

 Navigation

 	
 index

 	
 next |

 	DebTools 0.7.3 documentation

Welcome to DebTools’s documentation!

Overview:

	Installing

	Basic instructions

	deb-dep-tree

	display and download all dependencies of a Debian package

	multideb

	generate all required packages for a Python module

Full table of contents

	Installing

	deb-dep-tree

	multideb
	Usage

	Callable hooks

	Sample config file

	aptenv

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Matthieu Gallet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DebTools 0.7.3 documentation

Installing

DebTools is compatible with Python 2.7.x and Python 3.2+.
Two dependencies are required:

	stdeb

	backports.lzma (only required on Python 2.7 and 3.2/3.3)

The easiest way is to use pip:

pip install debtools

If debtools was already installed:

pip install debtools --upgrade

If you prefer install directly from the source:

cd DebTools
python setup.py install

 Copyright 2015, Matthieu Gallet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DebTools 0.7.3 documentation

deb-dep-tree

Download packages and show the dependencies of a given package:

deb-dep-tree libgcc1_4.7.2-5_amd64.deb
libgcc1
=======

 * multiarch-support
 * gcc-4.7-base (= 4.7.2-5)
 * libc6 (>= 2.2.5)

Ok, nothing new from the standard dpkg -I libgcc1_4.7.2-5_amd64.deb command, but you can provide either a package name or a .deb filename:

deb-dep-tree libgcc1
Réception de : 1 Téléchargement de libgcc1 1:4.7.2-5 [43,1 kB]
43,1 ko réceptionnés en 0s (45,2 ko/s)
libgcc1
=======

 * multiarch-support
 * gcc-4.7-base (= 4.7.2-5)
 * libc6 (>= 2.2.5)

The package will be downloaded in the current directory. You can recursively retrieve all dependencies.

deb-dep-tree libgcc1 -r
libgcc1
=======

 * multiarch-support
 * gcc-4.7-base (= 4.7.2-5)
 * libc6 (>= 2.2.5)

multiarch-support
=================

 * libc6 (>= 2.3.6-2)

libc-bin
========

gcc-4.7-base
============

libc6
=====

 * libc-bin (= 2.13-38+deb7u8)
 * libgcc1

$ ls
gcc-4.7-base_4.7.2-5_amd64.deb libc6_2.13-38+deb7u8_amd64.deb libc-bin_2.13-38+deb7u8_amd64.deb libgcc1_4.7.2-5_amd64.deb multiarch-support_2.13-38+deb7u8_amd64.deb

Sometimes, there is a choice between several possibilities for a given dependency. These dependencies are ignored (since we cannot select one).
However, you can use the -l flag to select choices which are currently installed on the system.

dpkg -I libssl1.0.0_1.0.1e-2+deb7u17_amd64.deb | grep Depends
Pre-Depends: multiarch-support
Depends: libc6 (>= 2.7), zlib1g (>= 1:1.1.4), debconf (>= 0.5) | debconf-2.0

dpkg -l | grep debconf
ii debconf 1.5.49 all Debian configuration management system
ii debconf-i18n 1.5.49 all full internationalization support for debconf
ii po-debconf 1.0.16+nmu2 all tool for managing templates file translations with gettext

deb-dep-tree libssl1.0.0
libssl1.0.0
===========

 * multiarch-support
 * zlib1g (>= 1:1.1.4)
 * libc6 (>= 2.7)

deb-dep-tree libssl1.0.0 -l
libssl1.0.0
===========

 * debconf
 * multiarch-support
 * zlib1g (>= 1:1.1.4)
 * libc6 (>= 2.7)

You can also ignore some dependencies, by providing a file with a list of dependencies to ignore. Its format is the same as the output of the dpkg -l command.

dpkg -l | grep libc > /tmp/toignore
deb-dep-tree libgcc1 -r -i /tmp/toignore
libgcc1
=======

 * multiarch-support
 * gcc-4.7-base (= 4.7.2-5)
 * libc6 (>= 2.2.5)

multiarch-support
=================

 * libc6 (>= 2.3.6-2)

gcc-4.7-base
============

 Copyright 2015, Matthieu Gallet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	DebTools 0.7.3 documentation

multideb

Create several Debian packages at once.
Fetch the list of installed Python packages in the current virtualenv and package them as .deb packages using the standard stdeb tool.
You can also:

	define the packages to create in a configuration file,

	specify options for any of these packages,

	run Python commands after archive expansion and between the creation of Debian source and the creation of the Debian package.

To create Debian packages for all currently installed Python packages, use the following command:

multideb --freeze

All options must be defined in a stdeb.cfg configuration file.
In the [multideb-packages] section of stdeb.cfg, you can define extra packages to create: option name is the name of the package, option value is the required version.
In the [multideb] section of stdeb.cfg, you can exclude some packages from .deb creation:

[multideb]
exclude = celery
 django
 gunicorn

You can define specific options for a given package. In addition of standard stdeb options, you can also define pre_source and post_source options.
Values must be an importable Python function, which will be called with the following arguments my_callable(package_name, package_version, deb_src_dir).

Here is the list of actions:

	download .tar.gz of the source code,

	expand this file,

	remove all .pyc files,

	run the pre_source function (if defined),

	run python setup.py sdist_dsc,

	run the post_source function (if defined),

	create the package with dpkg-buildpackage.

