

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/deep-log-inspection/checkouts/latest/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/deep-log-inspection/checkouts/latest/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Table of Contents

	Table of Contents

	System Architecture

	User Manual
	Introduction

	Quick start

	Advance usage
	Elasticsearch API queries

	Searching logs in Kibana

	Custom visualizations in Kibana

	Installation & Administration Manual
	Deep Log Inspection server
	Introduction

	Installing & Deploying

	Configuring the Monasca Log API

	Configuring Kafka

	Monasca Log Agent
	Installing & Deploying

Architecture

The architecture of the system can be depicted as follows:
[image: system architecture]

The logs are sent to the system by the Monasca Log Agent, installed on a remote machine. The Log Agent collects logs from FIWARE Lab Nodes via syslog and sends them to the Monasca Log API. The logs are then published into the Kafka message queue.

In Kafka, two topics for the publishing of logs are defined: monasca-log and logstash-log. The first topic is for logs that are published by the Monasca Log API and received by the Log Parser. The second topic is for logs that are transformed and published by the Log Parser and received by the Log Persister.

Then, the Log Persister defines the indexing for each log message and sends them to Elasticsearch for storage. After the logs are stored, they can be searched and visualized in Kibana, a front-end application to Elasticsearch.

Custom visualizations in Kibana

Kibana allows the user to visualize [https://www.elastic.co/guide/en/kibana/5.x/visualize.html] the data in the Elasticsearch indices with a variety of charts, tables and maps.

To create a visualization [https://www.elastic.co/guide/en/kibana/5.x/createvis.html], select Visualize from the left pane menu, then + or Create a visualization, and choose the visualization type that better serves your purpose (e.g. line chart).

In general, charts can be used to plot metric aggregations, e.g. count, average, sum, percentiles, etc., of a search, using some field’s value, filters, ranges or whatever tool is more appropriate. For all details on charts and metrics, visit this page [https://www.elastic.co/guide/en/kibana/5.x/xy-chart.html].

Kibana provides a rather large variety of options to visualize the data. Since this guide could not be more exaustive than Kibana User’s Guide [https://www.elastic.co/guide/en/kibana/5.x/index.html], here it is more appropriate to show the main concepts and features of visualization with an example.

Example: Nova API’s average response time

Select Visualize from the left pane menu, then + or Create a visualization, and choose Line to create a line chart. This should lead to a page like the following:

[image: from new search]

Now select os-nova-api-osapi_compute-* as index pattern (if it does not exist, create it [https://www.elastic.co/guide/en/kibana/5.x/tutorial-define-index.html] first, in the Management section).

[image: new visualization]

In the metrics section, expand the Y-Axis configuration:

[image: Y Axis]

In the Aggregation selection menu, choose Average. Then select msg_response_time as field.

Now, in order to display timestamps on the x-axis, click X-Axis in the buckets section:

[image: X Axis]

Select Date Histogram as aggregation, @timestamp as field, and Second as interval. Optionally, the axes can be labelled so as to visualize custom names for the axes in the chart.

Now that the required parameters are set, click the Apply changes button on the top right of the pane. The resulting chart will be rendered on the right:

[image: plot visualization]

Now that the visualization has been created, it can be saved. Click save on the top right of the page, give the visualization a name and click Save again.

Saving visualizations allows to reopen them later. Any changes in the dataset will be reflected automatically in the chart as it is reopened or rendered again using the Apply changes button.

Dashboards

Saved visualizations can also be grouped and viewed together in a dashboard [https://www.elastic.co/guide/en/kibana/5.x/dashboard.html]. Elements in a dashboard can be resized and rearranged at will. Like visualizations, dashboards can be saved for later use.

Quick Start User Guide

Searching the logs

Open Kibana at localhost:9200. Select the Discover section in the left pane menu.

[image: discover logs]

On the top left, just above the search bar, the number of log entries currently displayed is shown. As the system keeps running, that number is expected to grow, as more logs are received.

