
DeepStack Documentation
Release 0.1

DeepQuestAI

Mar 04, 2019

Tutorials:

1 DeepStack is developed and maintained by DeepQuest AI 3

2 Installing DeepStack - CPU Version 5
2.1 Step 1: Install Docker . 5
2.2 Step 2: Install DeepStack . 5
2.3 Step 3: Activate DeepStack . 6

3 GPU Accelerated Version 9
3.1 Getting Started with DeepStack . 9
3.2 Face Recognition . 13
3.3 Face Detection . 19
3.4 Face Match . 22
3.5 Object Detection . 25
3.6 Scene Recognition . 29
3.7 Using DeepStack with NVIDIA GPU . 30
3.8 DeepStack Beta 2.0 - Release Notes . 32
3.9 DeepStack Beta - Release Notes . 33

4 Indices and tables 37

i

ii

DeepStack Documentation, Release 0.1

DeepStack is an AI server that empowers every developer in the world to easily build state-of-the-art AI systems
both on premise and in the cloud. The promises of Artificial Intelligence are huge but becoming a machine learning
engineer is hard. DeepStack runs on the docker platform and can be used from any programming language.

You can learn more about Docker on Docker’s Website Visit Docker Getting Started for instructions on setting up and
using Docker for the first time.

Tutorials: 1

https://docker.io/
https://docs.docker.com/get-started/

DeepStack Documentation, Release 0.1

2 Tutorials:

CHAPTER 1

DeepStack is developed and maintained by DeepQuest AI

Below, using DeepStack we attempt to classify the scene of the above image

import requests

image_data = open("test-image5.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/scene",files={"image":image_
→˓data}).json()
print(response)

3

DeepStack Documentation, Release 0.1

Result

{ success: true, label: 'highway', confidence: 63.377846 }

You simply send in an image by POST and deepstack returns a JSON response detailing the label of the image as well
as the confidence of the prediction on a scale of 0 - 1.

4 Chapter 1. DeepStack is developed and maintained by DeepQuest AI

CHAPTER 2

Installing DeepStack - CPU Version

The code above demonstrates using DeepStack to predict the scene of an image, to run this, you can install DeepStack
and start it with a single docker command.

2.1 Step 1: Install Docker

If you already have docker installed, you can skip this step.

On Linux

sudo apt-get update
sudo apt-get install curl
curl -fsSL get.docker.com -o get-docker.sh && sh get-docker.sh

On Windows or MacOS

Follow instructions on Docker Getting Started

2.2 Step 2: Install DeepStack

docker pull deepquestai/deepstack

Once installed, you can run DeepStack with the command below

docker run -e VISION-SCENE=True -v localstorage:/datastore -p 80:5000 deepquestai/
→˓deepstack

The command above runs deepstack with the scene recognition activated, once this is running, you can run the example
above.

5

https://docs.docker.com/get-started/

DeepStack Documentation, Release 0.1

2.3 Step 3: Activate DeepStack

The first time you run deepstack, you need to activate it following the process below.

Once you initiate the run command above, visit localhost:80/admin in your browser. The interface below will appear.

You can obtain a free activation key from https://register.deepstack.cc

Enter your key and click Activate Now

The interface below will appear.

This step is only required the first time you run deepstack.

6 Chapter 2. Installing DeepStack - CPU Version

https://register.deepstack.cc/

DeepStack Documentation, Release 0.1

2.3. Step 3: Activate DeepStack 7

DeepStack Documentation, Release 0.1

8 Chapter 2. Installing DeepStack - CPU Version

CHAPTER 3

GPU Accelerated Version

DeepStack runs many times faster on machines with NVIDIA GPUS, to install and use the GPU Version, read Using
DeepStack with NVIDIA GPU

HARDWARE AND SOFTWARE REQUIREMENTS

DeepStack runs on any platform with Docker installed. However, for best performance, the following minimum
requirements are highly recommended.

• Intel Core i5 processor

• 8 GB RAM

• 10 GB Disk Space

• Linux or Windows 10 Pro

NOTE

DeepStack works best on linux Systems

3.1 Getting Started with DeepStack

DeepStack is distributed as a docker image. In this tutorial, we shall go through the complete process of using
DeepStack to build a Face Recognition system.

