

 Navigation

 	
 index

 	
 next |

 	Deadlock/reader-sw 2.0 alpha documentation »

Deadlock Reader (Firmware)

Wow, such empty

Table of contents

	Reader Firmware Architecture
	Components and their interaction

	Watchdog

	Detailed descriptions

	Automated testing of the firmware
	Chosen testing strategy

	Unit tests

	Integration testing

	RFID Stack
	Documentation of components

	Architecture

	Components

	Abstract classes in Plain C

 © Copyright 2018, FMFI ŠVT.
 Last updated on May 03, 2018.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Deadlock/reader-sw 2.0 alpha documentation »

Reader Firmware Architecture

The Reader uses STM32 microcontroller. To keep the cost of hardware as low as possible, these
MCUs are not capable of running mainstream OS such as Linux. Since the Reader must be fast and
stable, the firmware must be written in a way that it can execute efficiently on an MCU - therefore
in C.

Writing a firmware in C for bare-metal, however, has several disadvantages. One big disadvantage
is portability: should the Reader require hardware change the firmware would have to be laboriously
ported as well, including possible rewrite of bare-metal drivers. Another disadvantage is high
maintenance cost and entry barrier for new developers entering the project.

To mitigate some of these disadvantages, we have decide to base the firmware on ChibiOS. ChibiOS
is a free development environment for embedded applications. It contains a RTOS, which provides
threading capabilities, synchronization primitives and other useful programming constructs, and
HAL, which simplifies development and facilitates firmware porting to different MCUs.

There are multiple ways to write a firmware for embedded devices, from a simple loop to extremely
modular but complex microkernel-like designs. Each design method provides a different mix of
implementation cost, maintainability, stability and extensibility.

Components and their interaction

Firmware of the Reader will be composed of several Tasks and one Master Task. Each task will run
in its separate thread and will do only one thing, for example there will be a task for reading the
RFID card or task for updating the UI. These tasks won’t communicate directly with each other.
They will only communicate with the Master Task. The Master Task will implement business logic
of the reader.

Since Tasks and the Master Task run in different threads, some form of inter-thread communication
will have to be set up. In general, tasks will provide a thread-safe API which the Master Task
may call whenever it needs. This thread-safe API will internally, in a task-specific way, transport
the message to the task thread. This is done so that each task may choose communication method best
suited for it. For example, RFID Card Task may support only 2 commands: Start Polling
and Stop Polling. The simplest way to implement these commands is to just set a bit in shared
memory, update of which is always atomic. On the other hand, the Communicator Task will have to
receive a data structure describing message the Master Task wishes to send. The Master Task may
even request sending a message if another message is being sent just now. Most fitting communication
mechanism for this particular task is the Mailbox construct.

Watchdog

The multithreaded nature of this firmware also brings some issues. Since each task runs as a
separate thread, it may lock up / enter an endless loop without impairing the rest of the system.
For example, RFID Card Task may enter an endless loop. Since other threads, including the Master
Task may run with higher priority, they won’t notice anything abnormal, except that when user
presents a card to the reader, the card won’t be detected. Therefore it is necessary to implement
a watchdog which would watch over all tasks (including the Master Task), and if something like this
happens, it would reset the Reader.

At this point one may be tempted to come up with a complex scheme where each task can be restarted
without affecting any other tasks. Indeed, the first working draft of the firmware design included
this capability. Implementation, however, proved to be quite challenging, and would require
implementation of some sort of garbage-collecting mechanism. In the end, we have decided that added
implementation complexity and potential bugs were not worth the advantages such mechanism would
bring. Indeed, the whole Reader firmware is able to fully boot up in a fraction of a second after
reset, so it is easier to just go for a complete restart.

The implemented watchdog mechanism utilizes the hardware watchdog built in the MCU. The watchdog
in this MCU is essentially just a timer, which when runs out, resets the MCU. So the firmware
has to perpetually reset this timer. Resetting the watchdog is the responsibility of the Master
Task.

Each task, including a Master Task, should generate Heartbeats. This Heartbeat should depend on
correct operation of the given Task. For example, the RFID Card Task tries to read a card in a loop.
After each loop, it can generate a Heartbeat. If the task gets stuck when reading a card, it won’t
be able to generate a Heartbeat.

The Master Task internally keeps a vector of bits, where each bit represents a task (Heartbeat
Vector). Each task sends a heartbeat message to the Master Task each time the task generates a
Heartbeat. When the Master Task receives that message, it sets a bit in the Heartbeat Vector.
Then, when the Master Task itself generates a Heartbeat, it checks the Heartbeat Vector, and if
all bits are set, it resets the Watchdog, and clears all bits in the Heartbeat Vector. Therefore if
some tasks continually misses its Heartbeats, its bit won’t ever be set and the Watchdog won’t be
reset.

Detailed descriptions

	Task
	Task states

	Task API and naming conventions

	User Interface Task

	CardID Task

	Comm Task

 © Copyright 2018, FMFI ŠVT.
 Last updated on May 03, 2018.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Deadlock/reader-sw 2.0 alpha documentation »

 	Reader Firmware Architecture »

Task

The Deadlock Reader firmware is composed of several Tasks and a signle Master Task. Each task will
run in its separate thread and will do only one thing, for example there will be a task for reading
the RFID card or task for updating the UI. These tasks won’t communicate directly with each other.
They will only communicate with the Master Task. The Master Task will implement business logic
of the reader.

Tasks are located in subfolders src/tasks, one folder per task. Each task has a header, which
defines an interface for that task.

To lower implementation and maintenance costs, there can only be a single instance of each task.
Task interface functions therefore operate on a global instance of the given task.

Task states

The following state machine represents an abstract task:

[image: digraph G { uninitialized -> stopped [label="dlTaskInit()"] stopped -> running [label="dlTaskStart()"] running -> stopped [label="dlTaskStop() or task exited"] }]

	uninitialized: internal structures of the task are not initialized. The task can’t be
started and no task API functions are callable. The task won’t call Master Task callbacks.

	stopped: internal task structures are now initialized and the task can be stared. No task
APIs can be called and the task won’t call Master Task callbacks.

	running: the task is functioning normally (the task thread is running). Task API is available
and the task will call Master Task callbacks. In particular, each task is required to
periodically call Heartbeat callback.

All Tasks implement this state machine. The Master Task is responsible for initializing, starting
(and if required stopping) Tasks.

The Master Task also implements this state machine. The Master Task is initialized and started
by the firmware initialization code. This code just starts the task, it does not monitor it and
it won’t restart it if the task transitions back to stopped state.

Task API and naming conventions

Naming conventions of the API are similar to ChibiOS naming conventions:
http://chibios.sourceforge.net/docs3/rt/concepts.html#naming

The API functions are following this convention: dl<group><subgroup><action>()

	dl: stands for Deadlock

	group: for tasks API, the Group is always Task

	subgroup: subgroup is the name of the task

	action: what the API function does (Start, Stop, …)

Examples: dlTaskUIStart() or dlTaskRFIDStopPolling().

Each task must provide functions used in the state machine transitions:

	dlTask<TaskName>Init() - initializes task data structures and prepares it to be started

	dlTask<TaskName>Start() - starts the task thread

	dlTask<TaskName>Stop() - stops the task thread

 © Copyright 2018, FMFI ŠVT.
 Last updated on May 03, 2018.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Deadlock/reader-sw 2.0 alpha documentation »

 	Reader Firmware Architecture »

User Interface Task

User Interface control task.

This task controls the user interface of the Reader. User Interface of the Reader RevA board consists of 2 bi-color (red/green) LEDs, labelled Status LED and Lock LED and of a small speaker. This UI can use a combination of flashes and beeps to inform the user of a certain state or of an event.

The UI has 2 ways of informing the user of something: persistent states and message flashes. The persistent state informs user of some long-lasting condition (like system OK, door locked). The persistent state stays the same and displayed until it is explicitly changed. The message flashes are used to inform the user of one-time events that just happened (card rejected). They will execute a scripted sequence and then automatically return to previous persistent state.

Example: The system starts the UI task, which switches to the default state (Error). The system initializes a connection with the Controller and switches the task to “Normal - Locked” state. A user attempts to open the door using an invalid card. The persistent state stays “Normal - Locked” and “Card Rejected” UI flash will play. The user uses a correct card. The persistent state changes to “Normal - Unlocked” and on top of that “Card Accepted” UI flash will play.

	Note

	Deciding when to unlock and lock the door again is responsibility of the Controller, so even though the door is usually unlocked only temporarily, “Normal - Unlocked” is a persistent state from the Reader’s point of view.

Enums

	
enum dl_task_ui_state

	User interface states.

These are persistent states which the user interface may be presenting to the User. User is in a given state until it is explicitly changed.

Values:

	
DL_TASK_UI_STATE_ERROR

	Error state. Status LED is blinking red. This is the default

	
DL_TASK_UI_STATE_LOCKED

	Normal locked. Status LED is green, Lock led is red

	
DL_TASK_UI_STATE_UNLOCKED

	Normal unlocked. Status LED is green, lock led is green

	
enum dl_task_ui_flash

	User interface flashes.

These are temporary user interface states. They are usually a sequence of actions (a beep, LED blink) displayed on top of the persistent state until the sequence finishes.

Example: UI state is DL_TASK_UI_STATE_UNLOCKED, and flash DL_TASK_UI_FLASH_READ_OK is invoked. This flash will beep once with a high tone and then stop. UI stays in the DL_TASK_UI_STATE_UNLOCKED.