Just below the search bar, there is a grey button displaying a pattern that starts with os. That is an index pattern, i.e. a search criterion that selects all log entries whose Elasticsearch index matches the pattern. If this does not quite make sense, no need to worry. Just keep reading.

In order to get started it is sufficient to know that index patterns are used to select logs from a specific Openstack component. Click the grey button to view the list of available index patterns.
Here follows the list of all generic index patterns:

	os-*: match all Openstack logs

	os-nova-*: match Nova logs

	os-neutron-*: match Neutron logs

	os-cinder-*: match Cinder logs

	os-keystone-*: match Keystone logs

Index patterns can also be more specific, allowing to narrow down the search to services and modules. Here follows the list of more specific index patterns, grouped by Openstack component:

	Nova
	os-nova-api-*: match Nova API logs

	os-nova-api-osapi_compute-*: match logs of the osapi_compute module in the Nova API

	os-nova-api-metadata-*: match logs of the metadata module in the Nova API

	os-nova-compute-*: match logs of Nova Compute nodes

	Neutron
	os-neutron-api-*

	Cinder
	os-cinder-api-*

	Keystone
	os-keystone-api-*

Every index is structured to contain also information about the region, the node and the date. For example, a Nova log from the compute node 10 located in region Switzerland and generated on May 22nd 2017 would look as follows:

os-nova-compute-switzerland-node-10-2017.05.22

Knowing how indices are structured is useful to customize the search according to one’s needs. For example, a proper index pattern to query all Nova API’s logs from node 10 would be:

os-nova-api-*node-10-*

Note the search flexibility allowed by the use of wildcards (*), which are used in patterns to represents zero or more characters, thus allowing to match multiple indices [https://www.elastic.co/guide/en/elasticsearch/reference/5.x/multi-index.html].

Visualizations

In order to extract useful information from the logs (e.g. usage of resources, correlation between errors, API response times, etc.), Kibana provides visualizations [https://www.elastic.co/guide/en/kibana/5.x/visualize.html].

A set of predefined visualizations is available:

	openstack error correlation: a line chart to plot the occurrences of errors, possibly suggesting correlation between errors of different Openstack components

	nova-api response time average: a line chart to plot the average Nova API’s response time against time

	nova-api response time range: a pie chart to identify ranges in the Nova API’s response time

	nova-compute resource ram: a line chart to plot the usage of physical RAM against the total available on Nova Compute nodes

	nova-compute resource disk: a line chart to plot the usage of physical disk against the total available on Nova Compute nodes

	nova-compute resource vcpus: a line chart to plot the number of used virtual CPUs against the total available on Nova Compute nodes

	openstack tenant activity top 5: a vertical bar chart with a top 5 ranking of Openstack tenants’ activity, i.e. production of logs

Keep reading the guide to learn how to create custom visualizations.

Advanced usage

The next sections are for advanced users. The following topics will be covered:

	custom queries in Elasticsearch

	custom searches in Kibana

	custom visualizations in Kibana

Searching logs in Kibana

Kibana provides a front-end to Elasticsearch. Quoting the introduction [https://www.elastic.co/guide/en/kibana/5.x/introduction.html] from Kibana’s User Guide [https://www.elastic.co/guide/en/kibana/5.x/index.html],

Kibana allows to search, view and interact with the logs, as well as perform data analysis and visualize the logs in a variety of charts, tables and maps.

Viewing logs in Kibana is a straightforward two-step process.

Step 1: create an index pattern

Open Kibana at localhost:9200. Select the Management section in the left pane menu, then Index Patterns. Then, depending on the version of Kibana, either click Add or +.

[image: index pattern]

Enter the index pattern [https://www.elastic.co/guide/en/kibana/5.x/tutorial-define-index.html], and uncheck Index contains time-based events. As soon as Kibana checks the index pattern against Elasticsearch and the result is positive, the button at the bottom will become active and display Create.

[image: create index pattern]

Click Create to configure the index pattern.

