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This repository is a collection of various Deep Learning algorithms implemented using the TensorFlow library. This
package is intended as a command line utility you can use to quickly train and evaluate popular Deep Learning models
and maybe use them as benchmark/baseline in comparison to your custom models/datasets.
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CHAPTER 1

Requirements

tensorflow >= 0.6 (tested on tensorflow 0.6, 0.7.1 and 0.8)
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CHAPTER 2

Configuration

config.py: Configuration file, used to set the path to the data directories:
models_dir: directory where trained model are saved/restored
data_dir: directory to store data generated by the model (for example generated images)

summary_dir: directory to store TensorFlow logs and events (this data can be visualized using TensorBoard)
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CHAPTER 3

Available models
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CHAPTER 4

Convolutional Networks

Example usage:

python command_line/run_conv_net.py —--dataset custom —--main_dir convnet-models ——model_rﬁame my .Awesor

This command trains a Convolutional Network using the provided training, validation and testing sets, and the specified
training parameters. The architecture of the model, as specified by the —layer argument, is:

* 2D Convolution layer with 5x5 filters with 32 feature maps and stride of size 1
* Max Pooling layer of size 2

* 2D Convolution layer with 5x5 filters with 64 feature maps and stride of size 1
* Max Pooling layer of size 2

* Fully connected layer with 1024 units

¢ Softmax layer

For the default training parameters please see command_line/run_conv_net.py. The TensorFlow trained model will be
saved in config.models_dir/convnet-models/my. Awesome.CONVNET.
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CHAPTER 5

Restricted Boltzmann Machine

Example usage:

python command_line/run_rbm.py —--dataset custom —--main_dir rbm-models —--model_name my.Av#esome.RBM ——1

This command trains a RBM with 250 hidden units using the provided training and validation sets, and the speci-
fied training parameters. For the default training parameters please see command_line/run_rbm.py. The TensorFlow
trained model will be saved in config.models_dir/rbm-models/my.Awesome.RBM.
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CHAPTER 6

Deep Belief Network

Example usage:

python command_line/run_dbn.py —--dataset mnist ——-main_dir dbn-models —--model_name my—de%per—dbn ——la:

This command trains a DBN on the MNIST dataset. Two RBMs are used in the pretraining phase, the first is 784-512
and the second is 512-256. The training parameters of the RBMs can be specified layer-wise: for example we can

specify the learning rate for each layer with: —rbm_learning_rate 0.005,0.1. In this case the fine-tuning phase uses
dropout and the ReLLU activation function.
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CHAPTER 7

Deep Autoencoder

Example usage:

python command_line/run_deep_autoencoder.py —-dataset cifarl0 —--cifar_dir path/to/cifario —--main_dir

This command trains a Deep Autoencoder built as a stack of RBMs on the cifar10 dataset. The layers in the finetuning
phase are 3072 -> 8192 -> 2048 -> 512 -> 256 -> 512 -> 2048 -> 8192 -> 3072, that’s pretty deep.
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CHAPTER 8

Denoising Autoencoder

Example usage:

python command_line/run_autoencoder.py —--n_components 1024 —--batch_size 64 —--num_epochs |20 —-verbose

This command trains a Denoising Autoencoder on MNIST with 1024 hidden units, sigmoid activation function for the
encoder and the decoder, and 50% masking noise. The —weight_images 200 save 200 random hidden units as images
in config.data_dir/dae-models/img/ so that you can visualize the learned filters.
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CHAPTER 9

Stacked Denoising Autoencoder

Example usage:

python command_line/run_stacked_autoencoder.py —layers 1024,784,512,256 -batch_size 25 -
num_epochs 5 —verbose 1 —corr_type masking —corr_frac 0.0 —finetune_learning_rate 0.002 —
finetune_num_epochs 25 —opt momentum —momentum 0.9 —learning_rate 0.05 —enc_act_func sigmoid
—finetune_act_func relu —dropout 0.7

This command trains a Stack of Denoising Autoencoders 784 <-> 1024, 1024 <-> 784, 784 <-> 512, 512 <-> 256, and
then performs supervised finetuning with ReL.Us.
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cHAPTER 10

MultiLayer Perceptron

Just train a Stacked Denoising Autoencoder of Deep Belief Network with the —do_pretrain false option.
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CHAPTER 11

TODO list

* Add Performace file with the performance of various algorithms on banchmark datasets

* Reinforcement Learning implementation (Deep Q-Learning)
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