

Deb-o-Matic

What is Deb-o-Matic?

Deb-o-Matic is an easy to use utility to build Debian source packages, meant
to help developers to automate the building of their packages with a tool that
requires limited user interaction and a simple configuration.

It provides some useful features such as automatic chroot creation, rebuild of
source packages, post-build checks, and much more. It is also extendible with
modules that are loaded and executed during the build phases.

Why Deb-o-Matic?

When the author started to contribute to the Debian and Ubuntu development, he
was running a 10-year-old PC and had a poor network connectivity. Downloading
lots of packages had always been a nightmare, Canonical’s PPAs [https://help.launchpad.net/Packaging/PPA] were always
busy compiling other packages because of the limited resources invested at the
time, and wanna-build [https://anonscm.debian.org/cgit/mirror/wanna-build.git/] was (and still is) too complex to set up for
relatively simple workflows.

A brand new software was created to help building source packages to avoid the
burden of the compilation, without wasting too much time configuring complex
software to work. Deb-o-Matic was born! A group of Debian and Ubuntu
developers started to use it as their primary build machine to avoid playing
with sbuild and long builds. Some of them still use Deb-o-Matic to build
their packages.

Over time, Deb-o-Matic has been used by some FLOSS projects too. For example,
Scilab Enterprises uses Deb-o-Matic to build Scilab in a transparent and
automatic way. Every 5 minutes, a cronjob checks if any new commit happened and
start a built process through Deb-o-Matic.

Deb-o-Matic

What is Deb-o-Matic?

Deb-o-Matic is an easy to use utility to build Debian source packages, meant
to help developers to automate the building of their packages with a tool that
requires limited user interaction and a simple configuration.

It provides some useful features such as automatic chroot creation, rebuild of
source packages, post-build checks, and much more. It is also extendible with
modules that are loaded and executed during the build phases.

Why Deb-o-Matic?

When the author started to contribute to the Debian and Ubuntu development, he
was running a 10-year-old PC and had a poor network connectivity. Downloading
lots of packages had always been a nightmare, Canonical’s PPAs [https://help.launchpad.net/Packaging/PPA] were always
busy compiling other packages because of the limited resources invested at the
time, and wanna-build [https://anonscm.debian.org/cgit/mirror/wanna-build.git/] was (and still is) too complex to set up for
relatively simple workflows.

A brand new software was created to help building source packages to avoid the
burden of the compilation, without wasting too much time configuring complex
software to work. Deb-o-Matic was born! A group of Debian and Ubuntu
developers started to use it as their primary build machine to avoid playing
with sbuild and long builds. Some of them still use Deb-o-Matic to build
their packages.

Over time, Deb-o-Matic has been used by some FLOSS projects too. For example,
Scilab Enterprises uses Deb-o-Matic to build Scilab in a transparent and
automatic way. Every 5 minutes, a cronjob checks if any new commit happened and
start a built process through Deb-o-Matic.

Requisites

Build and installation requirements

In order to build and install Deb-o-Matic, the following packages are required:

	python3 (>= 3.2)

The following packages are required to install documentation and translations:

	python3-sphinx

	texlive-latex-base

	texlive-latex-recommended

	texlive-fonts-recommended

	texlive-latex-extra

	gettext

	latexmk

Runtime requirements

In order to be able to run Deb-o-Matic, the following packages are required:

	python3 (>= 3.2)

	sbuild (>= 0.67.0-1)

	schroot (>= 1.6.10-2)

	debootstrap, cdebootstrap, or qemu-debootstrap

	python3-toposort

To enable additional features, you may want to install these packages:

	python3-pyinotify (>= 0.8.6)

	gpgv (>= 2.1)

	debian-archive-keyring

	ubuntu-archive-keyring or ubuntu-keyring

	lintian

	piuparts (>= 0.45)

	autopkgtest (>= 4.0)

	blhc

	devscripts

	apt-utils

	gnupg (>= 2.1)

An Internet connection is also required, broadband access is recommended
because underlying programs will fetch a lot of megabytes from remote locations
in order to create the chroots or satisfy build dependencies.

