

DeepCTR’s Documentation

DeepCTR is a project that introduces classic CTR (Click Through Rate) prediction model and implements popular network designed for CTR prediction task. What’s more, we do a great number of experiments on open data and provide as benchmark.

Installation

	Dependency

Models

	Introduction

	Traditional Models
	FM (Factorization Machines)

	FFM (Field-aware Factorization Machines)

	GBDT+LR

	Deep Models
	Overview

	FNN (Factorization-supported Neural Network)

	PNN (Product-based Neural Network)

	Wide & Deep

	DeepFM

	NFM (Neural FM)

	AFM (Attentional FM)

	DCN (Deep & Cross Network)

	DIN (Deep Interest Network)

	xDeepFM (eXtreme DeepFM)

Benchmarks

	Benchmarks

Contributors

	Contributors

Dependency

The deepCTR has the following requirements by default. We recommend users to use Anaconda [https://www.anaconda.com], which is a popular Python data science platform with many common packages pre-installed.

	python 2.7

	scipy

	numpy

	scikit-learn

	pandas

	yaml

	tensorflow-gpu/tensorflow 1.4.0

	Keras 2.1.0

If you use Anaconda, then you only need to install Keras [https://keras.io] following the official installation guide.

Introduction

DeepCTR aims to provide a set of open-source neural network wrappers
implemented in Keras with tensorflow as backend that are popular in CTR
prediction task. By using deepCTR, user just need to define their data loader
function which returns formatted dataframe and some other information to
build up their network. Then it can train on their own data with customizable
parameters. The figure showing below illustrates the framework.

[image: ../_images/WrapperFramework.png]
The task of predicting click-through rate (CTR) is to estimate the probability
a user will click on a recommended item (e.g. goods in e-commerce platform,
advertisment in web site). The challenges of CTR prediction are:

	handling very high sparsity

As there are a great number of users viewing a great number of items and
each impression log only associates with a single user and item. Thus the
data is very sparse and large scale.

	modeling feature interactions

It is customizing to recommend those items with higher probability in
clicking for a target user. Therefore, modeling the interaction information
between item and user or other kinds of interaction is critical in CTR
prediction task.

For such high sparsity, the most direct way is applying a very simple linear
model — Logistic Regression (LR), and cafefully adding handcrafted interaction
features to improve the capability of such simple linear model. Another brute
force approach is taking all interaction terms into model, which can also be
implemented with Support Vector Machine (SVM) using polynomial kernel.

Obviously, these methods has serious limits:

	it requires expensive feature crafting effort

	it is unable to estimate reliable interaction weights

As the weight w_ij for interaction pair (\(x_i\), \(x_j\)) is updated
only when \(x_i\) and \(x_j\) is nonzero. There is no doubt that
(\(x_i\), \(x_j\)) is more sparse because both \(x_i\) and
\(x_j\) have high sparsity.

Traditional Models

FM (Factorization Machines)

	Model Equation
	\(y(x):= bias + Σ_i(w_i * x_i) + Σ_iΣ_j<v_i, v_j> * x_i * x_j\)

FM is based on the idea of embedding which means that it treats each category
feature as a latent vector and models those iteraction information as inner
product of latent vectors. Thus FM has some advantages:

	it is able to model reliable interaction information

For example, the latent vector of \(x_k\) is invovled in all iteraction
terms like (\(x_k\), \(x_j\)), thus the latent vector is estimated
well. With these informative latent vector \(v_i\) and \(v_j\), FM
then model interaction terms as \(<v_i, v_j> * x_i * x_j\).

	it can handle such high sparisty and large scale data

Though the number of term in FM is quadratic, the same feature \(x_i\)
shares a single latent vector which makes it possible to be optimized into
linear complexity. Such optimization is based on the formula:

\(2 * Σ_iΣ_j(x_i * x_j) = (Σ_ix_i)^2 - Σ_i(x_i)^2\)

It can be implemented as neural network shown below.

[image: ../_images/FM.png]
You can get the editable figure here [https://www.processon.com/view/link/5b5935e8e4b0be50eac1281c].

[ICDM‘2010]Rendle, Steffen. Factorization machines [https://ieeexplore.ieee.org/abstract/document/5694074/], Data Mining (ICDM), 2010 IEEE 10th International Conference on. IEEE, 2010.

FFM (Field-aware Factorization Machines)

	Model Equation
	\(y(x):= bias + Σ_i(w_i * x_i) + Σ_iΣ_j<V_i[n], V_j[m]> * x_i^{(m)} * x_j^{(n)}\)

FFM is based on the FM. FFM embeddings each category feature into multiple
latent vectors (i.e. a latent vector matrix \(V_i\)) and models those iteraction
information between features as inner product of latent vectors from different
field accordingly. Compared to FM, FFM has some advantages:

	it loses less information in modeling interation terms

As introduced in FM, the latent vector of \(x_k\) is shared in all iteraction
terms like (\(x_k\), \(x_j\)). Therefore, the latent vector \(v_k\)
needs to cooperate with all of other vectors, which constrain \(v_k\)
from better adapting to any \(v_j\).