Values:

	
DL_TASK_UI_FLASH_READ_OK

	Card read and auth OK: One long high-pitched beep

	
DL_TASK_UI_FLASH_READ_BAD

	Card read and auth failed: Three short low-pitched beeps

	
DL_TASK_UI_FLASH_VADER

	Vader

Functions

	
void dlTaskUiInit(uint8_t task_id, dl_task_ui_callbacks *callbacks)

	Task initializer.

This function initalizes internal data structure of the task and sets up callbacks to the Master Task

	Parameters

	
	task_id: Our identificator the Master Task has chosen

	callbacks: Structure of function pointers to callbacks this task should use

	
void dlTaskUiStart(void)

	Task starter.

This function starts the task thread.

	
void dlTaskUiStop(void)

	Task stopper.

This function stops the task thread.

	
void dlTaskUiSetUIState(dl_task_ui_state state)

	Sets the persistent UI state.

	Note

	Thread safety: This function can be called from any thread when the ChibiOS is in Normal state.

	Parameters

	
	dl_task_ui_state: UI state to set

	
void dlTaskUiFlashMessage(dl_task_ui_flash flash)

	Flashes a temporary user state.

	Note

	Thread safety: This function can be called from any thread when the ChibiOS is in Normal state.

	Parameters

	
	dl_task_ui_flash: UI flash

	
struct dl_task_ui_callbacks

	#include <ui-task.h>A structure of Master Task callbacks.

User Interface of the Reader has no input elements, so this task does not need to report anything else than heartbeat to the Master Task.

	Note

	These callbacks must be thread safe

Public Members

	
void (*heartbeat)(uint8_t task_id)

	A heartbeat callback.

A Heartbeat callback of the Master Task. See firmware documentation, section “Reader Firmware Architecture”, subsection “Watchdog”

	Parameters

	
	task_id: ID of this task, assigned to us by the Master Task

 © Copyright 2018, FMFI ŠVT.
 Last updated on May 03, 2018.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Deadlock/reader-sw 2.0 alpha documentation »

 	Reader Firmware Architecture »

CardID Task

Card ID reading task.

This task uses on-board RFID reader module to try and read IDs of all cards present in the RF field. The underlying library is able to read IDs of all cards at once (if those cards behave properly).

The master task must explicitly request that this task starts polling for cards. When this task is polling for cards it may read one or more card IDs in one poll cycle. When that happens, this task will invoke a callback to the Master Task and will stop polling for cards until the Master Task reenables polling.

When this task is not polling for cards the RFID reader module is in low-power mode.

Functions

	
void dlTaskCardIDInit(uint8_t task_id, dl_task_cardid_callbacks *callbacks)

	Task initializer.

This function initalizes internal data structure of the task and sets up callbacks to the Master Task

	Parameters

	
	task_id: Our identificator the Master Task has chosen

	callbacks: Structure of function pointers to callbacks this task should use

	
void dlTaskCardIDStart(void)

	Task starter.

This function starts the task thread.

	
void dlTaskCardIDStop(void)

	Task stopper.

This function stops the task thread.

	
void dlTaskCardIDStartPolling(void)

	Requests that this task starts polling for cards.

	Note

	Thread safety: This function can be called from any thread when the ChibiOS is in Normal state.

	
void dlTaskCardIDStopPolling(void)

	Requests that this task stops polling for cards.

After this function is invoked, the poll that is already in progress is finished, however result of that poll will be discarded. It is guaranteed that after this function returns, callback card_detected won’t be invoked until dlTaskCardIDStartPolling is called. If this function is called during the card_detected callback invocation it will block until the callback returns.

	Note

	Thread safety: This function can be called from any thread when the ChibiOS is in Normal state.

	
struct dl_task_cardid_callbacks

	#include <cardid-task.h>A structure of Master Task callbacks.

	Note

	These callbacks must be thread safe

Public Members

	
void (*heartbeat)(uint8_t task_id)

	A heartbeat callback.

A Heartbeat callback of the Master Task. See firmware documentation, section “Reader Firmware Architecture”, subsection “Watchdog”

	Parameters

	
	task_id: ID of this task, assigned to us by the Master Task

	
void (*card_detected)(dl_picc_uid *cards, uint8_t len)

	Card Detected callback.

This callbacks informs the Master Task that one or more cards were detected in the RF field and sends their IDs. After this callback is invoked the task will stop polling for cards and won’t change contents of parameter cards. However, when the Master Task requests that this task should start polling for cards again, data pointed to by cards may change at any moment!

	Parameters

	
	cards: An array of IDs of detected cards

	len: Length of the array of detected cards

	
void (*reader_error)(void)

	RFID Reader Module error.

The reader module has experienced an unrecoverable error and can’t function. The task will automatically stop polling for cards.

 © Copyright 2018, FMFI ŠVT.
 Last updated on May 03, 2018.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Deadlock/reader-sw 2.0 alpha documentation »

 	Reader Firmware Architecture »

Comm Task

Communication handling task.

This task handles serial port communication with Controller.

An intent to send something is delivered as ChibiOS Message. This message is then serialized to CBOR format according to dcrcp (DeadCom Reader<->Controller Protocol) schema. The resulting byte buffer is then packed to dcl2 (DeadCom Layer 2) frame and transmitted over RS232 link.

This task handles sending and receiving dcrcp messages, and dcl2 link management.

Enums

	
enum dl_task_comm_linkstate

	Values:

	
DL_TASK_COMM_LINKUP

	

	
DL_TASK_COMM_LINKDOWN

	

Functions

	
void dlTaskCommInit(uint8_t ctrl_task_id, uint8_t rcv_task_id, dl_task_comm_callbacks *callbacks)

	Task initializer.

This function initalizes internal data structure of the task and sets up callbacks to the Master Task

	Parameters

	
	task_id: Our identificator the Master Task has chosen

	callbacks: Structure of function pointers to callbacks this task should use

	
void dlTaskCommStart(void)

	Task starter.

This function starts the task thread.

	
void dlTaskCommStop(void)

	Task stopper.

This function stops the task thread.

	
void dlTaskCommSendSysQueryResp(uint16_t rdrClass, uint16_t hwModel, uint16_t hwRev, char serial[DCRCP_SERIAL_MAX_LEN], uint8_t swVerMajor, uint8_t swVerMinor)

	Send System Query Response CRPM.

	
void dlTaskCommSendRdrFailure(char *str)

	Send Reader Failure CRPM.

	
void dlTaskCommSendAM0GotUids(dl_picc_uid *uids, size_t uids_len)

	Send Auth method: PICC UID obtained CRPM.

	
struct dl_task_comm_callbacks

	#include <comm-task.h>A structure of Master Task callbacks.

	Note

	These callbacks must be thread safe

Public Members

	
void (*heartbeat)(uint8_t task_id)

	A heartbeat callback.

A Heartbeat callback of the Master Task. See firmware documentation, section “Reader Firmware Architecture”, subsection “Watchdog”

	Parameters

	
	task_id: ID of this task, assigned to us by the Master Task

	
void (*linkChange)(dl_task_comm_linkstate new_link_state)

	A link status has changes.

Either the link was established dropped

	
void (*rcvdSystemQueryRequest)(void)

	A System Query Request CRPM has been received.

	
void (*rcvdActivateAuthMethods)(DeadcomCRPMAuthMethod *methods, size_t methods_len)

	An Activate Auth Methods CRPM was received.

	
void (*rcvdUiUpdate)(DeadcomCRPMUIClass0States uistate)

	UI Update CRPM was received.

 © Copyright 2018, FMFI ŠVT.
 Last updated on May 03, 2018.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Deadlock/reader-sw 2.0 alpha documentation »

Automated testing of the firmware

We want to test our code. However, testing code for embedded devices is not easy since in production environment the code runs on an embedded hardware. There are basically 3 options:

	Compile the code for PC and run tests locally

	Run tests on an emulator of given embedded platform

	Run tests on physical embedded hardware

Some of them have advantages, all of them have disadvantages.

Compiling code for the PC and running the tests locally is very fast compared to other options. However, only hardware-independent pieces of code can be tested in this way. Moreover, since different compiler is used to compile the unit tests these tests won’t catch compiler-introduced bugs (which is not unheard of in embedded development). However, logical error is still a logical error no matter the platform or compiler, so these tests can test business-logic well. Although it is possible to test higher-layers of device drivers by mocking the comm interface and emulating the hardware, it is pointless since it is way harder to write a flawless hardware emulator (bug-for-bug compatible with the real hardware) than it is to write a solid driver for it.

Running code on an emulator has an advantage of using the same compiler for both tests and production code. Also the registers may be changed at will and error conditions introduced. Unfortunately, we have not found suitable emulator for our platform.

Running tests on physical embedded device is the most difficult approach. Physical hardware can’t be forced to deterministically create a specific failure mode through software when debugging drivers. Collecting test results is also difficult. Unfortunatelly, this is often the only applicable choice.

Chosen testing strategy

We want to do 3 types of testing: unit testing, integration testing and system testing.

Let’s start from the lowest layer: device drivers. They will not have automated tests for reasons described above. We won’t write many drivers, just one or two, since we are using ChibiOS HAL. They will be tested manually as much as possible though.

The firmware has modular design. Each module runs in its own thread and communicates with other modules using mailboxes. Therefore each module can be separated from other modules and tested on its own. This way we can test how well units integrate into modules and with ChibiOS. These integration tests will run on physical embedded hardware, since ChibiOS must run to run the thread, handle the mailboxes, etc.

