
dp-agent Documentation
Release v0.1-alpha

mipt

Mar 28, 2023

Overview

1 Architecture Overview 3

2 Installation 5

3 Running the Agent 7
3.1 HTTP api server . 7

4 Analyzing the data 9

5 Input Format 11

6 Output Format 13

7 Annotator 15

8 Skill Selector 17

9 Skill 19

10 Response Selector 21

11 Postprocessor 23

12 User State API 25

13 /start 27

14 Defining the formatters 29

15 Agent Configuration 31

16 Database Config Description 33

17 Pipeline Config Description 35
17.1 Services Config . 35
17.2 Connectors config . 36

18 Built-in StateManager 39

i

19 Available methods 41

20 Built-in connectors 45

21 Built-in python connectors 47
21.1 ConfidenceResponseSelectorConnector . 47
21.2 PredefinedTextConnector . 47
21.3 PredefinedOutputConnector . 48

22 Writing your own connectors 49

ii

dp-agent Documentation, Release v0.1-alpha

DeepPavlov Agent is a framework for development of scalable and production ready multi-skill virtual assistants,
complex dialogue systems and chatbots.

Overview 1

dp-agent Documentation, Release v0.1-alpha

2 Overview

CHAPTER 1

Architecture Overview

Modern virtual assistants such as Amazon Alexa and Google assistants integrate and orchestrate different conversa-
tional skills to address a wide spectrum of user’s tasks. DeepPavlov Agent is a framework for development of scalable
and production ready multi-skill virtual assistants, complex dialogue systems and chatbots.

Key features:

• scalability and reliability in highload environment due to micro-service architecture

• ease of adding and orchestrating conversational skills

• shared memory of dialog state and NLP annotations accessible to all skills

Core concepts of DeepPavlov Agent architecture:

• Utterance is a single message produced by a human or a bot;

• Service is a NLP model or any other external service that supports a REST API.

DeepPavlov Agent orchestrates following types of services:

– Annotator is a service for NLP preprocessing of an utterance. It can implement some basic text pro-
cessing like spell correction, named entity recognition, etc.;

– Skill is a service producing a conversational response for a current dialogue state;

– Skill Selector is a service that selects a subset of available skills for producing candidate responses;

– Response Selector is a service selecting out of available candidates a response to be sent to the user;

– Postprocessor is a service postprocessing a response utterance. It can make some basic things like
adding a user name, inserting emojis, etc.

• Postprocessed Response is a final postprocessed conversational agent utterance that is shown to the
user.

• State stores current dialogs between users and a conversational agent as well as other infromation serialized
in a json format. State is used to share information across the services and stores all required information about
the current dialogs. Dialogue state is documented here.

3

https://deeppavlov-agent.readthedocs.io/en/latest/_static/api.html
https://deeppavlov-agent.readthedocs.io/en/latest/_static/api.html

dp-agent Documentation, Release v0.1-alpha

4 Chapter 1. Architecture Overview

CHAPTER 2

Installation

Deeppavlov agent requires python >= 3.7 and can be installed from pip.

pip install deeppavlov_agent

5

dp-agent Documentation, Release v0.1-alpha

6 Chapter 2. Installation

CHAPTER 3

Running the Agent

Agent can be run inside a container or on a local machine. The default Agent port is 4242. To launch the agent enter:

python -m deeppavlov_agent.run_http

Command parameters are set via deepavlov_agent/settings.yaml:

• -ch - output channel for agent. Could be either http_client or cmd_client

• -p - port for http_client, default value is 4242

• -pl - pipeline config path, you can use multiple pipeline configs at the time, next one will update previous

• -d - database config path

• -rl - include response logger

• -d - launch in debug mode (additional data in http output)

The agent can send information about exceptions to Sentry using setted environment variable
DP_AGENT_SENTRY_DSN.

