by the two read mates. Unmated reads, mate reads that map too far apart (>4x fragment length) or even map to different chromosomes are treated like single-end reads. The input of a fragment length value is optional. If no value is specified, it is estimated from the data (mean of the fragment size of all mate reads).

	
–ignoreDuplicates


	 	If set, reads that have the same orientation and start position will be considered only once. If reads are paired, the mate’s position also has to coincide to ignore a read.

	
–minMappingQuality


	 	If set, only reads that have a mapping quality score of at least this are considered.

	
–centerReads
	By adding this option, reads are centered with respect to the fragment length. For paired-end data, the read is centered at the fragment length defined by the two ends of the fragment. For single-end data, the given fragment length is used. This option is useful to get a sharper signal around enriched regions.

	
–samFlagInclude


	 	Include reads based on the SAM flag. For example, to get only reads that are the first mate, use a flag of 64. This is useful to count properly paired reads only once, as otherwise the second mate will be also considered for the coverage.

	
–samFlagExclude


	 	Exclude reads based on the SAM flag. For example, to get only reads that map to the forward strand, use –samFlagExclude 16, where 16 is the SAM flag for reads that map to the reverse strand.

	
–minFragmentLength


	 	The minimum fragment length needed for read/pair inclusion. This option is primarily useful in ATACseq experiments, for filtering mono- or di-nucleosome fragments.

	
–maxFragmentLength


	 	The maximum fragment length needed for read/pair inclusion.







GTF/BED12 options





	
–metagene
	When either a BED12 or GTF file are used to provide         regions, perform the computation on the merged exons,         rather than using the genomic interval defined by the         5-prime and 3-prime most transcript bound (i.e., columns         2 and 3 of a BED file). If a BED3 or BED6 file is used         as input, then columns 2 and 3 are used as an exon.

	
–transcriptID
	When a GTF file is used to provide regions, only         entries with this value as their feature (column 2)         will be processed as transcripts.

	
–exonID
	When a GTF file is used to provide regions, only         entries with this value as their feature (column 2)         will be processed as exons. CDS would be another common         value for this.

	
–transcript_id_designator


	 	Each region has an ID (e.g., ACTB) assigned to it,         which for BED files is either column 4 (if it exists)         or the interval bounds. For GTF files this is instead         stored in the last column as a key:value pair (e.g., as         ‘transcript_id “ACTB”’, for a key of transcript_id         and a value of ACTB). In some cases it can be         convenient to use a different identifier. To do so, set         this to the desired key.










example usages:
multiBamSummary bins –bamfiles file1.bam file2.bam -out results.npz

multiBamSummary BED-file –BED selection.bed –bamfiles file1.bam file2.bam 
-out results.npz




Example

The default output of multiBamSummary (a compressed numpy array: *.npz) can be visualized using plotCorrelation or plotPCA.

The optional output (--outRawCounts) is a simple tab-delimited file that can be used with any other program. The first three columns define the region of the genome for which the reads were summarized.

$ deepTools2.0/bin/multiBamSummary bins \
 --bamfiles testFiles/*bam \ # using all BAM files in the folder
 --minMappingQuality 30 \
 --region 19 \ # limiting the binning of the genome to chromosome 19
 --labels H3K27me3 H3K4me1 H3K4me3 HeK9me3 input \
 -out readCounts.npz --outRawCounts readCounts.tab

 $ head readCounts.tab
 #'chr'     'start' 'end'   'H3K27me3'      'H3K4me1'       'H3K4me3'       'HeK9me3'       'input'
 19 10000   20000   0.0     0.0     0.0     0.0     0.0
 19 20000   30000   0.0     0.0     0.0     0.0     0.0
 19 30000   40000   0.0     0.0     0.0     0.0     0.0
 19 40000   50000   0.0     0.0     0.0     0.0     0.0
 19 50000   60000   0.0     0.0     0.0     0.0     0.0
 19 60000   70000   1.0     1.0     0.0     0.0     1.0
 19 70000   80000   0.0     1.0     7.0     0.0     1.0
 19 80000   90000   15.0    0.0     0.0     6.0     4.0
 19 90000   100000  73.0    7.0     4.0     16.0    5.0











	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
plotProfile

This tool creates a profile plot for scores over sets of genomic regions. Typically, these regions are genes, but any other regions defined in BED  will work. A matrix generated by computeMatrix is required.

usage: plotProfile [--matrixFile MATRIXFILE] --outFileName OUTFILENAME
                   [--outFileSortedRegions FILE]
                   [--outFileNameData OUTFILENAMEDATA] [--dpi DPI]
                   [--kmeans KMEANS] [--hclust HCLUST] [--help] [--version]
                   [--averageType {mean,median,min,max,std,sum}]
                   [--plotHeight PLOTHEIGHT] [--plotWidth PLOTWIDTH]
                   [--plotType {lines,fill,se,std,overlapped_lines,heatmap}]
                   [--colors COLORS [COLORS ...]]
                   [--numPlotsPerRow NUMPLOTSPERROW] [--startLabel STARTLABEL]
                   [--endLabel ENDLABEL] [--refPointLabel REFPOINTLABEL]
                   [--regionsLabel REGIONSLABEL [REGIONSLABEL ...]]
                   [--samplesLabel SAMPLESLABEL [SAMPLESLABEL ...]]
                   [--plotTitle PLOTTITLE] [--yAxisLabel YAXISLABEL]
                   [--yMin YMIN [YMIN ...]] [--yMax YMAX [YMAX ...]]
                   [--legendLocation {best,upper-right,upper-left,upper-center,lower-left,lower-right,lower-center,center,center-left,center-right,none}]
                   [--perGroup] [--plotFileFormat] [--verbose]






Required arguments





	
–matrixFile, -m


	 	Matrix file from the computeMatrix tool.

	
–outFileName, -out


	 	File name to save the image to. The file ending will be used to determine the image format. The available options are: “png”, “eps”, “pdf” and “svg”, e.g., MyHeatmap.png.







Output options





	
–outFileSortedRegions


	 	File name into which the regions are saved after skipping zeros or min/max threshold values. The order of the regions in the file follows the sorting order selected. This is useful, for example, to generate other heatmaps while keeping the sorting of the first heatmap. Example: Heatmap1sortedRegions.bed

	
–outFileNameData


	 	File name to save the data underlying data for the average profile, e.g. myProfile.tab.