Modules can be broken down to units, and these will be unit tested. Unit tests will run on a PC so that they can be written, debugged and run easily.

System testing will be entirely different. Production firmware will run on a production hardware and the whole reader will be treated as a black box. Interaction with other components over external interfaces will be tested using a bed of nails.

Unit tests

Unit tests are built on the Unity [http://www.throwtheswitch.org/unity] unit testing framework and is using the Fake Function Framework [https://github.com/meekrosoft/fff].

Unit tests are stored in the test/ folder. This folder contains subfolders src/ and hal/. Overally, folder structure in the test/ folder is the same as the folder structure of the sources. For each source file there may be several test files (with the same name as the file under test with suffix --testNUM.c).

Technicalities of unit-testing C code with mocking

If one .c file represents one unit then unit-testing is relatively easy: compile the file under test, compile the test file, let the test file define mock functions, link them. Test file will call a function from the file under test, it will call some library function which is provided by the mock in the test file.

However, usually a single .c file is a single module whereas a function is an unit. Functions in a .c file may use other functions from that file, so in order to write an unit test for given function from the .c file, other functions from this .c file which are called by the function under test may need to be mocked. Even worse, these functions may be static (due to optimalizations). There are several solutions to this problem:

	Split the .c file into multiple files so that each file is an unit. Advantage is that building and writing tests is easy. Also it may encourage better and more modular design. Disadvantages are that you need to produce more .c files and the code may be harder to write. Also static functions can’t be used.

	You can use (through some preprocessor magic like custom defined testable macro or by objcopy --weaken) weak references. You can then provide your own implementation of custom symbols in the test file and linker will replace weak references in the file under test. Advantage is that writing tests is easy, disadvantage is that you may need magic macros or a bit more complicated build process. You still need preprocessor magic to solve static functions, as compiler may do what it wants with static functions (such as inline them or change their calling convention).

	You can manipulate (rape?) the GOT table at runtime and force the running program to use your function instead. Building tests is easy, writing them is hard and the whole process is messy. Still won’t solve the problem with static functions.

We will do the following: where possible and logical we will split the code to multiple .c files. It is quite possible that the split will not be needed in most cases, and when it is needed the file should anyway be logically splitted. Additionally the file will be processed with objcopy --weaken, so if it really is not logical to split the file under test it is still possible to mock the internal functions. Problem with static functions will be solved using testable_static macro (where it is warranted), which resolves to static when compiled normally, otherwise it will resolve to nothing.

Used mocking framework

We are using Unity [http://www.throwtheswitch.org/unity] unit testing framework. This framework is also used by CMock [http://www.throwtheswitch.org/cmock/] mocking framework, from the same creators, so it would be logical to use it.

That, however, turned out to be a bit problematic.

The CMock is able to parse a header file and produce a mock file for functions it finds. That automatically implies that CMock treats one file as one unit and makes it impossible to mock functions inside that file.

The other problem is the build system. The mocks should be generated automatically and tests should be build automatically as well. Officially recommended option is to use Ceedling as a build system. However, this is not applicable to this project. This firmware is based on ChibiOS, build system of which is based on Makefiles including other ChibiOS-specific makefiles from within ChibiOS folder structure. CMock supports Makefiles, however it is quite inconvenient to use it. It works by generating a new Makefile using a Ruby script. This script makes assumptions about the project which don’t hold true for this firmware (e.g. flat source code structure). Moreover, it was required to run make twice for this to work. The last option is to use ruby build system rake. This was actually feasible, since you are free to write what you want, and the example was easily modified to build the tests with our code structure. Rake was invoked from the Makefile with proper enviroment variables (because they are known only during make execution). However, this solution is not elegant since it mixes two different build systems.

All that would be still quite acceptable. However, the biggest problem is that CMock doesn’t work with ChibiOS. This is a somewhat innacurate statement, I’ll explain. CMock is able to parse a header file and find function definitions within. However, it is not able (nor it should be able) to preprocess that file. In case of ChibiOS one includes only ch.h. Other parts of the system are included by this header. Of course, CMock won’t look for them and will only see file without function declarations. Workaround around this was to include a real ChibiOS header file, however it was somewhat inelegant, and not universally applicable. Due to preprocessor magic the resulting set of included header files is dependent on compile-time definitions. This makes perfect sense for embedded projects, as it minimizes footprint of the compiled code. However, it also means that in order to reliably generate mocks the files have to be preprocessed. Official advice on this was to run the header through the C preprocessor. So I’ve done that, and then CMock choked itself with a parsing error on the resulting file.

That’s when I’ve decided that although CMock is a decent framework it is not applicable for my use case.

I’ve decided to use the Fake Function Framework [https://github.com/meekrosoft/fff] instead. It’s usage: #include "fff.h". Done. Works. I have to do mocks manually, however, i can do mocks manually. Usually I don’t have to mock that many functions anyway, and all it takes is FAKE_VOID_FUNC(halInit);. And if I forget to mock something the linker kicks me in the balls. Bonus: I can use the weak-reference trick and mock functions from the same file that the function under test comes from.

Building and running tests

Unity includes an example Makefile which can be used to build and run unit tests. It needs to be modified to be usable in our case, because:

	It presumes a flat source / test folder structure

	It doesn’t automatically generate test runners

	It doesn’t automatically weaken references of object file under test

	It supports only one test for each file

So, this will be explanation very similar to the official Unity Makefile explanation [http://www.throwtheswitch.org/build/make], however modified for our purposes.

Let’s start by finding all test source files in the test folder with suffix -testNUM.c.

TEST_CSRC = $(shell find $(TEST_PATH) -type f -regextype sed -regex '.*-test[0-9]*\.c')

For each of this test file we will want to create a .result file which will store the results. Folder structure in any of the temp folders (either results folder or any other test build folder) will be the same as the one in the test/ directory.

RESULTS = $(patsubst $(TEST_PATH)%.c,$(TEST_RESULTS)%.result,$(TEST_CSRC))

Now let’s begin from the end. At the and we will want to print the test statistics by reading all .results files.

TEST_EXECS = $(patsubst $(TEST_RESULTS)%.result,$(TEST_BUILD)%.out,$(RESULTS))

run-tests: $(TEST_BUILD_PATHS) $(TEST_EXECS) $(RESULTS)
 @echo
 @echo "----- SUMMARY -----"
 @echo "PASS: `for i in $(RESULTS); do grep -s :PASS $$i; done | wc -l`"
 @echo "IGNORE: `for i in $(RESULTS); do grep -s :IGNORE $$i; done | wc -l`"
 @echo "FAIL: `for i in $(RESULTS); do grep -s :FAIL $$i; done | wc -l`"
 @echo
 @echo "DONE"
 @if ["`for i in $(RESULTS); do grep -s FAIL $$i; done | wc -l`" != 0]; then \
 exit 1; \
 fi

This recipe of course depends on all result files. Other dependencies are a bit hacky:

	$(TEST_BUILD_PATHS): folders temporarily build files live in

	$(TEST_EXECS): test executables. Technically this should not be here, since each .result file should depend on a single executable file. However, this causes executable files to be build in bulk before the tests are run and that makes the test output much more readable and less cluttered.

Each .result file is created by executing a single test:

$(TEST_RESULTS)%.result: $(TEST_BUILD)%.out
 @echo
 @echo '----- Running test $<:'
 @mkdir -p `dirname $@`
 @-./$< > $@ 2>&1
 @cat $@

Each executable test is created by linking the following:

	Test runner (contains the entry point and executes tests)

	Unity framework

	Test file

	File under test

.SECONDEXPANSION:
FILE_UNDER_TEST := sed -e 's|$(TEST_BUILD)\(.*\)-test[0-9]*\.out|$(TEST_OBJS)\1-under_test.o|'
$(TEST_BUILD)%.out: $$(shell echo $$@ | $$(FILE_UNDER_TEST)) $(TEST_OBJS)%.o $(TEST_OBJS)unity.o $(TEST_OBJS)%-runner.o
 @echo 'Linking test $@'
 @mkdir -p `dirname $@`
 @$(TEST_LD) -o $@ $^

Now there is a bit of Makefile hackery going on there. This recipe generates an executable which runs tests, named for example build/tests/out/src/main-test12.out. It does that by linking build/test/objs/unity.o, build/test/objs/src/main-test12.o and build/test/objs/src/main-test12-runner.o. It also needs build/test/objs/src/main-under_test.o, which is the file under test.

The question is how to get the name of the file under test. If there was only one test file per source file it would be easy, % could be used as with other things. However, there are more test files per source file. Name of the test file must match a certain pattern (regex \(.*\)-test[0-9]*\.out), and this pattern needs to be replaced. This is not possible with make’s %. That’s why we use the sed command, which makes for example build/test/objs/src/main-under_test.o from build/tests/out/src/main-test12.out.

The last problem is how to run % or $@ through the shell with sed. Makefiles are read in two phases [https://www.gnu.org/software/make/manual/html_node/Reading-Makefiles.html]: in the first phase make reads in the Makefile and includes, expands so-called immediate variables and constructs a dependency graph. In the second phase make determines what needs to be rebuilt and rebuilds it. The problem is that recipe name and dependencies are immediate variables, therefore they are expanded immediatelly before the dependency tree is known internally. Therefore, during this expansion % nor $@ is not set and can’t be used in the shell directive. The workaround is to use the secondary expansion [https://www.gnu.org/software/make/manual/html_node/Secondary-Expansion.html] feature (hack), which runs between the 2 phases, when the recipe name is already expanded and the value of $@ is set. To use this one needs to use the .SECONDEXPANSION: rule and rules defined below this rule will be expanded twice. Variables with a single dollar sign will be expanded during the first expansion. When the first expansion sees two dollar signs it interprets it as escaped dollar sign and so it produces a single dollar sign. Then when the second expansion runs variables which are already expanded are treated as text and are left alone, and when it sees single dollar sign (created from the double dollar sign by the previous run) it expands this variable. This way we can force make to have variable $@ set when calling shell and therefore generate the proper dependency name from recipe name.