Step 2: view the logs

Navigate to the Discover section in the left pane menu. On the left of the page, just under the search bar, select the index pattern just created and all the logs matching the index will be displayed.

[image: discover logs]

Every log entry can be inspected by clicking the small triangular bullet just besides it on the left. Each entry can be viewed as either table or JSON.

[image: discover log entry]

Search results can be filtered, using the following buttons

[image: filter options]

to respectively filter for value, filter out value, toggle column view in the table, and filter for field present.

However, the search bar is the best place for querying and filtering the logs, using the Lucene query syntax [https://lucene.apache.org/core/2_9_4/queryparsersyntax.html] or the full JSON-based Elasticsearch Query DSL [https://www.elastic.co/guide/en/elasticsearch/reference/5.x/query-dsl.html]. More details on searching data, managing searches, etc. are here [https://www.elastic.co/guide/en/kibana/5.x/search.html].

Elasticsearch API queries

Indexing, storing and retrieving the logs in the Deep Log Inspection system is achieved by means of the Elasticsearch backend. The access to indices, mappings and documents is possible via its REST API (for a complete reference visit the Elasticsearch Reference guide [https://www.elastic.co/guide/en/elasticsearch/reference/5.x/index.html]). Indices are patterns under which documents are grouped and made searchable; mappings are used to associate fields with data types; documents are individual storage entries, each corresponding to a log event.

As the Deep Log Inspection system receives the logs from outside via Monasca Log API, it is not so useful from the user’s perspective to explore how to send logs. However, the user should know e.g. how to query Elasticsearch’s API for existing indices, for documents matching a certain index, and even for mappings inside documents.

The cat APIs [https://www.elastic.co/guide/en/elasticsearch/reference/5.x/cat.html] are a powerful querying tool, useful for finding relationships in the data and getting useful information from the Elasticsearch cluster.

Here follow a few example queries using curl. Elasticsearch’s REST API should be listening at localhost:9200.

For a newcomer that wants to retrieve documents from Elasticsearch, the first step should be querying the existing indices. This can be done with a GET request to the cat indices API endpoint:

curl localhost:9200/_cat/indices

Once the existing indices are known, documents matching an index can be queried via search API [https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-query.html]. Note that indices can be matched exactly, i.e. by name, or multiple indices can be queried using wildcards [https://www.elastic.co/guide/en/elasticsearch/reference/5.x/multi-index.html].

The most simple query matches all documents. If e.g. the index pattern is os-nova-* (i.e. all indices that start with os-nova-), then:

curl localhost:9200/os-nova-*/_search -d \
'{
 "query": {
 "match_all": {}
 }
}'

This query will return all documents whose index matches the index pattern.

Querying a particular index is useful to view relevant information about it, like mappings and settings.

curl localhost:9200/os-nova-*

More details on querying an index are here [https://www.elastic.co/guide/en/elasticsearch/reference/5.x/indices-get-index.html].

Introduction

Welcome to the Deep Log Inspection User Guide.

This guide will lead you through the main steps required to display the logs from FIWARE Lab nodes, as well as to take advantage of analytics and visualization for log inspection.

Currently the system receives logs for the following Openstack components: Nova, Neutron, Cinder and Keystone.

Configuring the Monasca Log API

The Monasca Log API runs on top of a gunicorn [http://docs.gunicorn.org/en/stable/] server. For a minimal configuration, a few settings have to be tuned in the following files:

	docker-compose.yml

	monasca-log-api/Dockerfile

	monasca-log-api/log-api-config.ini.j2

	monasca-log-api/log-api-config.conf.j2

docker-compose file

In the compose file, look up the service named monasca-log-api. Here you might want to edit the ports the server listens to on both the host and the container (default is 8090: change this value carefully, updating it also in log-api-config.ini.j2, in the server:main section, and in logstash.conf on the Monasca Log Agent [https://github.com/martel-innovate/deep-log-monasca-elk/blob/master/doc/manuals/install/5-log-agent.md], in the output section of the pipeline). Also, the restart policy of the service is set to on-failure to guarantee the service stays up. You might want to edit [https://docs.docker.com/compose/compose-file/compose-file-v2/#restart] this value or even remove this setting.