Installation

Installation from Debian/Ubuntu repository

Deb-o-Matic is available in Debian and Ubuntu repositories, so you can launch
the following command to install Deb-o-Matic on your system:

sudo apt-get install debomatic

Depending on your Debian or Ubuntu release, you could not have the latest
version. It is usually suggested to use the latest one to obtain new features
and bugfixes. You may want to check Deb-o-Matic home page [http://debomatic.github.io/] from time to time
to see whether a new release is available.

Installation of the release tarball

If the version in Debian/Ubuntu repositories is not the one you are looking
for, you can download a release tarball from Deb-o-Matic download page [https://github.com/debomatic/debomatic/releases].

Unpack the release tarball, enter the new created directory, and launch the
following command:

sudo python3 setup.py install

If everything went smoothly, you should be able to launch debomatic from
your terminal’s command line.

Installation of Git snapshots

If you want to test bleeding-edge features, or want to be always up-to-date
with the latest and greatest Deb-o-Matic versions, you can download development
snapshots directly from upstream Git [https://github.com/debomatic/debomatic] repository. Open a terminal and
launch the following command:

git clone https://github.com/debomatic/debomatic.git

You can follow the instructions described in the previous section to install
Deb-o-Matic on your system.

Configuration

Configuration file

Deb-o-Matic configuration file is the most important file within Deb-o-Matic
infrastructure. It defines almost every option needed by Deb-o-Matic.
It is divided into five sections: debomatic, which contains the general
options needed for Deb-o-Matic to work; distributions, which contains all
the details related to the distributions Deb-o-Matic can build package for;
chroots, which contains the options related to the creation of the chroots
used to build packages; gpg, which contains the options related to GPG
signature checking; modules, which contains the options related to module
handling.

Other sections are optionally defined by each single module, their details will
be discussed in the Modules section.

Caution

Configuration file must be formatted with Python ConfigParser [http://docs.python.org/library/configparser.html] syntax.

debomatic section

This section is mandatory, Deb-o-Matic refuses to start if one of these
options is missing from the configuration file. Also, Deb-o-Matic needs to be
restarted to pick any change to one of these options.

	builduser

This option indicates the user Deb-o-Matic will build packages under.

Suggested value: sbuild

Caution

Make sure chosen user exists before launching Deb-o-Matic and is part of
sbuild group, otherwise packages will not be built.

	incoming

This option indicates the directory where Deb-o-Matic expects to find source
packages to build, and in which it will store chroots, build logs, and
resulting packages.

Suggested value: /incoming

Caution

Make sure chosen directory exists before launching Deb-o-Matic, otherwise it
will refuse to start.

	debootstrap

This option indicates which debootstrap tool is required to create the chroot
to build source packages from. Deb-o-Matic currently supports debootstrap,
cdebootstrap, and qemu-debootstrap.

Suggested value: debootstrap

Caution

Make sure chosen debootstrap utility is installed on your system, otherwise
Deb-o-Matic will not be able to create chroots and build packages.

	architecture

This option indicates the architecture to build package for. To build packages
for the same architecture of the running system, system can be used
instead of specifying the exact one.

Suggested value: system

	threads

This option indicates the maximum concurrent builds that can be executed. If
more build tasks are scheduled, they will be blocked until a slot becomes
available again. More concurrent builds require more CPU cycles, so you may
want to try different configurations to fit your needs.

threads takes an integer as parameter.

Suggested value: 3

	inotify

This option indicates whether to enable inotify support, or not. inotify will
notify Deb-o-Matic about the availability of a new task, and will immediately
start a new thread according to the requested task.

If python3-pyinotify is not available, Deb-o-Matic will fall back to a
timer-based method, where new tasks will be analyzed periodically.

inotify takes True or False as parameter.

Suggested value: True

	sleep

This option indicates the number of seconds between two consecutive checks for
new packages or commands to process. This option is only useful if inotify
support is disabled, or is not available.

sleep takes an integer as parameter.