3.1.1 Setting Up DeepStack

Follow instructions on read DeepStack Beta - Python Guide to install the CPU Version of DeepStack If you have a
system with Nvidia GPU, follow instruction on read Using DeepStack with NVIDIA GPU to install the GPU Version
of DeepStack

Starting DeepStack

Below we shall run DeepStack with only the FACE features enabled

9

DeepStack Documentation, Release 0.1

sudo docker run -e VISION-FACE=True -v localstorage:/datastore -p 80:5000 deepquestai/
→˓deepstack

Basic Parameters

-e VISION-FACE=True This enables the face recognition APIs, all apis are disabled by default.

-v localstorage:/datastore This specifies the local volume where deepstack will store all data.

-p 80:5000 This makes deepstack accessible via port 80 of the machine.

NOTE FOR THE GPU VERSION

If you installed the GPU Version, remmember to add the args args –rm –runtime=nvidia The equivalent
run command for the gpu version is

sudo docker run --rm --runtime=nvidia -e VISION-FACE=True -v localstorage:/
→˓datastore \
-p 80:5000 deepquestai/deepstack:gpu

Face Recognition

Think of a software that can identity known people by their names. Face Recognition does exactly that.
Register a picture of a number of people and the system will be able to recognize them again anytime.
Face Recognition is a two step process: The first is to register a known face and second is to recognize
unknown faces.

REGISTERING A FACE

Here we are building an application that can tell the names of a number of popular celebri-
ties. First we collect pictures of a number of celebrities and we register them with deepstack

10 Chapter 3. GPU Accelerated Version

DeepStack Documentation, Release 0.1

Below we will register the faces with their names

import requests

tom_cruise = open("cruise.jpg","rb").read()
adele = open("adele.jpg","rb").read()
elba = open("elba.jpg","rb").read()
perri = open("perri.jpg","rb").read()

requests.post("http://localhost:80/v1/vision/face/register",files={"image":tom_cruise}
→˓, data={"userid":"Tom Cruise"})

(continues on next page)

3.1. Getting Started with DeepStack 11

DeepStack Documentation, Release 0.1

(continued from previous page)

requests.post("http://localhost:80/v1/vision/face/register",files={"image":adele},
→˓data={"userid":"Adele"})
requests.post("http://localhost:80/v1/vision/face/register",files={"image":elba},
→˓data={"userid":"Idris Elba"})
requests.post("http://localhost:80/v1/vision/face/register",files={"image":perri},
→˓data={"userid":"Christina Perri"})

RECOGNITION

Now we shall attempt to recognize any of these celebrities using DeepStack. Below we will send in a whole new
picture of Adele and DeepStack will attempt to predict the name.

Prediction code

import requests

test_image = open("test-image.jpg","rb").read()

res = requests.post("http://localhost:80/v1/vision/
→˓face/recognize",files={"image":test_image}).json()

for user in res["predictions"]:
print(user["userid"])

Result

Adele

We have just created a face recognition system. You can try with different
people and test on different pictures of them.

The next tutorial is dedicated to the full power of the face recognition api as
well as best practices to make the best out of it.

Performance

12 Chapter 3. GPU Accelerated Version

DeepStack Documentation, Release 0.1

DeepStack offers three modes allowing you to tradeoff speed for pefor-
mance. During startup, you can specify performance mode to be , “High”
, “Medium” and “Low”

The default mode is “Medium”

You can speciy a different mode as seen below

sudo docker run -e MODE=High -e VISION-FACE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

Note the -e MODE=High above

3.2 Face Recognition

In the Getting Started, we had an overview of the face recognition API. In this section, we shall explore all the
functionalities of the API.

3.2.1 Face Registeration

The face registeration endpoint allows you to register pictures of person and associate it with a userid.

You can specify multiple pictures per person during registeration.