Now that we know what we need, let’s build it. Building the test file, unity framework and test runner is trivial:

$(TEST_OBJS)unity.o:: $(UNITY)unity.c $(UNITY)unity.h
 @echo 'Compiling Unity'
 @$(TEST_CC) $(TEST_CFLAGS) -c $< -o $@

$(TEST_OBJS)%.o:: $(TEST_PATH)%.c
 @echo 'Compiling test $<'
 @mkdir -p `dirname $@`
 @$(TEST_CC) $(TEST_CFLAGS) -c $< -o $@

$(TEST_OBJS)%-runner.o: $(TEST_RUNNERS)%-runner.c
 @echo 'Compiling test runner $<'
 @mkdir -p `dirname $@`
 @$(TEST_CC) $(TEST_CFLAGS) -c $< -o $@

Test runner is generated automatically, so in order to build it we must generate it from the test file. Unity provides us with a script for this purpose.

$(TEST_RUNNERS)%-runner.c:: $(TEST_PATH)%.c
 @echo 'Generating runner for $@'
 @mkdir -p `dirname $@`
 @ruby $(UNITY)../auto/generate_test_runner.rb $< $@

Last thing to do is to build the file under test itself:

$(TEST_OBJS)%-under_test.o: $(TEST_ROOT)%.c
 @echo 'Compiling $<'
 @mkdir -p `dirname $@`
 @$(TEST_CC) $(TEST_CFLAGS) -c $< -o $@
 @objcopy --weaken $@

The difference is that there is an additional step objcopy --weaken for reasons described above.

And that’s it, except minor details like creating folders and cleaning up. Several things are a low priority and are not finished:

	There is no testable_static macro. It will be added when it is needed.

	There is no dependency management. There is a rule which cleans everything after the tests have run. Proper dependency management is hard as hell, and it is easier and more reliable to rebuild it every time. Tests are built really fast, executed really fast and can even be executed individually if needed. If this becomes a real problem dependency management can be added.

Note: This is the ugliest piece of Makefile I’ve ever written and I’m seriously considering rewriting it to different build system. But for now it works, is maintainable and well documented, and there are more pressing things to do (like writing some actual code for the project).

Integration testing

I will get around to it once I have some actual modules to test.

 © Copyright 2018, FMFI ŠVT.
 Last updated on May 03, 2018.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Deadlock/reader-sw 2.0 alpha documentation »

RFID Stack

Main functionality of the Reader is to, of course, read an RFID card. To accomplish this it uses a modular stack of libraries written for this purpose. Goals of these libs are:

	To be modular, with clearly defined interfaces

	To fully comply with international standards

	To be well-documented and usable even outside of Deadlock
	Specifically, its structure should resemble other ChibiOS HAL components and should be easily incorporable to ChibiOS Community HAL

	To be thread safe

	To be easy to use, but not while compromising modularity

Documentation of components

	MFRC522 Driver
	Internal functioning of the driver

	ISO/IEC 14443 PCD Abstract Class
	ISO/IEC 14443 PCD Structures for Extended Features

	Abstract Command-Response Card Object

Architecture

Currently the plan is to support primarily ISO/IEC 14443A [http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=70172]-compatible cards. The following diagram shows the architecture, currently implemented and planned components:

[image: digraph G { rankdir="BT" node [shape = "record"] hal_mfrc522 -> hal_abstract_iso14443_pcd [arrowhead="empty"] hal_abstract_iso14443_pcd -> hal_iso_14443_picc [arrowhead="open"] hal_iso_14443_picc -> hal_abstract_CRCard [arrowhead="empty"] hal_abstract_CRCard -> hal_DESFire_card [arrowhead="open"] hal_abstract_CRCard -> hal_iso_7816 [arrowhead="open"] hal_iso_7816 -> hal_abstract_CRCard [arrowhead="empty" label="APDU Command Wrapping"] }]

Components

Abstract classes:

	hal_abstract_iso14443_pcd: Abstract representation of a RFID module capable of reading ISO/IEC 14443-compliant cards

	hal_abstract_CRCard: Abstract representation of either contactless card or card with contacts which communicates by exchanging Command - Response pairs (where every command generates either an response or a timeout).

Protocol implementations:

	hal_iso_14443_picc: Implements initialization, anticollision and communication protocol with ISO/IEC 14443-compliant card.

	hal_iso_7816: (Planned) implements industry-standard commands and wrapping of other protocols into its APDUs (and therefore creating another instance of CRCard where command-response pairs are wrapped in its APDUs)

	hal_DESFire_card: (Planned) implements proprietary DESFire command set.

Device drivers:

	hal_mfrc522: Driver for the MFRC522 module.

Abstract classes in Plain C

The RFID stack is written in plain C. That does not mean it can’t be written in an object-oriented way.

“Object” in this case is a structure which contains a pointer to another structure, called a Virtual Method Table [https://en.wikipedia.org/wiki/Virtual_method_table] and arbitrary other private data. The virtual method table is a structure containing pointers to “member functions”. These functions, by convention, expect instance of the “object” structure as a first parameter.

To call a “member function” of an “object” you then just would do the following:

result = obj->vmt->funct(obj, param1, param2);

However, this is cumbersome to write, so libraries which define abstract classes also include a convenience macro for each function:

#define funct(obj, param1, param2) ((obj)->vmt->funct(obj, param1, param2))

so then you will just write

result = funct(obj, param1, param2)

To “extend” such an abstract class you just have to define all functions in the Virtual Method Table and provide a function which instantiates this table and instantiates structure which represents the object:

typedef struct {
 uint8_t accumulator;
} my_privatedata;

// Definition of a member method
result_t my_funct(FunnyObj obj, uint8_t param1, uint8_t param2) {
 ((my_privatedata*)(obj->data))->accumulator += param1;
 ((my_privatedata*)(obj->data))->accumulator += param2;
 return ((my_privatedata*)(obj->data))->accumulator;
}

// Something like a constructor
FunnyObj my_create_instance(uint8_t init_acc) {
 FunnyObj obj = malloc(sizeof(FunnyObj));
 obj->vmt = malloc(sizeof(FunnyObjVMT));
 obj->data = malloc(sizeof(my_privatedata));

 obj->vmt->funct = &my_funct;
 ((my_privatedata*)(obj->data))->accumulator = 0;
}

Of course you could do some more preprocessor magic, but that would violate the principle of least astonishment. This by itself borders on violating it, however, it is the only way to write truly modular protocol stack which allows for easy component swapping and using multiple components of the same type (e.g. reader drivers) simultaneously.

 © Copyright 2018, FMFI ŠVT.
 Last updated on May 03, 2018.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Deadlock/reader-sw 2.0 alpha documentation »

 	RFID Stack »

MFRC522 Driver

Driver for the MFRC522 module.

This is a driver for the MFRC522 Mifare and NTAG frontend. It supports the MFRC522 chip connected over various interfaces. It exports an Pcd object for use by other layers.

Note: This driver requires the EXT driver to be enabled and configured with non-const EXTConfig strcture (as opposed to one documented by function extStart)!

This driver invokes the extSetChannelMode function, see its docs for explanation.

Defines

	
MFRC522_USE_SPI

	Enables SPI support.

	Note

	Disabling this option saves both code and data space.

	
MFRC522_USE_I2C

	Enables I2C support.

	Note

	Disabling this option saves both code and data space.

	
MFRC522_USE_UART

	Enables UART support.

	Note

	Disabling this option saves both code and data space.

	
MFRC522_MAX_DEVICES

	Maximum number of simultaneously active devices this driver should handle.

	Note

	Lowering this value saves data space and increases driver performance.

Functions

	
void mfrc522Init(void)

	Initializes the MFRC522 driver.

	Note

	This function is called implicitly by halCustomInit, no need to call it explicitly.

	
void mfrc522ObjectInitSPI(Mfrc522Driver *mdp, SPIDriver *spip)

	Initializes the driver object for a MFRC522 module connected over the SPI.

	Parameters

	
	mdp: Uninitialized driver object.

	spip: Initialized and started SPI driver object.

	
void mfrc522ObjectInitI2C(Mfrc522Driver *mdp, I2CDriver *i2cp)

	Initializes the driver object for a MFRC522 module connected over the I2C.

	Note

	Not yet implemented!

	Parameters

	
	mdp: Uninitialized driver object.

	i2cp: Initialized and started I2C driver object

	
void mfrc522ObjectInitSerial(Mfrc522Driver *mdp, SerialDriver *sdp)

	Initializes the driver object for a MFRC522 module connected over the Serial.

	Note

	Not yet implemented!

	Parameters

	
	mdp: Uninitialized driver object.

	sdp: Initialized and started Serial driver object

	
void mfrc522Start(Mfrc522Driver *mdp, const Mfrc522Config *config)

	Starts the MFRC522 module.

This function powers up, soft-resets the MFRC522 module, initializes, configures it and register is for use with this driver. It also reconfigures the provided Ext driver and register its own interrupt handler to handle interrupts on channel config->interrupt_channel.