Dockerfile & Enviroment Variables

Note that in the configuration files referenced in the following paragraphs, whenever a field has for value a name in capital letters enclosed in double curly brackets (e.g. port = {{ API_PORT }}), this name is an environment variable. To keep the settings clean and consistent, change the value of environment variables in the Dockerfile [https://github.com/martel-innovate/deep-log-monasca-elk/blob/master/monasca-log-api/Dockerfile] and in the compose file [https://github.com/martel-innovate/deep-log-monasca-elk/blob/master/docker-compose.yml].

Other configuration files

In log-api-config.ini, the main settings are the host IP address and port the gunicorn server should listen to, as well as the number of working processes (workers) for handling requests, the maximum number of simultaneous clients (worker-connections), and the maximum number of pending connections (backlog). Please refer to the settings [http://docs.gunicorn.org/en/latest/settings.html] section in gunicorn‘s documentation [http://docs.gunicorn.org/en/stable/].

In log-api-config.conf, the relevant settings are: the region (in the service section), that will be added to the logs as metadata; in the log_publisher section, the Kafka topics to which the logs are published and the address of the Kafka broker (kafka_url).

Authenticating to Keystone

In log-api-config.conf, the keystone_authtoken section allows to set the address of the Keystone and the credentials for authentication. It might also be necessary to set the roles (default_roles, agent_roles) in the roles_middleware section.

Authentication can be done to either the local (suitable for test environments) or the central Keystone (recommended in production environment).
Here follow the environment settings to be inserted in the Dockerfile [https://github.com/martel-innovate/deep-log-monasca-elk/blob/master/monasca-log-api/Dockerfile] for authenticating to the local:

ENV KEYSTONE_IDENTITY_URI=http://keystone:35357 \
 KEYSTONE_AUTH_URI=http://keystone:5000 \
 KEYSTONE_ADMIN_USER=admin \
 KEYSTONE_ADMIN_PASSWORD=secretadmin \
 KEYSTONE_ADMIN_TENANT=admin

and the central Keystone:

ENV KEYSTONE_IDENTITY_URI=[TODO] \
 KEYSTONE_AUTH_URI=[TODO] \
 KEYSTONE_ADMIN_USER=[TODO] \
 KEYSTONE_ADMIN_PASSWORD=[TODO] \
 KEYSTONE_ADMIN_TENANT=[TODO]

For local authentication, please refer to the available credentials in keystone/preload.yml. For authentication to the central Keystone, please contact the administrator.

Installing & Deploying

Installing and running the Deep Log Inspection system requires git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git] and docker [https://www.docker.com/], so make sure they are installed on your system before proceeding.

Open your system’s command line and cd to the folder where the project will be stored. Then, download the project by cloning the git repository:

git clone https://github.com/martel-innovate/deep-log-monasca-elk.git

To install and run the system, also refer to the README [https://github.com/martel-innovate/deep-log-monasca-elk/blob/master/README.md]. For your convenience, you might want to run the system in detached mode:

docker-compose up -d

After the first run, there’s no more need to docker-compose up again, unless docker-compose down is invoked, destroying all services.

Once the system is up and running, you can restart, stop and start:

docker-compose restart
docker-compose stop
docker-compose start

In case of changes in some dockerfiles, you might want to rebuild only the modified services:

docker-compose up -d --build

To visualize information about the running services, including name, state and ports:

docker-compose ps

For all other docker-compose commands, please refer to the docker-compose documentation [https://docs.docker.com/compose/].

Configuring Kafka

In this section we will cover only the minimal configuration aspects required for the publish-subscribe system to work properly. For more advanced settings, like the number of brokers and partitions, please refer to the README [https://github.com/martel-innovate/deep-log-monasca-elk/blob/master/kafka/README.md] file and the Kafka documentation [http://kafka.apache.org/].