	
–dpi
	Set the DPI to save the figure.







Clustering arguments





	
–kmeans
	Number of clusters to compute. When this option is set, the matrix is split into clusters using the k-means algorithm. Only works for data that is not grouped, otherwise only the first group will be clustered. If more specific clustering methods are required, then save the underlying matrix and run the clustering using other software. The plotting  of the clustering may fail with an error if a cluster has very few members compared to the total number or regions.

	
–hclust
	Number of clusters to compute. When this option is set, then the matrix is split into clusters using the hierarchical clustering algorithm, using “ward linkage”. Only works for data that is not grouped, otherwise only the first group will be clustered. –hclust could be very slow if you have >1000 regions. In those cases, you might prefer –kmeans or if more clustering methods are required you can save the underlying matrix and run the clustering using  other software. The plotting of the clustering may fail with an error if a cluster has very few members compared to the total number of regions.







Optional arguments





	
–version
	show program’s version number and exit

	
–averageType
	Possible choices: mean, median, min, max, std, sum

The type of statistic that should be used for the profile. The options are: “mean”, “median”, “min”, “max”, “sum” and “std”.



	
–plotHeight
	Plot height in cm.

	
–plotWidth
	Plot width in cm. The minimum value is 1 cm.

	
–plotType
	Possible choices: lines, fill, se, std, overlapped_lines, heatmap

“lines” will plot the profile line based on the average type selected. “fill” fills the region between zero and the profile curve. The fill in color is semi transparent to distinguish different profiles. “se” and “std” color the region between the profile and the standard error or standard deviation of the data. As in the case of fill, a semi-transparent color is used. “overlapped_lines” plots each region’s value, one on top of the other. “heatmap” plots a summary heatmap.



	
–colors
	List of colors to use for the plotted lines (N.B., not applicable to ‘–plotType overlapped_lines’). Color names and html hex strings (e.g., #eeff22) are accepted. The color names should be space separated. For example, –colors red blue green

	
–numPlotsPerRow


	 	Number of plots per row

	
–startLabel
	[only for scale-regions mode] Label shown in the plot for the start of the region. Default is TSS (transcription start site), but could be changed to anything, e.g. “peak start”. Same for the –endLabel option. See below.

	
–endLabel
	[only for scale-regions mode] Label shown in the plot for the region end. Default is TES (transcription end site).

	
–refPointLabel


	 	[only for reference-point mode] Label shown in the plot for the reference-point. Default is the same as the reference point selected (e.g. TSS), but could be anything, e.g. “peak start”.

	
–regionsLabel, -z


	 	Labels for the regions plotted in the heatmap. If more than one region is being plotted, a list of labels separated by spaces is required. If a label itself contains a space, then quotes are needed. For example, –regionsLabel label_1, “label 2”.

	
–samplesLabel
	Labels for the samples plotted. The default is to use the file name of the sample. The sample labels should be separated by spaces and quoted if a label itselfcontains a space E.g. –samplesLabel label-1 “label 2”

	
–plotTitle, -T


	 	Title of the plot, to be printed on top of the generated image. Leave blank for no title.

	
–yAxisLabel, -y


	 	Y-axis label for the top panel.

	
–yMin
	Minimum value for the Y-axis. Multiple values, separated by spaces can be set for each profile. If the number of yMin values is smaller thanthe number of plots, the values are recycled.

	
–yMax
	Maximum value for the Y-axis. Multiple values, separated by spaces can be set for each profile. If the number of yMin values is smaller thanthe number of plots, the values are recycled.

	
–legendLocation


	 	Possible choices: best, upper-right, upper-left, upper-center, lower-left, lower-right, lower-center, center, center-left, center-right, none

Location for the legend in the summary plot. Note that “none” does not work for the profiler.



	
–perGroup
	The default is to plot all groups of regions by sample. Using this option instead plots all samples by group of regions. Note that this is only useful if you have multiple groups of regions. by sample rather than group.

	
–plotFileFormat


	 	Possible choices: png, pdf, svg, eps

Image format type. If given, this option overrides the image format based on the plotFile ending. The available options are: “png”, “eps”, “pdf” and “svg”



	
–verbose
	If set, warning messages and additional information are given.






An example usage is: plotProfile -m <matrix file>


Details

Like plotHeatmap, plotProfile simply takes the compressed matrix produced by computeMatrix and turns it into summary plots.

In addition to a large range of parameters for optimizing the visualization, you can also export the values underlying the profiles as tables.










	optional output type
	command
	computeMatrix
	plotHeatmap
	plotProfile


	values underlying the heatmap
	--outFileNameMatrix
	yes
	yes
	no


	values underlying the profile
	--outFileNameData
	no
	yes
	yes


	sorted and/or filtered regions
	--outFileSortedRegions
	yes
	yes
	yes






Tip

For more details on the optional output, see the examples for computeMatrix.






Usage example

The following example plots the signal profile over hg19 transcripts for our test ENCODE datasets. Note that
the matrix contains multiple groups of regions (in this case, one for each present chromosome).

# run compute matrix to collect the data needed for plotting
$ computeMatrix scale-regions -S H3K27Me3-input.bigWig \
                                 H3K4Me1-Input.bigWig  \
                                 H3K4Me3-Input.bigWig \
                              -R genes19.bed genesX.bed \
                              --beforeRegionStartLength 3000 \
                              --regionBodyLength 5000 \
                              --afterRegionStartLength 3000
                              --skipZeros -o matrix.mat.gz

$ plotProfile -m matrix.mat.gz \
              -out ExampleProfile1.png \
              --numPlotsPerRow 2 \
              --plotTitle "Test data profile"





[image: ../../_images/ExampleProfile1.png]
plotProfile has many options, including the ability to change the type of lines plotted and to plot by group rather than sample.

Here’s the same data set, but plotted with a different set of parameters.

$ plotProfile -m matrix.mat.gz \
     -out ExampleProfile2.png \
     --plotType=fill \ # add color between the x axis and the lines
     --perGroup \ # make one image per BED file instead of per bigWig file
     --colors red yellow blue \
     --plotTitle "Test data profile"





[image: ../../_images/ExampleProfile2.png]
In this other example the data is clustered using k-means into two groups.