With such idea, FFM clusters all feature into several fields and shares
latent vector within each field respectively. All in all, it is a trade-off
between capacity and reliability.

It can be implemented as neural network shown below.

[image: ../_images/FFM.png]
You can get the editable figure here [https://www.processon.com/view/link/5b59addae4b08d3622916c48].

[ACM‘2016]Juan, Yuchin, et al. Field-aware factorization machines for CTR prediction [https://dl.acm.org/citation.cfm?id=2959134], Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016.

GBDT+LR

As mentioned in Introduction, the brute force approach modeling interaction
information is taking all interaction terms into consideration. Such brute way
is also applicable to high order interaction, thus supposing we just consider
the situaction no more than two order.

Obviously, not all interaction terms are useful and it is critical to find out
those useful ones. Inspired by this, this hybrid model uses Gradient Boosting
Decision Tree (GBDT) to get high order interaction feature.

Concretely, the output of each individual tree is used to generate one
categorical feature with index of the leaf that instance falls in as value.
For example, consider the boosted tree model in figure shown below, which has
2 subtrees with 3 leafs and 2 leafs respectively. If an instance ends up in
leaf 2 and leaf 1 respectively, then the high order interaction feature vector
are [2,1] whose one-hot encoding vector is [0,1,0,1,0].

The hybrid model structure — concatenation of GBDT and LR is shown below.

[image: ../_images/GBDT+LR.png]
[ACM‘2014]He, Xinran, et al. Practical lessons from predicting clicks on ads at facebook [https://dl.acm.org/citation.cfm?id=2648589], Proceedings of the Eighth International Workshop on Data Mining for Online Advertising. ACM, 2014.

Deep Models

	Overview

	FNN (Factorization-supported Neural Network)

	PNN (Product-based Neural Network)

	Wide & Deep

	DeepFM

	NFM (Neural FM)

	AFM (Attentional FM)

	DCN (Deep & Cross Network)

	DIN (Deep Interest Network)

	xDeepFM (eXtreme DeepFM)

Overview

Under the success of FM, there are many neural network models based on it, most
of which focus on:

	adding the capability of modeling high-order feature interactions implicitly or explicitly

	maintaining the ability of modeling low-order feature interactions implicitly or explicitly

It is general to apply Deep Neural Network (DNN) whose input should be designed
to capature the high-order feature interactions implicitly and selectively.

FNN (Factorization-supported Neural Network)

FNN embedding sparse feature into dense latent vector and apply DNN with
concatenation of latent vectors as input to implicitly and simultaneously
modeling low-order and high-order feature interactions.

Its network structure is shown below.

[image: ../_images/FNN.png]
You can get the editable figure here [https://www.processon.com/view/link/5b5824c2e4b0edb750e9e1d5].

[Springer‘2016]Zhang, Weinan, Tianming Du, and Jun Wang. Deep learning over multi-field categorical data [https://link.springer.com/chapter/10.1007/978-3-319-30671-1_4], European conference on information retrieval. Springer, Cham, 2016.

PNN (Product-based Neural Network)

PNN embedding sparse feature into dense latent vector and apply DNN with
concatenation of latent vectors and inner or outer product of latent vector as
input to explicitly modeling low-order feature interactions and implicitly
modeling high-order feature interactions.

Its network structure is shown below.

[image: ../_images/PNN.png]
You can get the editable figure here [https://www.processon.com/view/link/5b582617e4b053a09c15375d].

[IEEE‘2016]Qu, Yanru, et al. Product-based neural networks for user response prediction [https://ieeexplore.ieee.org/abstract/document/7837964/], Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016.

Wide & Deep

The deep part of Wide & Deep is the same as FNN which embedding sparse feature
into dense latent vector and apply DNN with concatenation of latent vectors as
input. While the wide part of Wide & Deep aims to concatenate handcrafted
feature with deep part’s output implicit high-order feature.

Its network structure is shown below.

[image: ../_images/Wide&Deep.png]
You can get the editable figure here [https://www.processon.com/view/link/5b583084e4b053a09c156380].

[ACM‘2016]Cheng, Heng-Tze, et al. Wide & deep learning for recommender systems [https://dl.acm.org/citation.cfm?id=2988454], Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016.

DeepFM

The deep part of DeepFM is the same as FNN which embedding sparse feature
into dense latent vector and apply DNN with concatenation of latent vectors as
input. Simultaneously, DeepFM integrates FM with DNN which makes it model the
low-order feature interactions explicitly and high-order feature interactions
implicitly.