As described in the architecture outline [https://github.com/martel-innovate/deep-log-monasca-elk/blob/master/doc/manuals/architecture.md], two Kafka topics are required: monasca-log and logstash-log. The first one for sending logs from the Monasca Log API to the Log Parser, and the second one for sending transformed logs from the Log Parser to the Log Persister. The topics are set using the KAFKA_CREATE_TOPICS environment variable in the compose file (kafka service). The numbers that follow, separated by commas, are the partitions and replicas to be used for the log messages.

In order for the system to work properly, the Monasca Log API must publish the logs to the monasca-log topic, and the Log Parser must subscribe to the same topic. See the input section in logstash-transformer/pipeline/logstash.conf:

input {
 kafka {
 bootstrap_servers => "kafka:9092"
 topics => ["monasca-log"]
 codec => "json"
 }
}

Similarly, the Log parser must publish to the logstash-log topic and the Log Persister must subscribe to the same topic. See the output section in logstash-transformer/pipeline/logstash.conf:

output {
 kafka {
 bootstrap_servers => "kafka:9092"
 topic_id => "logstash-log"
 codec => "json"
 }
}

and the input section in logstash-persister/pipeline/logstash.conf:

input {
 kafka {
 bootstrap_servers => "kafka:9092"
 topics => ["logstash-log"]
 codec => "json"
 }
}

Installing the Monasca Log Agent

The Monasca Log Agent is supposed to run on a remote machine (or virtual machine). The logs have to be sent from FIWARE Lab Nodes to that remote machine via syslog.

To install the Log Agent, copy the syslogVM/syslog-server directory to the remote machine. Then, cd into it and, using docker [https://www.docker.com/], build the image and run the container, as explained by the instructions in the Dockerfile [https://github.com/martel-innovate/deep-log-monasca-elk/blob/master/syslogVM/syslog-server/Dockerfile]. Logstash’s syslog input plugin will be receiving logs on port 1025 and the monasca_log_api output plugin will send them to the Monasca Log API. The Logstash pipeline can be found in config/logstash.conf [https://github.com/martel-innovate/deep-log-monasca-elk/blob/master/syslogVM/syslog-server/config/logstash.conf].

The monasca_log_api output plugin must authenticate to Keystone, so make sure it authenticates to the same instance as the Monasca Log API. Please refer to the Monasca Log API configuration guide [https://github.com/martel-innovate/deep-log-monasca-elk/blob/master/doc/manuals/install/3-monasca.md] for more details.

Introduction

Welcome to the Deep Log Inspection’s Installation Guide.

This guide will lead you through the necessary steps to install and configure the Deep Log Inspection system, with particular focus on the main components of the system: the Monasca Log Agent, the Monasca Log API, the Kafka publish/subscribe message queue, and the ELK stack.

 _images/visual-y-axis.png
Visualize / New Visualization (unsaved) Save Share Refresh

kibana [a |

Search...
Discover Q@ 35007 © @ count
Visualize Data Metrics & Axes Panel Settings m
Dashboard metrics
B3 v-axis 3,000
Timelion Aggregation
Dev Tools Average s
Management Field 2,500 -
msg_response_time s
Custom Label
2,000
4Advanced ;é:
Add metrics S
buckets 1500 -
Select buckets type
X-Axis
Split Series 1,000 -
Split Chart
0 1

all -

© Collapse

_images/monasca_log_api.jpg
Query logs

!