Example

import requests

user_image = open("image1.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/face/register",
files={"image":user_image},data={"userid":"User Name"}).json()

print(response)

Result

{'message': 'face added', 'success': True}

The response above indicates the call was successful. You should always check for the “success” status. If their is an
error in your request, you will receive a response like

{'error': 'user id not specified', 'success': False}

This indicates that you ommited the userid in your request. If you ommited the image, the response will be

{'error': 'No valid image file found', 'success': False}

3.2.2 Face Recognition

The face registeration endpoint detects all faces in an image and returns the USERID for each face. Note that the
USERID was specified during the registeration phase. If a new face is encountered, the USERID will be unknown.

We shall test this on the image below.

3.2. Face Recognition 13

DeepStack Documentation, Release 0.1

14 Chapter 3. GPU Accelerated Version

DeepStack Documentation, Release 0.1

import requests

image_data = open("test-image2.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/face/recognize",
files={"image":image_data}).json()

for user in response["predictions"]:
print(user["userid"])

print("Full Response: ",response)

Result

Idris Elba
unknown
Full Response: {'success': True, 'predictions': [{'x_min': 215, 'confidence': 0.
→˓76965684, 'x_max': 264, 'y_max': 91, 'y_min': 20, 'userid': 'Idris Elba'}, {'x_min
→˓': 115, 'confidence': 0, 'x_max': 162, 'y_max': 97, 'y_min': 31, 'userid': 'unknown
→˓'}]}

As you can see above, the first user is unknown since we did not previously register her, however, Idris Elba was de-
tected as we registered a picture of his in the previous tutorial. Note also that the full response contains the coordinates
of the faces.

3.2.3 Extracting Faces

The face coordinates allows you to easily extract the detected faces. Here we shall use PIL to extract the faces and
save them

import requests
from PIL import Image

image_data = open("test-image2.jpg","rb").read()
image = Image.open("test-image2.jpg").convert("RGB")

response = requests.post("http://localhost:80/v1/vision/face/recognize",
files={"image":image_data}).json()

for face in response["predictions"]:

userid = face["userid"]
y_max = int(face["y_max"])
y_min = int(face["y_min"])
x_max = int(face["x_max"])
x_min = int(face["x_min"])
cropped = image.crop((x_min,y_min,x_max,y_max))
cropped.save("{}.jpg".format(userid))

Result

Setting Minimum Confidence

DeepStack recognizes faces by computing the similarity between the embedding of a new face and the set of embed-
dings of previously registered faces. By default, the minimum confidence is 0.67. The confidence ranges between 0

3.2. Face Recognition 15

DeepStack Documentation, Release 0.1

16 Chapter 3. GPU Accelerated Version

DeepStack Documentation, Release 0.1

3.2. Face Recognition 17

DeepStack Documentation, Release 0.1

and 1. If the similarity for a new face falls below the min_confidence, unknown will be returned.

The min_confidence parameter allows you to increase or reduce the minimum confidence.

We lower the confidence allowed below.

Example

import requests

image_data = open("test-image2.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/face/recognize",
files={"image":image_data},data={"min_confidence":0.40}).json()

for user in response["predictions"]:
print(user["userid"])

print("Full Response: ",response)

Result

Idris Elba
Adele
Full Response: {'success': True, 'predictions': [{'userid': 'Idris Elba', 'y_min':
→˓154, 'x_min': 1615, 'x_max': 1983, 'confidence': 0.76965684, 'y_max': 682}, {'userid
→˓': 'Adele', 'y_min': 237, 'x_min': 869, 'x_max': 1214, 'confidence': 0.6044803, 'y_
→˓max': 732}]}

By reducing the allowed confidence, the system detects the first face as Adele. The lower the confidence, the more
likely for the system to make mistakes. When the confidence level is high, mistakes are extremely rare, however, the
system may return unknown always if the confidence is too high.

For security related processes such as authentication, set the min_confidence at 0.7 or higher

3.2.4 Managing Registered Faces

The face recognition API allows you to retrieve and delete faces that has been previously registered with DeepStack.

