

The Deck of Cards API

[image: _images/four_aces.jpg]
What is this Project?

The Deck of Cards [https://github.com/Andrew-Brad/DeckOfCards] API is a living project that tries to demonstrate the principles of Clean Architure using Command-Query Responsibility Segregation, domain events, and in-process messaging. It can be used to copy paste the occasional snippet, demonstrate how meaningful tests can be written, and see some advanced Api functionality in Asp.Net Core MVC [https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-2.1] .

I say ‘try’ because as developers, we are constantly learning, evolving, and applying a little bit of design opinion into the things we build. This project is meant to capture my ongoing learning and show other developers my victories and failures in developing public-facing, enterprise software.

The project strives to prove out the following features:

	In Process Messaging: Using the minimal, yet amazing MediatR [https://github.com/jbogard/MediatR] library, we can achieve direct messaging or broadcast semantics for executing code, allowing us to develop with a publish/subscribe pattern as a first class citizen, improving our ability to write maintainable code.

	Robust structured logging with Serilog: This project uses Serilog [https://github.com/jbogard/MediatR] to persist logs via Sinks. Old school file sinks? Check. ELK stack? Check. Logging done right - everyone loves this.

	Integration testing with XUnit: Sure you think your code works, but can you prove it? I tend to favor integration testing over unit testing, but the project strives to have a good amount of tests that cover core functionality, as well as assert some of the basic configurations to ensure nothing breaks when we tweak the MVC builder.

	CQRS Request Handlers: A controller shouldn’t be involved in business logic, or care about custom validation rules. To this end, controllers receive pre-validated models, and only dispatch a request object into a direct message broker (Mediatr). This means our Api ends up being a true interface over our core application, and maximizes utility while minimizing breakage.

	Resilience Engineering with Polly: We should work towards ensuring our software never fails. Ever. No exceptions. The defacto standard for this in .Net is Polly [https://github.com/App-vNext/Polly].

The Project

Why a Deck of Cards?

Most demo apps have to be written and/or presented within the space of 1-2 hours. This means that there’s a slew of material out there that ends up being ‘to-do lists’, and stripped down e-commerce applications.

While these may work for demoing specific pieces of functionality, this project exists as a reference as to how to build testable, maintainable software.

Design Philosphy

Before digging into the code, it’s recommended to better understand the philosophy behind engineering.

Everything we do should be in the name of software quality.

Everything.

Lean Principles

Lean principles [https://www.lean.org/WhatsLean/Principles.cfm] guide everything. The tricky part is the fact that quality means different things to different people.

	External Customers - End Users: Your end users are the reason we all get paid. Listen to them.

	Internal Customers - Ops: Nowadays with Devops, some lines are blurred here, but when it comes to production outages, it’s rare a developer is called in to mess around with infrastructure. Partner with your infrastructure team and ensure the software behaves like they would expect it to without any ‘tribal knowledge’ or hacks.

	Internal Customers - Engineers: Your codebase should get you excited about writing code. If it doesn’t, have a retrospective with teammates and get on track. It should not be difficult to change (fragile), or prone to failure. What was your first day like as a new developer on a codebase? Was the product well documented, and the standards and expectations made clear? Technical debt is something that needs to be measured, managed, or at least observed and refactored continually.

If you’d like to read about the history and interactions between Lean Manufacturing and Software Design, I’d highly recommend Implementing Lean Software Development [https://www.amazon.com/Implementing-Lean-Software-Development-Concept/dp/0321437381/ref=pd_bxgy_14_img_2?_encoding=UTF8&pd_rd_i=0321437381&pd_rd_r=385946bc-f59f-11e8-b1af-c353f8636503&pd_rd_w=LKZJC&pd_rd_wg=ToauZ&pf_rd_i=desktop-dp-sims&pf_rd_m=ATVPDKIKX0DER&pf_rd_p=6725dbd6-9917-451d-beba-16af7874e407&pf_rd_r=2GT1SSH33DR82EMZ9X4B&pf_rd_s=desktop-dp-sims&pf_rd_t=40701&psc=1&refRID=2GT1SSH33DR82EMZ9X4B].
Next, let’s cover some principles already established in the industry.

S.O.L.I.D. Principles

WIP

Principles of Microservices

WIP

Running

The best dev experience involves cloning the repo, and running a script to build, test, or run the project.

Unfortunately, we’re not quite there yet.

//todo

Index

Authorize Endpoint

The authorize endpoint can be used to request tokens or authorization codes via the browser.
This process typically involves authentication of the end-user and optionally consent.

Note

IdentityServer supports a subset of the OpenID Connect and OAuth 2.0 authorize request parameters. For a full list, see here [https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest].

	client_id

	identifier of the client (required).

	scope

	one or more registered scopes (required)

	redirect_uri

	must exactly match one of the allowed redirect URIs for that client (required)

	response_type

	id_token requests an identity token (only identity scopes are allowed)

token requests an access token (only resource scopes are allowed)

id_token token requests an identity token and an access token

code requests an authorization code

code id_token requests an authorization code and identity token

code id_token token requests an authorization code, identity token and access token

	response_mode

	form_post sends the token response as a form post instead of a fragment encoded redirect (optional)

	state

	identityserver will echo back the state value on the token response,
this is for round tripping state between client and provider, correlating request and response and CSRF/replay protection. (recommended)

	nonce

	identityserver will echo back the nonce value in the identity token, this is for replay protection)

Required for identity tokens via implicit grant.

	prompt

	none no UI will be shown during the request. If this is not possible (e.g. because the user has to sign in or consent) an error is returned

login the login UI will be shown, even if the user is already signed-in and has a valid session

	code_challenge

	sends the code challenge for PKCE

	code_challenge_method

	plain indicates that the challenge is using plain text (not recommended)
S256 indicates the the challenge is hashed with SHA256

	login_hint

	can be used to pre-fill the username field on the login page

	ui_locales

	gives a hint about the desired display language of the login UI

	max_age

	if the user’s logon session exceeds the max age (in seconds), the login UI will be shown

	acr_values

	allows passing in additional authentication related information - identityserver special cases the following proprietary acr_values:

idp:name_of_idp bypasses the login/home realm screen and forwards the user directly to the selected identity provider (if allowed per client configuration)

tenant:name_of_tenant can be used to pass a tenant name to the login UI

Example

GET /connect/authorize?
 client_id=client1&
 scope=openid email api1&
 response_type=id_token token&
 redirect_uri=https://myapp/callback&
 state=abc&
 nonce=xyz

(URL encoding removed, and line breaks added for readability)

Note

You can use the IdentityModel [https://github.com/IdentityModel/IdentityModel2] client library to programmatically create authorize requests .NET code. For more information check the IdentityModel docs [https://identitymodel.readthedocs.io/en/latest/client/authorize.html].

Device Authorization Endpoint

The device authorization endpoint can be used to request device and user codes.
This endpoint is used to start the device flow authorization process.

Note

The URL for the end session endpoint is available via the discovery endpoint.

	client_id

	client identifier (required)

	client_secret

	client secret either in the post body, or as a basic authentication header. Optional.

	scope

	one or more registered scopes. If not specified, a token for all explicitly allowed scopes will be issued.

Example

POST /connect/deviceauthorization

 client_id=client1&
 client_secret=secret&
 scope=openid api1

(Form-encoding removed and line breaks added for readability)

Note

You can use the IdentityModel [https://github.com/IdentityModel/IdentityModel2] client library to programmatically access the device authorization endpoint from .NET code. For more information check the IdentityModel docs [https://identitymodel.readthedocs.io/en/latest/client/device_authorize.html].

Discovery Endpoint

The discovery endpoint can be used to retrieve metadata about your IdentityServer -
it returns information like the issuer name, key material, supported scopes etc. See the spec [https://openid.net/specs/openid-connect-discovery-1_0.html] for more details.

The discovery endpoint is available via /.well-known/openid-configuration relative to the base address, e.g.:

https://demo.identityserver.io/.well-known/openid-configuration

Note

You can use the IdentityModel [https://github.com/IdentityModel/IdentityModel2] client library to programmatically access the discovery endpoint from .NET code. For more information check the IdentityModel docs [https://identitymodel.readthedocs.io/en/latest/client/discovery.html].

End Session Endpoint

The end session endpoint can be used to trigger single sign-out (see spec [https://openid.net/specs/openid-connect-session-1_0.html#RPLogout]).

To use the end session endpoint a client application will redirect the user’s browser to the end session URL.
All applications that the user has logged into via the browser during the user’s session can participate in the sign-out.

Note

The URL for the end session endpoint is available via the discovery endpoint.

Parameters

id_token_hint

When the user is redirected to the endpoint, they will be prompted if they really want to sign-out.
This prompt can be bypassed by a client sending the original id_token received from authentication.
This is passed as a query string parameter called id_token_hint.

post_logout_redirect_uri

If a valid id_token_hint is passed, then the client may also send a post_logout_redirect_uri parameter.
This can be used to allow the user to redirect back to the client after sign-out.
The value must match one of the client’s pre-configured PostLogoutRedirectUris (client docs).

state

If a valid post_logout_redirect_uri is passed, then the client may also send a state parameter.
This will be returned back to the client as a query string parameter after the user redirects back to the client.
This is typically used by clients to round-trip state across the redirect.

Example

GET /connect/endsession?id_token_hint=eyJhbGciOiJSUzI1NiIsImtpZCI6IjdlOGFkZmMzMjU1OTEyNzI0ZDY4NWZmYmIwOThjNDEyIiwidHlwIjoiSldUIn0.eyJuYmYiOjE0OTE3NjUzMjEsImV4cCI6MTQ5MTc2NTYyMSwiaXNzIjoiaHR0cDovL2xvY2FsaG9zdDo1MDAwIiwiYXVkIjoianNfb2lkYyIsIm5vbmNlIjoiYTQwNGFjN2NjYWEwNGFmNzkzNmJjYTkyNTJkYTRhODUiLCJpYXQiOjE0OTE3NjUzMjEsInNpZCI6IjI2YTYzNWVmOTQ2ZjRiZGU3ZWUzMzQ2ZjFmMWY1NTZjIiwic3ViIjoiODg0MjExMTMiLCJhdXRoX3RpbWUiOjE0OTE3NjUzMTksImlkcCI6ImxvY2FsIiwiYW1yIjpbInB3ZCJdfQ.STzOWoeVYMtZdRAeRT95cMYEmClixWkmGwVH2Yyiks9BETotbSZiSfgE5kRh72kghN78N3-RgCTUmM2edB3bZx4H5ut3wWsBnZtQ2JLfhTwJAjaLE9Ykt68ovNJySbm8hjZhHzPWKh55jzshivQvTX0GdtlbcDoEA1oNONxHkpDIcr3pRoGi6YveEAFsGOeSQwzT76aId-rAALhFPkyKnVc-uB8IHtGNSyRWLFhwVqAdS3fRNO7iIs5hYRxeFSU7a5ZuUqZ6RRi-bcDhI-djKO5uAwiyhfpbpYcaY_TxXWoCmq8N8uAw9zqFsQUwcXymfOAi2UF3eFZt02hBu-shKA&post_logout_redirect_uri=http%3A%2F%2Flocalhost%3A7017%2Findex.html

Note

You can use the IdentityModel [https://github.com/IdentityModel/IdentityModel2] client library to programmatically create end_session requests .NET code. For more information check the IdentityModel docs [https://identitymodel.readthedocs.io/en/latest/client/end_session.html].

Introspection Endpoint

The introspection endpoint is an implementation of RFC 7662 [https://tools.ietf.org/html/rfc7662].

It can be used to validate reference tokens (or JWTs if the consumer does not have support for appropriate JWT or cryptographic libraries).
The introspection endpoint requires authentication - since the client of an introspection endpoint is an API, you configure the secret on the ApiResource.

Example

POST /connect/introspect
Authorization: Basic xxxyyy

token=<token>

A successful response will return a status code of 200 and either an active or inactive token:

{
 "active": true,
 "sub": "123"
}

Unknown or expired tokens will be marked as inactive:

{
 "active": false,
}

An invalid request will return a 400, an unauthorized request 401.

Note

You can use the IdentityModel [https://github.com/IdentityModel/IdentityModel2] client library to programmatically access the introspection endpoint from .NET code. For more information check the IdentityModel docs [https://identitymodel.readthedocs.io/en/latest/client/introspection.html].

Revocation Endpoint

This endpoint allows revoking access tokens (reference tokens only) and refresh token.
It implements the token revocation specification (RFC 7009) [https://tools.ietf.org/html/rfc7009].

	token

	the token to revoke (required)

	token_type_hint

	either access_token or refresh_token (optional)

Example

POST /connect/revocation HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

token=45ghiukldjahdnhzdauz&token_type_hint=refresh_token

Note

You can use the IdentityModel [https://github.com/IdentityModel/IdentityModel2] client library to programmatically access the revocation endpoint from .NET code. For more information check the IdentityModel docs [https://identitymodel.readthedocs.io/en/latest/client/revocation.html].

Token Endpoint

The token endpoint can be used to programmatically request tokens.
It supports the password, authorization_code, client_credentials, refresh_token and urn:ietf:params:oauth:grant-type:device_code grant types.
Furthermore the token endpoint can be extended to support extension grant types.

Note

IdentityServer supports a subset of the OpenID Connect and OAuth 2.0 token request parameters. For a full list, see here [http://openid.net/specs/openid-connect-core-1_0.html#TokenRequest].

	client_id

	client identifier (required)

	client_secret

	client secret either in the post body, or as a basic authentication header. Optional.

	grant_type

	authorization_code, client_credentials, password, refresh_token, urn:ietf:params:oauth:grant-type:device_code or custom

	scope

	one or more registered scopes. If not specified, a token for all explicitly allowed scopes will be issued.

	redirect_uri

	required for the authorization_code grant type

	code

	the authorization code (required for authorization_code grant type)

	code_verifier

	PKCE proof key

	username

	resource owner username (required for password grant type)

	password

	resource owner password (required for password grant type)

	acr_values

	allows passing in additional authentication related information for the password grant type - identityserver special cases the following proprietary acr_values:

idp:name_of_idp bypasses the login/home realm screen and forwards the user directly to the selected identity provider (if allowed per client configuration)

tenant:name_of_tenant can be used to pass a tenant name to the token endpoint

	refresh_token

	the refresh token (required for refresh_token grant type)

	device_code

	the device code (required for urn:ietf:params:oauth:grant-type:device_code grant type)

Example

POST /connect/token

 client_id=client1&
 client_secret=secret&
 grant_type=authorization_code&
 code=hdh922&
 redirect_uri=https://myapp.com/callback

(Form-encoding removed and line breaks added for readability)

Note

You can use the IdentityModel [https://github.com/IdentityModel/IdentityModel2] client library to programmatically access the token endpoint from .NET code. For more information check the IdentityModel docs [https://identitymodel.readthedocs.io/en/latest/client/token.html].