Elas
eard

IMonasca Log|
Client (CL)

Log Agent
<<Logstash>>

Monasca Log API
<<REST>>

publishes log messages

Message
Queue

consumes and publishes
log messages
publishes metrics fevents

consumes transformed
log messages

Log Persister
<<Logstash>>

Log Parser
store transformed < <Logstash>>|

logs

_static/minus.png

_images/visual-plot.png
Visualize / New Visualization (unsaved) Save Share Refresh

kibana [a |

Search...
Discover [©) @ Average msg_respons...
Visualize Data Metrics & Axes Panel Settings m
. 16
Dashboard metrics
B v-axis
Timelion Aggregation
R 1.4
Dev Tools Average v
Management Field
msg_response_time B 1.2
Q
Custom Label £
.‘-.I
@
z2 1
o
-5
]
4Advanced a
Add metrics E
@ 08—
buckets %
]
[
2 xis © D :
Aggregation
0.6
Date Histogram s
Field
@timestamp s 047
Interval
Second 4 02
Custom Label
0 -
21:10:00 21:15:00 21:20:00 21:25:00 21:30:00 21:35:00 21:40:00 21:45:00 21:50:00
4Advanced @timestamp per second

CEEEEEE— Q

_static/up-pressed.png

_images/discover-log-entry.png
Selected Fields Y creation_time: 1,495,225,641 msg: [-] 192.168.0.8 OPTIONS / HTTP/1.0 status: 200 len: 317 time: 0.2069449 host_ip: 172.17.0.1
log_level: INFO msg_bytes: 317 msg_url: / msg_http ver: HTTP/1.0 msg method: OPTIONS tags: nova msg_response status: 200

? _source
@timestamp: May 19th 2017, 22:27:04.943 log_pid: 7481 meta.tenantid: 19a8a8d47e1f4299a54elcf4dd250e42 meta.region: region-one
Discover AR R e a node_source: node-1 @version: 1 msg_node_ip: 192.168.0.8 node_service: nova-api msg_time_sec: 0.207 log_module: nova.osapi_comput
Visualize © @timestamp e.wsgi.server host_name: monasca-log-agent _id: AVWiZf8jWIZdwT5z9Czn _type: logs _index: os-nova-api-osapi_compute-region-one-node-1
t @version
Dashboard ¢ id Table JSON View single document
Timelion £ _index © @timestamp @ Q (@ % May 19th 2017, 22:27:04.943
_score .
Dev Tools t @version Qe mM*x 1
£ type £ _id @ QM * AVWiZf8jWIZdwT529Czn
Management # creation_time
t _index @ @ [@ # os-nova-api-osapi_compute-region-one-node-1-2017.05.19
O host_ip
_score QQDM* 1
t host_name
t _type @ @ @ * logs
t log_level
creation_time Q@ @ @ * 1,495,225,641
t log_module
i Pt O host_ip Q Q@M% 172.17.0.1
¢ meta.region t host_name @ @ (0 % monasca-log-agent
t meta.tenantld t log_level @ Q@ M * INFO
t msg t log_module @ @ (0 % nova.osapi_compute.wsgi.server
msg_bytes t log_pid Q@ Q [@ %k 7481
t msg_http_ver + meta.region @ @ (0 * region-one
t msg method t meta.tenantId @ @ M % 19a8a8d47e1f4299a54elcf4dd25ae42
£ msg_node._ip t msg @ @ M % [-] 192.168.0.8 OPTIONS / HTTP/1.@ status: 200 len: 317 time: 0.2069449
t msg_request_id # msg_bytes @aQm* 317
t msg_response_status
t msg_http_ver @ @ @ % HTTP/1.0
t msg_tenant
+ msg_method @ @ (@ % OPTIONS
msg_time_sec
£ msg_node_ip Q Q @ % 192.168.0.8
t msg_uid
t msg_response_status @ @ M %k 200
t msg_url
msg_time_sec Q Q@M %k 0.207

t node_service

_images/visual-x-axis.png
Visualize / New Visualization (unsaved) Save Share Refresh

kibana [a |

Search...
Discover Q@ 35007 © @ count
Visualize Data Metrics & Axes Panel Settings m
Dashboard metrics
£ v-axis 30007
Timelion Aggregation
Dev Tools Average s
Management Field 2,500
msg_response_time s
Custom Label
2,000 -
4Advanced ;é:
:
buckets 1,500 -
2 xis ©D
Aggregation
Date Histogram s
1,000 -
Field
@timestamp s
Interval
500 -
Second :
Custom Label
0 ns !
© Collapse «Advanced]