	Parameters

	
	mdp: Initialized driver object

	config: Configuration to apply

	
void mfrc522Reconfig(Mfrc522Driver *mdp, const Mfrc522Config *config)

	Reconfigures the MFRC522 module without resetting it.

This function reprograms control registers of the MFRC522 module without resetting it, which is useful for hot-swapping MFRC522-specific config options during the module run-time.

This function won’t reconfig the following options:

	EXTDriver *extp

	expchannel_t interrupt_channel

	void *reset_line

The only way to change these is to stop and restart the module.

	Parameters

	
	mdp: Started driver object

	config: Configuration to apply

	
void mfrc522Stop(Mfrc522Driver *mdp)

	Stops the MFRC522 module.

Unregisters this module from this driver and powers it down.

	Parameters

	
	mdp: Started driver object

	
struct Mfrc522Config

	#include <hal_mfrc522.h>Config options for the MFRC522 module.

In order for the driver to function properly you have to specify:
	EXTDriver *extp

	expchannel_t interrupt_channel

	void *reset_line

Rest of these options are intended for advanced configuration of the module if you have special needs, otherwise default values are just fine.

If you need to modify something consult the MFRC522 Datasheet.

Public Types

	
enum driver_input_select_t

	Selects the input of drivers TX1 and TX2.

Default: MFRC522_DRSEL_MPE

MFRC522 Datasheet page 51

Values:

	
MFRC522_DRSEL_3STATE = 0b00

	3-state mode during soft powerdown

	
MFRC522_DRSEL_MPE = 0b01

	modulation signal (envelope) from the internal encoder, Miller pulse encoded

	
MFRC522_DRSEL_MFIN = 0b10

	modulation signal (envelope) from pin MFIN

	
MFRC522_DRSEL_HIGH = 0b11

	HIGH; the HIGH level depends on the setting of bits InvTx1RFOn/InvTx1RFOff and InvTx2RFOn/InvTx2RFOff

	
enum mfout_select_t

	Selects the input for pin MFOUT.

Default: MFRC522_MFSEL_3STATE

MFRC522 Datasheet page 52

Values:

	
MFRC522_MFSEL_3STATE = 0b0000

	3-state

	
MFRC522_MFSEL_LOW = 0b0001

	LOW.

	
MFRC522_MFSEL_HIGH = 0b0010

	HIGH.

	
MFRC522_MFSEL_TBUS = 0b0011

	test bus signal as defined by the test_bus_bit_sel

	
MFRC522_MFSEL_MPE = 0b0100

	modulation signal (envelope) from the internal encoder, Miller pulse encoded

	
MFRC522_MFSEL_SSTRT = 0b0101

	serial data stream to be transmitted, data stream before Miller encoder

	
MFRC522_MFSEL_SSTRR = 0b0111

	serial data stream received, data stream after Manchester decoder

	
enum cl_uart_in_sel_t

	Selects the input of the contactless UART.

Default: MFRC522_UINSEL_ANALOG

MFRC522 Datasheet page 52

Values:

	
MFRC522_UINSEL_LOW = 0b00

	constant LOW

	
MFRC522_UINSEL_MAN_MFIN = 0b01

	Manchester with subcarrier from pin MFIN

	
MFRC522_UINSEL_ANALOG = 0b10

	modulated signal from the internal analog module, default

	
MFRC522_UINSEL_NRZ_MFIN = 0b11

	NRZ coding without subcarrier from pin MFIN which is only valid for transfer speeds above 106 kBd

	
enum receiver_gain_t

	Gain of the receiver.

Default: MFRC522_GAIN_33

MFRC522 Datasheet page 59

Values:

	
MFRC522_GAIN_18 = 0b000

	18 dB

	
MFRC522_GAIN_23 = 0b001

	23 dB

	
MFRC522_GAIN_33 = 0b100

	33 dB

	
MFRC522_GAIN_38 = 0b101

	38 dB

	
MFRC522_GAIN_43 = 0b110

	43 dB

	
MFRC522_GAIN_48 = 0b111

	48 dB

Public Members

	
EXTDriver *extp

	EXT driver to use for handling MFRC522-issued interrupts

	
expchannel_t interrupt_channel

	EXT channel to which the IRQ pin (and only the IRQ pin) of the MFRC522 is connected.

	
void *reset_line

	PAL line, which when set low resets the connected MFRC522

	
bool MFIN_polarity

	Defines polarity of pin MFIN.

true: MFIN is active HIGH false: MFIN is active LOW

Default: true

MFRC522 Datasheet page 48

	
bool inverse_modulation

	Modulation of transmitted data should be inverted.

Default: false

MFRC522 Datasheet page 49

	
uint8_t tx_control_reg

	Value of the transmission control register.

Default: 0x80

MFRC522 Datasheet page 50

	
Mfrc522Config::driver_input_select_t driver_input_select

	

	
Mfrc522Config::mfout_select_t mfout_select

	

	
Mfrc522Config::cl_uart_in_sel_t cl_uart_in_sel

	

	
uint8_t min_rx_signal_strength

	Minimum signal strength which will be accepted by the decoder.

Only 4 lowest bits are taken into account.

Default: 8

MFRC522 Datasheet page 53

	
uint8_t min_rx_collision_level

	Minimum collision signal strength.

Minimum signal strength at the decoder input that must be reached by the weaker half-bit of the Manchester encoded signal to generate a bit-collision relative to the amplitude of the stronger half-bit.

Only 3 lowest bits are taken into account.

Default: 4

MFRC522 Datasheet page 53

	
uint8_t demod_reg

	Demodulator settings.

Default: 0x4D

MFRC522 Datasheet page 53

	
Mfrc522Config::receiver_gain_t receiver_gain

	

	
uint8_t transmit_power_n

	Conductance of the output n-driver (CWGsN) which can be used to regulate the output power.

Default: 8

MFRC522 Datasheet page 59

	
uint8_t modulation_index_n

	Conductance of the output n-driver (ModGsN) which can be used to regulate the modulation index.

Default: 8

MFRC522 Datasheet page 59

	
uint8_t transmit_power_p

	Conductance of the output p-driver (CWGsP) which can be used to regulate the output power.

Default: 32

MFRC522 Datasheet page 60

	
uint8_t modulation_index_p

	Conductance of the output n-driver (ModGsP) which can be used to regulate the modulation index.

Default: 32

MFRC522 Datasheet page 60

	
struct Mfrc522Driver

	#include <hal_mfrc522.h>Structure representing a MFRC522 driver.

For functions expecting a Pcd object use the pcd memeber of this structure. Otherwise don’t modify any of these values.

Public Types

	
enum mfrc522_conntype_t

	How is the MFRC522 connected.

Values:

	
MFRC522_CONN_SPI

	

	
MFRC522_CONN_I2C

	

	
MFRC522_CONN_SERIAL

	

Public Members

	
Pcd pcd

	Abstract Pcd structure to be used with other parts of this stack

	
pcdstate_t state

	Driver state

	
Mfrc522Driver::mfrc522_conntype_t connection_type

	

	
union Mfrc522Driver::iface_u iface

	

	
EXTDriver *extp

	EXT driver to use for handling MFRC522-issued interrupts

	
expchannel_t interrupt_channel

	EXT channel to which the IRQ pin is connected

	
void *reset_line

	PAL line, which when set low resets the connected MFRC522

	
const Mfrc522Config *current_config

	Lastly applied config

	
volatile bool interrupt_pending

	Interrupt is pending for this reader

	
thread_reference_t tr

	Thread reference the reader will sleep on

	
uint8_t response[64]

	Response buffer

	
uint8_t resp_last_valid_bits

	Number of last valid bits in the response

	
uint8_t resp_length

	Response length

	
uint8_t resp_read_bytes

	Number of already retreived response bytes

	
mutex_t mutex

	Mutex for mutual access

	
union iface_u

	#include <hal_mfrc522.h>Pointer to a given interface driver.

Public Members

	
SPIDriver *spip

	

	
I2CDriver *i2cp

	

	
SerialDriver *sdp

	

Internal functioning of the driver

Although most of the drivers in the HAL are contained in one file, the MFRC522 driver was becoming unreadable, so I’ve split it between several files.

	src/hal_mfrc522/hal_mfrc522_internal.h header contains internal constants and internal documentation. It is not supposed to be used by application using this driver.

	src/hal_mfrc522/hal_mfrc522.c is the main driver file. It contains MFRC522-specific initialization and configuration functions. It also contains the interrupt handler only purpose of which is to wake up a sleeping thread.

	src/hal_mfrc522/hal_mfrc522_ext_api.c contains implementation of extended features. See hal_abstract_iso14443_pcd_ext.h.

	src/hal_mfrc522/hal_mfrc522_llcom.c contains low-level communication routines for reading and writing registers of the MFRC522 over various connection interfaces.

	src/hal_mfrc552/hal_mfrc522_pcd_api.c contains implementation of Pcd API functions for MFRC522.

Primary goals

This driver should provide easy-to-use synchronous API to drivers of higher protocol layers while being efficient and friendly to other threads (it suspends the calling thread while it’s waiting for data).

Initialization and configuration functions handling global objects of this driver must be thread-safe.

This driver does not guarantee thread safety if single Mfrc522Driver file is used simultaneously by multiple threads. Those threads should call pcdAcquireBus and pcdReleaseBus to achiveve mutual exclusion. However, it is safe to use different Mfrc522Driver objects from different threads simultaneously.