Listing faces

import requests
faces = requests.post("http://localhost:80/v1/vision/face/list").json()

print(faces)

Result

{'success': True, 'faces': ['Tom Cruise', 'Adele', 'Idris Elba', 'Christina Perri']}

Deleting a face

import requests

response = requests.post("http://localhost:80/v1/vision/face/delete",
data={"userid":"Idris Elba"}).json()

print(response)

18 Chapter 3. GPU Accelerated Version

DeepStack Documentation, Release 0.1

Result

{'success': True}

Having deleted Idris Elba from our database, we shall now attempt to recognize him in our test image.

import requests

image_data = open("test-image2.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/face/recognize",files={"image
→˓":image_data}).json()

for user in response["predictions"]:
print(user["userid"])

Result

unknown
unknown

Performance

DeepStack offers three modes allowing you to tradeoff speed for peformance. During startup, you can specify perfor-
mance mode to be , “High” , “Medium” and “Low”

The default mode is “Medium”

You can speciy a different mode as seen below

sudo docker run -e MODE=High -e VISION-FACE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

Note the -e MODE=High above

3.3 Face Detection

The face detection API detects faces and returns their coordinates. It functions similarly to the face recognition API
except that it does not perform recognition.

Example

import requests

image_data = open("family.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/face",files={"image":image_
→˓data}).json()

print(response)

Result

{'predictions': [{'x_max': 712, 'y_max': 261, 'x_min': 626, 'confidence': 0.99990666,
→˓'y_min': 145}, {'x_max': 620, 'y_max': 288, 'x_min': 543, 'confidence': 0.99986553,
→˓'y_min': 174}, {'x_max': 810, 'y_max': 242, 'x_min': 731, 'confidence': 0.99986434,
→˓'y_min': 163}, {'x_max': 542, 'y_max': 279, 'x_min': 477, 'confidence': 0.99899536,
→˓'y_min': 197}], 'success': True}

(continues on next page)

3.3. Face Detection 19

DeepStack Documentation, Release 0.1

(continued from previous page)

We can use the coordinates returned to extract the faces from the image

import requests
from PIL import Image

image_data = open("family.jpg","rb").read()
image = Image.open("family.jpg").convert("RGB")

response = requests.post("http://localhost:80/v1/vision/face",files={"image":image_
→˓data}).json()
i = 0
for face in response["predictions"]:

y_max = int(face["y_max"])
y_min = int(face["y_min"])
x_max = int(face["x_max"])
x_min = int(face["x_min"])
cropped = image.crop((x_min,y_min,x_max,y_max))
cropped.save("image{}.jpg".format(i))

i += 1

Result

Performance

DeepStack offers three modes allowing you to tradeoff speed for peformance. During startup, you can specify perfor-
mance mode to be , “High” , “Medium” and “Low”

The default mode is “Medium”

20 Chapter 3. GPU Accelerated Version

DeepStack Documentation, Release 0.1

3.3. Face Detection 21

DeepStack Documentation, Release 0.1

You can speciy a different mode as seen below

sudo docker run -e MODE=High -e VISION-FACE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

Note the -e MODE=High above

Setting Minimum Confidence

By default, the minimum confidence for detecting faces is 0.45. The confidence ranges between 0 and 1. If the
confidence level for a face falls below the min_confidence, no face is detected.

The min_confidence parameter allows you to increase or reduce the minimum confidence.

We lower the confidence allowed below.

Example

import requests

image_data = open("family.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/face",
files={"image":image_data},data={"min_confidence":0.30}).json()

3.4 Face Match

The face detection api compares faces in two different pictures and tells the similarity between them. A typical use of
this is matching identity documents with pictures of a person.

Example

Here we shall compare two pictures of obama

import requests

image_data1 = open("test-image6.jpeg","rb").read()
image_data2 = open("test-image7.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/face/match",files={"image1
→˓":image_data1,"image2":image_data2}).json()

print(response)

Result

{'similarity': 0.73975885, 'success': True}

Here we shall compare a picture of Obama with that of Bradley Cooper

import requests

image_data1 = open("test-image6.jpeg","rb").read()
image_data2 = open("test-image8.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/face/match",files={"image1
→˓":image_data1,"image2":image_data2}).json()

(continues on next page)

22 Chapter 3. GPU Accelerated Version

DeepStack Documentation, Release 0.1

3.4. Face Match 23

DeepStack Documentation, Release 0.1

24 Chapter 3. GPU Accelerated Version

DeepStack Documentation, Release 0.1

(continued from previous page)

print(response)

Result

{{'similarity': 0.4456827, 'success': True}

As seen above, the match for two different pictures of Obama was very high while the match for Obama and Bradley
Cooper was very low.