CEEEEEE— Q

_static/file.png

_images/visual-new.png
kibana

Discover © @ Count
Visualize
Dashboard metrics
n Y-Axis Count 3,000
Timelion
Dev Tools buckets
Management Select buckets type 2,500 -
Split Series
2,000 -
Split Chart
o
€
3
~
1,500 -
1,000 -
500 -
0 1

_all -

Q Collapse

_images/filter-options.png
QQm*

_images/index-pattern.png
Management / Kibana

kibana

Index Patterns Saved Objects Advanced Settings

Discover O R

Configure an index pattern

os-nova-api-metadata-*
Dashboard

os-nova-compute-* In order to use Kibana you must configure at least one index pattern. Index patterns are used to identify the Elasticsearch index to run search and analytics

Timelion against. They are also used to configure fields.

Dev Tools

Management Index name or pattern

Patterns allow you to define dynamic index names using * as a wildcard. Example: logstash-*

logstash-*
Index contains time-based events

Time-field name @ refresh fields

<

(" Expand index pattern when searching

With this option selected, searches against any time-based index pattern that contains a wildcard will automatically be expanded to query only the
indices that contain data within the currently selected time range.

Searching against the index pattern /logstash-*will actually query Elasticsearch for the specific matching indices (e.g. logstash-2015.12.21) that fall
within the current time range.

With recent changes to Elasticsearch, this option should no longer be necessary and will likely be removed in future versions of Kibana.

[Use event times to create index names [DEPRECATED]

Unable to fetch mapping. Do you have indices matching the pattern?

_static/comment-bright.png

_images/index-pattern-create.png
Management / Kibana

kibana

Index Patterns Saved Objects Advanced Settings

Discover O R

Configure an index pattern

os-nova-api-metadata-*
Dashboard

os-nova-compute-* In order to use Kibana you must configure at least one index pattern. Index patterns are used to identify the Elasticsearch index to run search and analytics

Timelion against. They are also used to configure fields.

Dev Tools

Management Index name or pattern

Patterns allow you to define dynamic index names using * as a wildcard. Example: logstash-*
os-nova-api-osapi_compute-*

(") Index contains time-based events

_images/visual-index.png
Visualize / New / Choose search source

kibana
Discover

From a New Search, Select Index
Visualize
Dashboard ‘ Q Filter... ’
Timelion Name a
Dev Tools os-*

os-nova-*

Management

os-nova-api-metadata-*
0s-nova-api-osapi_compute-*

0s-nova-compute-*

Or, From a Saved Search

50f5 ‘ Q Saved Searches Filter...

Name a

node-1

node-10

node-11

node-12

node-2

node-3

node-4

node-5

node-6

node-7

node-8

node-9

12 0f 12

Manage saved searches

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_images/discover-logs.png
Discover

Visualize

Dashboard

Timelion

Dev Tools

Management

864 hits

New Save Open Share

Search...

0s-nova-api-osapi_compt ~
Selected Fields

? _source

Available Fields a

© @timestamp

t @version

t _index

_score

t _type

creation_time
O host_ip

t host_name

t log_level

t log_module

t log_pid

t meta.region

t meta.tenantld
t msg

msg_bytes

t msg_http_ver
t msg_method
) msg_node_ip

t msg_request_id
t msg_response_status

£ msg_tenant

_source

creation_time: 1,495,225,641 msg: [-] 192.168.0.8 OPTIONS / HTTP/1.0 status: 200 len: 317 time: 0.2069449 host_ip: 172.17.0.1
log_level: INFO msg_bytes: 317 msg_url: / msg_http ver: HTTP/1.0 msg method: OPTIONS tags: nova msg_response status: 200
@timestamp: May 19th 2017, 22:27:04.943 log_pid: 7481 meta.tenantid: 19a8a8d47e1f4299a54elcf4dd250e42 meta.region: region-one
node_source: node-1 @version: 1 msg_node_ip: 192.168.0.8 node_service: nova-api msg_time_sec: 0.207 log_module: nova.osapi_comput