Its network structure is shown below.

[image: ../_images/DeepFM_1.png]
You can get the editable figure here [https://www.processon.com/view/link/59c8dbfce4b0ef561374dea6].

[arXiv‘2017]Guo, Huifeng, et al. Deepfm: a factorization-machine based neural network for ctr prediction [https://arxiv.org/abs/1703.04247], arXiv preprint arXiv:1703.04247 (2017).

NFM (Neural FM)

NFM embedding sparse feature into dense latent vector and apply DNN with
element-wise addition of all element-wise product of each two latent vectors as
input to explicitly modeling low-order feature interactions and implicitly
modeling high-order feature interactions.

The difference between PNN’s inner product layer and NFM is the addition axis
when pooling matrix \(V\) into DNN’s input vector, each of whose column is
an element-wise product of two latent vectors.

Its network structure is shown below.

[image: ../_images/NFM.png]
You can get the editable figure here [https://www.processon.com/view/link/5b57f4e4e4b025cf4925e792].

[ACM‘2017]He, Xiangnan, and Tat-Seng Chua. Neural factorization machines for sparse predictive analytics [https://dl.acm.org/citation.cfm?id=3080777], Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2017.

AFM (Attentional FM)

FM models all factorized feature interactions with the same weight. AFM proposes to differentiate the importance of feature interactions by assigning different weights to feature interaction terms. To do so, AFM first extends FM to the neural netowrk architecture and then introduces the attention mechanism to the sum pooling layer.

[image: ../_images/AFM.png]
The Attention Net is a simple Multi-Layer Perception (MLP) network with an element-wise
product of two embedding vectors as input and an attention score as output.

Attention formula:

\[\begin{split}a_{ij}' &= \mathbf{h}^T * ReLU(\mathbf{W}(\mathbf{v}_i \odot \mathbf{v}_j)x_ix_j + \mathbf{b}) \\
a_{ij} &= softmax(a_{ij}')\end{split}\]

Prediction function:

\[y_{AFM} = w_0 + \sum_{i=1}^{n} w_ix_i + \mathbf{p}^T \sum_{i=1}^{n}\sum_{j=i+1}^{n}a_{ij} (\mathbf{v}_i \odot \mathbf{v}_j)x_ix_j\]

\(y_{AFM}\) can exactly recover FM when setting \(\mathbf{p}\) to \(\mathbf{1}\) and \(a_{ij}\) to 1.

	Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, Tat-Seng Chua. Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks [http://www.ijcai.org/proceedings/2017/0435.pdf], IJCAI, 2017.

DCN (Deep & Cross Network)

The deep part of DCN is the same as FNN which embedding sparse feature
into dense latent vector and apply DNN with concatenation of latent vectors as
input. Simultaneously, DCN applys Cross Net to explicitly model both low-order
feature interactions and high-order feature interactions. The cross operation
performs with formula:

\(x_{l+1} = x_0 * x_l^T * w_l + b_l + x_l\)

Additionally, the term \(x_0 * x_l^T\) in Cross Net explicitly generates
interactions but different from the term \(Σ_iΣ_j<v_i, v_j> * x_i * x_j\) in
FM. Specifically, the term \(x_0 * (x_l)^T\) generates element-level
interaction while the term \(Σ_iΣ_j<v_i, v_j> * x_i * x_j\) is vector-level
interaction.

Its network structure is shown below.

[image: ../_images/DCN.png]
[ADKDD‘2017]Wang, Ruoxi, et al. Deep & cross network for ad click predictions [https://dl.acm.org/citation.cfm?id=3124754], Proceedings of the ADKDD‘17. ACM, 2017.

DIN (Deep Interest Network)

DIN is just a simple DNN taking concatenation of latent vectors as input to
implicitly and simultaneously modeling low-order and high-order feature
interactions. The success of DIN is that it focus on the problem of embedding
sequence feature — user histories in which there is full of user’s interest
information, and apply attention instead of Long Short Term Memory (LSTM) to
better utilise user’s interest information according to different context.

For example, a woman bought cleanser many times and cloth for relatively less
time. Then the sequence embedding vector learned with LSTM is unable to provide
rich information when this woman is currently searching item about cloth.

The architecture of DIN is shown below.

[image: ../_images/DIN_Arch.png]
The attention net is a simple Multi-Layer Perception (MLP) shown below, which
takes concatenation of user’s historical good, candidate good and their
element-wise product as input.

[image: ../_images/DIN_AttentionNet.png]
[arXiv‘2017]Zhou, Guorui, et al. Deep interest network for click-through rate prediction [https://arxiv.org/abs/1706.06978], arXiv preprint arXiv:1706.06978 (2017).

xDeepFM (eXtreme DeepFM)

As mentioned in DCN, it can expcilitly model both low-order and high-order
element-level feature interactions. Inspired by this, xDeepFM is trying to
model both low-order and high-order feature interactions under vector-level.