Suggested value: 60

	interval

This option indicates the number of seconds between two consecutive triggers
for scheduled actions performed by modules.

interval takes an integer as parameter.

Suggested value: 3600

	logfile

This option indicates which file will be used to store information and warning
messages issued by Deb-o-Matic during its execution.

Suggested value: /var/log/debomatic.log

	loglevel

This option indicates which kind of debug messages will be displayed. There
are four levels: error, warning, info, and debug.

Suggested value: info

distributions section

This section is mandatory, Deb-o-Matic refuses to start if one of these
options is missing from the configuration file. Also, Deb-o-Matic needs to be
restarted to pick any change to one of these options.

	list

This option indicates the path of the distribution configuration file.
More on those files will be discussed in the Distributions file section.

Suggested value: /etc/debomatic/distributions

Caution

Make sure chosen directory exists before launching Deb-o-Matic, otherwise it
will refuse to start.

	blacklist

This option indicates a list of distributions that are not allowed to accept
new packages to build. Files targeted for a blacklisted distribution will be
automatically deleted.

Option must define a space-separated distribution names matching the ones
listed in the Distributions file section.

Suggested value: (blank field)

	mapper

This option indicates a list of distributions that, even if they are not
defined by a distribution file (see Distributions file section), can build
packages on top of another distribution. This is particularly useful to
indicate distribution aliases (such as sid <=> unstable) or subsets
(such as vivid-proposed => vivid).

Option must define a Python dictionary [http://docs.python.org/library/stdtypes.html#mapping-types-dict] where keys are the distributions
indicated by the packages, and values are the distributions on which build
packages upon.

Suggested value: {'sid': 'unstable'}

chroots section

This section is mandatory, Deb-o-Matic refuses to start if one of these
options is missing from the configuration file. Also, Deb-o-Matic needs to be
restarted to pick any change to one of these options.

	profile

This option indicates which schroot profile the chroots must adhere to.
Profile files must be stored under /etc/schroot directory.

Suggested value: ``debomatic`

Caution

Make sure chosen profile exists before launching Deb-o-Matic, otherwise
all chroots will not be created.

	commands

This option indicates the directory where sbuild commands are stored. Commands
are executable scripts which are processed by sbuild during various build
phases. Please refer to the sbuild (1) man page for additional details.

At the moment, Deb-o-Matic provides a script to disable Internet connection
within the chroot on Linux systems to avoid accessing remote resources during
the build phase, and another one to increase the speed of unpacking of the
dependencies in the chroots.

Suggested value: /usr/share/debomatic/sbuildcommands

Caution

This directory needs to be bind mounted in the chroot for the scripts to
be launched correctly. It is possible to do so by adjusting the schroot
profile linked to the chroots used by Deb-o-Matic.

crossbuild section

This section is optional, Deb-o-Matic will start normally if this section is
missing in the configuration file. Also, Deb-o-Matic needs to be restarted
to pick any change to one of these options.

	crossbuild

This option indicates whether to enable cross-build support, or not.

	hostarchitecture

This option indicates which host architecture to use when building source
packages.

Caution

The architecture must have cross-compilation at compiler lever, otherwise
it will not be possible to cross-compile source packages.

dpr section

This section is optional, Deb-o-Matic will start normally if this section is
missing in the configuration file. Also, Deb-o-Matic needs to be restarted
to pick any change to one of these options.

	dpr

This option indicates whether to enable private repositories, or not.

Suggested value: False

	prefix

This option indicates the common prefix of all private repositories.

Suggested value: dpr

	repository

This option indicates the APT string of a local APT repository which is
added at build time, useful in combination with the Repository module. The
string must contain two %%(dist)s arguments which allows to specify
dynamically the private repository name, for example:

deb http://debomatic.repository/debomatic/%%(dist)s %%(dist)s main

gpg section

This section is mandatory, Deb-o-Matic refuses to start if one of these
options is missing from the configuration file. Also, Deb-o-Matic needs to be
restarted to pick any change to one of these options.

gnupg package is required for these options to be effective.

	gpg

This option indicates whether to enable signature checking support, or not. If
enabled, Deb-o-Matic will delete unsigned files and files with signatures not
available in its keyring.

gpg takes True or False as parameter.