3.1 HTTP api server

1. Web server accepts POST requests with application/json content-type

Request should be in form:

{
"user_id": "unique id of user",
"payload": "phrase, which should be processed by agent"

}

Example of running request with curl:

7

https://docs.sentry.io/

dp-agent Documentation, Release v0.1-alpha

curl --header "Content-Type: application/json" \
--request POST \
--data '{"user_id":"xyz","payload":"hello"}' \
http://localhost:4242

Agent returns a json response:

{
"user_id": "same user id as in request",
"response": "phrase, which were generated by skills in order to respond"

}

In case of wrong format, HTTP errors will be returned.

2. Arbitrary input format of the Agent Server

If you want to send anything to the Agent, except user_id and payload, just pass it as an addi-
tional key-value item, for example:

curl --header "Content-Type: application/json" \
--request POST \
--data '{"user_id":"xyz","payload":"hello", "my_custom_dialog_id":

→˓111}' \
http://localhost:4242

All additional items will be stored in the Agents state into the attributes field of a
HumanUtterance. Dialogue state is documented here

3. Retrieve dialogs from the database through GET requests

Dialogs’ history is returned in json format which can be easily prettifyed with various browser ex-
tensions.

Logs can be accessed at (examples are shown for the case when the agent is running on http://
localhost:4242):

• http://localhost:4242/api/dialogs/<dialog_id> - provides exact dialog

• http://localhost:4242/api/user/<user_id> - provides all dialogs by user_id

4. Load analytics

Number of processing tasks and average response time for both the agent and separate services are
provided in a real time on the page http://localhost:4242/debug/current_load .

8 Chapter 3. Running the Agent

https://deeppavlov-agent.readthedocs.io/en/latest/_static/api.html
http://localhost:4242
http://localhost:4242
http://localhost:4242/api/dialogs
http://localhost:4242/api/user
http://localhost:4242/debug/current_load

CHAPTER 4

Analyzing the data

History of the agent’s state for all dialogues is stored to a Mongo DB. The state includes utterences from user with
corresponding responses. It also includes all the additional data generated by agent’s services. Following Mongo
collections can be dumped separately:

• Human

• Bot

• User (Human & Bot)

• HumanUtterance

• BotUtterance

• Utterance (HumanUtterance & BotUtterance)

• Dialog

These types of dialog services can be connected to the agent’s conversational pipeline:

• Annotator

• Skill Selector

• Skills

• Response Selector

• Postprocessor

9

https://deeppavlov-agent.readthedocs.io/en/latest/_static/api.html

dp-agent Documentation, Release v0.1-alpha

10 Chapter 4. Analyzing the data

CHAPTER 5

Input Format

All services should accept an input in an agent state format. This format is described here. If an input format of a
service differs from the agent state format then a formatter function should be implemented. This formatter function
receives a request in agent state format and returns a request in format supported by the service.

11

https://deeppavlov-agent.readthedocs.io/en/latest/_static/api.html

dp-agent Documentation, Release v0.1-alpha

12 Chapter 5. Input Format

CHAPTER 6

Output Format

All services should provide an output in an agent state format. This format is described here. To use the same
formatter for input and output set the mode=='out' flag.

13

https://deeppavlov-agent.readthedocs.io/en/latest/_static/api.html

dp-agent Documentation, Release v0.1-alpha

14 Chapter 6. Output Format

CHAPTER 7

Annotator

Annotator service returns a free-form response.

For example, the NER annotator may return a dictionary with tokens and tags keys:

{"tokens": ["Paris"], "tags": ["I-LOC"]}

Sentiment annotator can return a list of labels:

["neutral", "speech"]

Also, Sentiment annotator can return just a string:

"neutral"

15

dp-agent Documentation, Release v0.1-alpha

16 Chapter 7. Annotator

CHAPTER 8

Skill Selector

Skill Selector service should return a list of names for skills selected to generate a candidate response for a dialog.