UserInfo Endpoint

The UserInfo endpoint can be used to retrieve identity information about a user (see spec [http://openid.net/specs/openid-connect-core-1_0.html#UserInfo]).

The caller needs to send a valid access token representing the user.
Depending on the granted scopes, the UserInfo endpoint will return the mapped claims (at least the openid scope is required).

Example

GET /connect/userinfo
Authorization: Bearer <access_token>

HTTP/1.1 200 OK
Content-Type: application/json

{
 "sub": "248289761001",
 "name": "Bob Smith",
 "given_name": "Bob",
 "family_name": "Smith",
 "role": [
 "user",
 "admin"
]
}

Note

You can use the IdentityModel [https://github.com/IdentityModel/IdentityModel2] client library to programmatically access the userinfo endpoint from .NET code. For more information check the IdentityModel docs [https://identitymodel.readthedocs.io/en/latest/client/userinfo.html].

API Resource

This class model an API resource.

	Enabled

	Indicates if this resource is enabled and can be requested. Defaults to true.

	Name

	The unique name of the API. This value is used for authentication with introspection and will be added to the audience of the outgoing access token.

	DisplayName

	This value can be used e.g. on the consent screen.

	Description

	This value can be used e.g. on the consent screen.

	ApiSecrets

	The API secret is used for the introspection endpoint. The API can authenticate with introspection using the API name and secret.

	UserClaims

	List of associated user claim types that should be included in the access token.

	Scopes

	An API must have at least one scope. Each scope can have different settings.

Scopes

In the simple case an API has exactly one scope. But there are cases where you might want to sub-divide the functionality of an API,
and give different clients access to different parts.

	Name

	The unique name of the scope. This is the value a client will use for the scope parameter in the authorize/token request.

	DisplayName

	This value can be used e.g. on the consent screen.

	Description

	This value can be used e.g. on the consent screen.

	Required

	Specifies whether the user can de-select the scope on the consent screen (if the consent screen wants to implement such a feature). Defaults to false.

	Emphasize

	Specifies whether the consent screen will emphasize this scope (if the consent screen wants to implement such a feature). Use this setting for sensitive or important scopes. Defaults to false.

	ShowInDiscoveryDocument

	Specifies whether this scope is shown in the discovery document. Defaults to true.

	UserClaims

	List of associated user claim types that should be included in the access token. The claims specified here will be added to the list of claims specified for the API.

Convenience Constructor Behavior

Just a note about the constructors provided for the ApiResource class.

For full control over the data in the ApiResource, use the default constructor with no parameters.
You would use this approach if you wanted to configure multiple scopes per API.
For example:

new ApiResource
{
 Name = "api2",

 Scopes =
 {
 new Scope()
 {
 Name = "api2.full_access",
 DisplayName = "Full access to API 2"
 },
 new Scope
 {
 Name = "api2.read_only",
 DisplayName = "Read only access to API 2"
 }
 }
}

For simpler scenarios where you only require one scope per API, then several convenience constructors which accept a name are provided.
For example:

new ApiResource("api1", "Some API 1")

Using the convenience constructor is equivalent to this:

new ApiResource
{
 Name = "api1",
 DisplayName = "Some API 1",

 Scopes =
 {
 new Scope()
 {
 Name = "api1",
 DisplayName = "Some API 1"
 }
 }
}

ASP.NET Identity Support

An ASP.NET Identity-based implementation is provided for managing the identity database for users of IdentityServer.
This implementation implements the extensibility points in IdentityServer needed to load identity data for your users to emit claims into tokens.

The repo for this support is located here [https://github.com/IdentityServer/IdentityServer4.AspNetIdentity/] and the NuGet package is here [https://www.nuget.org/packages/IdentityServer4.AspNetIdentity].

To use this library, configure ASP.NET Identity normally.
Then use the AddAspNetIdentity extension method after the call to AddIdentityServer:

public void ConfigureServices(IServiceCollection services)
{
 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

 services.AddIdentityServer()
 .AddAspNetIdentity<ApplicationUser>();
}

AddAspNetIdentity requires as a generic parameter the class that models your user for ASP.NET Identity (and the same one passed to AddIdentity to configure ASP.NET Identity).
This configures IdentityServer to use the ASP.NET Identity implementations of IUserClaimsPrincipalFactory, IResourceOwnerPasswordValidator, and IProfileService.
It also configures some of ASP.NET Identity’s options for use with IdentityServer (such as claim types to use and authentication cookie settings).

Client

The Client class models an OpenID Connect or OAuth 2.0 client -
e.g. a native application, a web application or a JS-based application.

Basics

	Enabled

	Specifies if client is enabled. Defaults to true.

	ClientId

	Unique ID of the client

	ClientSecrets

	List of client secrets - credentials to access the token endpoint.

	RequireClientSecret

	Specifies whether this client needs a secret to request tokens from the token endpoint (defaults to true)

	AllowedGrantTypes

	Specifies the grant types the client is allowed to use. Use the GrantTypes class for common combinations.

	RequirePkce

	Specifies whether clients using an authorization code based grant type must send a proof key

	AllowPlainTextPkce

	Specifies whether clients using PKCE can use a plain text code challenge (not recommended - and default to false)

	RedirectUris

	Specifies the allowed URIs to return tokens or authorization codes to

	AllowedScopes

	By default a client has no access to any resources - specify the allowed resources by adding the corresponding scopes names

	AllowOfflineAccess

	Specifies whether this client can request refresh tokens (be requesting the offline_access scope)

	AllowAccessTokensViaBrowser

	Specifies whether this client is allowed to receive access tokens via the browser.
This is useful to harden flows that allow multiple response types
(e.g. by disallowing a hybrid flow client that is supposed to use code id_token to add the token response type
and thus leaking the token to the browser.

	Properties

	Dictionary to hold any custom client-specific values as needed.

Authentication/Logout

	PostLogoutRedirectUris

	Specifies allowed URIs to redirect to after logout. See the OIDC Connect Session Management spec [https://openid.net/specs/openid-connect-session-1_0.html] for more details.

	FrontChannelLogoutUri

	Specifies logout URI at client for HTTP based front-channel logout. See the OIDC Front-Channel spec [https://openid.net/specs/openid-connect-frontchannel-1_0.html] for more details.

	FrontChannelLogoutSessionRequired

	Specifies if the user’s session id should be sent to the FrontChannelLogoutUri. Defaults to true.

	BackChannelLogoutUri

	Specifies logout URI at client for HTTP based back-channel logout. See the OIDC Back-Channel spec [https://openid.net/specs/openid-connect-backchannel-1_0.html] for more details.

	BackChannelLogoutSessionRequired

	Specifies if the user’s session id should be sent in the request to the BackChannelLogoutUri. Defaults to true.

	EnableLocalLogin

	Specifies if this client can use local accounts, or external IdPs only. Defaults to true.

	IdentityProviderRestrictions

	Specifies which external IdPs can be used with this client (if list is empty all IdPs are allowed). Defaults to empty.

	UserSsoLifetime added in 2.3

	The maximum duration (in seconds) since the last time the user authenticated. Defaults to null.

Token

	IdentityTokenLifetime

	Lifetime to identity token in seconds (defaults to 300 seconds / 5 minutes)

	AccessTokenLifetime

	Lifetime of access token in seconds (defaults to 3600 seconds / 1 hour)

	AuthorizationCodeLifetime

	Lifetime of authorization code in seconds (defaults to 300 seconds / 5 minutes)

	AbsoluteRefreshTokenLifetime

	Maximum lifetime of a refresh token in seconds. Defaults to 2592000 seconds / 30 days

	SlidingRefreshTokenLifetime

	Sliding lifetime of a refresh token in seconds. Defaults to 1296000 seconds / 15 days

	RefreshTokenUsage

	ReUse the refresh token handle will stay the same when refreshing tokens

OneTime the refresh token handle will be updated when refreshing tokens. This is the default.

	RefreshTokenExpiration

	Absolute the refresh token will expire on a fixed point in time (specified by the AbsoluteRefreshTokenLifetime)

Sliding when refreshing the token, the lifetime of the refresh token will be renewed (by the amount specified in SlidingRefreshTokenLifetime). The lifetime will not exceed AbsoluteRefreshTokenLifetime.

	UpdateAccessTokenClaimsOnRefresh

	Gets or sets a value indicating whether the access token (and its claims) should be updated on a refresh token request.

	AccessTokenType

	Specifies whether the access token is a reference token or a self contained JWT token (defaults to Jwt).

	IncludeJwtId

	Specifies whether JWT access tokens should have an embedded unique ID (via the jti claim).

	AllowedCorsOrigins

	If specified, will be used by the default CORS policy service implementations (In-Memory and EF) to build a CORS policy for JavaScript clients.

	Claims

	Allows settings claims for the client (will be included in the access token).

	AlwaysSendClientClaims

	If set, the client claims will be sent for every flow. If not, only for client credentials flow (default is false)

	AlwaysIncludeUserClaimsInIdToken

	When requesting both an id token and access token, should the user claims always be added to the id token instead of requring the client to use the userinfo endpoint. Default is false.

	ClientClaimsPrefix

	If set, the prefix client claim types will be prefixed with. Defaults to client_. The intent is to make sure they don’t accidentally collide with user claims.

	PairWiseSubjectSalt

	Salt value used in pair-wise subjectId generation for users of this client.

Consent Screen

	RequireConsent

	Specifies whether a consent screen is required. Defaults to true.

	AllowRememberConsent

	Specifies whether user can choose to store consent decisions. Defaults to true.

	ConsentLifetime

	Lifetime of a user consent in seconds. Defaults to null (no expiration).

	ClientName

	Client display name (used for logging and consent screen)

	ClientUri

	URI to further information about client (used on consent screen)

	LogoUri

	URI to client logo (used on consent screen)

Device flow

	UserCodeType

	Specifies the type of user code to use for the client. Otherwise falls back to default.

	DeviceCodeLifetime

	Lifetime to device code in seconds (defaults to 300 seconds / 5 minutes)

Device Flow Interaction Service

The IDeviceFlowInteractionService interface is intended to provide services to be used by the user interface to communicate with IdentityServer during device flow authorization.
It is available from the dependency injection system and would normally be injected as a constructor parameter into your MVC controllers for the user interface of IdentityServer.

IDeviceFlowInteractionService APIs

	GetAuthorizationContextAsync

	Returns the DeviceFlowAuthorizationRequest based on the userCode passed to the login or consent pages.

	DeviceFlowInteractionResult

	Completes device authorization for the given userCode.

DeviceFlowAuthorizationRequest

	ClientId

	The client identifier that initiated the request.

	ScopesRequested

	The scopes requested from the authorization request.

DeviceFlowInteractionResult

	IsError

	Specifies if the authorization request errored.

	ErrorDescription

	Error description upon failure.

Entity Framework Support

An EntityFramework-based implementation is provided for the configuration and operational data extensibility points in IdentityServer.
The use of EntityFramework allows any EF-supported database to be used with this library.

The repo for this library is located here [https://github.com/IdentityServer/IdentityServer4.EntityFramework/] and the NuGet package is here [https://www.nuget.org/packages/IdentityServer4.EntityFramework].

The features provided by this library are broken down into two main areas: configuration store and operational store support.
These two different areas can be used independently or together, based upon the needs of the hosting application.

Configuration Store support for Clients, Resources, and CORS settings

If client, identity resource, API resource, or CORS data is desired to be loaded from a EF-supported database
(rather than use in-memory configuration), then the configuration store can be used.
This support provides implementations of the IClientStore, IResourceStore, and the ICorsPolicyService extensibility points.
These implementations use a DbContext-derived class called ConfigurationDbContext to model the tables in the database.

To use the configuration store support, use the AddConfigurationStore extension method after the call to AddIdentityServer:

public IServiceProvider ConfigureServices(IServiceCollection services)
{
 const string connectionString = @"Data Source=(LocalDb)\MSSQLLocalDB;database=IdentityServer4.EntityFramework-2.0.0;trusted_connection=yes;";
 var migrationsAssembly = typeof(Startup).GetTypeInfo().Assembly.GetName().Name;

 services.AddIdentityServer()
 // this adds the config data from DB (clients, resources, CORS)
 .AddConfigurationStore(options =>
 {
 options.ConfigureDbContext = builder =>
 builder.UseSqlServer(connectionString,
 sql => sql.MigrationsAssembly(migrationsAssembly));
 });
}

To configure the configuration store, use the ConfigurationStoreOptions options object passed to the configuration callback.

ConfigurationStoreOptions

This options class contains properties to control the configuration store and ConfigurationDbContext.

	ConfigureDbContext

	Delegate of type Action<DbContextOptionsBuilder> used as a callback to configure the underlying ConfigurationDbContext.
The delegate can configure the ConfigurationDbContext in the same way if EF were being used directly with AddDbContext, which allows any EF-supported database to be used.

	DefaultSchema

	Allows setting the default database schema name for all the tables in the ConfigurationDbContext.

Operational Store support for authorization grants, consents, and tokens (refresh and reference)

If authorization grants, consents, and tokens (refresh and reference) are desired to be loaded from a EF-supported database
(rather than the default in-memory database), then the operational store can be used.
This support provides implementations of the IPersistedGrantStore extensibility point.
The implementation uses a DbContext-derived class called PersistedGrantDbContext to model the table in the database.

To use the operational store support, use the AddOperationalStore extension method after the call to AddIdentityServer:

public IServiceProvider ConfigureServices(IServiceCollection services)
{
 const string connectionString = @"Data Source=(LocalDb)\MSSQLLocalDB;database=IdentityServer4.EntityFramework-2.0.0;trusted_connection=yes;";
 var migrationsAssembly = typeof(Startup).GetTypeInfo().Assembly.GetName().Name;

 services.AddIdentityServer()
 // this adds the operational data from DB (codes, tokens, consents)
 .AddOperationalStore(options =>
 {
 options.ConfigureDbContext = builder =>
 builder.UseSqlServer(connectionString,
 sql => sql.MigrationsAssembly(migrationsAssembly));

 // this enables automatic token cleanup. this is optional.
 options.EnableTokenCleanup = true;
 options.TokenCleanupInterval = 30; // interval in seconds
 });
}

To configure the operational store, use the OperationalStoreOptions options object passed to the configuration callback.

OperationalStoreOptions

This options class contains properties to control the operational store and PersistedGrantDbContext.

	ConfigureDbContext

	Delegate of type Action<DbContextOptionsBuilder> used as a callback to configure the underlying PersistedGrantDbContext.
The delegate can configure the PersistedGrantDbContext in the same way if EF were being used directly with AddDbContext, which allows any EF-supported database to be used.

	DefaultSchema

	Allows setting the default database schema name for all the tables in the PersistedGrantDbContext.

	EnableTokenCleanup

	Indicates whether stale entries will be automatically cleaned up from the database. The default is false.

	TokenCleanupInterval

	The token cleanup interval (in seconds). The default is 3600 (1 hour).

Database creation and schema changes across different versions of IdentityServer

It is very likely that across different versions of IdentityServer (and the EF support) that the database schema will change to accommodate new and changing features.