Suggested value: False

	keyring

This option indicates the gnupg keyring file in which Deb-o-Matic will look
for valid and trusted GPG keys.

Suggested value: /etc/debomatic/debomatic.gpg

Caution

Make sure keyring file exists and is populated with trusted keys if GPG
support is enabled, otherwise no tasks will be processed.

modules section

This section is mandatory, Deb-o-Matic refuses to start if one of these
options is missing from the configuration file. Also, Deb-o-Matic needs to be
restarted to pick any change to one of these options.

More on modules handling will be discussed in the Modules section.

	modules

This option indicates whether to enable module loading, or not.

modules takes True or False as parameter.

Suggested value: True

	path

This option indicates the directory where Deb-o-Matic expects to find modules.
Multiple directories can be listed, separated with a colon (:).

Suggested value: /usr/share/debomatic/modules

	threads

This option indicates how many modules Deb-o-Matic should launch in parallel.

threads takes an integer as parameter.

Suggested value: 5

	blacklist

This option indicates a list of modules that are not allowed to be executed
during build process.

Option must define a space-separated module names matching the ones listed in
the Modules section.

Suggested value: AutoPkgTest Blhc Lintian Mailer Piuparts

Distributions file

This file is populated by sections, each of them named after a distribution
to build packages for. Every section can define five options.

	suite

This option indicates the base suite to create the chroot for. Normally, it is
equal to its distribution, but there are some exceptions (for instance,
experimental’s suite is unstable).

This option is mandatory.

	mirror

This option indicates the mirror site which contains the primary package
archive of the distribution.

This option is mandatory.

	components

This option contains a space-delimited list of components to use.

This option is mandatory.

	extramirrors

This option indicates additional mirrors to add in the chroot. More than one
additional mirror can be defined, separated by a newline.

This option is optional.

	extrapackages

This option contains a space-delimited list of additional packages to install
in the chroot during its creation.

This option is optional.

Run Deb-o-Matic

Launch Deb-o-Matic

Deb-o-Matic needs root privileges to be executed, otherwise it refuses to
start. In order to launch it, you can use the following command:

sudo debomatic -c debomatic.conf

with debomatic.conf being the configuration file as described in the
Configuration section. Make sure this file exists, otherwise Deb-o-Matic
will refuse to start.

Interactive mode

Deb-o-Matic will try to enter daemon mode automatically. If that is not
possible, Deb-o-Matic will be executed in interactive mode, and will be bound
to the shell that executed it, as a regular process.

It is also possible to force interactive mode by passing -i or
--interactive option while invoking debomatic command:

sudo debomatic -c debomatic.conf -i

This is particularly useful for debugging purposes.

Oneshot mode

Deb-o-Matic will try to build all files found in the incoming directory.
Alternatively, it is possible to attempt to build a single file by passing
-o or --oneshot option while invoking debomatic command, following
by the file name of the package to build, which must be located in the
incoming directory:

sudo debomatic -c debomatic.conf -o package_version_source.changes

Stop Deb-o-Matic

In order to stop Deb-o-Matic, you should pass -q or --quit option to
debomatic:

sudo debomatic -c debomatic.conf -q

Deb-o-Matic will not terminate child processes immediately, but will wait for
them to end first, so it could take a while to completely stop a Deb-o-Matic
instance.

Caution

Deb-o-Matic uses a rather strong locking mechanism, so it is not recommended
to terminate debomatic process with kill command.

Using service command

If you installed Deb-o-Matic using Debian package, you could start, stop, and
restart Deb-o-Matic with the following commands, respectively:

sudo service debomatic start

sudo service debomatic stop

sudo service debomatic restart

You will need to adjust configuration stored in /etc/default/debomatic file
to manage Deb-o-Matic with this method, though. In particular, you will have to
set DEBOMATIC_AUTOSTART variable to 1.