For example:

["chitchat", "hello_skill"]

17

dp-agent Documentation, Release v0.1-alpha

18 Chapter 8. Skill Selector

CHAPTER 9

Skill

Skill service should return a list of dicts where each dict corresponds to a single candidate response. Each candidate
response entry requires text and confidence keys. The Skill can update Human or Bot profile. To do this, it
should pack these attributes into human_attributes and bot_attributes keys.

All attributes in human_attributes and bot_attributes will overwrite current Human and Bot attribute
values in agent state. And if there are no such attributes, they will be stored under attributes key inside Human
or Bot.

The minimum required response of a skill is a 2-key dictionary:

[{"text": "hello",
"confidence": 0.33}]

But it’s possible to extend it with human_attributes and bot_attributes keys:

[{"text": "hello",
"confidence": 0.33,
"human_attributes":

{"name": "Vasily"},
"bot_attributes":

{"persona": ["I like swimming.", "I have a nice swimming suit."]}}]

Everything sent to human_attributes and bot_attributes keys will update user field in the same utterance
for the human and in the next utterance for the bot. Please refer to agent state documentation for more information
about the User object updates.

Also it’s possible for a skill to send any additional key to the state:

[{"text": "hello",
"confidence": 0.33,
"any_key": "any_value"}]

19

https://deeppavlov-agent.readthedocs.io/en/latest/_static/api.html

dp-agent Documentation, Release v0.1-alpha

20 Chapter 9. Skill

CHAPTER 10

Response Selector

Unlike Skill Selector, Response Selector service should select a single skill as a source of the final version of response.
The service returns a name of the selected skill, text (might be overwritten from the original skill response) and
confidence (also might be overwritten):

{"skill_name": "chitchat",
"text": "Hello, Joe!",
"confidence": 0.3}

Also it’s possible for a Response Selector to overwrite any human or bot attributes:

{"skill_name": "chitchat",
"text": "Hello, Joe!",
"confidence": 0.3,
"human_attributes": {"name": "Ivan"}}

21

dp-agent Documentation, Release v0.1-alpha

22 Chapter 10. Response Selector

CHAPTER 11

Postprocessor

Postprocessor service can rewrite an utterance selected by the Response Selector. For example, it can take a user’s
name from the state and add it to the final answer.

If a response was modified by Postprocessor then a new version goes the text field of the final utterance and shown
to the user, and the utterance selected by Response Selector goes to the orig_text field.

"Goodbye, Joe!"

23

dp-agent Documentation, Release v0.1-alpha

24 Chapter 11. Postprocessor

CHAPTER 12

User State API

Each utterance in a Dialog state is generated by some User either Human or Bot. The user.user_type field
stores reference to source of the utterance:

{"utterances": [{"user": {"user_type": "human"}}]}

A skill can update any fields in User (Human or Bot) objects. If a Skill updates a Human, the Human fields will be
changed in this utterance accordingly. If a Skill updates a Bot, the Bot fields will be changed in the next (generated
by the bot) utterance.

Each new dialog starts with a new Bot with all default fields. However, the Human object is updated permanently,
and when a Human starts a new dialog, the object is retrieved from a database with all updated fields.

The history of all changes made by skills to users can be looked up at the list of possible responses in the hypotheses
field of a human utterance:

{"utterances": [{"user": {"user_type": "human"}, "hypotheses": []}]}

25

dp-agent Documentation, Release v0.1-alpha

26 Chapter 12. User State API

CHAPTER 13

/start

To start a new dialog send “/start” utterance to the bot.

Formatters are the functions that allow converting the input and output API of services into Agent’s API.