e.wsgi.server host_name: monasca-log-agent _id: AVwiZf8jWIZdwT5z9Czn _type: logs _index: 0s-nova-api-osapi_compute-region-one-node-1

creation_time: 1,495,225,642 msg: [req-7816e836-2acc-4f18-821f-c37221057848 ceilometer-zurich 00000000000007442002913448960000 - - -]
192.168.0.8 GET /v2/00000000000007442002913448960000/images/5d2570b5-221a-4737-b@el-0c36ac5ee5b8 HTTP/1.1 status: 200 len: 955 time: 0.3
504028 host_ip: 172.17.0.1 log_level: INFO msg_tenant: 00000000000007442002913448960000 msg_bytes: 955 msg_url: /v2/000000000000074
42002913448960000/images/5d2570b5-221a-4737-b@e1-0c36ac5ee5b8 msg_http_ver: HTTP/1.1 msg_uid: ceilometer-zurich msg_method: GET
tags: Nnova msg_response_status: 200 msg_request_id: 7816e836-2acc-4f18-821f-c37221057848 @timestamp: May 19th 2017, 22:27:11.952

creation_time: 1,495,225,666 msg: [-] 192.168.0.2 OPTIONS / HTTP/1.@ status: 200 len: 317 time: 0.0024571 host_ip: 172.17.0.1
log_level: INFO msg_bytes: 317 msg_url: / msg_http ver: HTTP/1.0 msg method: OPTIONS tags: nova msg_response status: 200
@timestamp: May 19th 2017, 22:27:32.066 log_pid: 7481 meta.tenantid: 19a8a8d47e1f4299a54elcf4dd250e42 meta.region: region-one
node_source: node-1 @version: 1 msg_node_ip: 192.168.0.2 node_service: nova-api msg_time sec: 0.002 log_module: nova.osapi_comput

e.wsgi.server host_name: monasca-log-agent _id: AVwiZgSRWIZdwT5z9C1Z _type: logs _index: 0s-nova-api-osapi_compute-region-one-node-1

creation_time: 1,495,225,601 msg: [req-4063a83f-a02a-4a19-b822-206bf3b9786a ceilometer-zurich 00000000000007442002913448960000 - - -]
192.168.0.8 GET /v2/00000000000007442002913448960000/images/5193a51c-7af1-4ba5-b628-a824ecb52f7c HTTP/1.1 status: 200 len: 957 time: 0.3
428109 host_ip: 172.17.0.1 1log_level: INFO msg_tenant: 00000000000007442002913448960000 msg_bytes: 957 msg_url: /v2/000000000000074
42002913448960000/images/5193a51c-7af1-4ba5-b628-a824ecb52f7c msg_http_ver: HTTP/1.1 msg_uid: ceilometer-zurich msg_method: GET
tags: Nnova msg_response_status: 200 msg_request_id: 4063a83f-a02a-4a19-b822-206bf3b9786a @timestamp: May 19th 2017, 22:26:37.033

creation_time: 1,495,225,718 msg: [-] 192.168.0.8 OPTIONS / HTTP/1.@ status: 200 len: 317 time: 0.0020092 host_ip: 172.17.0.1
log_level: INFO msg_bytes: 317 msg_url: / msg_http ver: HTTP/1.0 msg method: OPTIONS tags: nova msg_response status: 200
@timestamp: May 19th 2017, 22:28:14.999 1log_pid: 7481 meta.tenantid: 19a8a8d47e1f4299a54elcf4dd250e42 meta.region: region-one
node_source: node-1 @version: 1 msg_node_ip: 192.168.0.8 node_service: nova-api msg_time sec: 0.002 log_module: nova.osapi_comput

e.wsgi.server host_name: monasca-log-agent _id: AVwiZgpIWIZdwT5z9C3Q _type: logs _index: o0s-nova-api-osapi_compute-region-one-node-1

A A e T T -