In order to implement such so called Compressed Interaction Network (CIN), it
concatenates the latent vector into a matrix named feature map instead of a
vector and performs outer product between two matrixs, which is shown in part
a of figure below.

Shown in part b of figure below, then using a dense layer shared in
dimention \(D\) to generate one of \(H_k\) interaction vectors and
those \(H_k\) interaction vectors compose the feature map. All the feature
maps are finally pooling along dimention \(D\) into input vectors of output
layer, which is shown in part c.

[image: ../_images/xDeepFM_CIN.png]
In addition, integration of Wide & Deep (i.e. LR and DNN) and CIN comes into
the final xDeepFM shown below.

[image: ../_images/xDeepFM_Arch.png]
[arXiv‘2018]Lian, Jianxun, et al. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems [https://arxiv.org/abs/1803.05170], arXiv preprint arXiv:1803.05170 (2018).

Benchmarks

All the network model have been evaluated on a couple of datasets (e.g. Frappe [http://baltrunas.info/research-menu/frappe], iPinYou [http://data.computational-advertising.org/], Criteo [http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/]). We report logloss and AUC for evaluating model performance. Note that three of the best evaluation scores are marked with * and `Setting` indicates (#Pool Size of LinkageEmbedding, #Embedding Dimention, Use BatchNormalization in LinkageEmbedding or not).

	Criteo

	iPinYou

	Frappe

Criteo

For Criteo dataset, we use 3 fully-connected layers and each layer with 256 units in DeepFM; 6 cross layers and 2 fully-connected layers with 1024 units in DCN. As the data is organized chronologically, we randomly split the last 6,040,618 lines into validation and test set of equal size while the rest is taken as training data.

	Embedding Type

	Model

	Setting

	#Param(1e6)

	Logloss

	AUC

	Embedding

	LR

	-

	1

	0.4635

	79.05%

	FM

	10

	12

	0.4558

	79.96%

	Wide & Deep

	10

	12

	0.4507

	80.52%

	DeepFM

	10

	12

	0.4505

	80.53%

	DCN

	10

	12

	0.4487*

	80.69%*

	LinkageEmbedding

	FM

	3,10

	4

	0.4565

	79.88%

	FM

	4,10

	5

	0.4551

	80.02%

	FM

	5,10

	6

	0.4557

	79.97%

	FM

	6,10

	8

	0.4558

	79.96%

	FM

	7,10

	9

	0.4546

	80.08%

	FM

	8,10

	10

	0.4545

	80.10%

	FM

	9,10

	11

	0.4545

	80.09%

	FM

	10,10

	12

	0.4540

	80.13%

	FM

	10,50

	12

	0.4523

	80.34%

	FM

	10,100

	12

	0.4513

	80.44%

	FM

	10,200

	12

	0.4508

	80.49%

	FM

	10,300

	12

	0.4508

	80.50%

	FM

	10,500

	12

	0.4500

	80.57%

	FM

	10,800

	12

	0.4505

	80.51%

	FM

	10,1000

	12

	0.4503

	80.53%

	Wide & Deep

	10,10

	12

	0.4505

	80.50%

	Wide & Deep

	10,100

	13

	0.4497*

	80.61%*

	DeepFM

	10,10

	12

	0.4501

	80.57%

	DeepFM

	10,10,BN

	12

	0.4501

	80.57%

	DeepFM

	10,100

	13

	0.4499

	80.57%

	DCN

	10,10

	12

	0.4490*

	80.65%*

	DCN

	10,10,BN

	12

	0.4554

	79.99%

iPinYou

For iPinYou dataset, we use the 3 layers DNN each with 256 units. In addition, the depth of cross layer in DCN is set to 4. We only use the impression and click logs of season 2, the first 6 days of which are taken as training data while the day 7 data is equally split into validation and test set.