27

dp-agent Documentation, Release v0.1-alpha

28 Chapter 13. /start

CHAPTER 14

Defining the formatters

There are two main formatter types: which extracts data from dict representation of dialogs and formats it to service
accessible form (dialog formatter), and which extracts data from service response and formats it prior adding to state
(response formatter, this is optional one)

Dialog formatters

This functions should accept a single parameter: dialog (in dict form), and return a list of tasks for service processing.
Each task should be in a format, which is correct for associated service. From a dict form of a dialog you can extract
data on:

• Human - dialog['human']

• Bot - dialog['bot']

• List of all utterances - dialog['utterances']

• List of only human utterances - dialog['human_utterances']

• List of only bot utterances - dialog['bot_utterances']

Each utterance (both bot and human) have some amount of same parameters:

• Text - utterance['text']

• Annotations - utterance['annotations']

• User (human or bot, depending on type of utterance) - utterance['user']

Human utterance have an additional parameters:

• List of hypotheses - utterance['hypotheses']

• Additional attributes - utterance['attributes']

Bot utterance also have additional attributes:

• Active skill name (skill, which provided actual response) - utterance['active_skill']

• Response confidence - utterance['confidence']

• Original response text (not modified by postprocessors) - utterance['orig_text']

29

dp-agent Documentation, Release v0.1-alpha

Response formatters

This functions should accept one sample of skill response, and re-format it, making further processing available. This
formatters are optional.

30 Chapter 14. Defining the formatters

CHAPTER 15

Agent Configuration

Configuration of pipeline and database for the Agent can be defined in json or yml file.

31

dp-agent Documentation, Release v0.1-alpha

32 Chapter 15. Agent Configuration

CHAPTER 16

Database Config Description

Database configuration parameters are provided via db_conf file. Currently, agent supports Mongo DB.

All default values are taken from Mongo DB documentation. Please refer to these docs if you need to change anything.

Example of a database config:

{
"env": false,
"host": "mongo",
"port": 27017,
"name": "dp_agent"

}

• env

– If set to false (or not mentioned), specified parameters’ values will be used for db initialisation. Oth-
erwise, agent will try to get an environmental variable by name, associated with parameter.

• host

– A database host, or env variable, where database host name is stored.

• port

– A database port, or env variable, where database port is stored.

• name

– An name of the database, or env variable, where name of the database is stored.

33

https://docs.mongodb.com/manual/

dp-agent Documentation, Release v0.1-alpha

34 Chapter 16. Database Config Description

CHAPTER 17

Pipeline Config Description

Pipeline configuration parameters are specified in pipeline_conf file. There are two different sections in
pipeline_conf to configure Connectors and Services.

17.1 Services Config

Service is a single node of pipeline graph, or a single step in processing of user message. In pipeline_conf all
services are grouped under service key.

Example of a service config:

{"group_name": {
"service_label": {

"dialog_formatter": "dialog formatter",
"response_formatter": "response formatter",
"connector": "used connector",
"previous_services": "list of previous services",
"required_previous_services": "list of previous services",
"state_manager_method": "associated state manager method",
"tags": "list of tags"

}
}

}

• group name

– This is an optional key. If it is specified then services can be referenced by their group name in
previous_services and required_previous_services.

– If group name is specified then the service name is <group name>.<service label>.

• service_label

– Label of the service. Used as a unique service name, if service is not grouped.

– Passed to a state manager method, associated with the service. So,‘‘service_label‘‘ is saved in state.

35

dp-agent Documentation, Release v0.1-alpha

• dialog_formatter

– Generates list of tasks for services from a dialog state.

– Can be configured as <python module name>:<function name>.

– Formatter can generate several tasks from the same dialog, for example, if you want to annotate all
hypotheses.

– Each generated task corresponds to a single valid request payload to be processed by service without
further formatting.

• response_formatter

– Maps a service response to the format of dialog state.

– Can be configured as <python module name>:<function name>.

– Optional parameter. If not specified then unformatted service output is sent to state manager method.

• connector

– Specifies a connector to a service. Can be configured here, or in connectors section.

– Can be configured as <python module name>:<connector's class name>.

• previous_services

– List of services to be executed (or skipped, or respond with an error) before sending data to the service.