Service configuration

In order to start Deb-o-Matic with service command, you must adjust some
parameters defined in /etc/default/debomatic file.

	DEBOMATIC_AUTOSTART

This option indicates whether to execute Deb-o-Matic at system boot. Default
value is set to 0 to avoid accidental executions without a sane
configuration. It must be set to 1 in order to launch Deb-o-Matic.

	DEBOMATIC_CONFIG_FILE

This option indicates the configuration file Deb-o-Matic is going to use.

	DEBOMATIC_OPTS

This option allows to pass extra options to Deb-o-Matic.

Using systemctl command

If you installed Deb-o-Matic using Debian package, and your system does use of
systemd as default init, you could start, stop, and restart Deb-o-Matic with
the following commands, respectively:

sudo systemctl start debomatic

sudo systemctl stop debomatic

sudo systemctl restart debomatic

systemd unit file is configured to look for /etc/debomatic/debomatic.conf
as its default configuration file. You can change this path by providing a
systemd override file.

Upload packages and commands

Prepare source packages

Deb-o-Matic will take into account both source only uploads and source and
binary uploads, while it will discard binary only uploads. Source only uploads
are recommended to avoid waste of bandwidth, so make sure you create packages
by passing -S flag to debuild or dpkg-buildpackage.

Then, packages must be copied or uploaded into the directory specified by the
incoming option in the configuration file to let Deb-o-Matic process
them.

In order to save bandwidth while uploading your packages, you could want to
avoid including upstream tarball in the .changes file if it is already
available in the distribution mirrors, Deb-o-Matic will fetch it automatically
for you. In order to do so, you have to pass -sd flag to debuild or
dpkg-buildpackage.

Multiple uploads of the same packages are allowed, Deb-o-Matic will overwrite
previous builds with new, fresh files.

User-defined fields

sbuild uses several resolvers to determine and install build-dependencies
inside the chroots. Sometimes it is desirable to override the default resolver
to perform some advanced tasks (e.g. using a specific version of a package
which apt-based resolver cannot pick automatically.

In order to do so, you must define the XC-Debomatic-Resolver in the source
stanza of your control file. For instance, if you want to use the aptitude
resolver, you must use the following syntax:

XC-Debomatic-Resolver: aptitude

Prepare command files

Deb-o-Matic provides an interface to perform specific tasks into the
Deb-o-Matic incoming directory such as removing uploaded files or
rebuilding packages. These operations are handled by commands stored in
.commands files, and uploaded into Deb-o-Matic incoming directory by
using dcut utility, or by hand.

Using dcut is usually simpler, just launch the following command:

dcut -U mydebomatic commandfile.commands

where mydebomatic is a dput host as described in dput.cf (5) man page, and
commandfile.commands is the file containing the commands to be executed by
Deb-o-Matic.

Multiple commands can be stored in a single .commands file, but it is
usually safer to issue a single command per file.

Caution

If signature checking support is enabled, .commands files must be signed by a
known key, otherwise they will be deleted and no action will be taken.

Remove packages

It could happen some files are kept into Deb-o-Matic incoming directory,
and you would like to remove them. In order to do so, you must use the rm
command:

echo “rm foo*” > foo.commands

where foo* is a regular expression matching the files you want to remove.

Rebuild packages

You could want to rebuild a package already in the mirrors to see whether it
compiles with newer packages, to analyze its content, and so on. In order to do
so, you must use the rebuild command:

echo “rebuild foo_version dist” > foo.commands

where foo is the name of the source package you want to rebuild,
version is the version of the package you want to rebuild, and dist is
the distribution which rebuild the package for.

Deb-o-Matic can also rebuild packages available in other distributions. The
syntax is similar, you just have to indicate which distribution to pick
packages from:

echo “rebuild foo_version dist origin” > foo.commands

where origin is the distribution to pick packages from.