$ plotProfile -m matrix.mat.gz \
      --perGroup \
      --kmeans 2 \
      -out ExampleProfile3.png





[image: ../../_images/ExampleProfile3.png]
This is the same data but visualized using –plotType heatmap

$ plotProfile -m matrix.mat.gz \
      --perGroup \
      --kmeans 2 \
      -plotType heatmap \
      -out ExampleProfile3.png





[image: ../../_images/ExampleProfile4.png]






	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
plotPCA



	Required arguments

	Optional arguments

	Background

	Usage example





Tool for generating a principal component analysis (PCA)
plot from multiBamSummary or multiBigwigSummary output.

Detailed help:


plotPCA -h




usage: plotPCA [-h] --corData FILE --plotFile FILE
               [--labels sample1 sample2 [sample1 sample2 ...]]
               [--plotTitle PLOTTITLE] [--plotFileFormat FILETYPE]
               [--outFileNameData OUTFILENAMEDATA] [--rowCenter] [--version]






Required arguments





	
–corData, -in
	Coverage file (generated by multiBamSummary or multiBigwigSummary)

	
–plotFile, -o
	File name to save the plot to. The extension determines the file format. For example: pca.pdf will save the PCA plot in PDF format. The available options are: .png, .eps, .pdf and .svg.







Optional arguments





	
–labels, -l
	User defined labels instead of default labels from file names. Multiple labels have to be separated by spaces, e.g. –labels sample1 sample2 sample3

	
–plotTitle, -T


	 	Title of the plot, to be printed on top of the generated image. Leave blank for no title.

	
–plotFileFormat


	 	Possible choices: png, pdf, svg, eps

Image format type. If given, this option overrides the image format based on the plotFile ending. The available options are: png, eps, pdf and svg.



	
–outFileNameData


	 	File name to save the data underlying data for the average profile, e.g., myProfile.tab.

	
–rowCenter
	When specified, each row (bin, gene, etc.) in the matrix is centered at 0 before the PCA is computed. This is useful only if you have a strong bin/gene/etc. correlation and the resulting principal component has samples stacked vertically.

	
–version
	show program’s version number and exit






example usages:
plotPCA -in coverages.npz -o pca.png


Background

Principal component analysis (PCA) can be used, for example, to determine whether samples display greater variability between experimental conditions than between replicates of the same treatment. PCA is also useful to identify unexpected patterns, such as those caused by batch effects or outliers.
Principal components represent the directions along which the variation in the data is maximal, so that the information (e.g., read coverage values) from thousands of regions can be represented by just a few dimensions.


Note

PCA is not designed to identify unknown groupings or clustering and given an unexpected result, it is up to the researcher to determine the experimental or technical reason underlying the principal components.






Usage example

plotPCA needs the compressed numpy array output from either multiBamSummary or multiBigwigSummary

$ deepTools2.0/bin/plotPCA -in readCounts.npz \
-o PCA_readCounts.png \
-T "PCA of read counts"





After perfoming the PCA on the values supplied as the input, plotPCA will sort the principal components according to the amount of variability of the data that they explain. Based on this, you will obtain two plots:


	the eigenvalues of the top two principal components

	the Scree plot for the top five principal components where the bars represent the amount of variability explained by the individual factors and the red line traces the amount of variability is explained by the individual components in a cumulative manner



[image: ../../_images/PCA_readCounts.png]






	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
bamPEFragmentSize

This tool calculates the fragment sizes for read pairs given a BAM file from paired-end sequencing.Several regions are sampled depending on the size of the genome and number of processors to estimate thesummary statistics on the fragment lengths. Properly paired reads are preferred for computation, i.e., it will only use discordant pairs if no concordant alignments overlap with a given region. The default setting simply prints the summary statistics to the screen.

usage: bamPEFragmentSize [-h] [--bamfiles bam files [bam files ...]]
                         [--histogram FILE] [--numberOfProcessors INT]
                         [--samplesLabel SAMPLESLABEL [SAMPLESLABEL ...]]
                         [--plotTitle PLOTTITLE]
                         [--maxFragmentLength MAXFRAGMENTLENGTH] [--logScale]
                         [--binSize INT] [--distanceBetweenBins INT]
                         [--blackListFileName BED file] [--verbose]
                         [--version]






Named Arguments





	
–bamfiles, -b
	List of BAM files to process

	
–histogram, -hist


	 	Save a .png file with a histogram of the fragment length distribution.

	
–numberOfProcessors, -p


	 	Number of processors to use. The default is to use 1.

	
–samplesLabel
	Labels for the samples plotted. The default is to use the file name of the sample. The sample labels should be separated by spaces and quoted if a label itselfcontains a space E.g. –samplesLabel label-1 “label 2”

	
–plotTitle, -T


	 	Title of the plot, to be printed on top of the generated image. Leave blank for no title.

	
–maxFragmentLength


	 	The maximum fragment length in the histogram. A value of 0 (the default) indicates to use twice the mean fragment length

	
–logScale
	Plot on the log scale

	
–binSize, -bs
	Length in bases of the window used to sample the genome. (default 1000)

	
–distanceBetweenBins, -n


	 	To reduce the computation time, not every possible genomic bin is sampled. This option allows you to set the distance between bins actually sampled from. Larger numbers are sufficient for high coverage samples, while smaller values are useful for lower coverage samples. Note that if you specify a value that results in too few (<1000) reads sampled, the value will be decreased. (default 1000000)

	
–blackListFileName, -bl


	 	A BED file containing regions that should be excluded from all analyses. Currently this works by rejecting genomic chunks that happen to overlap an entry. Consequently, for BAM files, if a read partially overlaps a blacklisted region or a fragment spans over it, then the read/fragment might still be considered.

	
–verbose
	Set if processing data messages are wanted.