	Embedding Type

	Model

	Setting

	#Param

	Logloss

	AUC

	Embedding

	LR

	-

	499,991

	0.5832

	81.98%

	FM

	10

	5,499,881

	0.4454

	90.31%

	Wide & Deep

	10

	5,683,177

	0.3603

	93.60%

	DeepFM

	10

	5,683,177

	0.3569*

	93.62%

	DCN

	10

	5,186,523

	0.4783

	87.87%

	LinkageEmbedding

	FM

	5,10

	3,000,908

	0.3687

	93.24%

	FM

	10,10

	5,501,487

	0.3595

	93.26%

	FM

	10,10,BN

	5,501,835

	0.4732

	87.93%

	FM

	10,30

	5,504,967

	0.3660

	93.08%

	FM

	10,50

	5,508,447

	0.3660

	93.23%

	FM

	10,100

	5,517,147

	0.3638

	93.45%

	Wide & Deep

	10,10

	5,685,177

	0.3613

	93.62%

	Wide & Deep

	10,50

	5,897,977

	0.3552*

	94.03%*

	DeepFM

	10,10

	5,685,177

	0.3575*

	93.87%*

	DeepFM

	10,10,BN

	5,685,577

	0.4341

	90.58%

	DeepFM

	10,50

	5,897,977

	0.3630

	94.07%*

	DeepFM

	10,100

	6,163,977

	0.3578

	93.57%

	DCN

	10,10

	5,188,523

	0.4839

	86.26%

	DCN

	10,10,BN

	5,188,923

	0.4690

	88.82%

Frappe

The Frappe dataset [http://baltrunas.info/research-menu/frappe] is a small dataset for quick experimentation and testing of different models. It has been used for context-aware app recommendation, which contains 96,203 app usage logs of users under different contexts. The eight context variables are all categorical, including weather, city, daytime and so on. After one-hot encoding of the features, we obtain 5,382 features. As all logs should be considered as positive sample when making CTR prediction, we construct two negative instances for each log through randomly replacing the item variable with other item. The data is randomly split into training data (70%), validation data (20%), test data (10%) before constructing negative instances.

For Frappe dataset, we use the 3 layers DNN each with 256 units. In addition, the depth of cross layer in DCN is set to 1.

	Embedding Type

	Model

	Setting

	#Param

	Logloss

	AUC

	Embedding

	LR

	-

	5,384

	0.4173

	87.51%

	FM

	256

	1,383,176

	0.2595

	95.98%

	NFM

	256

	1,580,808

	0.2940

	94.80%

	AFM

	256

	1,391,690

	0.2752

	95.66%

	FNN

	256

	2,165,249

	0.2699

	95.78%

	IPNN

	256

	2,176,769

	0.2154*

	97.04%*

	Wide & Deep

	256

	2,170,632

	0.2710

	95.75%

	DeepFM

	256

	2,170,632

	0.2762

	95.75%

	DCN

	F

	407,823

	0.3162

	93.99%

	LinkageEmbedding

	FM

	min128,256

	813,260

	0.2721

	95.96%

	FM

	min128,256,BN

	814,248

	0.2354

	96.22%

	FM

	min256,256

	1,575,133

	0.2468

	96.42%

	FM

	min256,256,BN

	1,576,843

	0.2240

	96.43%

	FM

	min256,512

	1,794,013

	0.2490

	96.44%

	FM

	min256,512,BN

	1,795,723

	0.2174*

	96.59%

	NFM

	min256,256

	1,772,765

	0.2199

	96.72%

	AFM

	min256,256

	1,583,647

	0.2968

	94.83%

	FNN

	min256,256

	2,357,206

	0.2369

	96.21%

	IPNN

	min256,256

	2,368,726

	0.2141*

	97.06%*

	Wide & Deep

	min256,256

	2,362,589

	0.2314

	96.62%

	DeepFM

	min256,256

	2,362,589

	0.2410

	96.77%*

	DeepFM

	min256,256,BN

	2,364,829

	0.2378

	96.53%

	DeepFM

	min256,512

	3,236,829

	0.2289

	96.73%

	DCN

	minF,F

	412,135

	0.2536

	95.72%

	DCN

	minF,F,BN

	412,435

	0.2573

	95.64%

	minK

	min(#category cardinality, K)

	F

	6*(#category cardinality)^(1/4)

Contributors

	Jieming Zhu [http://jiemingzhu.github.io], The Chinese University of Hong Kong, currently at Huawei Noah’s Ark Lab.

	Haicheng Xu [https://github.com/XSeaty], Sun Yat-Sen University.

Index

Demo

 # Papers

A list of papers on CTR/CVR prediction in online advertising, recommendation, and sponsored search.
+ [Categorical Representation Learning](#Categorical-Representation-Learning)

	[2019](#2019) | [2018](#2018) | [2017](#2017) | [2016](#2016) | [2015](#2015) | [2014](#2014) | [2013](#2013) | [2010](#2010) | [2007](#2007)

	[User Behavior Modeling](#User-Behavior-Modeling)

	[Sponsored Search](#Sponsored-Search)

	[Sequential Recommendation](#Sequential-Recommendation)

	[Multimodal Representation Learning](#Multimodal-Representation-Learning)

	[Reinforcement/Online Learning](#Reinforcement/Online-Learning)

	[Others](#Others)

Categorical Representation Learning
2019

	[AAAI‘19] Accurate and Interpretable Factorization Machines

2018

	[CSUR‘18] Shuai Zhang, Lina Yao, Aixin Sun, Yi Tay. [Deep Learning based Recommender System: A Survey and New Perspectives](https://arxiv.org/pdf/1707.07435.pdf), CSUR, 2018.