Caution

Make sure packages are available in the distribution mirrors, otherwise they
cannot be downloaded and processed by Deb-o-Matic.

Porter uploads

You could want to prepare a porter upload, a binary-only upload which generates
architecture dependent binaries only. Additional information can be found in
Debian Developer’s Reference [https://www.debian.org/doc/manuals/developers-reference/pkgs.html#porter-guidelines].

In order to do so, you must use the porter command:

echo “porter foo_version dist John Doe <jdoe@debian.org>” > foo.commands

where foo is the name of the source package you want to rebuild,
version is the version of the package you want to rebuild, dist is the
distribution which rebuild package for, and the rest of the string is the
address to be used as maintainer field, which is usually the developer who is
preparing the upload.

Caution

Make sure packages are available in the distribution mirrors, otherwise they
cannot be downloaded and processed by Deb-o-Matic.

Binary NMU uploads

You could want to prepare a binary NMU (or binNMU) upload, a binary-only upload
which generates architecture dependent binaries only, together with a
changelog entry describing why the upload was needed. Additional information
can be found in Debian Developer’s Reference [https://www.debian.org/doc/manuals/developers-reference/pkgs.html#porter-guidelines].

In order to do so, you must use the binnmu command:

	*echo “binnmu foo_version dist binNMU_version “changelog”

	John Doe <jdoe@debian.org>” > foo.commands*

where foo is the name of the source package you want to rebuild,
version is the version of the package you want to rebuild, dist is the
distribution which rebuild package for, binNMU_version is the progressive
binNMU number, changelog is the reason why the upload was prepared
(enclosed in quotation marks), and the rest of the string is the address to be
used as maintainer field, which is usually the developer who is preparing the
upload.

Caution

Make sure packages are available in the distribution mirrors, otherwise they
cannot be downloaded and processed by Deb-o-Matic.

Rebuild packages with extra build-dependencies

You could want to rebuild a package already in the mirrors also adding a
specific build-dependency to see whether it compiles with a newer library
version. In order to do so, you must use the builddep command:

echo “builddep foo_version dist extrapackage (>= packageversion)”
> foo.commands

where extrapackage is the name of the package you want to install before
the compilation takes place, and packageversion is the optional version of
the package you want to install. More than one package can be defined,
separated by commas.

Caution

Make sure packages are available in the distribution mirrors, otherwise they
cannot be downloaded and processed by Deb-o-Matic.

Killing builds

You could want to terminate a build you erroneously uploaded, or you do not
want it to complete to avoid wasting too many resources.

In order to do so, you must use the kill command:

echo “kill foo_version dist ” > foo.commands

where foo is the name of the source package you want to terminate its
build, version is its version, and dist is the distribution the
package is being built for.

Private repositories

Deb-o-Matic can create private repositories, separated from the standard
suites, to be able to upload packages in an isolated environment without
risking to pollute builds with other packages, or to create specialized
repositories for specific purposes.

Deb-o-Matic Private Repositories can be created dynamically by uploading
a package or a command file for a specific suite which has this syntax:

prefix-name-distribution

where prefix is the defined prefix name, name is an arbitrary name
chosen by the uploader, and distribution is the target distribution to
build packages from.

Modules

Autopkgtest

This module allows adt-run to be executed if source package declares a
Testsuite against autopkgtest. It creates a report in the same directory of the
resulting files.

Parameters

Caution

These parameters must be listed under the autopkgtest section. Make sure
you create it in your configuration file.

	options

This option indicates the extra options to pass to adt-run.

Suggested value: --no-built-binaries

Blhc

This module allows blhc to be executed, checking the build log of built
packages for missing hardening flags.

In order for this module to work properly, blhc package must be installed.

Parameters

Caution

These parameters must be listed under the blhc section. Make sure you
create it in your configuration file.

	options

This option indicates the extra options to pass to blhc.