	
–version
	show program’s version number and exit







Example usage

$ deepTools2.0/bin/bamPEFragmentSize \
-hist fragmentSize.png \
-T "Fragment size of PE RNA-seq data" \
--maxFragmentLength 1000 \
-b testFiles/RNAseq_sample1.bam testFiles/RNAseq_sample2.bam \
testFiles/RNAseq_sample3.bam testFiles/RNAseq_sample4.bam \
-samplesLabel sample1 sample2 sample3 sample4





## Output

BAM file : testFiles/RNAseq_sample1.bam

Sample size: 10815


Fragment lengths:
Min.: 0.0
1st Qu.: 311.0
Mean: 8960.68987517
Median: 331.0
3rd Qu.: 362.0
Max.: 53574842.0
Std: 572421.46625

Read lengths:
Min.: 20.0
1st Qu.: 101.0
Mean: 99.1621821544
Median: 101.0
3rd Qu.: 101.0
Max.: 101.0
Std: 9.16567362755

BAM file : testFiles/RNAseq_sample2.bam

Sample size: 6771


Fragment lengths:
Min.: 43.0
1st Qu.: 148.0
Mean: 176.465071629
Median: 164.0
3rd Qu.: 185.0
Max.: 500.0
Std: 53.733877263

......(output truncated)





[image: ../../_images/ExampleFragmentSize.png]






	deepTools Galaxy [http://deeptools.ie-freiburg.mpg.de].
	code @ github [https://github.com/fidelram/deepTools/].











          

      

      

    

  

    
      
          
            
  
plotEnrichment



	Required arguments

	Optional arguments

	BED12 arguments

	Read processing options

	Background

	Usage example





Tool for calculating and plotting the signal enrichment in either regions in BED
format or feature types (column 3) in GTF format. The underlying datapoints can also be output.
Metrics are plotted as a fraction of total reads. Regions in a BED file are assigned to the ‘peak’ feature.

detailed help:


plotEnrichment -h




usage: plotEnrichment [-h] --bamfiles file1.bam file2.bam
                      [file1.bam file2.bam ...] --BED FILE1.bed FILE2.bed
                      [FILE1.bed FILE2.bed ...] --plotFile FILE
                      [--labels sample1 sample2 [sample1 sample2 ...]]
                      [--regionLabels region1 region2 [region1 region2 ...]]
                      [--plotTitle PLOTTITLE] [--plotFileFormat FILETYPE]
                      [--outRawCounts FILE] [--perSample] [--variableScales]
                      [--plotHeight PLOTHEIGHT] [--plotWidth PLOTWIDTH]
                      [--colors COLORS [COLORS ...]]
                      [--numPlotsPerRow NUMPLOTSPERROW] [--alpha ALPHA]
                      [--Offset INT [INT ...]] [--keepExons] [--version]
                      [--region CHR:START:END]
                      [--blackListFileName BED file [BED file ...]]
                      [--numberOfProcessors INT] [--verbose]
                      [--extendReads [INT bp]] [--ignoreDuplicates]
                      [--minMappingQuality INT] [--centerReads]
                      [--samFlagInclude INT] [--samFlagExclude INT]
                      [--minFragmentLength INT] [--maxFragmentLength INT]






Required arguments





	
–bamfiles, -b
	List of indexed bam files separated by spaces.

	
–BED
	Limits the enrichment analysis to the regions specified in these BED/GTF files. Enrichment is calculated as the number of reads overlapping each feature type. The feature type is column 3 in a GTF file and “peak” for BED files.

	
–plotFile, -o
	File to save the plot to. The file extension determines the format, so heatmap.pdf will save the heatmap in PDF format. The available formats are: .png, .eps, .pdf and .svg.







Optional arguments





	
–labels, -l
	User defined labels instead of default labels from file names. Multiple labels have to be separated by spaces, e.g. –labels sample1 sample2 sample3

	
–regionLabels
	For BED files, the label given to its region is the file name, but this can be overridden by providing a custom label. For GTF files this is ignored. Note that if you provide labels, you MUST provide one for each BED/GTF file, even though it will be ignored for GTF files.

	
–plotTitle, -T


	 	Title of the plot, to be printed on top of the generated image. Leave blank for no title.

	
–plotFileFormat


	 	Possible choices: png, pdf, svg, eps

Image format type. If given, this option overrides the image format based on the plotFile ending. The available options are: png, eps, pdf and svg.



	
–outRawCounts
	Save the counts per region to a tab-delimited file.

	
–perSample
	Group the plots by sample, rather than by feature type (the default).

	
–variableScales


	 	By default, the y-axes are always 0-100. This allows the axis range to be restricted.

	
–plotHeight
	Plot height in cm.

	
–plotWidth
	Plot width in cm. The minimum value is 1 cm.

	
–colors
	List of colors to use for the plotted lines. Color names and html hex strings (e.g., #eeff22) are accepted. The color names should be space separated. For example, –colors red blue green

	
–numPlotsPerRow


	 	Number of plots per row

	
–alpha
	The alpha channel (transparency) to use for the bars. The default is 0.9 and values must be between 0 and 1.

	
–Offset
	Uses this offset inside of each read as the signal. This is useful in cases like RiboSeq or GROseq, where the signal is 12, 15 or 0 bases past the start of the read. This can be paired with the –filterRNAstrand option. Note that negative values indicate offsets from the end of each read. A value of 1 indicates the first base of the alignment (taking alignment orientation into account). Likewise, a value of -1 is the last base of the alignment. An offset of 0 is not permitted. If two values are specified, then they will be used to specify a range of positions. Note that specifying something like –Offset 5 -1 will result in the 5th through last position being used, which is equivalent to trimming 4 bases from the 5-prime end of alignments.

	
–version
	show program’s version number and exit

	
–region, -r
	Region of the genome to limit the operation to - this is useful when testing parameters to reduce the computing time. The format is chr:start:end, for example –region chr10 or –region chr10:456700:891000.

	
–blackListFileName, -bl


	 	A BED or GTF file containing regions that should be excluded from all analyses. Currently this works by rejecting genomic chunks that happen to overlap an entry. Consequently, for BAM files, if a read partially overlaps a blacklisted region or a fragment spans over it, then the read/fragment might still be considered. Please note that you should adjust the effective genome size, if relevant.

	
–numberOfProcessors, -p


	 	Number of processors to use. Type “max/2” to use half the maximum number of processors or “max” to use all available processors.

	
–verbose, -v
	Set to see processing messages.