	[WWW‘18] Junwei Pan, Jian Xu, Alfonso Lobos Ruiz, Wenliang Zhao, Shengjun Pan, Yu Sun, Quan Lu. [Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising](https://arxiv.org/pdf/1806.03514.pdf), WWW, 2018. [Oath, TouchPal, LinkedIn, Ablibaba]

	[WWW‘18] Surabhi Punjabi, Priyanka Bhatt. [Robust Factorization Machines for User Response Prediction](http://wnzhang.net/share/rtb-papers/rfm-www.pdf), WWW, 2018. [WalmartLabs]

	[KDD‘18] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, Guangzhong Sun. [xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems](https://arxiv.org/pdf/1803.05170.pdf), KDD, 2018. [Microsoft]

	[KDD‘18] Guorui Zhou, Chengru Song, Xiaoqiang Zhu, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, Kun Gai. [Deep Interest Network for Click-Through Rate Prediction](https://arxiv.org/pdf/1706.06978.pdf), KDD, 2018. [Alibaba]

	[IJCAI‘18] Patrick P. K. Chan, Xian Hu, Lili Zhao, Daniel S. Yeung, Dapeng Liu, Lei Xiao. [Convolutional Neural Networks based Click-Through Rate Prediction with Multiple Feature Sequences](https://www.ijcai.org/proceedings/2018/0277.pdf), IJCAI, 2018.

	[RecSys‘18] Weiwen Liu, Ruiming Tang, Jiajin Li, Jinkai Yu, Huifeng Guo, Xiuqiang He, Shengyu Zhang. [Field-aware Probabilistic Embedding Neural Network for CTR Prediction](https://dl.acm.org/citation.cfm?id=3240396), RecSys, 2018. [Huawei]

	[TOIS‘18] Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng Guo, Yong Yu, Xiuqiang He. [Product-based Neural Networks for User Response Prediction over Multi-field Categorical Data](https://arxiv.org/abs/1807.00311), TOIS, 2018. [Huawei, Tencent]

	[CoRR] Mehul Parsana, Krishna Poola, Yajun Wang, Zhiguang Wang. [Improving Native Ads CTR Prediction by Large Scale Event Embedding and Recurrent Networks](https://arxiv.org/abs/1804.09133), arXiv:1804.09133, 2018. [Microsoft]

	[CoRR] [AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks](),

2017

	[IJCAI‘17] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He. [DeepFM: A Factorization-Machine based Neural Network for CTR Prediction](https://arxiv.org/abs/1703.04247), IJCAI, 2017. [Huawei]

	[IJCAI‘17] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, Tat-Seng Chua. [Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks](http://www.ijcai.org/proceedings/2017/0435.pdf), IJCAI, 2017.

	[SIGIR‘17] Xiangnan He, Tat-Seng Chua. [Neural Factorization Machines for Sparse Predictive Analytics](https://dl.acm.org/citation.cfm?id=3080777), SIGIR, 2017.

	[ADKDD‘17] Ruoxi Wang, Bin Fu, Gang Fu, Mingliang Wang. [Deep & Cross Network for Ad Click Predictions](https://arxiv.org/abs/1708.05123), ADKDD, 2017. [Google]

	[WWW‘17] Yuchin Juan, Damien Lefortier, Olivier Chapelle. [Field-aware Factorization Machines in a Real-world Online Advertising System](https://arxiv.org/pdf/1701.04099.pdf), WWW, 2017. [Criteo, Facebook, Google]

	[WWW‘17] Huifeng Guo, Ruiming Tang, Yunming Ye, Xiuqiang He. [Holistic Neural Network for CTR Prediction](https://dl.acm.org/citation.cfm?doid=3041021.3054208), WWW, 2017. [Huawei]
> 本文提出了一个Holistic Neural Network框架，就是在网络架构上把所有输入层和中间层representation vector也传递到output layer做concat, 最后通过softmax做分类，这样能在最终分类器层同时利用low-order和high-order表征，有点类似Wide&Deep的思路。

2016

	[RecSys‘16] Paul Covington, Jay Adams, Emre Sargin. [Deep Neural Networks for YouTube Recommendations](http://art.yale.edu/file_columns/0001/1132/covington.pdf), RecSys, 2016. [Google]

	[RecSys‘16] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, Chih-Jen Lin. [Field-aware Factorization Machines for CTR Prediction](https://dl.acm.org/citation.cfm?id=2959134), RecSys, 2016. [Criteo]

	[DLRS‘16] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, Hemal Shah. [Wide & Deep Learning for Recommender Systems](https://arxiv.org/pdf/1606.07792.pdf), DLRS, 2016. [Google]

	[ICDM‘16] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, Jun Wang. [Product-based Neural Networks for User Response Prediction](https://arxiv.org/pdf/1611.00144.pdf), ICDM, 2016.