We do not provide any support for creating your database or migrating your data from one version to another.
You are expected to manage the database creation, schema changes, and data migration in any way your organization sees fit.

Using EF migrations is one possible approach to this.
If you do wish to use migrations, then see the EF quickstart for samples on how to get started, or consult the Microsoft documentation on EF migrations [https://docs.microsoft.com/en-us/ef/core/miscellaneous/cli/dotnet].

We also publish sample SQL scripts [https://github.com/IdentityServer/IdentityServer4.EntityFramework/tree/release/src/Host/Migrations/IdentityServer] for the current version of the database schema.

GrantValidationResult

The GrantValidationResult class models the outcome of grant validation for extensions grants and resource owner password grants.

The most common usage is to either new it up using an identity (success case):

context.Result = new GrantValidationResult(
 subject: "818727",
 authenticationMethod: "custom",
 claims: optionalClaims);

…or using an error and description (failure case):

context.Result = new GrantValidationResult(
 TokenRequestErrors.InvalidGrant,
 "invalid custom credential");

In both case you can pass additional custom values that will be included in the token response.

Identity Resource

This class models an identity resource.

	Enabled

	Indicates if this resource is enabled and can be requested. Defaults to true.

	Name

	The unique name of the identity resource. This is the value a client will use for the scope parameter in the authorize request.

	DisplayName

	This value will be used e.g. on the consent screen.

	Description

	This value will be used e.g. on the consent screen.

	Required

	Specifies whether the user can de-select the scope on the consent screen (if the consent screen wants to implement such a feature). Defaults to false.

	Emphasize

	Specifies whether the consent screen will emphasize this scope (if the consent screen wants to implement such a feature). Use this setting for sensitive or important scopes. Defaults to false.

	ShowInDiscoveryDocument

	Specifies whether this scope is shown in the discovery document. Defaults to true.

	UserClaims

	List of associated user claim types that should be included in the identity token.

IdentityServer Interaction Service

The IIdentityServerInteractionService interface is intended to provide services to be used by the user interface to communicate with IdentityServer, mainly pertaining to user interaction.
It is available from the dependency injection system and would normally be injected as a constructor parameter into your MVC controllers for the user interface of IdentityServer.

IIdentityServerInteractionService APIs

	GetAuthorizationContextAsync

	Returns the AuthorizationRequest based on the returnUrl passed to the login or consent pages.

	IsValidReturnUrl

	Indicates if the returnUrl is a valid URL for redirect after login or consent.

	GetErrorContextAsync

	Returns the ErrorMessage based on the errorId passed to the error page.

	GetLogoutContextAsync

	Returns the LogoutRequest based on the logoutId passed to the logout page.

	CreateLogoutContextAsync

	Used to create a logoutId if there is not one presently.
This creates a cookie capturing all the current state needed for signout and the logoutId identifies that cookie.
This is typically used when there is no current logoutId and the logout page must capture the current user’s state needed for sign-out prior to redirecting to an external identity provider for signout.
The newly created logoutId would need to be round-tripped to the external identity provider at signout time, and then used on the signout callback page in the same way it would be on the normal logout page.

	GrantConsentAsync

	Accepts a ConsentResponse to inform IdentityServer of the user’s consent to a particular AuthorizationRequest.

	GetAllUserConsentsAsync

	Returns a collection of Consent for the user.

	RevokeUserConsentAsync

	Revokes all of a user’s consents and grants for a client.

	RevokeTokensForCurrentSessionAsync

	Revokes all of a user’s consents and grants for clients the user has signed into during their current session.

AuthorizationRequest

	ClientId

	The client identifier that initiated the request.

	RedirectUri

	The URI to redirect the user to after successful authorization.

	DisplayMode

	The display mode passed from the authorization request.

	UiLocales

	The UI locales passed from the authorization request.

	IdP

	The external identity provider requested.
This is used to bypass home realm discovery (HRD).
This is provided via the “idp:” prefix to the acr_values parameter on the authorize request.

	Tenant

	The tenant requested.
This is provided via the “tenant:” prefix to the acr_values parameter on the authorize request.

	LoginHint

	The expected username the user will use to login.
This is requested from the client via the login_hint parameter on the authorize request.

	PromptMode

	The prompt mode requested from the authorization request.

	AcrValues

	The acr values passed from the authorization request.

	ScopesRequested

	The scopes requested from the authorization request.

	Parameters

	The entire parameter collection passed to the authorization request.

ErrorMessage

	DisplayMode

	The display mode passed from the authorization request.

	UiLocales

	The UI locales passed from the authorization request.

	Error

	The error code.

	RequestId

	The per-request identifier. This can be used to display to the end user and can be used in diagnostics.

LogoutRequest

	ClientId

	The client identifier that initiated the request.

	PostLogoutRedirectUri

	The URL to redirect the user to after they have logged out.

	SessionId

	The user’s current session id.

	SignOutIFrameUrl

	The URL to render in an <iframe> on the logged out page to enable single sign-out.

	Parameters

	The entire parameter collection passed to the end session endpoint.

	ShowSignoutPrompt

	Indicates if the user should be prompted for signout based upon the parameters passed to the end session endpoint.

ConsentResponse

	ScopesConsented

	The collection of scopes the user consented to.

	RememberConsent

	Flag indicating if the user’s consent is to be persisted.

Consent

	SubjectId

	The subject id that granted the consent.

	ClientId

	The client identifier for the consent.

	Scopes

	The collection of scopes consented to.

	CreationTime

	The date and time when the consent was granted.

	Expiration

	The date and time when the consent will expire.

IdentityServer Options

	
	IssuerUri

	Set the issuer name that will appear in the discovery document and the issued JWT tokens.
It is recommended to not set this property, which infers the issuer name from the host name that is used by the clients.

	
	PublicOrigin

	The origin of this server instance, e.g. https://myorigin.com. If not set, the origin name is inferred from the request.

Endpoints

Allows enabling/disabling individual endpoints, e.g. token, authorize, userinfo etc.

By default all endpoints are enabled, but you can lock down your server by disabling endpoint that you don’t need.

Discovery

Allows enabling/disabling various sections of the discovery document, e.g. endpoints, scopes, claims, grant types etc.

The CustomEntries dictionary allows adding custom elements to the discovery document.

Authentication

	
	CookieLifetime

	The authentication cookie lifetime (only effective if the IdentityServer-provided cookie handler is used).

	
	CookieSlidingExpiration

	Specified if the cookie should be sliding or not (only effective if the IdentityServer-provided cookie handler is used).

	
	RequireAuthenticatedUserForSignOutMessage

	Indicates if user must be authenticated to accept parameters to end session endpoint. Defaults to false.

	
	CheckSessionCookieName

	The name of the cookie used for the check session endpoint.

	
	RequireCspFrameSrcForSignout

	If set, will require frame-src CSP headers being emitting on the end session callback endpoint which renders iframes to clients for front-channel signout notification. Defaults to true.

Events

Allows configuring if and which events should be submitted to a registered event sink. See here for more information on events.

InputLengthRestrictions

Allows setting length restrictions on various protocol parameters like client id, scope, redirect URI etc.

UserInteraction

	
	LoginUrl, LogoutUrl, ConsentUrl, ErrorUrl, DeviceVerificationUrl

	Sets the the URLs for the login, logout, consent, error and device verification pages.

	
	LoginReturnUrlParameter

	Sets the name of the return URL parameter passed to the login page. Defaults to returnUrl.

	
	LogoutIdParameter

	Sets the name of the logout message id parameter passed to the logout page. Defaults to logoutId.

	
	ConsentReturnUrlParameter

	Sets the name of the return URL parameter passed to the consent page. Defaults to returnUrl.

	
	ErrorIdParameter

	Sets the name of the error message id parameter passed to the error page. Defaults to errorId.

	
	CustomRedirectReturnUrlParameter

	Sets the name of the return URL parameter passed to a custom redirect from the authorization endpoint. Defaults to returnUrl.

	
	DeviceVerificationUserCodeParameter

	Sets the name of the user code parameter passed to the device verification page. Defaults to userCode.

	
	CookieMessageThreshold

	Certain interactions between IdentityServer and some UI pages require a cookie to pass state and context (any of the pages above that have a configurable “message id” parameter).
Since browsers have limits on the number of cookies and their size, this setting is used to prevent too many cookies being created.
The value sets the maximum number of message cookies of any type that will be created.
The oldest message cookies will be purged once the limit has been reached.
This effectively indicates how many tabs can be opened by a user when using IdentityServer.

Caching

These setting only apply if the respective caching has been enabled in the services configuration in startup.

	
	ClientStoreExpiration

	Cache duration of client configuration loaded from the client store.

	
	ResourceStoreExpiration

	Cache duration of identity and API resource configuration loaded from the resource store.

CORS

IdentityServer supports CORS for some of its endpoints.
The underlying CORS implementation is provided from ASP.NET Core, and as such it is automatically registered in the dependency injection system.

	
	CorsPolicyName

	Name of the CORS policy that will be evaluated for CORS requests into IdentityServer (defaults to "IdentityServer4").
The policy provider that handles this is implemented in terms of the ICorsPolicyService registered in the dependency injection system.
If you wish to customize the set of CORS origins allowed to connect, then it is recommended that you provide a custom implementation of ICorsPolicyService.

	
	CorsPaths

	The endpoints within IdentityServer where CORS is supported.
Defaults to the discovery, user info, token, and revocation endpoints.

	
	PreflightCacheDuration

	Nullable<TimeSpan> indicating the value to be used in the preflight Access-Control-Max-Age response header.
Defaults to null indicating no caching header is set on the response.

CSP (Content Security Policy)

IdentityServer emits CSP headers for some responses, where appropriate.

	
	Level

	The level of CSP to use. CSP Level 2 is used by default, but if older browsers must be supported then this be changed to CspLevel.One to accomodate them.

	
	AddDeprecatedHeader

	Indicates if the older X-Content-Security-Policy CSP header should also be emitted (in addition to the standards-based header value). Defaults to true.

Device Flow

	
	DefaultUserCodeType

	The user code type to use, unless set at the client level. Defaults to Numeric, a 9-digit code.

	
	Interval

	Defines the minimum allowed polling interval on the token endpoint. Defaults to 5.

Profile Service

Often IdentityServer requires identity information about users when creating tokens or when handling requests to the userinfo or introspection endpoints.
By default, IdentityServer only has the claims in the authentication cookie to draw upon for this identity data.

It is impractical to put all of the possible claims needed for users into the cookie, so IdentityServer defines an extensibility point for allowing claims to be dynamically loaded as needed for a user.
This extensibility point is the IProfileService and it is common for a developer to implement this interface to access a custom database or API that contains the identity data for users.

IProfileService APIs

	GetProfileDataAsync

	The API that is expected to load claims for a user. It is passed an instance of ProfileDataRequestContext.

	IsActiveAsync

	The API that is expected to indicate if a user is currently allowed to obtain tokens. It is passed an instance of IsActiveContext.

ProfileDataRequestContext

Models the request for user claims and is the vehicle to return those claims. It contains these properties:

	Subject

	The ClaimsPrincipal modeling the user.

	Client

	The Client for which the claims are being requested.

	RequestedClaimTypes

	The collection of claim types being requested.

	Caller

	An identifier for the context in which the claims are being requested (e.g. an identity token, an access token, or the user info endpoint). The constant IdentityServerConstants.ProfileDataCallers contains the different constant values.

	IssuedClaims

	The list of Claim s that will be returned. This is expected to be populated by the custom IProfileService implementation.

	AddRequestedClaims

	Extension method on the ProfileDataRequestContext to populate the IssuedClaims, but first filters the claims based on RequestedClaimTypes.

Requested scopes and claims mapping

The scopes requested by the client control what user claims are returned in the tokens to the client.
The GetProfileDataAsync method is responsible for dynamically obtaining those claims based on the RequestedClaimTypes collection on the ProfileDataRequestContext.

The RequestedClaimTypes collection is populated based on the user claims defined on the resources that model the scopes.
If the scopes requested are an identity resources, then the claims in the RequestedClaimTypes will be populated based on the user claim types defined in the IdentityResource.
If the scopes requested are an API resources, then the claims in the RequestedClaimTypes will be populated based on the user claim types defined in the ApiResource and/or the Scope.

IsActiveContext

Models the request to determine is the user is currently allowed to obtain tokens. It contains these properties:

	Subject

	The ClaimsPrincipal modeling the user.

	Client

	The Client for which the claims are being requested.

	Caller

	An identifier for the context in which the claims are being requested (e.g. an identity token, an access token, or the user info endpoint). The constant IdentityServerConstants.ProfileDataCallers contains the different constant values.

	IsActive

	The flag indicating if the user is allowed to obtain tokens. This is expected to be assigned by the custom IProfileService implementation.

Adding more API Endpoints

You can add more API endpoints to the application hosting IdentityServer4.

You typically want to protect those APIs by the very instance of IdentityServer they are hosted in.
That’s not a problem. Simply add the token validation handler to the host (see here):

public void ConfigureServices(IServiceCollection services)
{
 services.AddMvc();

 // details omitted
 services.AddIdentityServer();

 services.AddAuthentication()
 .AddIdentityServerAuthentication("token", isAuth =>
 {
 isAuth.Authority = "base_address_of_identityserver";
 isAuth.ApiName = "name_of_api";
 });
}

On your API, you need to add the [Authorize] attribute and explicitly reference the authentication scheme you want to use
(this is token in this example, but you can choose whatever name you like):

public class TestController : ControllerBase
{
 [Route("test")]
 [Authorize(AuthenticationSchemes = "token")]
 public IActionResult Get()
 {
 var claims = User.Claims.Select(c => new { c.Type, c.Value }).ToArray();
 return Ok(new { message = "Hello API", claims });
 }
}

If you want to call that API from browsers, you additionally need to configure CORS (see here).

Discovery

You can also add your endpoints to the discovery document if you want, e.g like this:

services.AddIdentityServer(options =>
{
 options.Discovery.CustomEntries.Add("custom_endpoint", "~/api/custom");
})

Adding new Protocols

IdentityServer4 allows adding support for other protocols besides the built-in
support for OpenID Connect and OAuth 2.0.

You can add those additional protocol endpoints either as middleware or using e.g. MVC controllers.
In both cases you have access to the ASP.NET Core DI system which allows re-using our
internal services like access to client definitions or key material.

A sample for adding WS-Federation support can be found here [https://github.com/IdentityServer/IdentityServer4.WsFederation].

Typical authentication workflow

An authentication request typically works like this:

	authentication request arrives at protocol endpoint

	protocol endpoint does input validation

	
	redirection to login page with a return URL set back to protocol endpoint (if user is anonymous)

	
	access to current request details via the IIdentityServerInteractionService

	authentication of user (either locally or via external authentication middleware)

	signing in the user

	redirect back to protocol endpoint

	creation of protocol response (token creation and redirect back to client)

Useful IdentityServer services

To achieve the above workflow, some interaction points with IdentityServer are needed.