BED12 arguments





	
–keepExons
	For BED12 files, use each exon as a region, rather than columns 2/3







Read processing options





	
–extendReads, -e


	 	This parameter allows the extension of reads to fragment size. If set, each read is extended, without exception.
NOTE: This feature is generally NOT recommended for spliced-read data, such as RNA-seq, as it would extend reads over skipped regions.
Single-end: Requires a user specified value for the final fragment length. Reads that already exceed this fragment length will not be extended.
Paired-end: Reads with mates are always extended to match the fragment size defined by the two read mates. Unmated reads, mate reads that map too far apart (>4x fragment length) or even map to different chromosomes are treated like single-end reads. The input of a fragment length value is optional. If no value is specified, it is estimated from the data (mean of the fragment size of all mate reads).

	
–ignoreDuplicates


	 	If set, reads that have the same orientation and start position will be considered only once. If reads are paired, the mate’s position also has to coincide to ignore a read.

	
–minMappingQuality


	 	If set, only reads that have a mapping quality score of at least this are considered.

	
–centerReads
	By adding this option, reads are centered with respect to the fragment length. For paired-end data, the read is centered at the fragment length defined by the two ends of the fragment. For single-end data, the given fragment length is used. This option is useful to get a sharper signal around enriched regions.

	
–samFlagInclude


	 	Include reads based on the SAM flag. For example, to get only reads that are the first mate, use a flag of 64. This is useful to count properly paired reads only once, as otherwise the second mate will be also considered for the coverage.

	
–samFlagExclude


	 	Exclude reads based on the SAM flag. For example, to get only reads that map to the forward strand, use –samFlagExclude 16, where 16 is the SAM flag for reads that map to the reverse strand.

	
–minFragmentLength


	 	The minimum fragment length needed for read/pair inclusion. This option is primarily useful in ATACseq experiments, for filtering mono- or di-nucleosome fragments.

	
–maxFragmentLength


	 	The maximum fragment length needed for read/pair inclusion.






example usages:
plotEnrichment -b file1.bam file2.bam –BED peaks.bed -o enrichment.png


Background

It’s often useful to know what percentage of alignments or fragments overlap one or more groups of regions. For example, “fragment of reads in peaks” or FRiP scores are a common QC metric for ChIPseq data that asks such a question. Another example would be seeing what fraction of RNAseq reads are in exons, or genes, since both of these should be high. plotEnrichment allows efficiently answering these sorts of questions.




Usage example

plotEnrichment needs one or more sorted and indexed BAM files and one or more BED and/or GTF files. For GTF files, feature labels are given according to the 3rd column (‘feature’). For BED files, labels are given by the file name, though this can be overriden with the --regionLabels option.

$ plotEnrichment -b Input.bam H3K4Me1.bam H3K4Me3.bam \
--BED up.bed down.bed \
--regionLabels "up regulated" "down regulated" \
-o enrichment.png





The values underlying the plot can also be output with the --outRawCounts option and the y-axis can be auto-adjusted with the --variableScales option.

[image: ../../_images/plotEnrichment.png]
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Metagene analyses

By default, computeMatrix uses the signal over entire contiguous regions (e.g., transcripts) for computing its output. While this is typically quite useful, in case such as RNAseq the results are less than ideal. Take, for example, the gene model and coverage profile below:

[image: ../../_images/feature-metagene0.png]
If clustering were done using such blocky coverage then the results would be biased by the number of exons and their positions. Instead, it’s normally desired to ignore intronic regions and instead use only the signal in exons (denoted by blocks in the gene model). This can be accomlished by using the –metagene option in computeMatrix and supplying a BED12 or GTF file as a set of regions:

[image: ../../_images/feature-metagene1.png]
Note that for GTF files the regions used to define exons can be easily modified. For example, for RiboSeq samples it’s preferable to use annotated coding regions, so specifying –exonID CDS. Likewise, entire genes can be used rather than transcripts by specifying –transcriptID gene –transcript_id_designator gene_id.
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Unscaled regions

Some experiments aim to quantify the distribution of pausing of factors, such as PolII, throughout gene or transcript bodies. PolII and many other factors, show pausing (i.e., accumulation of signal) near the start/end of transcripts. As scaling is normally performed to make all regions the same length, the breadth of the paused region could be scaled differently in each transcript. This would, in turn, cause biases during clustering or other analyses. In such cases, the –unscaled5prime and –unscaled3prime options in computeMatrix can be used. These will prevent regions at one or both end of transcripts (or other regions) to not be excluded from scaling, thereby allowing raw signal profiles to be compared across transcripts. An example of this from Ferrari et al. 2013 [http://www.sciencedirect.com/science/article/pii/S2211124713005603] is shown below:

[image: ../../_images/feature-unscaled0.png]
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Offsetting signal to a given position

A growing number of experiment types need to be analyzed by focusing the signal from each alignment at a single point. As an example, RiboSeq alignments tend to be offset such that the signal pause is centered around the translation start site, an offset of around 12. Alternatively, in GROseq experiments, the pause around the TSS becomes centered by using the 1st base of each read. This can be accomplished within bamCoverage using the –Offset option. A visual example is below:

[image: ../../_images/feature-offset0.png]
The alignments shown above overlap a transcript, denoted as a blue box, which in this case represents only the coding sequence. If the alignments are from a RiboSeq experiment then the signal from each alignment should be set at the ~12th base of each alignment. The section on the right denotes the resulting signal intensity, with the expected large peak at the translation start site.
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plotFingerprint QC metrics

As of version 2.4.0, plotFingerprint can optionally output a number of metrics useful for assisting the interpretation of fingerprint plots. A number of these metrics require a matched input sample, which can be specified by --JSDsample.


Sequencing-depth dependence

An important caveat with all of the QC metrics, except “Synthetic JS distance”, is that sequencing depth plays a roll in the background assumption of what a good value is. This is visually demonstrated below, where the various curves represent what a perfectly behaved input sample should look like with a variety of average sequencing depths (“lambda”).