	[ECIR‘2016] Weinan Zhang, Tianming Du, Jun Wang. [Deep Learning over Multi-field Categorical Data: A Case Study on User Response Prediction](https://arxiv.org/abs/1601.02376), ECIR, 2016. [RayCloud]

	[MM‘16] Junxuan Chen, Baigui Sun, Hao Li, Hongtao Lu, Xian-Sheng Hua. [Deep CTR Prediction in Display Advertising](https://dl.acm.org/citation.cfm?id=2964325), MM, 2016. [Alibaba]

2015

	[CIKM‘15] Qiang Liu, Feng Yu, Shu Wu, Liang Wang. [A Convolutional Click Prediction Model](http://www.escience.cn/system/download/73676), CIKM, 2015.

	[TIST‘15] Simple and Scalable Response Prediction for Display Advertising, TIST, 2015.

2014

	[ADKDD‘14] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah, Ralf Herbrich, Stuart Bowers, Joaquin Quiñonero Candela. [Practical Lessons from Predicting Clicks on Ads at Facebook](https://dl.acm.org/citation.cfm?id=2648589), ADKDD, 2014. [Facebook]

2013
+ [KDD‘13] H. Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Boulos, Jeremy Kubica. [Ad Click Prediction: a View from the Trenches](https://www.researchgate.net/publication/262412214_Ad_click_prediction_a_view_from_the_trenches), KDD, 2013. [Google]

2010
+ [ICDM‘10] Steffen Rendle. [Factorization Machines](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf), ICDM, 2010.

2007
+ [WWW‘07] Matthew Richardson, Ewa Dominowska, Robert Ragno. [Predicting Clicks: Estimating the Click-Through Rate for New Ads](https://dl.acm.org/citation.cfm?id=1242643), WWW, 2007. [Microsoft]

> 本文是比较早做广告CTR预估的文章，采用最经典的LR模型来预测新广告的CTR。本文的CTR是统计意义上的点击率，并与query无关。模型利用了bid term CTR, related term CTR, ad quality, order相关的特征做线性回归，以cross-entropy loss作为regression模型预测CTR的概率。 在数值特征上，采用了x, log(1 + x), x^2的组合，以及对query frequency划分bin方式。实验表明，广告在100次以上view的情况下CTR的预估能逼近真实值。本文支出query相关的CTR预估是重要的方向。

User Behavior Modeling

Sponsored Search
1. [CoRR] Jelena Gligorijevic, Djordje Gligorijevic, Ivan Stojkovic, Xiao Bai, Amit Goyal, Zoran Obradovic. [Deeply Supervised Semantic Model for Click-Through Rate Prediction in Sponsored Search](https://arxiv.org/abs/1803.10739), arXiv:1803.10739, 2018. [Yahoo, Criteo]

Sequential Recommendation
1. [AAAI‘14] Yuyu Zhang, Hanjun Dai, Chang Xu, Jun Feng, Taifeng Wang, Jiang Bian, Bin Wang, Tie-Yan Liu. [Sequential Click Prediction for Sponsored Search with Recurrent Neural Networks](http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/download/8529/8581), AAAI, 2014.

Multitask Learning
1. [SIGIR‘18] Xiao Ma, Liqin Zhao, Guan Huang, Zhi Wang, Zelin Hu, Xiaoqiang Zhu, Kun Gai. [Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate](https://arxiv.org/pdf/1804.07931), SIGIR, 2018. [Alibaba]

> 本文提出了基于multi-task learning的框架ESMM首次将CTR和CVR两个task进行关联学习，CTR和CVR满足pCTCVR = pCTR * pCVR。 pCVR一般是表示在点击后产生转化的概率，之前的模型都使用clicked samples进行训练，又在预测时却在all impression samples来做预测，产生sample selection bias问题。同时CVR的正样本数据要远小于CTR数据，所以两个任务的共享可优化特征表征。宏观上，CVR能使用中间步骤CTR标签，充分利用了数据特性。[[Read more…](https://zhuanlan.zhihu.com/p/37562283)]

Multimodal Representation Learning

	[IJCAI‘15] Kaixiang Mo, Bo Liu, Lei Xiao, Yong Li, Jie Jiang. [Image Feature Learning for Cold Start Problem in Display Advertising](https://www.ijcai.org/Proceedings/15/Papers/524.pdf), IJCAI, 2015. [Tencent]

 _images/FM.png
Output Layer

. Add . Linear — Weight-One
. Dot ‘ Embedding —— Normal
. Sigmoid ‘ Sparse Feature