Access to configuration and redirecting to the login page

You can get access to the IdentityServer configuration by injecting the IdentityServerOptions
class into your code. This, e.g. has the configured path to the login page:

var returnUrl = Url.Action("Index");
returnUrl = returnUrl.AddQueryString(Request.QueryString.Value);

var loginUrl = _options.UserInteraction.LoginUrl;
var url = loginUrl.AddQueryString(_options.UserInteraction.LoginReturnUrlParameter, returnUrl);

return Redirect(url);

Interaction between the login page and current protocol request

The IIdentityServerInteractionService supports turning a protocol return URL into a
parsed and validated context object:

var context = await _interaction.GetAuthorizationContextAsync(returnUrl);

By default the interaction service only understands OpenID Connect protocol messages.
To extend support, you can write your own IReturnUrlParser:

public interface IReturnUrlParser
{
 bool IsValidReturnUrl(string returnUrl);
 Task<AuthorizationRequest> ParseAsync(string returnUrl);
}

..and then register the parser in DI:

builder.Services.AddTransient<IReturnUrlParser, WsFederationReturnUrlParser>();

This allows the login page to get to information like the client configuration and other
protocol parameters.

Access to configuration and key material for creating the protocol response

By injecting the IKeyMaterialService into your code, you get access to the configured
signing credential and validation keys:

var credential = await _keys.GetSigningCredentialsAsync();
var key = credential.Key as Microsoft.IdentityModel.Tokens.X509SecurityKey;

var descriptor = new SecurityTokenDescriptor
{
 AppliesToAddress = result.Client.ClientId,
 Lifetime = new Lifetime(DateTime.UtcNow, DateTime.UtcNow.AddSeconds(result.Client.IdentityTokenLifetime)),
 ReplyToAddress = result.Client.RedirectUris.First(),
 SigningCredentials = new X509SigningCredentials(key.Certificate, result.RelyingParty.SignatureAlgorithm, result.RelyingParty.DigestAlgorithm),
 Subject = outgoingSubject,
 TokenIssuerName = _contextAccessor.HttpContext.GetIdentityServerIssuerUri(),
 TokenType = result.RelyingParty.TokenType
};

Protecting APIs

IdentityServer issues access tokens in the JWT [https://tools.ietf.org/html/rfc7519] (JSON Web Token) format by default.

Every relevant platform today has support for validating JWT tokens, a good list of JWT libraries can be found here [https://jwt.io].
Popular libraries are e.g.:

	JWT bearer authentication handler [https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.JwtBearer/] for ASP.NET Core

	JWT bearer authentication middleware [https://www.nuget.org/packages/Microsoft.Owin.Security.Jwt] for Katana

	IdentityServer authentication middleware [https://identityserver.github.io/Documentation/docsv2/consuming/overview.html] for Katana

	jsonwebtoken [https://www.npmjs.com/package/jsonwebtoken] for nodejs

Protecting a ASP.NET Core-based API is only a matter of configuring the JWT bearer authentication handler in DI, and adding the authentication middleware to the pipeline:

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();

 services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
 .AddJwtBearer(options =>
 {
 // base-address of your identityserver
 options.Authority = "https://demo.identityserver.io";

 // name of the API resource
 options.Audience = "api1";
 });
 }

 public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
 {
 app.UseAuthentication();
 app.UseMvc();
 }
}

The IdentityServer authentication handler

Our authentication handler serves the same purpose as the above handler
(in fact it uses the Microsoft JWT library internally), but adds a couple of additional features:

	support for both JWTs and reference tokens

	extensible caching for reference tokens

	unified configuration model

	scope validation

For the simplest case, our handler configuration looks very similar to the above snippet:

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc();

 services.AddAuthentication(IdentityServerAuthenticationDefaults.AuthenticationScheme)
 .AddIdentityServerAuthentication(options =>
 {
 // base-address of your identityserver
 options.Authority = "https://demo.identityserver.io";

 // name of the API resource
 options.ApiName = "api1";
 });
 }

 public void Configure(IApplicationBuilder app, ILoggerFactory loggerFactory)
 {
 app.UseAuthentication();
 app.UseMvc();
 }
}

You can get the package from nuget [https://www.nuget.org/packages/IdentityServer4.AccessTokenValidation/]
or github [https://github.com/IdentityServer/IdentityServer4.AccessTokenValidation].

Supporting reference tokens

If the incoming token is not a JWT, our middleware will contact the introspection endpoint found in the discovery document to validate the token.
Since the introspection endpoint requires authentication, you need to supply the configured API secret, e.g.:

.AddIdentityServerAuthentication(options =>
{
 // base-address of your identityserver
 options.Authority = "https://demo.identityserver.io";

 // name of the API resource
 options.ApiName = "api1";
 options.ApiSecret = "secret";
})

Typically, you don’t want to do a roundtrip to the introspection endpoint for each incoming request. The middleware has a built-in cache that you can enable like this:

.AddIdentityServerAuthentication(options =>
{
 // base-address of your identityserver
 options.Authority = "https://demo.identityserver.io";

 // name of the API resource
 options.ApiName = "api1";
 options.ApiSecret = "secret";

 options.EnableCaching = true;
 options.CacheDuration = TimeSpan.FromMinutes(10); // that's the default
})

The handler will use whatever IDistributedCache implementation is registered in the DI container (e.g. the standard MemoryDistributedCache).

Validating scopes

The ApiName property checks if the token has a matching audience (or short aud) claim.

In IdentityServer you can also sub-divide APIs into multiple scopes. If you need that granularity you can use the ASP.NET Core authorization policy system to check for scopes.

Creating a global policy:

services
 .AddMvcCore(options =>
 {
 // require scope1 or scope2
 var policy = ScopePolicy.Create("scope1", "scope2");
 options.Filters.Add(new AuthorizeFilter(policy));
 })
 .AddJsonFormatters()
 .AddAuthorization();

Composing a scope policy:

services.AddAuthorization(options =>
{
 options.AddPolicy("myPolicy", builder =>
 {
 // require scope1
 builder.RequireScope("scope1");
 // and require scope2 or scope3
 builder.RequireScope("scope2", "scope3");
 });
});

Defining Clients

Clients represent applications that can request tokens from your identityserver.

The details vary, but you typically define the following common settings for a client:

	a unique client ID

	a secret if needed

	the allowed interactions with the token service (called a grant type)

	a network location where identity and/or access token gets sent to (called a redirect URI)

	a list of scopes (aka resources) the client is allowed to access

Note

At runtime, clients are retrieved via an implementation of the IClientStore. This allows loading them from arbitrary data sources like config files or databases. For this document we will use the in-memory version of the client store. You can wire up the in-memory store in ConfigureServices via the AddInMemoryClients extensions method.

Defining a client for server to server communication

In this scenario no interactive user is present - a service (aka client) wants to communicate with an API (aka scope):

public class Clients
{
 public static IEnumerable<Client> Get()
 {
 return new List<Client>
 {
 new Client
 {
 ClientId = "service.client",
 ClientSecrets = { new Secret("secret".Sha256()) },

 AllowedGrantTypes = GrantTypes.ClientCredentials,
 AllowedScopes = { "api1", "api2.read_only" }
 }
 };
 }
}

Defining browser-based JavaScript client (e.g. SPA) for user authentication and delegated access and API

This client uses the so called implicit flow to request an identity and access token from JavaScript:

var jsClient = new Client
{
 ClientId = "js",
 ClientName = "JavaScript Client",
 ClientUri = "http://identityserver.io",

 AllowedGrantTypes = GrantTypes.Implicit,
 AllowAccessTokensViaBrowser = true,

 RedirectUris = { "http://localhost:7017/index.html" },
 PostLogoutRedirectUris = { "http://localhost:7017/index.html" },
 AllowedCorsOrigins = { "http://localhost:7017" },

 AllowedScopes =
 {
 IdentityServerConstants.StandardScopes.OpenId,
 IdentityServerConstants.StandardScopes.Profile,
 IdentityServerConstants.StandardScopes.Email,

 "api1", "api2.read_only"
 }
};

Defining a server-side web application (e.g. MVC) for use authentication and delegated API access

Interactive server side (or native desktop/mobile) applications use the hybrid flow.
This flow gives you the best security because the access tokens are transmitted via back-channel calls only (and gives you access to refresh tokens):

var mvcClient = new Client
{
 ClientId = "mvc",
 ClientName = "MVC Client",
 ClientUri = "http://identityserver.io",

 AllowedGrantTypes = GrantTypes.Hybrid,
 AllowOfflineAccess = true,
 ClientSecrets = { new Secret("secret".Sha256()) },

 RedirectUris = { "http://localhost:21402/signin-oidc" },
 PostLogoutRedirectUris = { "http://localhost:21402/" },
 FrontChannelLogoutUri = "http://localhost:21402/signout-oidc",

 AllowedScopes =
 {
 IdentityServerConstants.StandardScopes.OpenId,
 IdentityServerConstants.StandardScopes.Profile,
 IdentityServerConstants.StandardScopes.Email,

 "api1", "api2.read_only"
 },
};

Consent

During an authorization request, if IdentityServer requires user consent the browser will be redirected to the consent page.

Consent is used to allow an end user to grant a client access to resources (identity or API).
This is typically only necessary for third-party clients, and can be enabled/disabled per-client on the client settings.

Consent Page

In order for the user to grant consent, a consent page must be provided by the hosting application.
The quickstart UI [https://github.com/IdentityServer/IdentityServer4.Quickstart.UI] has a basic implementation of a consent page.

A consent page normally renders the display name of the current user,
the display name of the client requesting access,
the logo of the client,
a link for more information about the client,
and the list of resources the client is requesting access to.
It’s also common to allow the user to indicate that their consent should be “remembered” so they are not prompted again in the future for the same client.

Once the user has provided consent, the consent page must inform IdentityServer of the consent, and then the browser must be redirected back to the authorization endpoint.

Authorization Context

IdentityServer will pass a returnUrl parameter (configurable on the user interaction options) to the consent page which contains the parameters of the authorization request.
These parameters provide the context for the consent page, and can be read with help from the interaction service.
The GetAuthorizationContextAsync API will return an instance of AuthorizationRequest.

Additional details about the client or resources can be obtained using the IClientStore and IResourceStore interfaces.

Informing IdentityServer of the consent result

The GrantConsentAsync API on the interaction service allows the consent page to inform IdentityServer of the outcome of consent (which might also be to deny the client access).

IdentityServer will temporarily persist the outcome of the consent.
This persistence uses a cookie by default, as it only needs to last long enough to convey the outcome back to the authorization endpoint.
This temporary persistence is different than the persistence used for the “remember my consent” feature (and it is the authorization endpoint which persists the “remember my consent” for the user).
If you wish to use some other persistence between the consent page and the authorization redirect, then you can implement IMessageStore<ConsentResponse> and register the implementation in DI.

Returning the user to the authorization endpoint

Once the consent page has informed IdentityServer of the outcome, the user can be redirected back to the returnUrl.
Your consent page should protect against open redirects by verifying that the returnUrl is valid.
This can be done by calling IsValidReturnUrl on the interaction service.
Also, if GetAuthorizationContextAsync returns a non-null result, then you can also trust that the returnUrl is valid.

CORS

Many endpoints in IdentityServer will be accessed via Ajax calls from JavaScript-based clients.
Given that IdentityServer will most likely be hosted on a different origin than these clients, this implies that Cross-Origin Resource Sharing [http://www.html5rocks.com/en/tutorials/cors/] (CORS) will need to be configured.

Client-based CORS Configuration

One approach to configuring CORS is to use the AllowedCorsOrigins collection on the client configuration.
Simply add the origin of the client to the collection and the default configuration in IdentityServer will consult these values to allow cross-origin calls from the origins.

Note

Be sure to use an origin (not a URL) when configuring CORS. For example: https://foo:123/ is a URL, whereas https://foo:123 is an origin.

This default CORS implementation will be in use if you are using either the “in-memory” or EF-based client configuration that we provide.
If you define your own IClientStore, then you will need to implement your own custom CORS policy service (see below).

Custom Cors Policy Service

IdentityServer allows the hosting application to implement the ICorsPolicyService to completely control the CORS policy.

The single method to implement is: Task<bool> IsOriginAllowedAsync(string origin).
Return true if the origin is allowed, false otherwise.

Once implemented, simply register the implementation in DI and IdentityServer will then use your custom implementation.

DefaultCorsPolicyService

If you simply wish to hard-code a set of allowed origins, then there is a pre-built ICorsPolicyService implementation you can use called DefaultCorsPolicyService.
This would be configured as a singleton in DI, and hard-coded with its AllowedOrigins collection, or setting the flag AllowAll to true to allow all origins.
For example, in ConfigureServices:

var cors = new DefaultCorsPolicyService(_loggerFactory.CreateLogger<DefaultCorsPolicyService>())
{
 AllowedOrigins = { "https://foo", "https://bar" }
};
services.AddSingleton<ICorsPolicyService>(cors);

Note

Use AllowAll with caution.

Mixing IdentityServer’s CORS policy with ASP.NET Core’s CORS policies

IdentityServer uses the CORS middleware from ASP.NET Core to provide its CORS implementation.
It is possible that your application that hosts IdentityServer might also require CORS for its own custom endpoints.
In general, both should work together in the same application.

Your code should use the documented CORS features from ASP.NET Core without regard to IdentityServer.
This means you should define policies and register the middleware as normal.
If your application defines policies in ConfigureServices, then those should continue to work in the same places you are using them (either where you configure the CORS middleware or where you use the MVC EnableCors attributes in your controller code).
If instead you define an inline policy in the use of the CORS middleware (via the policy builder callback), then that too should continue to work normally.

The one scenario where there might be a conflict between your use of the ASP.NET Core CORS services and IdentityServer is if you decide to create a custom ICorsPolicyProvider.
Given the design of the ASP.NET Core’s CORS services and middleware, IdentityServer implements its own custom ICorsPolicyProvider and registers it in the DI system.
Fortunately, the IdentityServer implementation is designed to use the decorator pattern to wrap any existing ICorsPolicyProvider that is already registered in DI.
What this means is that you can also implement the ICorsPolicyProvider, but it simply needs to be registered prior to IdentityServer in DI (e.g. in ConfigureServices).

Cryptography, Keys and HTTPS

IdentityServer relies on a couple of crypto mechanisms to do its job.

Token signing and validation

IdentityServer needs an asymmetric key pair to sign and validate JWTs.
This keypair can be a certificate/private key combination or raw RSA keys.
In any case it must support RSA with SHA256.

Loading of signing key and the corresponding validation part is done by implementations of ISigningCredentialStore and IValidationKeysStore.
If you want to customize the loading of the keys, you can implement those interfaces and register them with DI.

The DI builder extensions has a couple of convenience methods to set signing and validation keys - see here.

Signing key rollover

While you can only use one signing key at a time, you can publish more than one validation key to the discovery document.
This is useful for key rollover.