[image: ../../_images/plotFingerprintQC2.png]
This plot is equivalent to those generated by plotFingerprint, with the axes labeled differently. Note that with low coverage, the background expectation is less a diagonal line from the lower-left to the upper-right and more of a convex curve or, at very low coverage, a straight line with a given X-intercept. For this reason, a number of “Synthetic” metrics are produced for each sample. These represent the metrics for artificial plotFingerprint results like those above. These are useful for putting the results you observe for your samples into perspective. For example, your elbow point of 0.95 for a ChIP sample might not be so impressive if, because of low sequencing depth, an input sample would be expected to have an elbow point of 0.85.




The metrics


Note

There are many QC metrics, of which we find the “JS distance” the most useful!




	AUC: The “area under the curve”, with a maximum value of 0.5. Lower values generally indicate higher and more focal enrichment.



[image: ../../_images/plotFingerprintQC1.png]

	Synthetic AUC: The expected area under the curve of a perfectly behaved input sample having the same mean sequencing depth of a given sample. This is useful to put the observed AUC into perspective.

	X-intercept: The point (on the X-axis) at which the curve is not 0. This is approximately the percentage of the genome that was not sequenced in a particular sample. Ideally, this value will be near 0. In practice, however, this can be quite high, due to things like low sequencing depth (see above) or extremely high enrichment resulting in peaks sponging up all of the available reads.

	Synthetic X-intercept: The expected X-intercept of a perfectly behaved input sample having the same mean sequencing depth of a given sample. This is useful to put the observed X-intercept into perspective.

	Elbow Point: The elbow point attempts to measure the position at which the line turns upward. In practice, this is the point at which the plotted line is furthest from the line from the lower-left to the upper-right corner of the graph (equivalent to a perfect input sample with infinite coverage). The point returned is the position on the X-axis of this elbow point and higher values indicate more enrichment.

	Synthetic Elbow Point: The expected elbow point of a perfectly behaved input sample having the same mean sequencing depth of a given sample. This is useful to put the observed elbow point into perspective.

	JS distance: This is the Jensen-Shannon distance between a given sample and that specified by --JSDsample and is based on work from Sitanshu Gakkhar. The Jensen-Shannon divergence is defined as follows:




\[\begin{split}\begin{align}
JSD(P \parallel Q) = \frac{1}{2} D_{KL}(P \parallel M) + \frac{1}{2} D_{KL}(Q \parallel M) \\
M = \frac{1}{2} (P + Q) \\
D_{KL}({X} \parallel {Y}) = \sum_{i} X_i log\Big(\frac{X_i}{Y_i}\Big)
\end{align}\end{split}\]

Here, D is the Kullback-Leibler divergence. P and Q are the probability mass functions underlying the lines in the plots. The JS distance is the square root of the JS divergence shown above. Higher values indicate greater difference between the two curves, with minimum and maximum values of 0 and 1, respectively.


	Synthetic JS distance: As shown above, the expected distribution of a perfect input sample is dependent on its sequencing depth, meaning that if a sample and its matched control have very different depths then the JS distance between them is misleading. Consequently, rather than displaying the JS distance between two samples, this metric shows the JS distance between a given sample and a perfect input sample with the same coverage depth (i.e., the plot generated from the Poisson probability mass function with lambda equal to the mean coverage in the sample). Ideally, this metric and that above will be very similar, but may not be if sequencing depth is very different (in which case, this metric is likely more reliable). Note also that this metric is printed even for the sample indicated by the --JSDsample option, which is useful to assess the level of bias present in the input sample, which should ideally have coverage with a Poisson distribution.

	% genome enriched: This is a metric originating from the CHANCE [http://dx.doi.org/10.1186/gb-2012-13-10-r98] tool. This is computed by first finding the elbow point (essentially as described above), and then computing 1 minus that. This then represents the approximate percentage of the genome enriched in signal (e.g., bound by a transcription factor or having a certain histone modification).

	diff. enrichment: The differential enrichment between a given sample and that indicated by --JSDsample at the elbow point. This is also a metric introduced by the CHANCE tool. Higher percentages are generally better.

	CHANCE divergence: The divergence metric introduced by the CHANCE tools (and seemingly undocumented). In many ways, this is similar to the JS distance metric. The computation starts with the values at the elbow point of a given sample (P) and the sample given by --JSDsample (Q). Given P and Q, the “CHANCE divergence” is calculated as follows:




\[\begin{split}\begin{align}
CHANCE divergence = \sqrt{\frac{1}{2} (binRelEntropy(P, M) + binRelEntropy(Q, M))} \\
M = \frac{1}{2} (P + Q) \\
binRelEntropy(X, Y) = X log_2 \Big(\frac{X}{Y}\Big) + (1 - X) log_2 \Big(\frac{1 - X}{1 - Y} \Big)
\end{align}\end{split}\]

The binRelEntropy function is similar to a mixture of binary entropy and Kullback-Leibler divergence. Note that if X is 0, the X * log2(X/Y) is 0. Similarly, if X is 1, then (1 - X) * log2((1 - X) / (1 - Y)) is 0.
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Blacklist Regions

There are many sources of bias in ChIPseq experiments. Among the most prevalent of these is signal arising from “blacklist” regions (see Carroll et al. [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989762/] and the references therein for historical context). Blacklisted regions show notably enriched signal across many ChIP experiment types (e.g., regardless of what is being IPed or the experimental conditions). Including these regions can lead not only to false-positive peaks, but can also throw off between-sample normalization. An example of this is found below:

[image: ../../_images/feature-blacklist0.png]
The region on chromosome 9 starting around position 3 million marks the start of an annotated satellite repeat. As this region contains vastly more reads than expected, slight differences in enrichment here between samples can cause errors in between-sample scaling, thereby masking signal in non-repetitive regions. This can be seen in the IGV screenshot below, where the blacklisted region is just off the side of the screen.