Suggested value: --all

BuildCleaner

This modules deletes obsolete files created during previous builds to avoid
picking obsolete files by mistake. It currently deletes these files:

	*.deb

	*.udeb

	*.ddeb

	*.gz

	*.bz2

	*.xz

	*.dsc

	*.build

	*.contents

	*.lintian

	*.piuparts

	*.changes

	*.autopkgtest

	*.bhlc

Parameters

Caution

These parameters must be listed under the buildcleaner section.
Make sure you create it in your configuration file.

	testbuild

This option indicates whether to remove binary packages immediately after
build has completed. Useful for test builds, where it is not important to
keeo binaries for a long period of time.

Suggested value: False

Contents

This module scans binary packages and stores their content in a .contents
file created in the same directory of the resulting files.

In order for this module to work properly, debc tool from devscripts
must be available.

DateStamp

This module displays timestamps of when a package started to build, when it
finished, and the build elapsed time. Timestamps are stored in a .datestamp
file created in the same directory of the resultinf files.

Lintian

This module allows lintian to be executed, checking the built packages for
errors and warnings, and creates a report in the same directory of the
resulting files.

In order for this module to work properly, lintian package must be
installed.

Parameters

Caution

These parameters must be listed under the lintian section. Make sure you
create it in your configuration file.

	options

This option indicates the extra options to pass to lintian.

Suggested value: -iIE --pedantic

Mailer

This module allows to send emails about the status of the builds. Body of the
email will contain an excerpt of the build log to easily see failures or
potential problems.

Caution

Make sure signature checking support is enabled before trying to use this
module, otherwise it will not work as it relies on the address provided in
the GPG key to obtain the email address to send messages to.

Parameters

Caution

These parameters must be listed under the mailer section. Make sure you
create it in your configuration file.

	sender

This option indicates the email address used to send the emails from.

	server

This option indicates the SMTP server used to send the emails.

	port

This option indicates the SMTP port on which the SMTP server listens to.

	tls

This option indicates whether to enable TLS mode, or not.

	authrequired

This option indicates whether the SMTP server requires authentication, or not.

	user

This option indicates the user name to be passed to the SMTP server.

	pass

This option indicates the password to be passed to the SMTP server.

	success

This option indicates the template to be used to report successful builds.

	failure

This option indicates the template to be used to report failed builds.

	lintian

This option indicates whether the lintian log is to be attached after the build
log, or not.

Piuparts

This module allows piuparts to be executed, checking the built packages for
potential problems, and creates a report in the same directory of the
resulting files.

In order for this module to work properly, piuparts package must be
installed.

Parameters

Caution

These parameters must be listed under the piuparts section. Make sure you
create it in your configuration file.

	options

This option indicates the extra options to pass to piuparts.

Suggested value: --log-level=info

RemoveChroots

This module allows to remove chroots after a certain amount of days.

Parameters

Caution

These parameters must be listed under the removechroots section. Make
sure you create it in your configuration file.

	days

This option indicates the number of days after which chroots are removed.

RemovePackages

This module allows to remove built packages after a certain amount of days.

Parameters

Caution

These parameters must be listed under the removepackages section. Make
sure you create it in your configuration file.

	days

This option indicates the number of days after which build packages are
removed from the pool directory.

Repository

This module allows the creation of a simple repository of Debian binary
packages, which is refreshed each time a build is performed, allowing to build
packages build-depending on previously built ones. In order for this module to
work properly, apt-ftparchive tool from apt-utils package must be
available.

Parameters

Caution

These parameters must be listed under the repository section. Make sure
you create it in your configuration file.

	gpgkey

This option indicates the GPG ID used to sign the Release file of the
repository.

	pubring

This option indicates the path where to look for the GPG keyring used to
sign the Release file of the repository.

SourceUpload

This module allows the creation of a .sourceupload.changes file to be used to
upload source-only uploads to the Debian archive.

UpdateChroots

This module allows to update chroots after a certain amount of days.

Parameters

Caution

These parameters must be listed under the updatechroots section. Make
sure you create it in your configuration file.

	days

This option indicates the number of days after which chroots are updated.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Deb-o-Matic

_static/up-pressed.png

_static/up.png