A rollover typically works like this:

	you request/create new key material

	you publish the new validation key in addition to the current one. You can use the AddValidationKeys builder extension method for that.

	all clients and APIs now have a chance to learn about the new key the next time they update their local copy of the discovery document

	after a certain amount of time (e.g. 24h) all clients and APIs should now accept both the old and the new key material

	keep the old key material around for as long as you like, maybe you have long-lived tokens that need validation

	retire the old key material when it is not used anymore

	all clients and APIs will “forget” the old key next time they update their local copy of the discovery document

This requires that clients and APIs use the discovery document, and also have a feature to periodically refresh their configuration.

Data protection

Cookie authentication in ASP.NET Core (or anti-forgery in MVC) use the ASP.NET Core data protection feature.
Depending on your deployment scenario, this might require additional configuration. See the Microsoft docs [https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/configuration/overview] for more information.

HTTPS

We don’t enforce the use of HTTPS, but for production it is mandatory for every interaction with IdentityServer.

Deployment

Your identity server is just a standard ASP.NET Core application including the IdentityServer middleware.
Read the official Microsoft documentation [https://docs.microsoft.com/en-us/aspnet/core/publishing] on publishing and deployment first.

Typical architecture

Typically you will design your IdentityServer deployment for high availability:

[image: ../_images/deployment.png]
IdentityServer itself is stateless and does not require server affinity - but there is data that needs to be shared between the instances.

Configuration data

This typically includes:

	resources

	clients

	startup configuration, e.g. key material, external provider settings etc…

The way you store that data depends on your environment. In situations where configuration data rarely changes we recommend using the in-memory stores and code or configuration files.

In highly dynamic environments (e.g. Saas) we recommend using a database or configuration service to load configuration dynamically.

IdentityServer supports code configuration and configuration files (see here [https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration]) out of the box.
For databases we provide support for Entity Framework Core [https://github.com/IdentityServer/IdentityServer4.EntityFramework] based databases.

You can also build your own configuration stores by implementing IResourceStore and IClientStore.

Key material

Another important piece of startup configuration is your key material, see here for more details on key material and cryptography.

Operational data

For certain operations, IdentityServer needs a persistence store to keep state, this includes:

	issuing authorization codes

	issuing reference and refresh tokens

	storing consent

You can either use a traditional database for storing operational data, or use a cache with persistence features like Redis.
The EF Core implementation mentioned above has also support for operational data.

You can also implement support for your own custom storage mechanism by implementing IPersistedGrantStore - by default IdentityServer injects an in-memory version.

ASP.NET Core data protection

ASP.NET Core itself needs shared key material for protecting sensitive data like cookies, state strings etc.
See the official docs here [https://docs.microsoft.com/en-us/aspnet/core/security/data-protection/].

You can either re-use one of the above persistence store or use something simple like a shared file if possible.

Discovery

The discovery document can be found at https://baseaddress/.well-known/openid-configuration.
It contains information about the endpoints, key material and features of your IdentityServer.

By default all information is included in the discovery document, but by using configuration options, you can hide
individual sections, e.g.:

services.AddIdentityServer(options =>
{
 options.Discovery.ShowIdentityScopes = false;
 options.Discovery.ShowApiScopes = false;
 options.Discovery.ShowClaims = false;
 options.Discovery.ShowExtensionGrantTypes = false;
});

Extending discovery

You can add custom entries to the discovery document, e.g:

services.AddIdentityServer(options =>
{
 options.Discovery.CustomEntries.Add("my_setting", "foo");
 options.Discovery.CustomEntries.Add("my_complex_setting",
 new
 {
 foo = "foo",
 bar = "bar"
 });
});

When you add a custom value that starts with ~/ it will be expanded to an absolute path below the IdentityServer base address, e.g.:

options.Discovery.CustomEntries.Add("my_custom_endpoint", "~/custom");

If you want to take full control over the rendering of the discovery (and jwks) document, you can implement the IDiscoveryResponseGenerator
interface (or derive from our default implementation).

Events

While logging is more low level “printf” style - events represent higher level information about certain operations in IdentityServer.
Events are structured data and include event IDs, success/failure information, categories and details.
This makes it easy to query and analyze them and extract useful information that can be used for further processing.

Events work great with event stores like ELK [https://www.elastic.co/webinars/introduction-elk-stack], Seq [https://getseq.net/] or Splunk [https://www.splunk.com/].

Emitting events

Events are not turned on by default - but can be globally configured in the ConfigureServices method, e.g.:

services.AddIdentityServer(options =>
{
 options.Events.RaiseSuccessEvents = true;
 options.Events.RaiseFailureEvents = true;
 options.Events.RaiseErrorEvents = true;
});

To emit an event use the IEventService from the DI container and call the RaiseAsync method, e.g.:

public async Task<IActionResult> Login(LoginInputModel model)
{
 if (_users.ValidateCredentials(model.Username, model.Password))
 {
 // issue authentication cookie with subject ID and username
 var user = _users.FindByUsername(model.Username);
 await _events.RaiseAsync(new UserLoginSuccessEvent(user.Username, user.SubjectId, user.Username));
 }
 else
 {
 await _events.RaiseAsync(new UserLoginFailureEvent(model.Username, "invalid credentials"));
 }
}

Custom sinks

Our default event sink will simply serialize the event class to JSON and forward it to the ASP.NET Core logging system.
If you want to connect to a custom event store, implement the IEventSink interface and register it with DI.

The following example uses Seq [https://getseq.net/] to emit events:

 public class SeqEventSink : IEventSink
{
 private readonly Logger _log;

 public SeqEventSink()
 {
 _log = new LoggerConfiguration()
 .WriteTo.Seq("http://localhost:5341")
 .CreateLogger();
 }

 public Task PersistAsync(Event evt)
 {
 if (evt.EventType == EventTypes.Success ||
 evt.EventType == EventTypes.Information)
 {
 _log.Information("{Name} ({Id}), Details: {@details}",
 evt.Name,
 evt.Id,
 evt);
 }
 else
 {
 _log.Error("{Name} ({Id}), Details: {@details}",
 evt.Name,
 evt.Id,
 evt);
 }

 return Task.CompletedTask;
 }
}

Add the Serilog.Sinks.Seq package to your host to make the above code work.

Built-in events

The following events are defined in IdentityServer:

	ApiAuthenticationFailureEvent & ApiAuthenticationSuccessEvent

	Gets raised for successful/failed API authentication at the introspection endpoint.

	ClientAuthenticationSuccessEvent & ClientAuthenticationFailureEvent

	Gets raised for successful/failed client authentication at the token endpoint.

	TokenIssuedSuccessEvent & TokenIssuedFailureEvent

	Gets raised for successful/failed attempts to request identity tokens, access tokens, refresh tokens and authorization codes.

	TokenIntrospectionSuccessEvent & TokenIntrospectionFailureEvent

	Gets raised for successful token introspection requests.

	TokenRevokedSuccessEvent

	Gets raised for successful token revocation requests.

	UserLoginSuccessEvent & UserLoginFailureEvent

	Gets raised by the quickstart UI for successful/failed user logins.

	UserLogoutSuccessEvent

	Gets raised for successful logout requests.

	ConsentGrantedEvent & ConsentDeniedEvent

	Gets raised in the consent UI.

	UnhandledExceptionEvent

	Gets raised for unhandled exceptions.

	DeviceAuthorizationFailureEvent & DeviceAuthorizationSuccessEvent

	Gets raised for successful/failed device authorization requests.

Custom events

You can create your own events and emit them via our infrastructure.

You need to derive from our base Event class which injects contextual information like activity ID, timestamp, etc.
Your derived class can then add arbitrary data fields specific to the event context:

public class UserLoginFailureEvent : Event
{
 public UserLoginFailureEvent(string username, string error)
 : base(EventCategories.Authentication,
 "User Login Failure",
 EventTypes.Failure,
 EventIds.UserLoginFailure,
 error)
 {
 Username = username;
 }

 public string Username { get; set; }
}

Extension Grants

OAuth 2.0 defines standard grant types for the token endpoint, such as password, authorization_code and refresh_token. Extension grants are a way to add support for non-standard token issuance scenarios like token translation, delegation, or custom credentials.

You can add support for additional grant types by implementing the IExtensionGrantValidator interface:

public interface IExtensionGrantValidator
{
 /// <summary>
 /// Handles the custom grant request.
 /// </summary>
 /// <param name="request">The validation context.</param>
 Task ValidateAsync(ExtensionGrantValidationContext context);

 /// <summary>
 /// Returns the grant type this validator can deal with
 /// </summary>
 /// <value>
 /// The type of the grant.
 /// </value>
 string GrantType { get; }
}

The ExtensionGrantValidationContext object gives you access to:

	the incoming token request - both the well-known validated values, as well as any custom values (via the Raw collection)

	the result - either error or success

	custom response parameters

To register the extension grant, add it to DI:

builder.AddExtensionGrantValidator<MyExtensionsGrantValidator>();

Example: Simple delegation using an extension grant

Imagine the following scenario - a front end client calls a middle tier API using a token acquired via an interactive flow (e.g. hybrid flow).
This middle tier API (API 1) now wants to call a back end API (API 2) on behalf of the interactive user:

[image: ../_images/delegation.png]
In other words, the middle tier API (API 1) needs an access token containing the user’s identity, but with the scope of the back end API (API 2).

Note

You might have heard of the term poor man’s delegation where the access token from the front end is simply forwarded to the back end. This has some shortcomings, e.g. API 2 must now accept the API 1 scope which would allow the user to call API 2 directly. Also - you might want to add some delegation specific claims into the token, e.g. the fact that the call path is via API 1.

Implementing the extension grant

The front end would send the token to API 1, and now this token needs to be exchanged at IdentityServer with a new token for API 2.

On the wire the call to token service for the exchange could look like this:

POST /connect/token

grant_type=delegation&
scope=api2&
token=...&
client_id=api1.client
client_secret=secret

It’s the job of the extension grant validator to handle that request by validating the incoming token, and returning a result that represents the new token:

public class DelegationGrantValidator : IExtensionGrantValidator
{
 private readonly ITokenValidator _validator;

 public DelegationGrantValidator(ITokenValidator validator)
 {
 _validator = validator;
 }

 public string GrantType => "delegation";

 public async Task ValidateAsync(ExtensionGrantValidationContext context)
 {
 var userToken = context.Request.Raw.Get("token");

 if (string.IsNullOrEmpty(userToken))
 {
 context.Result = new GrantValidationResult(TokenRequestErrors.InvalidGrant);
 return;
 }

 var result = await _validator.ValidateAccessTokenAsync(userToken);
 if (result.IsError)
 {
 context.Result = new GrantValidationResult(TokenRequestErrors.InvalidGrant);
 return;
 }

 // get user's identity
 var sub = result.Claims.FirstOrDefault(c => c.Type == "sub").Value;

 context.Result = new GrantValidationResult(sub, GrantType);
 return;
 }
}

Don’t forget to register the validator with DI.

Registering the delegation client

You need a client registration in IdentityServer that allows a client to use this new extension grant, e.g.:

var client = new client
{
 ClientId = "api1.client",
 ClientSecrets = new List<Secret>
 {
 new Secret("secret".Sha256())
 },

 AllowedGrantTypes = { "delegation" },

 AllowedScopes = new List<string>
 {
 "api2"
 }
}

Calling the token endpoint

In API 1 you can now construct the HTTP payload yourself, or use the IdentityModel helper library:

public async Task<TokenResponse> DelegateAsync(string userToken)
{
 var payload = new
 {
 token = userToken
 };

 // create token client
 var client = new TokenClient(disco.TokenEndpoint, "api1.client", "secret");

 // send custom grant to token endpoint, return response
 return await client.RequestCustomGrantAsync("delegation", "api2", payload);
}

The TokenResponse.AccessToken will now contain the delegation access token.

Federation Gateway

A common architecture is the so-called federation gateway. In this approach IdentityServer acts as a gateway to one or more external identity providers.

[image: ../_images/federation_gateway.png]
This architecture has the following advantages

	your applications only need to know about the one token service (the gateway) and are shielded from all the details about connecting to the external provider(s). This also means that you can add or change those external providers without needing to update your applications.

	you control the gateway (as opposed to some external service provider) - this means you can make any changes to it and can protect your applications from changes those external providers might do to their own services.

	most external providers only support a fixed set of claims and claim types - having a gateway in the middle allows post-processing the response from the providers to transform/add/amend domain specific identity information.

	some providers don’t support access tokens (e.g. social providers) - since the gateway knows about your APIs, it can issue access tokens based on the external identities.

	some providers charge by the number of applications you connect to them. The gateway acts as a single application to the external provider. Internally you can connect as many applications as you want.

	some providers use proprietary protocols or made proprietary modifications to standard protocols - with a gateway there is only one place you need to deal with that.

	forcing every authentication (internal or external) through one single place gives you tremendous flexibility with regards to identity mapping, providing a stable identity to all your applications and dealing with new requirements

In other words - owning your federation gateway gives you a lot of control over your identity infrastructure. And since the identity of your users is one of your most important assets, we recommend taking control over the gateway.

Implementation

Our quick start UI [https://github.com/IdentityServer/IdentityServer4.Quickstart.UI] utilizes some of the below features. Also check out the external authentication quickstart and the
docs about external providers.

	You can add support for external identity providers by adding authentication handlers to your IdentityServer application.

	You can programmatically query those external providers by calling IAuthenticationSchemeProvider. This allows to dynamically render your login page based on the registered external providers.

	Our client configuration model allows restricting the available providers on a per client basis (use the IdentityProviderRestrictions property).

	You can also use the EnableLocalLogin property on the client to tell your UI whether the username/password input should be rendered.

	Our quickstart UI funnels all external authentication calls through a single callback (see ExternalLoginCallback on the AccountController class). This allows for a single point for post-processing.

Grant Types

Grant types are a way to specify how a client wants to interact with IdentityServer.
The OpenID Connect and OAuth 2 specs define the following grant types:

	Implicit

	Authorization code

	Hybrid

	Client credentials

	Resource owner password

	Device flow

	Refresh tokens

	Extension grants

You can specify which grant type a client can use via the AllowedGrantTypes property on the Client configuration.

A client can be configured to use more than a single grant type (e.g. Hybrid for user centric operations and client credentials for server to server communication).
The GrantTypes class can be used to pick from typical grant type combinations:

Client.AllowedGrantTypes = GrantTypes.HybridAndClientCredentials;

You can also specify the grant types list manually:

Client.AllowedGrantTypes =
{
 GrantType.Hybrid,
 GrantType.ClientCredentials,
 "my_custom_grant_type"
};

If you want to transmit access tokens via the browser channel, you also need to allow that explicitly on the client configuration:

Client.AllowAccessTokensViaBrowser = true;

Note

For security reasons, not all grant type combinations are allowed. See below for more details.

For the remainder, the grant types are briefly described, and when you would use them.
It is also recommended, that in addition you read the corresponding specs to get a better understanding of the differences.