[image: ../../_images/feature-blacklist1.png]
Note that the signal outside of the blacklisted region is slightly depressed due to the blacklisted region. Using the –blackListFileName option available throughout deepTools. The subtraction of these regions is accounted for in all normalizations.
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Accessing datasets hosted on deepBlue

deepBlue [http://dx.doi.org/10.1093/nar/gkw211] is an epigenome dataset server hosting many ENCODE, ROADMAP, BLUEPRINT, and DEEP samples. These are often hosted as normalized signal tracks that can be used with bigwigCompare, multiBigwigSummary, and computeMatrix. As of version 2.4.0, the aforementioned tools can now access signal files hosted on deepBlue. To do so, simply specify the “experiment name” from deepBlue, such as:

$ bigwigCompare -b1 S002R5H1.ERX300721.H3K4me3.bwa.GRCh38.20150528.bedgraph -b2 S002R5H1.ERX337057.Input.bwa.GRCh38.20150528.bedgraph -p 10 -o bwCompare.bw





The file names given to the aforementioned commands are in the “Name” column in deepBlue. Any file ending in ”.wig”, ”.wiggle”, ”.bedgraph” or otherwise not present on the file system (and not beginning with “http” or “ftp”) is assumed to be hosted on deepBlue. This means that for ENCODE samples, one can simply use the ENCODE ID (e.g., “ENCFF721EKA”).

Internally, deepTools queries deepBlue and creates a temporary bigWig file including signal in all of the regions that deepTools will use. By default, these temporary files are deleted after the command finishes. This can be prevented by specifying –deepBlueKeepTemp. The directory to which the temporary files are written can be specified by –deepBlueTempDir. If you intend to use the same sample multiple times with the same basic command (e.g., computeMatrix with the same regions or bigwigCompare with different samples), then considerable time can be saved by keeping the temporary bigWig file and simply specifying it in subsequent runs (i.e., deepTools won’t magically find the previous file, you need to specify it).

Note that some datasets may be restricted access. In such cases, you can request an account and will receive a “user key”. You can then provide that to bigwigCompare, multiBigwigSummary, or computeMatrix using the –userKey option. In the off-chance that you have access to other deepBlue servers aside from the main one (http://deepblue.mpi-inf.mpg.de/xmlrpc), you can specify that with the –deepBlueURL option.


Warning

bigwigCompare can be incredibly slow due to essentially downloading entire samples. It’s faster to simply download bigWig files from the original source.
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Read extension

In the majority of NGS experiment, DNA (or RNA) is fragmented into small stretches and only the ends of these fragments sequenced. For many applications, it’s desirable to quantify coverage of the entire original fragments over the genome. Consequently, there is an –extendReads option present throughout deepTools. This works as follows:


Paired-end reads



	Regions of the genome are sampled to determine the median fragment/read length.

	The genome is subdivided into disjoint regions. Each of these regions comprises one or more bins of some desired size (specified by -bs).

	For each region, all alignments overlapping it are gathered. In addition, all alignments within 2000 bases are gathered, as 2000 bases is the maximum allowed fragment size.

	The resulting collection of alignments are all extended according to their fragment length, which for paired-end reads is indicated in BAM files.





	For singletons, the expected fragment length from step 1 is used.







	For each of the extended reads, the count in each bin that it overlaps is incremented.









Single-end reads



	An extension length, L, is specified.

	The genome is subdivided into disjoint regions. Each of these regions comprises one or more bins of some desired size (specified by -bs).

	For each region, all alignments overlapping it are gathered. In addition, all alignments within 2000 bases are gathered, as 2000 bases is the maximum allowed fragment size.

	The resulting collection of alignments are all extended to length L.

	For each of the extended reads, the count in each bin that it overlaps is incremented.









Blacklisted regions

The question likely arises as to how alignments originating inside of blacklisted regions are handled. In short, any alignment contained completely within a blacklisted region is ignored, regardless of whether it would extend into a non-blacklisted region or not. Alignments only partially overlapping blacklisted regions are treated as normal, as are pairs of reads that span over a blacklisted region. This is primarily for the sake of performance, as otherwise each extended read would need to be checked to see if it overlaps a blacklisted region.
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deeptools



	deeptools package modules
	deeptools.SES_scaleFactor module

	deeptools.bamHandler module

	deeptools.correctReadCounts module

	deeptools.correlation module

	deeptools.correlation_heatmap module

	deeptools.countReadsPerBin module

	deeptools.getFragmentAndReadSize module

	deeptools.getRatio module

	deeptools.getScorePerBigWigBin module

	deeptools.heatmapper module

	deeptools.heatmapper_utilities module

	deeptools.mapReduce module

	deeptools.utilities module

	deeptools.writeBedGraph module

	deeptools.writeBedGraph_bam_and_bw module

	Module contents
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40000 50000 0.0
50000 60000 0.0
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correctGCbias — input and parameters

Output of computeGCB
[ 58: computeGCaias on data 44

B

BAM file:

[ 44: IMR90_Input_SRX017548.bam 1) -~
This should be same file that was used for computeGCbias. The BAM file must be sorted.

select correct files

Reference genome:

locally cached | ¢

Using reference genome:

Human (Homo sapiens): hg19 E

If your genome of interest is not listed, contact the Galaxy team

" . select reference genome
Effective genome size:

The effective genome size is the portion of the genome that is mappable. Large fractions of the ¢
that should be discarded. Also, if repetitive regions were not included in the mapping of reads, th
to be adjusted accordingly. See Table 2 of http://www.plosone.org/article/info%3Adoi%2F10.137
http://www.nature.com/nbt/journal/v27/n1/fig_tab/nbt.1518_T1.html for several effective genomr

format of the output:
B e—

Show advanced options:

bam

output
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computeMatrix — input and parameters

reglons to plot 1
Region
2 UCSC Mai on Human refGene (genome) > 3
P eadanat_Containing th;
Labet:
Genes
Uibeltoues n the ot

genes we previously
obtained through UCSC

Add new regions to plot |

seq- depth-

scor

105: bamCoverage on data 37 5] normalized file

SoTT— 5 ring the whole gename). ou can O PIRGWIUSHer rom o
bedrap o WG e uing UGSC ol r 1 Bl uing e GssTen bamCovrage
H

computeniatrix has two main output options:
D

ne mode, all regions in the BED file are stretched or shrunk to the same length (bp) that is indicated by the
user. Reference-point refers to a position within the BED regions (e.g start of region). In the reference-point mode only those
genomic positions before (downstream) and/or after (upstream) the reference point will be plotted.

‘The reference point for the plotting:
(e TS

Discard any values after the region end:
[a]

Ths is useful to visualize the region end when not using the scale-regions made and when the reference-point s set to the TSS.

upstream of the start site of the regions defined in the region fl
(2000 ) totally up to you

fons are genes, this would be the distance upstream of the transcription start site.