Performance

DeepStack offers three modes allowing you to tradeoff speed for peformance. During startup, you can specify perfor-
mance mode to be , “High” , “Medium” and “Low”

The default mode is “Medium”

You can speciy a different mode as seen below

sudo docker run -e MODE=High -e VISION-FACE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

Note the -e MODE=High above

3.5 Object Detection

The object detection API locates and classifies 80 different kinds of objects in a single image.

To use this API, you need to set VISION-DETECTION=True when starting DeepStack

sudo docker run -e VISION-DETECTION=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

If using the GPU Version, run

sudo docker run --rm --runtime=nvidia -e VISION-DETECTION=True -v localstorage:/
→˓datastore \
-p 80:5000 deepquestai/deepstack:gpu

Note also that you can have multiple endpoints activated, for example, both face and object detection are activated
below

sudo docker run -e VISION-DETECTION=True -e VISION-FACE=True -v localstorage:/
→˓datastore \
-p 80:5000 deepquestai/deepstack

Example

import requests

image_data = open("test-image3.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/detection",files={"image
→˓":image_data}).json()

for object in response["predictions"]:

(continues on next page)

3.5. Object Detection 25

DeepStack Documentation, Release 0.1

(continued from previous page)

print(object["label"])

print(response)

Result

dog
person
person
{'predictions': [{'x_max': 819, 'x_min': 633, 'y_min': 354, 'confidence': 99, 'label
→˓': 'dog', 'y_max': 546}, {'x_max': 601, 'x_min': 440, 'y_min': 116, 'confidence':
→˓99, 'label': 'person', 'y_max': 516}, {'x_max': 445, 'x_min': 295, 'y_min': 84,
→˓'confidence': 99, 'label': 'person', 'y_max': 514}], 'success': True}

We can use the coordinates returned to extract the objects

import requests
from PIL import Image

image_data = open("test-image3.jpg","rb").read()
image = Image.open("test-image3.jpg").convert("RGB")

response = requests.post("http://localhost:80/v1/vision/detection",files={"image
→˓":image_data}).json()
i = 0
for object in response["predictions"]:

label = object["label"]
y_max = int(object["y_max"])
y_min = int(object["y_min"])
x_max = int(object["x_max"])
x_min = int(object["x_min"])
cropped = image.crop((x_min,y_min,x_max,y_max))
cropped.save("image{}_{}.jpg".format(i,label))

i += 1

Result

Performance

DeepStack offers three modes allowing you to tradeoff speed for peformance. During startup, you can specify perfor-

26 Chapter 3. GPU Accelerated Version

DeepStack Documentation, Release 0.1

3.5. Object Detection 27

DeepStack Documentation, Release 0.1

28 Chapter 3. GPU Accelerated Version

DeepStack Documentation, Release 0.1

mance mode to be , “High” , “Medium” and “Low”

The default mode is “Medium”

You can speciy a different mode as seen below

sudo docker run -e MODE=High -e VISION-DETECTION=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

Note the -e MODE=High above

Setting Minimum Confidence

By default, the minimum confidence for detecting objects is 0.45. The confidence ranges between 0 and 1. If the
confidence level for an object falls below the min_confidence, no object is detected.

The min_confidence parameter allows you to increase or reduce the minimum confidence.

We lower the confidence allowed below.

Example

import requests

image_data = open("test-image3.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/detection",
files={"image":image_data},data={"min_confidence":0.30}).json()

CLASSES

The following are the classes of objects DeepStack can detect in images

person, bicycle, car, motorcycle, airplane,
bus, train, truck, boat, traffic light, fire hydrant, stop_sign,
parking meter, bench, bird, cat, dog, horse, sheep, cow, elephant,
bear, zebra, giraffe, backpack, umbrella, handbag, tie, suitcase,
frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball glove,
skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork,
knife, spoon, bowl, banana, apple, sandwich, orange, broccoli, carrot,
hot dog, pizza, donot, cake, chair, couch, potted plant, bed, dining
→˓table,
toilet, tv, laptop, mouse, remote, keyboard, cell phone, microwave,
oven, toaster, sink, refrigerator, book, clock, vase, scissors, teddy
→˓bear,
hair dryer, toothbrush.