This driver should be as universal as possible. This is the reason for (over?)complicated configuration structure. It allows you to, when you know what are you doing, configure the MFRC522 modulee for your specific use-case (like using an external modulator with the chip). It is also easy to use, since default values work out-of-the box with the typical use-case (like the RFID-RC522 chinese module).

Thread suspend and interrupt handling

Each time this driver waits for the action of the reader it suspends the calling thread, to allow other threads to run.

MFRC522 has a mechanism of waking up the host using its IRQ pin. Host can conigure which interrupts propagate to the interrupt pin, and later figure out which interrupt occured by reading a specific register.

This driver uses the Ext driver provided by ChibiOS to handle these interrupts. It registers its own interrupt handler, the same for each interrupt channel. However, in the current version the Ext driver doesn’t allow passing custom parameters to the handler function, therefore when an interrupt occurs we only know which channel it came from. Then we may wake up all sleeping driver threads and let every thread check whether the interrupt is intended for it. This is problemating due to race conditions, necessity of events buffering, etc. Instead, we have imposed limitation that each interrupt channel can have only one reader (and nothing else than the reader) attached to it. Therefore when an interrupt occures by knowing the interrupt channel we can wake up the proper thread.

In addition this wake-up is buffered if the thread couldn’t be suspended in time.

Anticollision detection

TODO

 © Copyright 2018, FMFI ŠVT.
 Last updated on May 03, 2018.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Deadlock/reader-sw 2.0 alpha documentation »

 	RFID Stack »

ISO/IEC 14443 PCD Abstract Class

Abstract ISO14443 Proximity Coupling Device (card reader) driver interface.

This header defines an abstract interface useful to access generic ISO14443-compliant PCDs (contactless card readers) in a standardized way.

Design

This header provides communication interface with the PCD (Proximity Coupling Device) as described in ISO/IEC 14443-3. This standard defines communication with 2 different card types: A and B. The naming convention is ‘A’-related functions end with A, B-related functions end with B, common functions end with AB.

Currently, API for part A is fully designed, API for part B will be added later.

Communication between the PCD and the PICC consists of sending and receiving frames. The frames are transmitted in pairs, PCD to PICC followed by PICC to PCD.

Part A of the standard defines transmission of 3 different types of frames:

	Short frame: transmits 7 bits.

	Standard frame: Used for data exchange and can transmit several bytes with parity.

	Bit oriented anticollision frame: 7 byte long frame spit anywhere into two parts. First part is transmitted by the PCD, second part is added by the PICC. It is used during bit-oriented anticollision loop.

ISO/IEC 14443-3 specifies different communication methods (different modulation type / index, different encoding) for part A and B. This driver should support setting these modes, various other communication parameters within these modes as defined by the standard, and should also be able to advertise its capabilities. Communication speeds can’t be arbitrary and are defined by ISO/IEC 14443-4 as $ 1 etu = 128 / (D x fc) $, where etu is the elementary time unit (duration of one bit), fc is the carrier frequency (defined in ISO/IEC 14443-2 to be $ 13.56MHz \pm 7kHz $) and D is an integer divisor, which may be 1, 2, 4 or 8. This paradoxically means that increasing the divisor also increases the communication speed.

The readers also usually support a number of extended features, not covered by the ISO/IEC 14443 standard. For example, the MFRC522 is able to perform a Mifare authentication using its crypto unit, or a self-test. Upper layers which know how to use these extended features should have access to them, but they should not clutter the main API. That is why each extended feature will have a globally assigned number (in the global abstract header). Then other layers could use these numbers to invoke the extended feature, passing in a “parameter structure”. These structures are also defined globally in the abstract header (although in a different file) to allow their re-use.

Often PCDs have a maximum data size they can handle at once. ISO/IEC 14443 standard takes this into account and defines “protocol chaining”, a method to send large data units in multiple smaller frames. The upper library handles this, but for it to know whether to use chaining the PCD must be able to report maximum frame size it can handle.

Driver state diagram

This abstract class presumes a driver with state. The following diagram illustrates available states (see pcdstate_t) and transitions between them.

Some functions may be called only in specific states, this is indicated in documentation of each function. Calling a function in an invalid state will be caught by assertion (if assertions are enabled).

[image: digraph card_state_transitions { PCD_UNINIT -> PCD_STOP [label="driver-specific\ninit\nmethod"] PCD_STOP -> PCD_RF_OFF [label="driver-specific\nactivation\nmethod"] PCD_RF_OFF -> PCD_READY [label="pcdActivateRFFieldAB()"] PCD_READY -> PCD_RF_OFF [label="pcdDeactivateRFFieldAB()"] PCD_READY -> PCD_ACTIVE [label="pcdTransceive*()"] PCD_ACTIVE -> PCD_READY [label="operation complete \n operation timeout \n operation error"] }]

Thread safety

Implementation of this API does not have to guarantee that it is thread-safe. If you need API access from multiple threads use pcdAcquireBus and pcdReleaseBus APIs in order to get exclusive access.

Macro functions (Pcd)

Convenience macros for easy calling of ‘member functions’

	
pcdGetStateAB(ip)

	
	See

	BasePcdVMT.getStateAB

	
pcdActivateRFAB(ip)

	
	See

	BasePcdVMT.activateRFAB

	
pcdDeactivateRFAB(ip)

	
	See

	BasePcdVMT.deactivateRFAB

	
pcdGetSupportedParamsAB(ip)

	
	See

	BasePcdVMT.getSupportedParamsAB

	
pcdSetParamsAB(ip, rx_spd, tx_spd, mode, txcrc, rxcrc)

	
	See

	BasePcdVMT.setParamsAB

	
pcdTransceiveShortFrameA(ip, data, resp_len_p, timeout_us)

	
	See

	BasePcdVMT.transceiveShortFrameA

	
pcdTransceiveStandardFrameA(ip, data, size, resp_len_p, timeout_us)

	
	See

	BasePcdVMT.transceiveStandardFrameA

	
pcdTransceiveAnticollFrameA(ip, data, size, n_last_bits, align_rx, resp_len_p, timeout_us)

	
	See

	BasePcdVMT.transceiveAnticollFrameA

	
pcdGetRespLengthA(ip)

	
	See

	BasePcdVMT.getResponseLengthA

	
pcdGetRespAB(ip, buf_size, buffer, size_copied, n_last_bits_p)

	
	See

	BasePcdVMT.getResponseAB

	
pcdAcquireBus(ip)

	
	See

	BasePcdVMT.acquireBus

	
pcdReleaseBus(ip)

	
	See

	BasePcdVMT.releaseBus

	
pcdSupportsExtFeature(ip, feature)

	
	See

	BasePcdVMT.supportsExtFeature

	
pcdCallExtFeature(ip, feature, params, result)

	
	See

	BasePcdVMT.callExtFeature

Enums

	
enum pcdstate_t

	States of the driver state machine.

Values:

	
PCD_UNINT

	Not initialized

	
PCD_STOP

	Initialized, not active.

	
PCD_RF_OFF

	RF Field is off

	
PCD_READY

	Ready to transmit

	
PCD_ACTIVE

	Transceiving

	
enum pcdresult_t

	Operation result codes.

Values:

	
PCD_OK

	Command completed successfully

	
PCD_BAD_STATE

	Command not possible in this state

	
PCD_UNSUPPORTED

	This PCD does not support this command

	
PCD_OK_COLLISION

	Command OK, but received collision

	
PCD_OK_TIMEOUT

	Command OK, but card did not respond

	
PCD_ERROR

	An unspecified error has occured

	
PCD_TX_ERROR

	Transmission error

	
PCD_RX_ERROR

	Receiver error (such as bad parity)

	
PCD_RX_OVERFLOW

	A receive buffer has overflown

	
PCD_TX_OVERFLOW

	This message won’t fit to tx buffer

	
enum pcdspeed_rx_t

	Receive speed keys for speed bitmask.

Values:

	
PCD_RX_SPEED_106 = 1

	

	
PCD_RX_SPEED_212 = 2

	

	
PCD_RX_SPEED_424 = 4

	

	
PCD_RX_SPEED_848 = 8

	

	
enum pcdspeed_tx_t

	Transmit speed keys for speed bitmask.

Values:

	
PCD_TX_SPEED_106 = 16

	

	
PCD_TX_SPEED_212 = 32

	

	
PCD_TX_SPEED_424 = 64

	

	
PCD_TX_SPEED_848 = 128

	

	
enum pcdmode_t

	Standard communication modes.

Values:

	
PCD_ISO14443_A = 1

	

	
PCD_ISO14443_B = 2

	

	
enum pcdfeature_t

	List of possible extended features.

For each extended feature 2 structures are defined in file hal_abstract_iso14443_pcd_ext.h. The first is a param strucure, the second is a response structure.

Values:

	
PCD_EXT_SELFTEST

	Perform a self-test

	
PCD_EXT_CALCULATE_CRC_A

	Calculate type-A CRC

	
PCD_EXT_CALCULATE_CRC_B

	Calculate type-B CRC

	
PCD_EXT_MIFARE_AUTH

	Perform a Mifare auth and turn on crypto

	
struct PcdSParams

	#include <hal_abstract_iso14443_pcd.h>Structure of communuication parameters supported by the PCD.