Totane downstream of the end site of the given :
[1000
Tha s e genes, tis would be the distance danstream of the transcripion and site.

Show advanced output setting:

st vanced options:

output

warning is raised because
the bamCoverage we used
contained reads for chr2
only, while the gene file
contained all genes
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smaller range of values

type  prep:
total RNA sample looks
like the odd one out
here
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heatmapper — input and parameters

Matrx file from the computeMatrix tool:
(1065 computeatrx on data 72 and data 105 Mt

Show advanced output setings:

Show advanced options:

Sortregions:

Whether the heatmap should present the regions sorted. The default s to sort in descending order based on the mean value per
region.

Method used for sorting:

For each row the method is computed.

Type of statistic that should be plotted in the summary image above the heatmap:

At missing data as zero is not set, such casdwyil be colored in black by default. By using this parameter a diferent
color can be set. A value between 0 and 1 wil be used for

here: http:/packages.python.arg/ete2/reference/reference _sNkglors.html. Alternatively colors can be specified using the
#rqgbb notation.

fes can be found here: hitp://ww.astro.Isa.umich.Wy/~msshin/science/code/matplotlib_cm/

Minimum value for the heatmap intensities. Leave empty for automativalues:
Maximum value for the heatmap intensities. Leave empty for automatic valyes:
Minimum value for the Y-axis of the summary plot. Leave empty for automatic

Maximum value for Y-axis of the summary plot. Leave empty for automatic values:

Description for the x-axis label:
[ distance from TSS (bp)

Description for the y-axis or the top panel:
genes

Heatmap width in cm:
75
The minimum value is 1 and the maximum is 100.

Heatmap height in c:
150
The minimum value is 3 and the maximum is 100,

What to show:

summary plot, heatmap and colorbar &

The defalt s to inlude a summary ar profie plot on top of the heatmap and a heatmap colorbar

Label for the region start:

Tss

[only for scale-regions mode] Label shown in the plot for the start of the region. Default is TSS (transcription start site), but

could be changed to anything, e.9. peak start”.

Label for the region end:

Tes

[only for scale-regions mode] Label shown in the plot for the region end. Default is TES (transcription end site).

Reference point label:

Tss

Conly for scale-regions mode] Label show in the plot fo the reference-point. Default is the same as the reference point selected

(e.9.755), but could be anything, e.9. "peak start” etc.

Labels for the regions plotted in the heatmap:

genes

1 more than ane region s being plotted a st of abels separated by comma and limted by quotes, s required. For exampye!

“label1, abelz"

Tile of the

My dlustered heatmap

il of the plo, o be printed on top of the generated image. Leave blank for no title.

Do one plot per grou

u]

When the region file contains groups separated by "#", the default i to plot the averages fo the gafnct plots in ane plot.If this

option s set, each group will get s omn plot, stacked on top of each other.

Did you used multiple regions in ComputeMatrix?:

T Tsed only one region < ; i p B

vt oy e e 4 0 0 L QU TA  RECIE: oy

in ComputeMatrix. groups of regions wi is why we recommen.

Clustering algorithm: to use it only fop/ases where you supplied

just one BED $ife to computeMatrix

Number of clusters to compute:
3

When this option is set, then T Tasters using the kmeans algorithm. Only works for data that is not grouped,
othernise only the first group will be clustered. If more specific clustering methods are required it is advisable to save the
underlying matrix and run the clustering using other software. The plotting of the clustering may fail (Error: Segmentation fault)
if a cluster has very few members compared to the total number or regions. (default: None)

output

My clustered heatmap. My clustered heatmap.

these 2 heatmaps were
generated using the same
computeMatrix output!
only two entries differed in
heatmapper between these two
plots:
a) color for missing data (black
vs- white)
b) 3 vs- 9 clusters

o

note how the clustering can group
genes with down- and upstream
enrichments in addition to strong
and weak signals
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Join two Datasets side by side on a
specified field

Compare two Datasets to find
common or distinct rows

Group data by a column and
perform aggregate operation on
other columns.





_images/Gal_FAQ_filteringDuplicates.png
12 3 4
10 20 regionl gfal‘ﬁng pOil"lf

o 18 20 rgens INTERVAL file with | duplicate entry

from dataset

@E?‘ ‘ 86: Sort on data 85 - ’

Dataset missing? See TIP below

Count occurrences of values in column(s)
gsdecll Unselect all

R
, (o) (FCom) CoWou will lose all other columng, thoug
Multi-select list - hold the appropriate key while clicking to select multiple columns
Delimited by
Tab

chrl 10 20
1 chrl 18 29 \ unique entries
How should the results be sorted? 1 chrl 35 40 will ave only {

By the values being counted 1 cr1 7 15 count

v Execute

Cut columns

‘2act/ drop the column with the counts to get a
Delimited by proper INTERVAL file back

| Tab

feed thig into
@EE‘ ‘ 88: Count on data 86 deepTools






_images/Gal_biomart.png
ENSEMBL GENES 73 (SANGER UK)

Homo sapiens genes (GRCh37.p12)
Filters
[
Attributes

Ensembl Gene ID
Ensembl Transcript 1D

Homo sapiens genes (GRCh37.p12)

o

ted]

Dataset
[None Selected]





_images/hm_DNase.png
DNase signal

enh.center 2.0Kb

\

enhancers






_images/computeMatrix_overview.png
calculate the values
baged on uger-eupplied

et ¢ , computeMatrix
input fileg  ®~~_______-*

kb)

here, you decide:

» whether you want to calculate
values around a REFERENCE POINT
(e.g. +/- 1kb around the start or end
or a region) or for SCALED REGIONS
(e.g. values for genes all scaled to 30

» what size of BINNING you want to use

» whether to ignore or include regions
without coverage

» and many more options...

plotProfile

plotHeatmap

3 — chr2L

-1.0 1SS 1.0kb
L]

| optimize the visualization .-
of the previously calculated
values

Te--e

plotHeatmap and
plotProfile offer myriad
options to change the
appearance of the
plot, e.g. colors, axes,
labelling etc.

in addition, you can
export the data
tables underlying the

plots that are
\ generated /