– Should contain either group names or service names.

• required_previous_services

– List of services to be completed correctly before the service, because it depends on their output.

– If at least one of the required_previous_services is skipped or finished with an error, the
service is not executed.

– Should contain either group names or service names.

• state_manager_method

– Name of a StateManager class method to be executed after the service response.

• tags

– Tags, associated with the service to indicate a specific behaviour.

– selector - corresponds to skill selector service. This service returns a list of skills selected for response
generation.

– timeout - corresponds to timeout service. This service is called when processing time exceeds speci-
fied limit.

– last_chance - corresponds to last chance service. This service is called if other services in pipeline
have returned an error, and further processing is impossible.

17.2 Connectors config

Connector represents a function, where tasks are sent in order to process. Can be implementation of some data transfer
protocol or model implemented in python. Since agent is based on asynchronous execution, and can be slowed down
by blocking synchronous parts, it is strongly advised to implement computational heavy services separate from agent,
and use some protocols (like http) for data transfer.

36 Chapter 17. Pipeline Config Description

dp-agent Documentation, Release v0.1-alpha

There are several possibilities, to configure connector:

1. Built-in HTTP

{"connector name": {
"protocol": "http",
"url": "connector url",
"batch_size": "batch size for the service"

}
}

• connector name

– A name of the connector. Used in services part of the config, in order to associate service
with the connector

• protocol

– http

• url

– Actual url, where an external service api is accessible. Should be in format http://
<host>:<port>/<path>

• batch_size

– Represents a maximum task count, which will be sent to a service in a batch. If not
specified is interpreted as 1

– If the value is 1, an HTTPConnector class is used.

– If the value is more than one, agent will use AioQueueConnector. That connector sends
data to asyncio queue. Same time, worker QueueListenerBatchifyer, which collects data
from queue, assembles batches and sends them to a service.

2. Python class

{"connector name": {
"protocol": "python",
"class_name": "class name in 'python module name:class name'

→˓format",
"other parameter 1": "",
"other parameter 2": ""

}
}

• connector name

– Same as in HTTP connector case

• protocol

– python

• class_name

– Path to the connector’s class in <python module name>:<class name> format

* Connector’s class should implement asynchronous send(self, payload:
Dict, callback: Callable) method

17.2. Connectors config 37

https://github.com/deepmipt/dp-agent/blob/master/deeppavlov_agent/core/connectors.py#L10
https://github.com/deepmipt/dp-agent/blob/master/deeppavlov_agent/core/connectors.py#L32
https://github.com/deepmipt/dp-agent/blob/master/deeppavlov_agent/core/connectors.py#L40

dp-agent Documentation, Release v0.1-alpha

* payload represents a single task, provided by a dialog formatter, associ-
ated with service, alongside with task_id: {'task_id': some_uuid,
'payload': dialog_formatter_task_data}

* callback is an asynchronous function process. You should call that with service
response and task_id after processing

• other parameters

– Any json compatible parameters, which will be passed to the connector class initialisa-
tion as **kwargs

38 Chapter 17. Pipeline Config Description

https://github.com/deepmipt/dp-agent/blob/master/deeppavlov_agent/core/agent.py#L58

CHAPTER 18

Built-in StateManager

Built-in StateManager is responsible for all database read and write operations, and it’s working with MongoDB
database. You can assign it’s methods to services in your pipeline in order to properly save their responses to dialogs
state. You can read more on the pipeline configuration in Services Config

39

dp-agent Documentation, Release v0.1-alpha

40 Chapter 18. Built-in StateManager

CHAPTER 19

Available methods

Each of the methods have a following input parameters, which are filled automatically by agent during message
processing.