Usage

multideb

Callable hooks

pre_source hook is called just after the expand of the archive and the removal of compiled Python files (.pyc).
The current working dir is changed to this directory (for example, ./setup.py should exist) and deb_src_dir is None when this hook is called.

post_source hook is called after the sdist_dsc command.
The current working dir is changed to archive directory (for example, ./setup.py should exist) and deb_src_dir is valid when this hook is called.
It corresponds to the single sub-directory in the directory deb_dist.

Sample config file

Here is a sample stdeb.cfg file:

[multideb-packages]
django = 1.8.3

[multideb]
exclude = funcsigs
 django-allauth
 gunicorn

[django]
pre_source = multideb.remove_tests_dir

[celery]
post_source = multideb.fix_celery

; list of standard stdeb options
[other_package]
Source = debian/control Source: (Default: <source-debianized-setup-name>)
Package = debian/control Package: (Default: python-<debianized-setup-name>)
Suite = suite (e.g. stable, lucid) in changelog (Default: unstable)
Maintainer = debian/control Maintainer: (Default: <setup-maintainer-or-author>)
Section = debian/control Section: (Default: python)
Epoc = version epoch
Depends = debian/control Depends:
Depends3 = debian/control Depends: for python3
Suggests = debian/control Suggests:
Suggests3 = debian/control Suggests: for python3
Recommends = debian/control Recommends:
Recommends3 = debian/control Recommends: for python3
Conflicts = debian/control Conflicts:
Uploaders = uploaders
Conflicts3 = debian/control Conflicts: for python3
Provides = debian/control Provides:
Provides3 = debian/control Provides: for python3
Replaces = debian/control Replaces:
Replaces3 = debian/control Replaces: for python3
Copyright-File = copyright file
Build-Conflicts = debian/control Build-Conflicts:
MIME-File = MIME file
Udev-Rules = file with rules to install to udev
Debian-Version = debian version (Default: 1)
Build-Depends = debian/control Build-Depends:
Forced-Upstream-Version = forced upstream version
Upstream-Version-Suffix = upstream version suffix
Stdeb-Patch-File = file containing patches for stdeb to apply
XS-Python-Version = debian/control XS-Python-Version:
Dpkg-Shlibdeps-Params = parameters passed to dpkg-shlibdeps
Stdeb-Patch-Level = patch level provided to patch command
Upstream-Version-Prefix = upstream version prefix
X-Python3-Version = debian/control X-Python3-Version:
MIME-Desktop-Files = MIME desktop files
Shared-MIME-File = shared MIME file
Setup-Env-Vars = environment variables passed to setup.py

 Copyright 2015, Matthieu Gallet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	DebTools 0.7.3 documentation

aptenv

When your application is meant to be deployed using the official Ubuntu or Debian packages (like python-django).
aptenv takes a list of Python packages (a standard requirements files, like the one produced by the pip freeze command) or the list of currently installed packages and fetch the list of available versions in the Ubuntu or Debian mirrors.

aptenv -u xenial -u xenial-updates --python 3 -r requirements.txt

You can also fetch the available Python version
.. code-block:: bash

aptenv -u xenial -u xenial-updates –python 3 -P
python3.5
aptenv -u trusty -u trusty-updates –python 3 -P
python3.4
aptenv -u precise -u precise-updates –python 3 -P
python3.2
aptenv -u trusty -u trusty-updates –python 2 -P
python2.7

By default, the debianized name of a Python package starts by python- or python3-. Some packages have a specific name.
For example, the debian name of ansible is ansible.
You can specify a file with all your exceptions, and the mapping for a few well-known Python packages is provided, you can use it with -M. You can also use this system for excluding some packages:

echo "PyYAML==3.12" > requirements.txt
aptenv -u xenial -u xenial-updates --python 3 -r requirements.txt
Unable to find any version for PyYAML
echo "PyYAML=python-yaml" > map
aptenv -u xenial -u xenial-updates --python 3 -r requirements.txt -m map
PyYAML==3.11
aptenv -u xenial -u xenial-updates --python 3 -r requirements.txt -M
PyYAML==3.11
echo "PyYAML=" > map
aptenv -u xenial -u xenial-updates --python 3 -r requirements.txt -m map

Then you can create a virtualenv corresponding to a plain Ubuntu Xenial or a Debian Stable installation:

aptenv -u xenial -u xenial-updates --python 3 -r requirements.txt > requirements-ubuntu-xenial.rst
mkvirtualenv ubuntu-xenial -p `aptenv -u xenial -u xenial-updates --python 3 -P` -r requirements-ubuntu-xenial.rst

aptenv -u jessie -u jessie-backports --python 3 -r requirements.txt > requirements-debian-jessie.rst
mkvirtualenv ubuntu-xenial -p `aptenv -u jessie -u jessie-backports --python 3 -P` -r requirements-debian-jessie.rst

 Copyright 2015, Matthieu Gallet.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	DebTools 0.7.3 documentation

Index

 Copyright 2015, Matthieu Gallet.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/logo.png

_static/up.png

_static/file.png

search.html

 Navigation

 		
 index

 		DebTools 0.7.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Matthieu Gallet.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