Client credentials

This is the simplest grant type and is used for server to server communication - tokens are always requested on behalf of a client, not a user.

With this grant type you send a token request to the token endpoint, and get an access token back that represents the client.
The client typically has to authenticate with the token endpoint using its client ID and secret.

See the Client Credentials Quick Start for a sample how to use it.

Resource owner password

The resource owner password grant type allows to request tokens on behalf of a user by sending the user’s name and password to the token endpoint.
This is so called “non-interactive” authentication and is generally not recommended.

There might be reasons for certain legacy or first-party integration scenarios, where this grant type is useful, but the general recommendation
is to use an interactive flow like implicit or hybrid for user authentication instead.

See the Resource Owner Password Quick Start for a sample how to use it.
You also need to provide code for the username/password validation which can be supplied by implementing the IResourceOwnerPasswordValidator interface.
You can find more information about this interface here.

Implicit

The implicit grant type is optimized for browser-based applications. Either for user authentication-only (both server-side and JavaScript applications),
or authentication and access token requests (JavaScript applications).

In the implicit flow, all tokens are transmitted via the browser, and advanced features like refresh tokens are thus not allowed.

This quickstart shows authentication for service-side web apps, and
this shows JavaScript.

Authorization code

Authorization code flow was originally specified by OAuth 2, and provides a way to retrieve tokens on a back-channel as opposed to the browser front-channel.
It also support client authentication.

While this grant type is supported on its own, it is generally recommended you combine that with identity tokens
which turns it into the so called hybrid flow.
Hybrid flow gives you important extra features like signed protocol responses.

Hybrid

Hybrid flow is a combination of the implicit and authorization code flow - it uses combinations of multiple grant types, most typically code id_token.

In hybrid flow the identity token is transmitted via the browser channel and contains the signed protocol response along with signatures for other artifacts
like the authorization code. This mitigates a number of attacks that apply to the browser channel.
After successful validation of the response, the back-channel is used to retrieve the access and refresh token.

This is the recommended flow for native applications that want to retrieve access tokens (and possibly refresh tokens as well) and is used
for server-side web applications and native desktop/mobile applications.

See this quickstart for more information about using hybrid flow with MVC.

Device flow

Device flow is designed for browserless and input constrained devices, where the device is unable to securely capture user credentials. This flow outsources user authentication and consent to an external device (e.g. a smart phone).

This flow is typically used by IoT devices and can request both identity and API resources.

Refresh tokens

Refresh tokens allow gaining long lived access to APIs.

You typically want to keep the lifetime of access tokens as short as possible, but at the same time don’t want to bother the user
over and over again with doing a front-channel roundtrips to IdentityServer for requesting new ones.

Refresh tokens allow requesting new access tokens without user interaction. Every time the client refreshes a token it needs to make an
(authenticated) back-channel call to IdentityServer. This allows checking if the refresh token is still valid, or has been revoked in the meantime.

Refresh tokens are supported in hybrid, authorization code, device flow and resource owner password flows.
To request a refresh token, the client needs to include the offline_access scope in the token request (and must be authorized to request for that scope).

Extension grants

Extension grants allow extending the token endpoint with new grant types. See this for more details.

Incompatible grant types

Some grant type combinations are forbidden:

	Mixing implicit and authorization code or hybrid would allow a downgrade attack from the more secure code based flow to implicit.

	Same concern exists for allowing both authorization code and hybrid

Logging

IdentityServer uses the standard logging facilities provided by ASP.NET Core.
The Microsoft documentation [https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging] has a good intro and a description of the built-in logging providers.

We are roughly following the Microsoft guidelines for usage of log levels:

	Trace For information that is valuable only to a developer troubleshooting an issue. These messages may contain sensitive application data like tokens and should not be enabled in a production environment.

	Debug For following the internal flow and understanding why certain decisions are made. Has short-term usefulness during development and debugging.

	Information For tracking the general flow of the application. These logs typically have some long-term value.

	Warning For abnormal or unexpected events in the application flow. These may include errors or other conditions that do not cause the application to stop, but which may need to be investigated.

	Error For errors and exceptions that cannot be handled. Examples: failed validation of a protocol request.

	Critical For failures that require immediate attention. Examples: missing store implementation, invalid key material…

Setup for Serilog

We personally like Serilog [https://serilog.net/] a lot. Give it a try.

ASP.NET Core 2.0+

For the following configuration you need the Serilog.AspNetCore and Serilog.Sinks.Console packages:

public class Program
{
 public static void Main(string[] args)
 {
 Console.Title = "IdentityServer4";

 Log.Logger = new LoggerConfiguration()
 .MinimumLevel.Debug()
 .MinimumLevel.Override("Microsoft", LogEventLevel.Warning)
 .MinimumLevel.Override("System", LogEventLevel.Warning)
 .MinimumLevel.Override("Microsoft.AspNetCore.Authentication", LogEventLevel.Information)
 .Enrich.FromLogContext()
 .WriteTo.Console(outputTemplate: "[{Timestamp:HH:mm:ss} {Level}] {SourceContext}{NewLine}{Message:lj}{NewLine}{Exception}{NewLine}", theme: AnsiConsoleTheme.Literate)
 .CreateLogger();

 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args)
 {
 return WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .UseSerilog()
 .Build();
 }
}

.NET Core 1.0, 1.1

For the following configuration you need the Serilog.Extensions.Logging and Serilog.Sinks.Console packages:

public class Program
{
 public static void Main(string[] args)
 {
 Console.Title = "IdentityServer4";

 Log.Logger = new LoggerConfiguration()
 .MinimumLevel.Debug()
 .MinimumLevel.Override("Microsoft", LogEventLevel.Warning)
 .MinimumLevel.Override("System", LogEventLevel.Warning)
 .MinimumLevel.Override("Microsoft.AspNetCore.Authentication", LogEventLevel.Information)
 .Enrich.FromLogContext()
 .WriteTo.Console(outputTemplate: "[{Timestamp:HH:mm:ss} {Level}] {SourceContext}{NewLine}{Message:lj}{NewLine}{Exception}{NewLine}", theme: AnsiConsoleTheme.Literate)
 .CreateLogger();

 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args)
 {
 return WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .ConfigureLogging(builder =>
 {
 builder.ClearProviders();
 builder.AddSerilog();
 })
 .Build();
 }
}

Reference Tokens

Access tokens can come in two flavours - self-contained or reference.

A JWT token would be a self-contained access token - it’s a protected data structure with claims and an expiration.
Once an API has learned about the key material, it can validate self-contained tokens without needing to communicate with the issuer.
This makes JWTs hard to revoke. They will stay valid until they expire.

When using reference tokens - IdentityServer will store the contents of the token in a data store and will only issue a unique identifier for this token back to the client.
The API receiving this reference must then open a back-channel communication to IdentityServer to validate the token.

[image: ../_images/reference_tokens.png]
You can switch the token type of a client using the following setting:

client.AccessTokenType = AccessTokenType.Reference;

IdentityServer provides an implementation of the OAuth 2.0 introspection specification which allows APIs to dereference the tokens.
You can either use our dedicated introspection middleware [https://github.com/IdentityModel/IdentityModel.AspNetCore.OAuth2Introspection]
or use the identity server authentication middleware [https://github.com/IdentityServer/IdentityServer4.AccessTokenValidation] which can validate both JWTs and reference tokens.

The introspection endpoint requires authentication - since the client of an introspection endpoint is an API, you configure the secret on the ApiResource:

var api = new ApiResource("api1")
{
 ApiSecrets = { new Secret("secret".Sha256()) }
}

See here for more information on how to configure the IdentityServer authentication middleware for APIs.

Refresh Tokens

Since access tokens have finite lifetimes, refresh tokens allow requesting new access tokens without user interaction.

Refresh tokens are supported for the following flows: authorization code, hybrid and resource owner password credential flow.
The clients needs to be explicitly authorized to request refresh tokens by setting AllowOfflineAccess to true.

Additional client settings

	AbsoluteRefreshTokenLifetime

	Maximum lifetime of a refresh token in seconds. Defaults to 2592000 seconds / 30 days. Zero allows refresh tokens that, when used with RefreshTokenExpiration = Sliding only expire after the SlidingRefreshTokenLifetime is passed.

	SlidingRefreshTokenLifetime

	Sliding lifetime of a refresh token in seconds. Defaults to 1296000 seconds / 15 days

	RefreshTokenUsage

	ReUse the refresh token handle will stay the same when refreshing tokens

OneTime the refresh token handle will be updated when refreshing tokens

	RefreshTokenExpiration

	Absolute the refresh token will expire on a fixed point in time (specified by the AbsoluteRefreshTokenLifetime)

Sliding when refreshing the token, the lifetime of the refresh token will be renewed (by the amount specified in SlidingRefreshTokenLifetime). The lifetime will not exceed AbsoluteRefreshTokenLifetime.

	UpdateAccessTokenClaimsOnRefresh

	Gets or sets a value indicating whether the access token (and its claims) should be updated on a refresh token request.

Resource Owner Password Validation

If you want to use the OAuth 2.0 resource owner password credential grant (aka password), you need to implement and register the IResourceOwnerPasswordValidator interface:

public interface IResourceOwnerPasswordValidator
{
 /// <summary>
 /// Validates the resource owner password credential
 /// </summary>
 /// <param name="context">The context.</param>
 Task ValidateAsync(ResourceOwnerPasswordValidationContext context);
}

On the context you will find already parsed protocol parameters like UserName and Password, but also the raw request if you want to look at other input data.

Your job is then to implement the password validation and set the Result on the context accordingly. See the GrantValidationResult documentation.

Defining Resources

The first thing you will typically define in your system are the resources that you want to protect.
That could be identity information of your users, like profile data or email addresses, or access to APIs.

Note

You can define resources using a C# object model - or load them from a data store. An implementation of IResourceStore deals with these low-level details. For this document we are using the in-memory implementation.

Defining identity resources

Identity resources are data like user ID, name, or email address of a user.
An identity resource has a unique name, and you can assign arbitrary claim types to it. These claims will then be included in the identity token for the user.
The client will use the scope parameter to request access to an identity resource.

The OpenID Connect specification specifies a couple of standard [https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims] identity resources.
The minimum requirement is, that you provide support for emitting a unique ID for your users - also called the subject id.
This is done by exposing the standard identity resource called openid:

public static IEnumerable<IdentityResource> GetIdentityResources()
{
 return new List<IdentityResource>
 {
 new IdentityResources.OpenId()
 };
}

The IdentityResources class supports all scopes defined in the specification (openid, email, profile, telephone, and address).
If you want to support them all, you can add them to your list of supported identity resources:

public static IEnumerable<IdentityResource> GetIdentityResources()
{
 return new List<IdentityResource>
 {
 new IdentityResources.OpenId(),
 new IdentityResources.Email(),
 new IdentityResources.Profile(),
 new IdentityResources.Phone(),
 new IdentityResources.Address()
 };
}

Defining custom identity resources

You can also define custom identity resources. Create a new IdentityResource class, give it a name and optionally a display name and description
and define which user claims should be included in the identity token when this resource gets requested:

public static IEnumerable<IdentityResource> GetIdentityResources()
{
 var customProfile = new IdentityResource(
 name: "custom.profile",
 displayName: "Custom profile",
 claimTypes: new[] { "name", "email", "status" });

 return new List<IdentityResource>
 {
 new IdentityResources.OpenId(),
 new IdentityResources.Profile(),
 customProfile
 };
}

See the reference section for more information on identity resource settings.

Defining API resources

To allow clients to request access tokens for APIs, you need to define API resources, e.g.:

To get access tokens for APIs, you also need to register them as a scope. This time the scope type is of type Resource:

public static IEnumerable<ApiResource> GetApis()
{
 return new[]
 {
 // simple API with a single scope (in this case the scope name is the same as the api name)
 new ApiResource("api1", "Some API 1"),

 // expanded version if more control is needed
 new ApiResource
 {
 Name = "api2",

 // secret for using introspection endpoint
 ApiSecrets =
 {
 new Secret("secret".Sha256())
 },

 // include the following using claims in access token (in addition to subject id)
 UserClaims = { JwtClaimTypes.Name, JwtClaimTypes.Email },

 // this API defines two scopes
 Scopes =
 {
 new Scope()
 {
 Name = "api2.full_access",
 DisplayName = "Full access to API 2",
 },
 new Scope
 {
 Name = "api2.read_only",
 DisplayName = "Read only access to API 2"
 }
 }
 }
 };
}

See the reference section for more information on API resource settings.

Note

The user claims defined by resources are loaded by the IProfileService extensibility point.

Secrets

In certain situations, clients need to authenticate with identityserver, e.g.

	confidential applications (aka clients) requesting tokens at the token endpoint

	APIs validating reference tokens at the introspection endpoint

For that purpose you can assign a list of secrets to a client or an API resource.

Secret parsing and validation is an extensibility point in identityserver, out of the box it supports shared secrets
as well as transmitting the shared secret via a basic authentication header or the POST body.

Creating a shared secret

The following code sets up a hashed shared secret:

var secret = new Secret("secret".Sha256());

This secret can now be assigned to either a Client or an ApiResource.
Notice that both do not only support a single secret, but multiple. This is useful for secret rollover and rotation:

var client = new Client
{
 ClientId = "client",
 ClientSecrets = new List<Secret> { secret },

 AllowedGrantTypes = GrantTypes.ClientCredentials,
 AllowedScopes = new List<string>
 {
 "api1", "api2"
 }
};

In fact you can also assign a description and an expiration date to a secret. The description will be used for logging, and
the expiration date for enforcing a secret lifetime:

var secret = new Secret(
 "secret".Sha256(),
 "2016 secret",
 new DateTime(2016, 12, 31));

Authentication using a shared secret

You can either send the client id/secret combination as part of the POST body:

POST /connect/token

client_id=client1&
client_secret=secret&
...

..or as a basic authentication header:

POST /connect/token

Authorization: Basic xxxxx

...

You can manually create a basic authentication header using the following C# code:

var credentials = string.Format("{0}:{1}", clientId, clientSecret);
var headerValue = Convert.ToBase64String(Encoding.UTF8.GetBytes(credentials));

var client = new HttpClient();
client.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Basic", headerValue);

The IdentityModel [https://github.com/IdentityModel/IdentityModel2] library has helper classes called TokenClient and IntrospectionClient that encapsulate
both authentication and protocol messages.

Beyond shared secrets

There are other techniques to authenticate clients, e.g. based on public/private key cryptography.
IdentityServer includes support for private key JWT client secrets (see RFC 7523 [https://tools.ietf.org/html/rfc7523]).