Activation

Dense
Embedding

_images/FNN.png
Output Layer

. Add . Linear —— Weight-One
. Dot ‘ Embedding —— Normal

Sigmoid ‘ Sparse Feature

Activation

Dense
Embedding

_images/DeepFM_1.png
||||||||||||||||

=
o

T

et

(a T

b4

]

]

|||||||

Q

a

4

©

o

w w
b -]
= ;
m 2 H
)) T ;
° H
< =] @ <

mbedding —— Normal

||||||

Dense
Embedding

'y

_images/FFM.png
Output Layer

—— Weight-One

‘ Embedding —— Normal
. Sigmoid ‘ Sparse Feature

Dot
Activation

. Add . Linear

Embedding

_images/PNN.png
Output Layer

. Add . Linear —— Weight-One
. Prod ‘ Embedding —— Normal N S

A W N — \
Sigmoid ‘ Sparse Feature |
H 1
H 1
H 1
H |

Activation

Deep

Embedding

_images/Wide&Deep.png
Output Layer

. Add . Linear —— Weight-One
. Dot ‘ Embedding —— Normal
. Sigmoid ‘ Sparse Feature
. Activation

Wide Part
. (R

Embedding

_images/NFM.png
Add . Linear — Weight-One Output Layer

Dot ‘ Embedding —— Normal

Sigmoid ‘ Sparse Feature
Activation Element-wise
Prod

Element-wise
Addition

Bi-Interation
Pooling

i
Dense i .
]

Embedding ‘-

_images/WrapperFramework.png
Data cleaning

Training
Parameters

data loader
function Build up
Network
CleanData

Discrete continuous
features

ﬁ

Indexing category
SE— features

[Data J—")

_images/xDeepFM_Arch.png
Output unit

Plain DNN

'&”o“ol

Linear

; — — —~ 1
i o olENe s
—T T_ Embedding lookup I
0 . - 0 0 . -0 . . J felztpuurtes

Field 1 Field 2 Field m

_images/DCN.png
: Combination output layer P @

p = sigmoid(Wiogit Tstack + blogit) T

(000000

Cross network ||
t
(0000002

) t
00000

Ty = 2o We g + beo + To

:Embedding and stacking layer

@ Dense feature () Embeddingvec @ Deep layer
@ Sparse feature () Cross layer @ Output

_images/DIN_Arch.png
X Product

@ Goods 1D Softmax (2)
© Shop ID PReLU/Dice (80)
O Cate ID]
O Other ID PReLU/Dice (200)
— mm e
aver Concat & Flatten
?
 EE
SUM Pooling
4 4 A
X X X
Goods 1'Weight Goods % Weight Goods M Weight
H Activation ‘ Activation ’ Activation
Unit J Unit Unit
t 1
—
mEE EEm mmE ER
(Concat) Concat) (Concat)
]] I] I‘ CEL D)
I | || | [|
User Profild Goods 1 Goods 2 Goods N

Features

User Behaviors

andidate Context

Ad Features

_images/AFM.png
Output Layer

Add . Linear —— Weight-One
Dot ‘ Embedding —— Normal

Sigmoid ‘ Sparse Feature
Activation Element-wise
Prod

Element-wise
Addition

Bi-Interation
Attention Pooling

Attention Score

LR

Dense
Embedding

_images/DIN_AttentionNet.png
Activation Weight

Linear (1)

PRelu/Dice (36)
EE BN B

Concat)
4 4
Em

Out
Product

EEE EENE
Inputs from User Inputs from Ad
Activation Unit

_images/xDeepFM_CIN.png
sum pooling Sum pooling sum pooling

k [S—
x x°

(a) Outer products along each dimension for (b) The k-th layer of fl{‘l It compresses the
feature interactions. The tensor ZK*! is an in- intermediate tensor Z**! to Hy.,; embedding

termediate result for further learning. vectors (aslo known as feature maps). (c) An overview of the CIN architecture.

Figure :Components and architecture of the Compressed Interaction Network (CIN).

nav.xhtml

 Table of Contents

 		
 DeepCTR’s Documentation

 		
 Dependency

 		
 Introduction

 		
 Traditional Models

 		
 FM (Factorization Machines)

 		
 FFM (Field-aware Factorization Machines)

 		
 GBDT+LR

 		
 Deep Models

 		
 Overview

 		
 FNN (Factorization-supported Neural Network)

 		
 PNN (Product-based Neural Network)

 		
 Wide & Deep

 		
 DeepFM

 		
 NFM (Neural FM)

 		
 AFM (Attentional FM)

 		
 DCN (Deep & Cross Network)

 		
 DIN (Deep Interest Network)

 		
 xDeepFM (eXtreme DeepFM)

 		
 Benchmarks

 		
 Criteo

 		
 iPinYou

 		
 Frappe

 		
 Contributors

_static/file.png

_static/minus.png

_static/plus.png