Public Members

	
uint8_t supported_speedsA

	Bit mask of supported tx/rx speeds

	
uint8_t supported_speedsB

	Bit mask of supported tx/rx speeds

	
bool supported_asym_speeds

	Support of asymetric speed setting

	
uint8_t supported_modes

	Bit mask of supported modes (A or B)

	
uint8_t supported_crc_on

	Support for automatic CRC generation

	
uint8_t supported_crc_off

	Whether CRC gen can be off at the given speed

	
uint16_t max_tx_size

	Maximum Transmit buffer size

	
uint16_t max_rx_size

	Maximum Receive buffer size

	
struct BasePcdVMT

	#include <hal_abstract_iso14443_pcd.h>Abstract ISO14443 PCD Virtual Method Table.

	Note

	use macros defined in this file to call these functions for convenience. Name of the macro is the same as a name of this function with pcd prefix.

Public Members

	
pcdstate_t (*getStateAB)(void *inst)

	Returns the device state.

	Note

	This function can be called in all states.

	Return

	State of the device

	Parameters

	
	inst: Pointer to a Pcd structure

	
pcdresult_t (*activateRFAB)(void *inst)

	Activates RF Field of the PCD.

	Note

	This function can be called in the following states:
	PCD_RF_OFF

	Parameters

	
	inst: Pointer to a Pcd structure

	Return Value

	
	PCD_OK: RF Field successfully activated. Pcd transitions to PCD_READY state.

	PCD_BAD_STATE: RF Field cannot be activated now or is already active. State won’t change.

	PCD_ERROR: An error has occured. State won’t change.

	
pcdresult_t (*deactivateRFAB)(void *inst)

	Deactivates the RF Field of the PCD.

	Note

	This function can be called in the following states:
	PCD_READY

	Parameters

	
	inst: Pointer to a Pcd structure

	Return Value

	
	PCD_OK: Field successfully deactivated. Pcd transitions to PCD_RF_OFF state.

	PCD_BAD_STATE: RF Field cannot be deactivated now or is already inactive. State won’t change.

	PCD_ERROR: An error has occured. State won’t change.

	
const PcdSParams *(*getSupportedParamsAB)(void *inst)

	Returns structure with supported features of this PCD.

	Note

	This function can be called in all states

	Return

	Pointer to a PcdSParams structure. Content of this structure should not be modified.

	Parameters

	
	inst: Pointer to a Pcd structure

	
pcdresult_t (*setParamsAB)(void *inst, pcdspeed_rx_t rx_spd, pcdspeed_tx_t tx_spd, pcdmode_t mode, bool generate_CRC, bool verify_CRC)

	Sets communication parameters.

If the parameter combination is unsupported PCD_UNSUPPORTED will be returned. It is advised to first check the value returned by getSupportedParamsAB.

	Note

	This function can be called in the following states:
	PCD_READY

	PCD_RF_OFF

	Parameters

	
	inst: pointer to a Pcd strucutre

	rx_spd: desired reception speed

	tx_spd: desired transmission speed

	mode: desired communication mode

	generate_CRC: Whether the CRC should be generated and transmitted automatically during transmission

	verify_CRC: Whether the CRC should be verified automatically during reception

	Return Value

	
	PCD_OK: Parameters applied successfully. State won’t change.

	PCD_BAD_STATE: Parameters can’t be changed now. State won’t change.

	PCD_UNSUPPORTED: Some requested parameters are not supported byt this PCD. State won’t change.

	PCD_ERROR: An error has occured. State won’t change.

	
pcdresult_t (*transceiveShortFrameA)(void *inst, uint8_t data, uint16_t *resp_length, uint32_t timeout_us)

	Transmits a ‘Short Frame’ and blocks until the response is received or a timeout occurs.

Short frame transmits 7 data bits without parity. Therefore only 7 Least Significant Bits of parameter data are sent. This function discards remaining data in the response buffer, if any.

	Note

	This function can be called in the following states:
	PCD_READY

	Note

	This function call either returns immediatelly with error or will change the state PCD_ACTIVE when the operation is in progress. Unless noted otherwise, the state returns to PCD_READY after this function returns.

	Parameters

	
	inst: pointer to a Pcd structure

	data: 7 bits of data to be sent (MSB is ignored)

	resp_len_p: Length of the received response (see transceiveStandardFrameA).

	timeout_us: Max number of microseconds to wait for a response.

	Return Value

	
	PCD_OK: Transmission successful and response received.

	PCD_OK_COLLISION: Transmission successful and multiple responses received.

	PCD_OK_TIMEOUT: Transmission successful but no response was received.

	PCD_BAD_STATE: Can’t transmit right now. The state won’t change.

	PCD_ERROR: A driver od hardware error has occured.

	PCD_TX_ERROR: A transmission error has occured.

	PCD_RX_ERROR: A reception error has occured.

	PCD_RX_OVERFLOW: Too much data received.

	
pcdresult_t (*transceiveStandardFrameA)(void *inst, uint8_t *buffer, uint16_t length, uint16_t *resp_length, uint32_t timeout_us)

	Transmits a ‘Standard Frame’ and blocks until the response is ready.

Standard frame transmits n (where n >= 1) bytes. The len parameter cannot be greater than maximum buffer size supported by the reader. After the response is received resp_len_p will be set to the received response length. You can then use this parameter to allocate a new buffer and obtain the response using the getResponseAB function. This function discards remaining data in the response buffer, if any.

	Note

	This function can be called in the following states:
	PCD_READY

	Note

	This function call either returns immediatelly with error or will change the state PCD_ACTIVE when the operation is in progress. Unless noted otherwise, the state returns to PCD_READY after this function returns.

	Parameters

	
	inst: pointer to a Pcd structure

	buffer: Bytes to send in a standard frame

	len: Size of the buffer

	resp_len_p: Size of received response

	timeout_us: Max number of microseconds to wait for a response.

	Return Value

	
	PCD_OK: Transmission successful and response received.

	PCD_OK_COLLISION: Transmission successful and multiple responses received.

	PCD_OK_TIMEOUT: Transmission successful but no response was received.

	PCD_BAD_STATE: Can’t transmit right now. The state won’t change.

	PCD_ERROR: A driver od hardware error has occured.

	PCD_TX_ERROR: A transmission error has occured.

	PCD_RX_ERROR: A reception error has occured.

	PCD_RX_OVERFLOW: Too much data received.

	PCD_TX_OVERFLOW: Can’t transmit this much data. The state won’t change.

	
pcdresult_t (*transceiveAnticollFrameA)(void *inst, uint8_t *buffer, uint16_t length, uint8_t n_last_bits, uint8_t align_rx, uint16_t *resp_length, uint32_t timeout_us)

	Transmits the first part of an ‘Anticollision Frame’ and blocks until the response is ready.

Anticollision frame is a standard 7-byte frame split anywhere after 16th bit and before 55th bit. First part is transmitted by the PCD and the second part is transmitted by the PICC as a part of an anticollision sequence. For resp_len_p meaning see pcdTransceiveStdFrameA. This function discards remaining data in the response buffer, if any.

	Note

	This function can be called in the following states:
	PCD_READY

	Note

	This function call either returns immediatelly with error or will change the state PCD_ACTIVE when the operation is in progress. Unless noted otherwise, the state returns to PCD_READY after this function returns.

	Parameters

	
	inst: pointer to a Pcd structure

	buffer: Bytes to send in an anticoll frame

	len: Size of the buffer

	n_last_bits: Number of valid bits in the last byte to be transmitted. 0 means the whole byte is valid.

	align_rx: Desired position of the first received bit in the first byte of the response.

	resp_len_p: Size of the received response

	timeout_us: Max number of microseconds to wait for a response.

	Return Value

	
	PCD_OK: Transmission successful and response received.

	PCD_OK_COLLISION: Transmission successful and multiple responses received.

	PCD_OK_TIMEOUT: Transmission successful but no response was received.

	PCD_BAD_STATE: Can’t transmit right now. The state won’t change.

	PCD_ERROR: A driver od hardware error has occured.

	PCD_TX_ERROR: A transmission error has occured.

	PCD_RX_ERROR: A reception error has occured.

	PCD_RX_OVERFLOW: Too much data received.

	PCD_TX_OVERFLOW: Can’t transmit this much data. The state won’t change.

	
uint16_t (*getResponseLengthA)(void *inst)

	Gets (remaining) size of response stored in the buffer, if any.

	Note

	This function can be called in the following states:
	PCD_READY

	PCD_RF_OFF

	Return

	Number of bytes in the response buffer. 0 if the response buffer is empty.

	Parameters

	
	inst: pointer to a Pcd structure

	
pcdresult_t (*getResponseAB)(void *inst, uint16_t buffer_size, uint8_t *buffer, uint16_t *size_copied, uint8_t *n_last_bits)

	Read response from the internal response buffer.

Read response from the internal buffer. If size of the buffer passed to this function is smaller than the response size only part of the response will be copied and this function must be called several times. Bytes received first are copied first. n_last_bits_p is valid only when copying last part of the response.

	Note

	This function can be called in the following states:
	PCD_READY

	PCD_RF_OFF

	Parameters

	
	inst: pointer to a Pcd structure

	buf_size: Max size to read

	buffer: The buffer

	size_copied: Number of bytes written to the buffer

	n_last_bits_p: Number of valid bits in last byte copied to the buffer.

	Return Value

	
	PCD_OK: Bytes were copied

	PCD_ERROR: No more bytes to copy

	PCD_BAD_STATE: This function can’t be called in this state.

	
void (*acquireBus)(void *inst)

	Acquires exclusive access to the PCD.

	Parameters

	
	inst: pointer to a Pcd structure

	
void (*releaseBus)(void *inst)

	Acquires exclusive access to the PCD.