3.6 Scene Recognition

The traffic recognition api classifies an image into one of 365 scenes

To use this API, you need to set VISION-SCENE=True when starting DeepStack

sudo docker run -e VISION-SCENE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

If using the GPU Version, run

3.6. Scene Recognition 29

DeepStack Documentation, Release 0.1

sudo docker run --rm --runtime=nvidia -e VISION-SCENE=True -v localstorage:/datastore
→˓\
-p 80:5000 deepquestai/deepstack:gpu

Note also that you can have multiple endpoints activated, for example, both traffic and scene recognition are activated
below

sudo docker run -e VISION-SCENE=True -e VISION-TRAFFIC=True -v localstorage:/
→˓datastore \
-p 80:5000 deepquestai/deepstack

Example

import requests

image_data = open("test-image5.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/scene",files={"image":image_
→˓data}).json()
print("Label:",response["label"])
print(response)

Result

Label: conference_room
{'success': True, 'confidence': 73.73981, 'label': 'conference_room'}

3.7 Using DeepStack with NVIDIA GPU

DeepStack GPU Version serves requests 5 - 20 times faster than the CPU version if you have an NVIDIA GPU.

NOTE: THE GPU VERSION IS ONLY SUPPORTED ON LINUX

Before you install the GPU Version, you need to follow the steps below.

3.7.1 Step 1: Install Docker

If you already have docker installed, you can skip this step.

30 Chapter 3. GPU Accelerated Version

DeepStack Documentation, Release 0.1

sudo apt-get update
sudo apt-get install curl
curl -fsSL get.docker.com -o get-docker.sh && sh get-docker.sh

3.7.2 Step 2: Setup NVIDIA Drivers

Install the NVIDIA Driver

GUIDE: Nvidia Driver Install

3.7.3 Step 3: Install NVIDIA Docker

The native docker engine does not support GPU access from containers, however nvidia-docker2 modifies your docker
install to support GPU access.

Run the commands below to modify the docker engine

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
sudo apt-key add -

distribution=$(. /etc/os-release;echo IDVERSION_ID)

curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update

sudo apt-get install -y nvidia-docker2

sudo pkill -SIGHUP dockerd

If you run into issues, you can refer to this GUIDE

3.7.4 Step 4: Install DeepStack GPU Version

sudo docker pull deepquestai/deepstack:gpu

3.7.5 Step 5: RUN DeepStack with GPU Access

Once the above steps are complete, when you run deepstack, add the args –rm –runtime=nvidia

sudo docker run --rm --runtime=nvidia -e VISION-SCENE=True -v localstorage:/datastore
→˓\
-p 80:5000 deepquestai/deepstack:gpu

3.7.6 Step 6: Activate DeepStack

The first time you run deepstack, you need to activate it following the process below.

Once you initiate the run command above, visit localhost:80/admin in your browser. The interface below will appear.

3.7. Using DeepStack with NVIDIA GPU 31

http://www.linuxandubuntu.com/home/how-to-install-latest-nvidia-drivers-in-linux/
https://devblogs.nvidia.com/gpu-containers-runtime//

DeepStack Documentation, Release 0.1

You can obtain a free activation key from register.deepstack.cc https://register.deepstack.cc

Enter your key and click Activate Now

The interface below will appear.

This step is only required the first time you run deepstack.

3.8 DeepStack Beta 2.0 - Release Notes

DeepStack Beta 2.0 features a new face detection engine, significantly improving the face detection and recognition
APIS.

3.8.1 Improvements

• New Face Detection Engine

The face detection APIs have been improved to detect faces even when occluded.

• Improved Face Recognition

The face recognition APIs have been improved significantly. Recognized faces now report confidence
over 70%. The default min_confidence is now set to 0.67

• New Face Match API

The new Face Match API allows you to compute the similarity score on two images containing two
faces.