• dialog - dialog object, which will be updated

• payload - response of the service with output formatter applied

• label - label of the service

• kwargs - minor arguments which are also provided by agent

You can use several state manager methods in your pipeline:

1. add_annotation

• Adds a record to annotations section of the last utterance in dialog

• label is used as a key

• payload is used as a value

2. add_annotation_prev_bot_utt

• Adds a record to annotations section of the second utterance from the end of the dialog

• Only works if that utterance is bot utterance

• Suitable for annotating last bot utterance on the next dialog round

• label is used as a key

• payload is used as a value

3. add_hypothesis

• Adds a record to hypotheses section of the last utterance in dialog

• Works only for human utterance, since bot utterance doesn’t have such section

• Accepts list of hypotheses dicts, provided by service

• Two new keys are added to each hypothesis: service_name and annotations

41

dp-agent Documentation, Release v0.1-alpha

• label is used as a value for service_name key

• Empty dict is used as a value for annotations key

4. add_hypothesis_annotation

• Adds an annotation to a single element of the hypotheses section of the last utterance in dialog
under annotations key

• In order to identify a certain hypothesis, it’s index is used and stored in agent

• label is used as a key

• payload is used as a value

5. add_text

• Adds a value to text field of the last utterance in dialog

• Suitable for modifying a response in a bot utterance (original text can be found in orig_text
field)

• payload us used as a value

6. add_bot_utterance

• This method is intended to be associated with response selector service

• Adds a new bot utterance to the dialog

• Modifies associated user and bot objects

• We consider, that payload will be a single hypothesis, which was chosen as a bot response. So it will
be parsed to different fields of bot utterance

• text and orig_text fields of new bot utterance are filled with text value from payload

• active_skill field is filled with skill_name value from payload

• confidence field is filled with confidence value from payload

• annotations from payload are copyed to annotations field of bot utterance

• We expect, that skills will return text and confidence fields at least. skill_name and
annotations are created within add_hypothesis method

7. add_bot_utterance_last_chance

• This method is intended to be associated with a failure processing service, like timeout or last chance
responder

• It is very similar in processing to add_bot_utterance, but it performs an additional check on
the type of a last utterance in dialog

• If the last utterance is a human utterance the method acts as an add_bot_utterance one

• Otherwise, it will skip a stage with creating a new bot utterance and inserting it at the end of the
dialog

There are two additional state manager methods, which are automatically assigned during agent’s initialisation.

1. add_human_utterance

• This method is assigned to an input service, which is created automatically during agent’s initialisa-
tion process

• Adds a new human utterance to the dialog

• payload is used for text field of the new human utterance

42 Chapter 19. Available methods

dp-agent Documentation, Release v0.1-alpha

2. save_dialog

• This method is assigned to a responder service, which is created automatically during agent’s ini-
tialisation process

• It just saves a dialog to database

43

dp-agent Documentation, Release v0.1-alpha

44 Chapter 19. Available methods

CHAPTER 20

Built-in connectors

Generally, connector is a python class with a method send. It can be either a model, nn or rule based, or imple-
mentation of some transport protocols. Although, we strongly recommend to implement nn models as an external
services.

We have two different connectors for HTTP protocol as a built-in ones. Single sample and batchifying. Of course you
can send a batch of samples to your model using single sample connector, but in this case you should form the batch
with proper dialog formatter. Batchifying connector will form batch from samples, available at the time, but can’t
guarantee actual batch size, only it’s maximum size.

There are three more connectors, which can be used for different purposes. Each of them can be configurend as a
python connector with it’s name You can read more on the connectors configuration in Connectors config.

