
Deck Of Cards Documentation
Release 0.0.1

Andrew Brad

Oct 22, 2019

Introduction

1 The Project 3

2 Design Philosphy 5
2.1 Lean Principles . 5
2.2 S.O.L.I.D. Principles . 5
2.3 Principles of Microservices . 6

3 Running 7

i

ii

Deck Of Cards Documentation, Release 0.0.1

What is this Project?

The Deck of Cards API is a living project that tries to demonstrate the principles of Clean Architure using Command-
Query Responsibility Segregation, domain events, and in-process messaging. It can be used to copy paste the occa-
sional snippet, demonstrate how meaningful tests can be written, and see some advanced Api functionality in Asp.Net
Core MVC .

I say ‘try’ because as developers, we are constantly learning, evolving, and applying a little bit of design opinion into
the things we build. This project is meant to capture my ongoing learning and show other developers my victories and
failures in developing public-facing, enterprise software.

The project strives to prove out the following features:

• In Process Messaging: Using the minimal, yet amazing MediatR library, we can achieve direct messaging or
broadcast semantics for executing code, allowing us to develop with a publish/subscribe pattern as a first class
citizen, improving our ability to write maintainable code.

• Robust structured logging with Serilog: This project uses Serilog to persist logs via Sinks. Old school file
sinks? Check. ELK stack? Check. Logging done right - everyone loves this.

• Integration testing with XUnit: Sure you think your code works, but can you prove it? I tend to favor integra-
tion testing over unit testing, but the project strives to have a good amount of tests that cover core functionality,
as well as assert some of the basic configurations to ensure nothing breaks when we tweak the MVC builder.

• CQRS Request Handlers: A controller shouldn’t be involved in business logic, or care about custom validation
rules. To this end, controllers receive pre-validated models, and only dispatch a request object into a direct
message broker (Mediatr). This means our Api ends up being a true interface over our core application, and
maximizes utility while minimizing breakage.

• Resilience Engineering with Polly: We should work towards ensuring our software never fails. Ever. No
exceptions. The defacto standard for this in .Net is Polly.

Introduction 1

https://github.com/Andrew-Brad/DeckOfCards
https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-2.1
https://github.com/jbogard/MediatR
https://github.com/jbogard/MediatR
https://github.com/App-vNext/Polly

Deck Of Cards Documentation, Release 0.0.1

2 Introduction

CHAPTER 1

The Project

Why a Deck of Cards?

Most demo apps have to be written and/or presented within the space of 1-2 hours. This means that there’s a slew of
material out there that ends up being ‘to-do lists’, and stripped down e-commerce applications.

While these may work for demoing specific pieces of functionality, this project exists as a reference as to how to build
testable, maintainable software.

3

Deck Of Cards Documentation, Release 0.0.1

4 Chapter 1. The Project

CHAPTER 2

Design Philosphy

Before digging into the code, it’s recommended to better understand the philosophy behind engineering.

Everything we do should be in the name of software quality.

Everything.

2.1 Lean Principles

Lean principles guide everything. The tricky part is the fact that quality means different things to different people.

• External Customers - End Users: Your end users are the reason we all get paid. Listen to them.

• Internal Customers - Ops: Nowadays with Devops, some lines are blurred here, but when it comes to produc-
tion outages, it’s rare a developer is called in to mess around with infrastructure. Partner with your infrastructure
team and ensure the software behaves like they would expect it to without any ‘tribal knowledge’ or hacks.

• Internal Customers - Engineers: Your codebase should get you excited about writing code. If it doesn’t, have
a retrospective with teammates and get on track. It should not be difficult to change (fragile), or prone to failure.
What was your first day like as a new developer on a codebase? Was the product well documented, and the
standards and expectations made clear? Technical debt is something that needs to be measured, managed, or at
least observed and refactored continually.

If you’d like to read about the history and interactions between Lean Manufacturing and Software Design, I’d highly
recommend Implementing Lean Software Development. Next, let’s cover some principles already established in the
industry.

2.2 S.O.L.I.D. Principles

WIP

5

https://www.lean.org/WhatsLean/Principles.cfm
https://www.amazon.com/Implementing-Lean-Software-Development-Concept/dp/0321437381/ref=pd_bxgy_14_img_2?_encoding=UTF8&pd_rd_i=0321437381&pd_rd_r=385946bc-f59f-11e8-b1af-c353f8636503&pd_rd_w=LKZJC&pd_rd_wg=ToauZ&pf_rd_i=desktop-dp-sims&pf_rd_m=ATVPDKIKX0DER&pf_rd_p=6725dbd6-9917-451d-beba-16af7874e407&pf_rd_r=2GT1SSH33DR82EMZ9X4B&pf_rd_s=desktop-dp-sims&pf_rd_t=40701&psc=1&refRID=2GT1SSH33DR82EMZ9X4B

Deck Of Cards Documentation, Release 0.0.1

2.3 Principles of Microservices

WIP

6 Chapter 2. Design Philosphy

CHAPTER 3

Running

The best dev experience involves cloning the repo, and running a script to build, test, or run the project.

Unfortunately, we’re not quite there yet.

//todo

7

	The Project
	Design Philosphy
	Lean Principles
	S.O.L.I.D. Principles
	Principles of Microservices

	Running