• Speed Modes

Speed modes have been introduced to allow you easily tradeoff performance for accuracy.

32 Chapter 3. GPU Accelerated Version

https://register.deepstack.cc/

DeepStack Documentation, Release 0.1

There are three speed modes, “High” , “Medium” and “Low”

You can specify your speed mode has exemplified below.

sudo docker run -e MODE=High -e VISION-DETECTION=True -v localstorage:/
→˓datastore \
-p 80:5000 deepquestai/deepstack

Note the -**e MODE=High** above

• Minimum Confidence

The “min_confidence” parameter allows you to control the level of confidence of results for Object
Detection , Face Detection and Face Recognition

3.8.2 Breaking Changes

• TRAFFIC API REMOVED

The traffic api has been removed, a more improved version maybe re-introduced in future versions
of DeepStack.

• GENDER API REMOVED

The face detection api no longer return gender information, only bounding boxes are now returned.
Gender prediction maybe re-introduced in future versions of DeepStack..

3.9 DeepStack Beta - Release Notes

DeepStack Beta is more optimized for storage, memory, compute and is more accurate.

3.9. DeepStack Beta - Release Notes 33

DeepStack Documentation, Release 0.1

3.9.1 Improvements

• New Fast GPU Version

We have released the GPU Version of DeepStack, accelerating responses by orders of magnitude if
you have an Nvidia GPU. See Using DeepStack with NVIDIA GPU for setup instructions

• Improved Face Recognition Engine

The face recognition API is now powered by state-of-the-art face recognition engine.

• Better error handling and crash recovery

DeepStack now gracefully handles invalid images and reports errors better.

• 50% Reduction in Install Size

The total install size DeepStack is now half the original size.

3.9.2 Breaking Changes

• ENDPOINT ACTIVATION

To avoid unneccesary memory usage. Only endpoints you activate are loaded.

For example, to use any face API, you should run deepstack as below

sudo docker run -e VISION-FACE=True -v localstorage:/datastore \
-p 80:5000 deepquestai/deepstack

In this example, you can query all face related APIs, however, you cannot query the object detection
API and other endpoints.

You can activate multiple endpoints at once as below

sudo docker run -e VISION-FACE=True -e VISION-SCENE=True -e VISION-
→˓TRAFFIC=True \
-v localstorage:/datastore -p 80:5000 deepquestai/deepstack

• FACE RECOGNITION API-MINIMUM CONFIDENCE

The min_distance parameter has been replaced by min_confidence See Face Recognition for usage
instructions

• FACE RECOGNITION API - DATA INCOMPATIBILITY

Any faces registered with the Alpha Version is incompatible with this Version. You need to re-register
previously registered faces. The new face recognition engine is stable and future releases will remain
compatible with this Version.

• FACE RECOGNITION API - RESPONSES

Face registeration response has been changed from

{'predictions': {'message': 'face added'}, 'success': True}

To

{'message': 'face added', 'success': True}

Face delete response has been changed from

34 Chapter 3. GPU Accelerated Version

DeepStack Documentation, Release 0.1

{'success': True, 'message': 'user deleted successfully'}

To

{'success': True}

• SCENE AND TRAFFIC API - RESPONSES

Responses has been changed from

{'success': True, 'predictions': [{'label': 'conference_room', 'confidence
→˓': 73.73981475830078}]}

To

{'success': True, 'confidence': 73.73981, 'label': 'conference_room'}

• OBJECT DECTION API - SPEED MODES

Speed Modes have been deprecated.

3.9. DeepStack Beta - Release Notes 35

DeepStack Documentation, Release 0.1

36 Chapter 3. GPU Accelerated Version

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

37

	DeepStack is developed and maintained by DeepQuest AI
	Installing DeepStack - CPU Version
	Step 1: Install Docker
	Step 2: Install DeepStack
	Step 3: Activate DeepStack

	GPU Accelerated Version
	Getting Started with DeepStack
	Face Recognition
	Face Detection
	Face Match
	Object Detection
	Scene Recognition
	Using DeepStack with NVIDIA GPU
	DeepStack Beta 2.0 - Release Notes
	DeepStack Beta - Release Notes

	Indices and tables