Secret extensibility typically consists of three things:

	a secret definition

	a secret parser that knows how to extract the secret from the incoming request

	a secret validator that knows how to validate the parsed secret based on the definition

Secret parsers and validators are implementations of the ISecretParser and ISecretValidator interfaces.
To make them available to IdentityServer, you need to register them with the DI container, e.g.:

builder.AddSecretParser<JwtBearerClientAssertionSecretParser>()
builder.AddSecretValidator<PrivateKeyJwtSecretValidator>()

Our default private key JWT secret validator expects the full (leaf) certificate as base64 on the secret definition.
This certificate will then be used to validate the signature on the self-signed JWT, e.g.:

var client = new Client
{
 ClientId = "client.jwt",
 ClientSecrets =
 {
 new Secret
 {
 Type = IdentityServerConstants.SecretTypes.X509CertificateBase64,
 Value = "MIIDATCCAe2gAwIBAgIQoHUYAquk9rBJcq8W+F0FAzAJBgUrDgMCHQUAMBIxEDAOBgNVBAMTB0RldlJvb3QwHhcNMTAwMTIwMjMwMDAwWhcNMjAwMTIwMjMwMDAwWjARMQ8wDQYDVQQDEwZDbGllbnQwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDSaY4x1eXqjHF1iXQcF3pbFrIbmNw19w/IdOQxbavmuPbhY7jX0IORu/GQiHjmhqWt8F4G7KGLhXLC1j7rXdDmxXRyVJBZBTEaSYukuX7zGeUXscdpgODLQVay/0hUGz54aDZPAhtBHaYbog+yH10sCXgV1Mxtzx3dGelA6pPwiAmXwFxjJ1HGsS/hdbt+vgXhdlzud3ZSfyI/TJAnFeKxsmbJUyqMfoBl1zFKG4MOvgHhBjekp+r8gYNGknMYu9JDFr1ue0wylaw9UwG8ZXAkYmYbn2wN/CpJl3gJgX42/9g87uLvtVAmz5L+rZQTlS1ibv54ScR2lcRpGQiQav/LAgMBAAGjXDBaMBMGA1UdJQQMMAoGCCsGAQUFBwMCMEMGA1UdAQQ8MDqAENIWANpX5DZ3bX3WvoDfy0GhFDASMRAwDgYDVQQDEwdEZXZSb290ghAsWTt7E82DjU1E1p427Qj2MAkGBSsOAwIdBQADggEBADLje0qbqGVPaZHINLn+WSM2czZk0b5NG80btp7arjgDYoWBIe2TSOkkApTRhLPfmZTsaiI3Ro/64q+Dk3z3Kt7w+grHqu5nYhsn7xQFAQUf3y2KcJnRdIEk0jrLM4vgIzYdXsoC6YO+9QnlkNqcN36Y8IpSVSTda6gRKvGXiAhu42e2Qey/WNMFOL+YzMXGt/nDHL/qRKsuXBOarIb++43DV3YnxGTx22llhOnPpuZ9/gnNY7KLjODaiEciKhaKqt/b57mTEz4jTF4kIg6BP03MUfDXeVlM1Qf1jB43G2QQ19n5lUiqTpmQkcfLfyci2uBZ8BkOhXr3Vk9HIk/xBXQ="
 }
 },

 AllowedGrantTypes = GrantTypes.ClientCredentials,
 AllowedScopes = { "api1", "api2" }
};

You could implement your own secret validator (or extend ours) to implement e.g. chain trust validation instead.

Sign-in

In order for IdentityServer to issue tokens on behalf of a user, that user must sign-in to IdentityServer.

Cookie authentication

Authentication is tracked with a cookie managed by the cookie authentication [https://docs.microsoft.com/en-us/aspnet/core/security/authentication/cookie] handler from ASP.NET Core.

IdentityServer registers two cookie handlers (one for the authentication session and one for temporary external cookies). These are used by default and you can get their
names from the IdentityServerConstants class (DefaultCookieAuthenticationScheme and ExternalCookieAuthenticationScheme) if you want to reference them manually.

We only expose basic settings for these cookies (expiration and sliding), and you can register your own cookie handlers if you need more control.
IdentityServer uses whichever cookie handler matches the DefaultAuthenticateScheme as configured on the AuthenticationOptions when using AddAuthentication from ASP.NET Core.

Overriding cookie handler configuration

If you wish to use your own cookie authentication handler, then you must configure it yourself.
This must be done in ConfigureServices after registering IdentityServer in DI (with AddIdentityServer).
For example:

services.AddIdentityServer()
 .AddInMemoryClients(Clients.Get())
 .AddInMemoryIdentityResources(Resources.GetIdentityResources())
 .AddInMemoryApiResources(Resources.GetApiResources())
 .AddDeveloperSigningCredential()
 .AddTestUsers(TestUsers.Users);

services.AddAuthentication("MyCookie")
 .AddCookie("MyCookie", options =>
 {
 options.ExpireTimeSpan = ...;
 });

Note

IdentityServer internally calls both AddAuthentication and AddCookie with a custom scheme (via the constant IdentityServerConstants.DefaultCookieAuthenticationScheme), so to override them you must make the same calls after AddIdentityServer.

Login User Interface and Identity Management System

IdentityServer does not provide any user-interface or user database for user authentication.
These are things you are expected to provide or develop yourself.

If you need a starting point for a basic UI (login, logout, consent and manage grants),
you can use our quickstart UI [https://github.com/IdentityServer/IdentityServer4.Quickstart.UI].

The quickstart UI authenticates users against an in-memory database. You would replace those bits with access to your real user store.
We have samples that use ASP.NET Identity.

Login Workflow

When IdentityServer receives a request at the authorization endpoint and the user is not authenticated, the user will be redirected to the configured login page.
You must inform IdentityServer of the path to your login page via the UserInteraction settings on the options (the default is /account/login).
A returnUrl parameter will be passed informing your login page where the user should be redirected once login is complete.

[image: ../_images/signin_flow.png]

Note

Beware open-redirect attacks [https://en.wikipedia.org/wiki/URL_redirection#Security_issues] via the returnUrl parameter. You should validate that the returnUrl refers to well-known location. See the interaction service for APIs to validate the returnUrl parameter.

Login Context

On your login page you might require information about the context of the request in order to customize the login experience
(such as client, prompt parameter, IdP hint, or something else).
This is made available via the GetAuthorizationContextAsync API on the the interaction service.

Issuing a cookie and Claims

There are authentication-related extension methods on the HttpContext from ASP.NET Core to issue the authentication cookie and sign a user in.
The authentication scheme used must match the cookie handler you are using (see above).

When you sign the user in you must issue at least a sub claim and a name claim.
IdentityServer also provides a few SignInAsync extension methods on the HttpContext to make this more convenient.

You can also optionally issue an idp claim (for the identity provider name), an amr claim (for the authentication method used), and/or an auth_time claim (for the epoch time a user authenticated).
If you do not provide these, then IdentityServer will provide default values.

Sign-in with External Identity Providers

ASP.NET Core has a flexible way to deal with external authentication. This involves a couple of steps.

Note

If you are using ASP.NET Identity, many of the underlying technical details are hidden from you. It is recommended that you also read the Microsoft docs [https://docs.microsoft.com/en-us/aspnet/core/security/authentication/social/] and do the ASP.NET Identity quickstart.

Adding authentication handlers for external providers

The protocol implementation that is needed to talk to an external provider is encapsulated in an authentication handler.
Some providers use proprietary protocols (e.g. social providers like Facebook) and some use standard protocols, e.g. OpenID Connect, WS-Federation or SAML2p.

See this quickstart for step-by-step instructions for adding external authentication and configuring it.

The role of cookies

One option on an external authentication handlers is called SignInScheme, e.g.:

services.AddAuthentication()
 .AddGoogle("Google", options =>
 {
 options.SignInScheme = "scheme of cookie handler to use";

 options.ClientId = "...";
 options.ClientSecret = "...";
 })

The signin scheme specifies the name of the cookie handler that will temporarily store the outcome of the external authentication,
e.g. the claims that got sent by the external provider. This is necessary, since there are typically a couple of redirects involved until you are done with the
external authentication process.

Given that this is such a common practise, IdentityServer registers a cookie handler specifically for this external provider workflow.
The scheme is represented via the IdentityServerConstants.ExternalCookieAuthenticationScheme constant.
If you were to use our external cookie handler, then for the SignInScheme above you’d assign the value to be the IdentityServerConstants.ExternalCookieAuthenticationScheme constant:

services.AddAuthentication()
 .AddGoogle("Google", options =>
 {
 options.SignInScheme = IdentityServerConstants.ExternalCookieAuthenticationScheme;

 options.ClientId = "...";
 options.ClientSecret = "...";
 })

You can also register your own custom cookie handler instead, like this:

services.AddAuthentication()
 .AddCookie("YourCustomScheme")
 .AddGoogle("Google", options =>
 {
 options.SignInScheme = "YourCustomScheme";

 options.ClientId = "...";
 options.ClientSecret = "...";
 })

Note

For specialized scenarios, you can also short-circuit the external cookie mechanism and forward the external user directly to the main cookie handler. This typically involves handling events on the external handler to make sure you do the correct claims transformation from the external identity source.

Triggering the authentication handler

You invoke an external authentication handler via the ChallengeAsync extension method on the HttpContext (or using the MVC ChallengeResult).

You typically want to pass in some options to the challenge operation, e.g. the path to your callback page and the name of the provider for bookkeeping, e.g.:

var callbackUrl = Url.Action("ExternalLoginCallback");

var props = new AuthenticationProperties
{
 RedirectUri = callbackUrl,
 Items =
 {
 { "scheme", provider },
 { "returnUrl", returnUrl }
 }
};

return Challenge(provider, props);

Handling the callback and signing in the user

On the callback page your typical tasks are:

	inspect the identity returned by the external provider.

	make a decision how you want to deal with that user. This might be different based on the fact if this is a new user or a returning user.

	new users might need additional steps and UI before they are allowed in.

	probably create a new internal user account that is linked to the external provider.

	store the external claims that you want to keep.

	delete the temporary cookie

	sign-in the user

Inspecting the external identity:

// read external identity from the temporary cookie
var result = await HttpContext.AuthenticateAsync(IdentityServerConstants.ExternalCookieAuthenticationScheme);
if (result?.Succeeded != true)
{
 throw new Exception("External authentication error");
}

// retrieve claims of the external user
var externalUser = result.Principal;
if (externalUser == null)
{
 throw new Exception("External authentication error");
}

// retrieve claims of the external user
var claims = externalUser.Claims.ToList();

// try to determine the unique id of the external user - the most common claim type for that are the sub claim and the NameIdentifier
// depending on the external provider, some other claim type might be used
var userIdClaim = claims.FirstOrDefault(x => x.Type == JwtClaimTypes.Subject);
if (userIdClaim == null)
{
 userIdClaim = claims.FirstOrDefault(x => x.Type == ClaimTypes.NameIdentifier);
}
if (userIdClaim == null)
{
 throw new Exception("Unknown userid");
}

var externalUserId = userIdClaim.Value;
var externalProvider = userIdClaim.Issuer;

// use externalProvider and externalUserId to find your user, or provision a new user

Clean-up and sign-in:

// issue authentication cookie for user
await HttpContext.SignInAsync(user.SubjectId, user.Username, provider, props, additionalClaims.ToArray());

// delete temporary cookie used during external authentication
await HttpContext.SignOutAsync(IdentityServerConstants.ExternalCookieAuthenticationScheme);

// validate return URL and redirect back to authorization endpoint or a local page
if (_interaction.IsValidReturnUrl(returnUrl) || Url.IsLocalUrl(returnUrl))
{
 return Redirect(returnUrl);
}

return Redirect("~/");

State, URL length, and ISecureDataFormat

When redirecting to an external provider for sign-in, frequently state from the client application must be round-tripped.
This means that state is captured prior to leaving the client and preserved until the user has returned to the client application.
Many protocols, including OpenID Connect, allow passing some sort of state as a parameter as part of the request, and the identity provider will return that state on the response.
The OpenID Connect authentication handler provided by ASP.NET Core utilizes this feature of the protocol, and that is how it implements the returnUrl feature mentioned above.

The problem with storing state in a request parameter is that the request URL can get too large (over the common limit of 2000 characters).
The OpenID Connect authentication handler does provide an extensibility point to store the state in your server, rather than in the request URL.
You can implement this yourself by implementing ISecureDataFormat<AuthenticationProperties> and configuring it on the OpenIdConnectOptions [https://github.com/aspnet/Security/blob/dev/src/Microsoft.AspNetCore.Authentication.OpenIdConnect/OpenIdConnectOptions.cs#L248].

Fortunately, IdentityServer provides an implementation of this for you, backed by the IDistributedCache implementation registered in the DI container (e.g. the standard MemoryDistributedCache).
To use the IdentityServer provided secure data format implementation, simply call the AddOidcStateDataFormatterCache extension method on the IServiceCollection when configuring DI.
If no parameters are passed, then all OpenID Connect handlers configured will use the IdentityServer provided secure data format implementation:

public void ConfigureServices(IServiceCollection services)
{
 // configures the OpenIdConnect handlers to persist the state parameter into the server-side IDistributedCache.
 services.AddOidcStateDataFormatterCache();

 services.AddAuthentication()
 .AddOpenIdConnect("demoidsrv", "IdentityServer", options =>
 {
 // ...
 })
 .AddOpenIdConnect("aad", "Azure AD", options =>
 {
 // ...
 })
 .AddOpenIdConnect("adfs", "ADFS", options =>
 {
 // ...
 });
}

If only particular schemes are to be configured, then pass those schemes as parameters:

public void ConfigureServices(IServiceCollection services)
{
 // configures the OpenIdConnect handlers to persist the state parameter into the server-side IDistributedCache.
 services.AddOidcStateDataFormatterCache("aad", "demoidsrv");

 services.AddAuthentication()
 .AddOpenIdConnect("demoidsrv", "IdentityServer", options =>
 {
 // ...
 })
 .AddOpenIdConnect("aad", "Azure AD", options =>
 {
 // ...
 })
 .AddOpenIdConnect("adfs", "ADFS", options =>
 {
 // ...
 });
}

Sign-out

Signing out of IdentityServer is as simple as removing the authentication cookie,
but for doing a complete federated sign-out, we must consider signing the user out of the client applications (and maybe even up-stream identity providers) as well.

Removing the authentication cookie

To remove the authentication cookie, simply use the SignOutAsync extension method on the HttpContext.
You will need to pass the scheme used (which is provided by IdentityServerConstants.DefaultCookieAuthenticationScheme unless you have changed it):

await HttpContext.SignOutAsync(IdentityServerConstants.DefaultCookieAuthenticationScheme);

Or you can use the convenience extension method that is provided by IdentityServer:

await HttpContext.SignOutAsync();

Note

Typically you should prompt the user for signout (meaning require a POST), otherwise an attacker could hotlink to your logout page causing the user to be automatically logged out.

Notifying clients that the user has signed-out

As part of the signout process you will want to ensure client applications are informed that the user has signed out.
IdentityServer supports the front-channel [https://openid.net/specs/openid-connect-frontchannel-1_0.html] specification for server-side clients (e.g. MVC),
the back-channel [https://openid.net/specs/openid-connect-backchannel-1_0.html] specification for server-side clients (e.g. MVC),
and the session management [https://openid.net/specs/openid-connect-session-1_0.html] specification for browser-based JavaScript clients (e.g. SPA, React, Angular, etc.).

