Deep-Learning-TensorFlow

Documentation
Release stable

April 20, 2016






Contents

9

Requirements

Configuration

Available models
Convolutional Networks
Restricted Boltzmann Machine
Deep Belief Network

Deep Autoencoder

Denoising Autoencoder

Stacked Denoising Autoencoder

10 MultiLayer Perceptron

11 TODO list

11

13

15

17

19

21

23







Deep-Learning-TensorFlow Documentation, Release stable

This repository is a collection of various Deep Learning algorithms implemented using the TensorFlow library. This
package is intended as a command line utility you can use to quickly train and evaluate popular Deep Learning models
and maybe use them as benchmark/baseline in comparison to your custom models/datasets.

Contents 1



Deep-Learning-TensorFlow Documentation, Release stable

2 Contents



CHAPTER 1

Requirements

tensorflow >= 0.6 (tested on tensorflow 0.6, 0.7.1 and 0.8)




Deep-Learning-TensorFlow Documentation, Release stable

4 Chapter 1. Requirements



CHAPTER 2

Configuration

config.py: Configuration file, used to set the path to the data directories:
models_dir: directory where trained model are saved/restored
data_dir: directory to store data generated by the model (for example generated images)

summary_dir: directory to store TensorFlow logs and events (this data can be visualized using TensorBoard)




Deep-Learning-TensorFlow Documentation, Release stable

6 Chapter 2. Configuration



CHAPTER 3

Available models




Deep-Learning-TensorFlow Documentation, Release stable

8 Chapter 3. Available models



CHAPTER 4

Convolutional Networks

Example usage:

python command_line/run_conv_net.py —--dataset custom —--main_dir convnet-models ——model_rﬁame my .Awesor

This command trains a Convolutional Network using the provided training, validation and testing sets, and the specified
training parameters. The architecture of the model, as specified by the —layer argument, is:

* 2D Convolution layer with 5x5 filters with 32 feature maps and stride of size 1
* Max Pooling layer of size 2

* 2D Convolution layer with 5x5 filters with 64 feature maps and stride of size 1
* Max Pooling layer of size 2

* Fully connected layer with 1024 units

¢ Softmax layer

For the default training parameters please see command_line/run_conv_net.py. The TensorFlow trained model will be
saved in config.models_dir/convnet-models/my. Awesome.CONVNET.




Deep-Learning-TensorFlow Documentation, Release stable

10 Chapter 4. Convolutional Networks



CHAPTER 5

Restricted Boltzmann Machine

Example usage:

python command_line/run_rbm.py —--dataset custom —--main_dir rbm-models —--model_name my.Av#esome.RBM ——1

This command trains a RBM with 250 hidden units using the provided training and validation sets, and the speci-
fied training parameters. For the default training parameters please see command_line/run_rbm.py. The TensorFlow
trained model will be saved in config.models_dir/rbm-models/my.Awesome.RBM.

11



Deep-Learning-TensorFlow Documentation, Release stable

12 Chapter 5. Restricted Boltzmann Machine



CHAPTER 6

Deep Belief Network

Example usage:

python command_line/run_dbn.py —--dataset mnist ——-main_dir dbn-models —--model_name my—de%per—dbn ——la:

This command trains a DBN on the MNIST dataset. Two RBMs are used in the pretraining phase, the first is 784-512
and the second is 512-256. The training parameters of the RBMs can be specified layer-wise: for example we can

specify the learning rate for each layer with: —rbm_learning_rate 0.005,0.1. In this case the fine-tuning phase uses
dropout and the ReLLU activation function.

13



Deep-Learning-TensorFlow Documentation, Release stable

14 Chapter 6. Deep Belief Network



CHAPTER 7

Deep Autoencoder

Example usage:

python command_line/run_deep_autoencoder.py —-dataset cifarl0 —--cifar_dir path/to/cifario —--main_dir

This command trains a Deep Autoencoder built as a stack of RBMs on the cifar10 dataset. The layers in the finetuning
phase are 3072 -> 8192 -> 2048 -> 512 -> 256 -> 512 -> 2048 -> 8192 -> 3072, that’s pretty deep.

15



Deep-Learning-TensorFlow Documentation, Release stable

16 Chapter 7. Deep Autoencoder



CHAPTER 8

Denoising Autoencoder

Example usage:

python command_line/run_autoencoder.py —--n_components 1024 —--batch_size 64 —--num_epochs |20 —-verbose

This command trains a Denoising Autoencoder on MNIST with 1024 hidden units, sigmoid activation function for the
encoder and the decoder, and 50% masking noise. The —weight_images 200 save 200 random hidden units as images
in config.data_dir/dae-models/img/ so that you can visualize the learned filters.

17



Deep-Learning-TensorFlow Documentation, Release stable

18 Chapter 8. Denoising Autoencoder



CHAPTER 9

Stacked Denoising Autoencoder

Example usage:

python command_line/run_stacked_autoencoder.py —layers 1024,784,512,256 -batch_size 25 -
num_epochs 5 —verbose 1 —corr_type masking —corr_frac 0.0 —finetune_learning_rate 0.002 —
finetune_num_epochs 25 —opt momentum —momentum 0.9 —learning_rate 0.05 —enc_act_func sigmoid
—finetune_act_func relu —dropout 0.7

This command trains a Stack of Denoising Autoencoders 784 <-> 1024, 1024 <-> 784, 784 <-> 512, 512 <-> 256, and
then performs supervised finetuning with ReL.Us.

19



Deep-Learning-TensorFlow Documentation, Release stable

20 Chapter 9. Stacked Denoising Autoencoder



cHAPTER 10

MultiLayer Perceptron

Just train a Stacked Denoising Autoencoder of Deep Belief Network with the —do_pretrain false option.

21



Deep-Learning-TensorFlow Documentation, Release stable

22

Chapter 10. MultiLayer Perceptron



CHAPTER 11

TODO list

* Add Performace file with the performance of various algorithms on banchmark datasets

* Reinforcement Learning implementation (Deep Q-Learning)

23



	Requirements
	Configuration
	Available models
	Convolutional Networks
	Restricted Boltzmann Machine
	Deep Belief Network
	Deep Autoencoder
	Denoising Autoencoder
	Stacked Denoising Autoencoder
	MultiLayer Perceptron
	TODO list

