Deep-Learning-TensorFlow Documentation

Release stable

Contents

1	Requirements	3
2	Configuration	5
3	Available models	7
4	Convolutional Networks	9
5	Restricted Boltzmann Machine	11
6	Deep Belief Network	13
7	Deep Autoencoder	15
8	Denoising Autoencoder	17
9	Stacked Denoising Autoencoder	19
10	MultiLayer Perceptron	21
11	TODO list	23

This repository is a collection of various Deep Learning algorithms implemented using the TensorFlow library. This package is intended as a command line utility you can use to quickly train and evaluate popular Deep Learning models and maybe use them as benchmark/baseline in comparison to your custom models/datasets.

Contents 1

2 Contents

ΛЦ		בם		П	1
СН	А	וא	ı⊨	к	

Requirements

tensorflow >= 0.6 (tested on tensorflow 0.6, 0.7.1 and 0.8)

Deep-Learning-TensorFlow Documentation, Release stable	

Configuration

- config.py: Configuration file, used to set the path to the data directories:
- models_dir: directory where trained model are saved/restored
- data_dir: directory to store data generated by the model (for example generated images)
- summary_dir: directory to store TensorFlow logs and events (this data can be visualized using TensorBoard)

Deep-Learning-TensorFlow Documentation, Ro	elease stable	

CHAPTER 3	
Available models	

Deep-Learning-TensorFlow Documentation, Release stable				

Convolutional Networks

Example usage:

python command_line/run_conv_net.py --dataset custom --main_dir convnet-models --model_name my.Aweson

This command trains a Convolutional Network using the provided training, validation and testing sets, and the specified training parameters. The architecture of the model, as specified by the –layer argument, is:

- 2D Convolution layer with 5x5 filters with 32 feature maps and stride of size 1
- Max Pooling layer of size 2
- 2D Convolution layer with 5x5 filters with 64 feature maps and stride of size 1
- Max Pooling layer of size 2
- Fully connected layer with 1024 units
- · Softmax layer

For the default training parameters please see command_line/run_conv_net.py. The TensorFlow trained model will be saved in config.models_dir/convnet-models/my.Awesome.CONVNET.

Deep-Learning-TensorFlow Documentation, Release stable				

Restricted Boltzmann Machine

Example usage:

python command_line/run_rbm.py --dataset custom --main_dir rbm-models --model_name my.Awesome.RBM --

This command trains a RBM with 250 hidden units using the provided training and validation sets, and the specified training parameters. For the default training parameters please see command_line/run_rbm.py. The TensorFlow trained model will be saved in config.models_dir/rbm-models/my.Awesome.RBM.

Deep-Learning-TensorFlow Documentation, Release	stable

Deep Belief Network

Example usage:

python command_line/run_dbn.py --dataset mnist --main_dir dbn-models --model_name my-deeper-dbn --la

This command trains a DBN on the MNIST dataset. Two RBMs are used in the pretraining phase, the first is 784-512 and the second is 512-256. The training parameters of the RBMs can be specified layer-wise: for example we can specify the learning rate for each layer with: -rbm_learning_rate 0.005,0.1. In this case the fine-tuning phase uses dropout and the ReLU activation function.

Deep-Learning-TensorFlow Documentation, Release stable	

\sim 1		D -	_	_	- 4
Cŀ	1Δ	$\boldsymbol{\mathcal{L}}$	_	н	•

Deep Autoencoder

Example usage:

python command_line/run_deep_autoencoder.py --dataset cifar10 --cifar_dir path/to/cifar10 --main_dir

This command trains a Deep Autoencoder built as a stack of RBMs on the cifar 10 dataset. The layers in the finetuning phase are 3072 -> 8192 -> 2048 -> 512 -> 256 -> 512 -> 2048 -> 8192 -> 3072, that's pretty deep.

Deep-Learning-TensorFlow Documentation, Release stable				

CHAPTER	8
----------------	---

Denoising Autoencoder

Example usage:

python command_line/run_autoencoder.py --n_components 1024 --batch_size 64 --num_epochs 20 --verbose

This command trains a Denoising Autoencoder on MNIST with 1024 hidden units, sigmoid activation function for the encoder and the decoder, and 50% masking noise. The –weight_images 200 save 200 random hidden units as images in config.data_dir/dae-models/img/ so that you can visualize the learned filters.

Deep-Learning-TensorFlow Documentation, Release stable		
40	Ob and an O	

Stacked Denoising Autoencoder

Example usage:

python command_line/run_stacked_autoencoder.py -layers 1024,784,512,256 -batch_size 25 - num_epochs 5 -verbose 1 -corr_type masking -corr_frac 0.0 -finetune_learning_rate 0.002 - finetune_num_epochs 25 -opt momentum -momentum 0.9 -learning_rate 0.05 -enc_act_func sigmoid -finetune_act_func relu -dropout 0.7

This command trains a Stack of Denoising Autoencoders 784 <-> 1024, 1024 <-> 784, 784 <-> 512, 512 <-> 256, and then performs supervised finetuning with ReLUs.

Deep-Learning-TensorFlow Documentation, Release s	table		
20	Chapter 0	Stacked Denoising	Autoppodor

		ΓER	4	$\mathbf{\Lambda}$
\sim u	VD.	ГСО	_	
СΠ	AF	IEN		v

MultiLayer Perceptron

Just train a Stacked Denoising Autoencoder of Deep Belief Network with the -do_pretrain false option.

Deep-Learning-TensorFlow Documentation, Release stable	_

22

CHAPTER 11

TODO list

- Add Performace file with the performance of various algorithms on banchmark datasets
- Reinforcement Learning implementation (Deep Q-Learning)