Front-channel server-side clients

To signout the user from the server-side client applications via the front-channel spec, the “logged out” page in IdentityServer must render an <iframe> to notify the clients that the user has signed out.
Clients that wish to be notified must have the FrontChannelLogoutUri configuration value set.
IdentityServer tracks which clients the user has signed into, and provides an API called GetLogoutContextAsync on the IIdentityServerInteractionService (details).
This API returns a LogoutRequest object with a SignOutIFrameUrl property that your logged out page must render into an <iframe>.

Back-channel server-side clients

To signout the user from the server-side client applications via the back-channel spec, the SignOutIFrameUrl endpoint in IdentityServer will automatically trigger server-to-server invocation passing a signed sign-out request to the client.
This means that even if there are no front-channel clients, the “logged out” page in IdentityServer must still render an <iframe> to the SignOutIFrameUrl as described above.
Clients that wish to be notified must have the BackChannelLogoutUri configuration value set.

Browser-based JavaScript clients

Given how the session management [https://openid.net/specs/openid-connect-session-1_0.html] specification is designed, there is nothing special in IdentityServer that you need to do to notify these clients that the user has signed out.
The clients, though, must perform monitoring on the check_session_iframe, and this is implemented by the oidc-client JavaScript library [https://github.com/IdentityModel/oidc-client-js/].

Sign-out initiated by a client application

If sign-out was initiated by a client application, then the client first redirected the user to the end session endpoint.
Processing at the end session endpoint might require some temporary state to be maintained (e.g. the client’s post logout redirect uri) across the redirect to the logout page.
This state might be of use to the logout page, and the identifier for the state is passed via a logoutId parameter to the logout page.

The GetLogoutContextAsync API on the interaction service can be used to load the state.
Of interest on the ShowSignoutPrompt is the ShowSignoutPrompt which indicates if the request for sign-out has been authenticated, and therefore it’s safe to not prompt the user for sign-out.

By default this state is managed as a protected data structure passed via the logoutId value.
If you wish to use some other persistence between the end session endpoint and the logout page, then you can implement IMessageStore<LogoutMessage> and register the implementation in DI.

Sign-out of External Identity Providers

When a user is signing-out of IdentityServer, and they have used an external identity provider to sign-in then it is likely that they should be redirected to also sign-out of the external provider.
Not all external providers support sign-out, as it depends on the protocol and features they support.

To detect that a user must be redirected to an external identity provider for sign-out is typically done by using a idp claim issued into the cookie at IdentityServer.
The value set into this claim is the AuthenticationScheme of the corresponding authentication middleware.
At sign-out time this claim is consulted to know if an external sign-out is required.

Redirecting the user to an external identity provider is problematic due to the cleanup and state management already required by the normal sign-out workflow.
The only way to then complete the normal sign-out and cleanup process at IdentityServer is to then request from the external identity provider that after its logout that the user be redirected back to IdentityServer.
Not all external providers support post-logout redirects, as it depends on the protocol and features they support.

The workflow at sign-out is then to revoke IdentityServer’s authentication cookie, and then redirect to the external provider requesting a post-logout redirect.
The post-logout redirect should maintain the necessary sign-out state described here (i.e. the logoutId parameter value).
To redirect back to IdentityServer after the external provider sign-out, the RedirectUri should be used on the AuthenticationProperties when using ASP.NET Core’s SignOutAsync API, for example:

[HttpPost]
[ValidateAntiForgeryToken]
public async Task<IActionResult> Logout(LogoutInputModel model)
{
 // build a model so the logged out page knows what to display
 var vm = await _account.BuildLoggedOutViewModelAsync(model.LogoutId);

 var user = HttpContext.User;
 if (user?.Identity.IsAuthenticated == true)
 {
 // delete local authentication cookie
 await HttpContext.SignOutAsync();

 // raise the logout event
 await _events.RaiseAsync(new UserLogoutSuccessEvent(user.GetSubjectId(), user.GetName()));
 }

 // check if we need to trigger sign-out at an upstream identity provider
 if (vm.TriggerExternalSignout)
 {
 // build a return URL so the upstream provider will redirect back
 // to us after the user has logged out. this allows us to then
 // complete our single sign-out processing.
 string url = Url.Action("Logout", new { logoutId = vm.LogoutId });

 // this triggers a redirect to the external provider for sign-out
 return SignOut(new AuthenticationProperties { RedirectUri = url }, vm.ExternalAuthenticationScheme);
 }

 return View("LoggedOut", vm);
}

Once the user is signed-out of the external provider and then redirected back, the normal sign-out processing at IdentityServer should execute which involves processing the logoutId and doing all necessary cleanup.

Federated Sign-out

Federated sign-out is the situation where a user has used an external identity provider to log into IdentityServer, and then the user logs out of that external identity provider via a workflow unknown to IdentityServer.
When the user signs out, it will be useful for IdentityServer to be notified so that it can sign the user out of IdentityServer and all of the applications that use IdentityServer.

Not all external identity providers support federated sign-out, but those that do will provide a mechanism to notify clients that the user has signed out.
This notification usually comes in the form of a request in an <iframe> from the external identity provider’s “logged out” page.
IdentityServer must then notify all of its clients (as discussed here), also typically in the form of a request in an <iframe> from within the external identity provider’s <iframe>.

What makes federated sign-out a special case (when compared to a normal sign-out) is that the federated sign-out request is not to the normal sign-out endpoint in IdentityServer.
In fact, each external IdentityProvider will have a different endpoint into your IdentityServer host.
This is due to that fact that each external identity provider might use a different protocol, and each middleware listens on different endpoints.

The net effect of all of these factors is that there is no “logged out” page being rendered as we would on the normal sign-out workflow,
which means we are missing the sign-out notifications to IdentityServer’s clients.
We must add code for each of these federated sign-out endpoints to render the necessary notifications to achieve federated sign-out.

Fortunately IdentityServer already contains this code.
When requests come into IdentityServer and invoke the handlers for external authentication providers, IdentityServer detects if these are federated signout requests and if they are it will automatically render the same <iframe> as described here for signout.
In short, federated signout is automatically supported.

Startup

IdentityServer is a combination of middleware and services.
All configuration is done in your startup class.

Configuring services

You add the IdentityServer services to the DI system by calling:

public void ConfigureServices(IServiceCollection services)
{
 var builder = services.AddIdentityServer();
}

Optionally you can pass in options into this call. See here for details on options.

This will return you a builder object that in turn has a number of convenience methods to wire up additional services.

Key material

	
	AddSigningCredential

	Adds a signing key service that provides the specified key material to the various token creation/validation services.
You can pass in either an X509Certificate2, a SigningCredential or a reference to a certificate from the certificate store.

	
	AddDeveloperSigningCredential

	Creates temporary key material at startup time. This is for dev only scenarios when you don’t have a certificate to use.
The generated key will be persisted to the file system so it stays stable between server restarts (can be disabled by passing false).
This addresses issues when the client/api metadata caches get out of sync during development.

	
	AddValidationKey

	Adds a key for validating tokens. They will be used by the internal token validator and will show up in the discovery document.
You can pass in either an X509Certificate2, a SigningCredential or a reference to a certificate from the certificate store.
This is useful for key roll-over scenarios.

In-Memory configuration stores

The various “in-memory” configuration APIs allow for configuring IdentityServer from an in-memory list of configuration objects.
These “in-memory” collections can be hard-coded in the hosting application, or could be loaded dynamically from a configuration file or a database.
By design, though, these collections are only created when the hosting application is starting up.

Use of these configuration APIs are designed for use when prototyping, developing, and/or testing where it is not necessary to dynamically consult database at runtime for the configuration data.
This style of configuration might also be appropriate for production scenarios if the configuration rarely changes, or it is not inconvenient to require restarting the application if the value must be changed.

	
	AddInMemoryClients

	Registers IClientStore and ICorsPolicyService implementations based on the in-memory collection of Client configuration objects.

	
	AddInMemoryIdentityResources

	Registers IResourceStore implementation based on the in-memory collection of IdentityResource configuration objects.

	
	AddInMemoryApiResources

	Registers IResourceStore implementation based on the in-memory collection of ApiResource configuration objects.

Test stores

The TestUser class models a user, their credentials, and claims in IdentityServer.
Use of TestUser is simiar to the use of the “in-memory” stores in that it is intended for when prototyping, developing, and/or testing.
The use of TestUser is not recommended in production.

	
	AddTestUsers

	Registers TestUserStore based on a collection of TestUser objects.
TestUserStore is used by the default quickstart UI.
Also registers implementations of IProfileService and IResourceOwnerPasswordValidator.

Additional services

	
	AddExtensionGrantValidator

	Adds IExtensionGrantValidator implementation for use with extension grants.

	
	AddSecretParser

	Adds ISecretParser implementation for parsing client or API resource credentials.

	
	AddSecretValidator

	Adds ISecretValidator implementation for validating client or API resource credentials against a credential store.

	
	AddResourceOwnerValidator

	Adds IResourceOwnerPasswordValidator implementation for validating user credentials for the resource owner password credentials grant type.

	
	AddProfileService

	Adds IProfileService implementation for connecting to your custom user profile store.
The DefaultProfileService class provides the default implementation which relies upon the authentication cookie as the only source of claims for issuing in tokens.

	
	AddAuthorizeInteractionResponseGenerator

	Adds IAuthorizeInteractionResponseGenerator implementation to customize logic at authorization endpoint for when a user must be shown a UI for error, login, consent, or any other custom page.
The AuthorizeInteractionResponseGenerator class provides a default implementation, so consider deriving from this existing class if you need to augment the existing behavior.

	
	AddCustomAuthorizeRequestValidator

	Adds ICustomAuthorizeRequestValidator implementation to customize request parameter validation at the authorization endpoint.

	
	AddCustomTokenRequestValidator

	Adds ICustomTokenRequestValidator implementation to customize request parameter validation at the token endpoint.

	
	AddRedirectUriValidator

	Adds IRedirectUriValidator implementation to customize redirect URI validation.

	
	AddAppAuthRedirectUriValidator

	Adds a an “AppAuth” (OAuth 2.0 for Native Apps) compliant redirect URI validator (does strict validation but also allows http://127.0.0.1 with random port).

	
	AddJwtBearerClientAuthentication

	Adds support for client authentication using JWT bearer assertions.

Caching

Client and resource configuration data is used frequently by IdentityServer.
If this data is being loaded from a database or other external store, then it might be expensive to frequently re-load the same data.

	
	AddInMemoryCaching

	To use any of the caches described below, an implementation of ICache<T> must be registered in DI.
This API registers a default in-memory implementation of ICache<T> that’s based on ASP.NET Core’s MemoryCache.

	
	AddClientStoreCache

	Registers a IClientStore decorator implementation which will maintain an in-memory cache of Client configuration objects.
The cache duration is configurable on the Caching configuration options on the IdentityServerOptions.

	
	AddResourceStoreCache

	Registers a IResourceStore decorator implementation which will maintain an in-memory cache of IdentityResource and ApiResource configuration objects.
The cache duration is configurable on the Caching configuration options on the IdentityServerOptions.

	
	AddCorsPolicyCache

	Registers a ICorsPolicyService decorator implementation which will maintain an in-memory cache of the results of the CORS policy service evaluation.
The cache duration is configurable on the Caching configuration options on the IdentityServerOptions.

Further customization of the cache is possible:

The default caching relies upon the ICache<T> implementation.
If you wish to customize the caching behavior for the specific configuration objects, you can replace this implementation in the dependency injection system.

The default implementation of the ICache<T> itself relies upon the IMemoryCache interface (and MemoryCache implementation) provided by .NET.
If you wish to customize the in-memory caching behavior, you can replace the IMemoryCache implementation in the dependency injection system.

Configuring the pipeline

You need to add IdentityServer to the pipeline by calling:

public void Configure(IApplicationBuilder app)
{
 app.UseIdentityServer();
}

Note

UseIdentityServer includes a call to UseAuthentication, so it’s not necessary to have both.

There is no additional configuration for the middleware.

Be aware that order matters in the pipeline.
For example, you will want to add IdentitySever before the UI framework that implements the login screen.

Tools

The IdentityServerTools class is a collection of useful internal tools that you might need when writing extensibility code
for IdentityServer. To use it, inject it into your code, e.g. a controller:

public MyController(IdentityServerTools tools)
{
 _tools = tools;
}

The IssueJwtAsync method allows creating JWT tokens using the IdentityServer token creation engine. The IssueClientJwtAsync is an easier
version of that for creating tokens for server-to-server communication (e.g. when you have to call an IdentityServer protected API from your code):

public async Task<IActionResult> MyAction()
{
 var token = await _tools.IssueClientJwtAsync(
 clientId: "client_id",
 lifetime: 3600,
 audiences: new[] { "backend.api" });

 // more code
}

Windows Authentication

On supported platforms, you can use IdentityServer to authenticate users using Windows authentication (e.g. against Active Directory).
Currently Windows authentication is available when you host IdentityServer using:

	Kestrel [https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/kestrel] on Windows using IIS and the IIS integration package

	HTTP.sys [https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/httpsys] server on Windows

In both cases, Windows authentication is triggered by using the ChallengeAsync API on the HttpContext using the scheme "Windows".
The account controller in our quickstart UI [https://github.com/IdentityServer/IdentityServer4.Quickstart.UI] implements the necessary logic.

Using Kestrel

When using Kestrel, you must run “behind” IIS and use the IIS integration:

var host = new WebHostBuilder()
 .UseKestrel()
 .UseUrls("http://localhost:5000")
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();

Kestrel is automatically configured when using the WebHost.CreateDefaultBuilder approach for setting up the WebHostBuilder.

Also the virtual directory in IIS (or IIS Express) must have Windows and anonymous authentication enabled.

The IIS integration layer will configure a Windows authentication handler into DI that can be invoked via the authentication service.
Typically in IdentityServer it is advisable to disable this automatic behavior.
This is done in ConfigureServices:

services.Configure<IISOptions>(iis =>
{
 iis.AuthenticationDisplayName = "Windows";
 iis.AutomaticAuthentication = false;
});

Note

By default, the display name is empty, and the Windows authentication button will not show up in the quickstart UI. You need to set a display name if you rely on automatic discovery of external providers.

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/signin_flow.png
ASP.NET Core Application
2) /login?retumUrl=/authorize?...

Your code

Client | — IdentityServer

middleware

1) https://server/authorize?...

_static/ajax-loader.gif

_images/four_aces.jpg

_images/reference_tokens.png
a717a415-76b9-4bad

a717a415-76b9-4bad

IdentityServer

validate token
receive claims

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 The Deck of Cards API

_images/deployment.png
i configuration data
—_— i operational data
ASPNET Core
data protection keys

load balancer web farm shared resources

_images/federation_gateway.png
o
— O o =
D O<o=

Federation

Clients ateway

_static/up.png

_images/delegation.png