45

dp-agent Documentation, Release v0.1-alpha

46 Chapter 20. Built-in connectors

CHAPTER 21

Built-in python connectors

21.1 ConfidenceResponseSelectorConnector

This connector provides a simple response selection functionality. It chooses a best hypothesis based on its
confidence parameter. In order to use it, you should consider a few things:

• You don’t need to define a dialog formatter (if you use built-in state manager)

• You need to ensure, that all of your skills (or services with assighed add_hypothesis SM method) provides
a confidence value somehow

• It returns a chosen hypothesis, so you don’t need to define output formatter as well

• No special configuration parameters are needed

So the basic configuration for it is very simple:

{"response_selector": {
"connector": {

"protocol": "python",
"class_name": "ConfidenceResponseSelectorConnector"

},
"state_manager_method": "add_bot_utterance",
"previous_services": ["place previous skill names here"]

}}

21.2 PredefinedTextConnector

This connector can be used in order to provide a simple way to answer in time, or in case of errors in your pipeline. It
returns a basic parameters, which can be used to form a proper bot utterance.

• text parameter will be a body of a bot utterance

47

dp-agent Documentation, Release v0.1-alpha

• Additionally, you can provide an annotations parameter, in case if you need to have a certain annotations
for further dialog

• There is no need to configure a dialog and response formatters

This example configuration represents simple last chance service:

{"last_chance_service": {
"connector": {

"protocol": "python",
"class_name": "PredefinedTextConnector",
"response_text": "Sorry, something went wrong inside. Please tell me, what

→˓did you say."
"annotations": {"ner": "place your annotations here"}

},
"state_manager_method": "add_bot_utterance_last_chance",
"tags": ["last_chance"]

}}

More on last chance and timeout service configuration here:

21.3 PredefinedOutputConnector

This connector is quite similar to PredefinedTextConnector. It returns a predefined values, but instead of fixed text
and annotations keys, it can be configured to return any arbitrary json compatible data structure. The main purpose
of this connector class is testing of pipeline routing, formatting or outputs. You can make a dummy service, which will
imitate (in terms of structure) the response of desired model. This connector have only one initialisation parameter:

• output - list or dict, which will be passed to agent’s callback as payload

This example configuration represents a dummy service, representing skill:

{"skill": {
"connector": {

"protocol": "python",
"class_name": "PredefinedOutputConnector",
"output": [{"text": "Hypotheses1", "confidence": 1}]

},
"dialog_formatter": "place your dialog formatter here",
"response_formatter": "place your response formatter here",
"state_manager_method": "add_hypothesis",
"previous_services": ["list of the previous_services"]

}}

But you can imitate any skill type with this connector.

48 Chapter 21. Built-in python connectors

CHAPTER 22

Writing your own connectors

In order to define your own connector, you should follow these requirements:

• It should be a python class

• You can pass initialisation parameters to it via Connectors config python class

• You need to implement an asynchronous method send(self, payload: Dict, callback:
Callable)

• It should return a result to agent using callback function

• payload input parameter is a dict of following structure:

{
"task_id": "unique identifyer of processing task",
"payload": "single task output, of the associated dialog formatter"

}

So basically, your connector should look like this:

class MyConnector:
def __init__(self, **kwargs):

Your code here

async def send(self, payload: Dict, callback: Callable):
try:

Write processing part here
await callback(

task_id=payload['task_id'],
response=response # Supposing that result of the processing is

→˓stored in a variable named "response"
)

except Exception as e:
That part allows agent to correctly process service internal errors
and call a "last chane" service without stopping the ongoing dialogs
response = e

(continues on next page)

49

dp-agent Documentation, Release v0.1-alpha

(continued from previous page)

await callback(
task_id=payload['task_id'],
response=response

)

50 Chapter 22. Writing your own connectors

	Architecture Overview
	Installation
	Running the Agent
	HTTP api server

	Analyzing the data
	Input Format
	Output Format
	Annotator
	Skill Selector
	Skill
	Response Selector
	Postprocessor
	User State API
	/start
	Defining the formatters
	Agent Configuration
	Database Config Description
	Pipeline Config Description
	Services Config
	Connectors config

	Built-in StateManager
	Available methods
	Built-in connectors
	Built-in python connectors
	ConfidenceResponseSelectorConnector
	PredefinedTextConnector
	PredefinedOutputConnector

	Writing your own connectors