	Parameters

	
	inst: pointer to a Pcd structure

	
bool (*supportsExtFeature)(void *inst, pcdfeature_t feature)

	Checks whether this PCD supports the given extended feature.

	Parameters

	
	inst: pointer to a Pcd structure

	
pcdresult_t (*callExtFeature)(void *inst, pcdfeature_t feature, void *params, void *result)

	Invokes an extended feature.

	Parameters

	
	inst: pointer to a Pcd structure

	feature: identifier of the feature

	params: parameters passed to the feature function. Can be NULL if function doesn’t expect any.

	result: result of the feature function.

	Return Value

	
	PCD_OK: Feature function executed successfully

	PCD_BAD_STATE: Feature function can’t be executed now

	PCD_UNSUPPORTED: This feature is not supported

	
struct Pcd

	#include <hal_abstract_iso14443_pcd.h>Base ISO/IEC 14443 PCD.

This class represents a generic ISO/IEC 14443 Proximity Coupling device.

Public Members

	
const struct BasePcdVMT *vmt

	Virtual Methods Table

	
void *data

	Private data of a driver

ISO/IEC 14443 PCD Structures for Extended Features

Structures for extended / optional features of an abstract ISO/IEC 14443 PCD.

Real-world ISO/IEC 14443 PCDs (card readers) support a number of extended features which are not covered by the abstract PCD driver. These features can be still used using the pcdCallExtraFeatures API. Structures used as parameters and results of various commands are defined here.

	
struct PcdExtSelftest_params

	#include <hal_abstract_iso14443_pcd_ext.h>Parameters for PCD_EXT_SELFTEST command.

PCD_EXT_SELFTEST takes no parameters, this structure is empty and params argument can be NULL.

	
struct PcdExtSelftest_result

	#include <hal_abstract_iso14443_pcd_ext.h>Result of the PCD_EXT_SELFTEST command.

Public Members

	
bool passed

	Did the self-test passed?

	
struct PcdExtCalcCRC_params

	#include <hal_abstract_iso14443_pcd_ext.h>Parameters for PCD_EXT_CALCULATE_CRC_A and PCD_EXT_CALCULATE_CRC_B commands.

Public Members

	
uint16_t length

	Size of the data to calculate CRC of

	
uint8_t *buffer

	Pointer to data buffer

	
struct PcdExtCalcCRC_result

	#include <hal_abstract_iso14443_pcd_ext.h>Result of PCD_EXT_CALCULATE_CRC_A and PCD_EXT_CALCULATE_CRC_B commands.

Public Members

	
uint16_t crc

	Resulting CRC

	
struct PcdExtMifareAuth_params

	#include <hal_abstract_iso14443_pcd_ext.h>Parameters for the PCD_EXT_MIFARE_AUTH command.

Public Members

	
uint8_t authCommandCode

	

	
uint8_t blockAddr

	

	
uint8_t sectorKey[6]

	

	
uint8_t cardSerialNumber[4]

	

	
struct PcdExtMifareAuth_result

	#include <hal_abstract_iso14443_pcd_ext.h>Result of the PCD_EXT_MIFARE_AUTH command.

Public Members

	
bool authSuccess

	

 © Copyright 2018, FMFI ŠVT.
 Last updated on May 03, 2018.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 previous |

 	Deadlock/reader-sw 2.0 alpha documentation »

 	RFID Stack »

Abstract Command-Response Card Object

Abstract Command-Response Card object.

This header defines an abstract interface used to communicate with an Integrated Circtuit Card (either with contacts or contactless) using request-response frames. Each frame is a request and should generate some response frame or a timeout. Example of such a card is ISO/IEC 14443 Proximity Integrated Circuit Card or ISO/IEC 7816 Integrated Circuit Card exchanging command-response pairs using T=0 or T=1 protocol.

For now only synchronous API is defined. Async API may be added later if needed.

Macro functions (Pcd)

Convenience macros for easy calling of ‘member functions’

	
crcardTransceive(inst, tx_buf_p, tx_buf_size, resp_size_p)

	
	See

	CRCardVMT.transceive

	
crcardGetResponseSize(inst)

	
	See

	CRCardVMT.getResponseSize

	
crcardGetResponse(inst, buf_p, max_buf_size)

	
	See

	CRCardVMT.getResponse

Enums

	
enum crcard_result_t

	Operation result codes.

Values:

	
CRCARD_OK

	Transmission successful, received response

	
CRCARD_TX_ERROR

	Unrecoverable transmission errror

	
CRCARD_RX_ERRPR

	Unrecoverable reception error

	
CRCARD_TIMEOUT

	Transmission successful, no response

	
CRCARD_NONEXISTENT

	Card removed, no further comm possible

	
struct CRCardVMT

	#include <hal_abstract_CRCard.h>Abstract CRCard Virtual Method Table.

	Note

	use macros defined in this file to call these functions for convenience. Name of the macro is the same as a name of this function with crcard prefix.

Public Members

	
crcard_result_t (*transceive)(void *inst, uint8_t *tx_buffer, uint16_t tx_buffer_size, uint16_t *response_size)

	Send a frame of data to a card and wait for a response.

The response will be stored in a response buffer. Invoking this function will clear contents of the response buffer, if any.

	Return

	Operation result

	Parameters

	
	inst: Pointer to a CRCard structure

	tx_buffer: Data to send

	tx_buffer_size: Number of bytes to send

	response_size: Number of bytes received

	
uint16_t (*getResponseSize)(void *inst)

	Get number of remaining bytes in the response buffer.

	Return

	Number of bytes in the response buffer

	Parameters

	
	inst: Pointer to a CRCard structure

	
uint16_t (*getResponse)(void *inst, uint8_t *data, uint16_t buffer_size)

	Retrieves a response from the response buffer.

Think of the response buffer as a queue. When this function is called no more than buffer_size bytes are removed from this queue and copied to data buffer.

Function getResponseSize returns number of bytes in this queue.

	Return

	Number of copied bytes

	Parameters

	
	inst: Pointer to a CRCard structure

	data: Buffer to copy the response to

	buffer_size: Maximum number of bytes to copy

	
struct CRCard

	#include <hal_abstract_CRCard.h>Base Command-Response Card.

This class represents a generic Command-Response Card.

Public Members

	
const struct CRCardVMT *vmt

	Virtual Methods Table

	
void *data

	Private data of a driver

 © Copyright 2018, FMFI ŠVT.
 Last updated on May 03, 2018.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	Deadlock/reader-sw 2.0 alpha documentation »

Index

 B
 | C
 | D
 | M
 | P
 | R

B

 	

 	BasePcdVMT (C++ class)

 	BasePcdVMT::acquireBus (C++ member)

 	BasePcdVMT::activateRFAB (C++ member)

 	BasePcdVMT::callExtFeature (C++ member)

 	BasePcdVMT::deactivateRFAB (C++ member)

 	BasePcdVMT::getResponseAB (C++ member)

 	BasePcdVMT::getResponseLengthA (C++ member)

 	

 	BasePcdVMT::getStateAB (C++ member)

 	BasePcdVMT::getSupportedParamsAB (C++ member)

 	BasePcdVMT::releaseBus (C++ member)

 	BasePcdVMT::setParamsAB (C++ member)

 	BasePcdVMT::supportsExtFeature (C++ member)

 	BasePcdVMT::transceiveAnticollFrameA (C++ member)

 	BasePcdVMT::transceiveShortFrameA (C++ member)

 	BasePcdVMT::transceiveStandardFrameA (C++ member)

C

 	

 	cl_uart_in_sel_t (C++ type)

 	CRCard (C++ class)

 	CRCard::data (C++ member)

 	CRCard::vmt (C++ member)

 	CRCARD_NONEXISTENT (C++ class)

 	CRCARD_OK (C++ class)

 	crcard_result_t (C++ type)

 	CRCARD_RX_ERRPR (C++ class)

 	

 	CRCARD_TIMEOUT (C++ class)

 	CRCARD_TX_ERROR (C++ class)

 	crcardGetResponse (C macro)

 	crcardGetResponseSize (C macro)

 	crcardTransceive (C macro)

 	CRCardVMT (C++ class)

 	CRCardVMT::getResponse (C++ member)

 	CRCardVMT::getResponseSize (C++ member)

 	CRCardVMT::transceive (C++ member)

D

 	

 	dl_task_cardid_callbacks (C++ class)

 	dl_task_cardid_callbacks::card_detected (C++ member)

 	dl_task_cardid_callbacks::heartbeat (C++ member)

 	dl_task_cardid_callbacks::reader_error (C++ member)

 	dl_task_comm_callbacks (C++ class)

 	dl_task_comm_callbacks::heartbeat (C++ member)

 	dl_task_comm_callbacks::linkChange (C++ member)

 	dl_task_comm_callbacks::rcvdActivateAuthMethods (C++ member)

 	dl_task_comm_callbacks::rcvdSystemQueryRequest (C++ member)

 	dl_task_comm_callbacks::rcvdUiUpdate (C++ member)

 	DL_TASK_COMM_LINKDOWN (C++ class)

 	dl_task_comm_linkstate (C++ type)

 	DL_TASK_COMM_LINKUP (C++ class)

 	dl_task_ui_callbacks (C++ class)

 	dl_task_ui_callbacks::heartbeat (C++ member)

 	dl_task_ui_flash (C++ type)

 	DL_TASK_UI_FLASH_READ_BAD (C++ class)

 	DL_TASK_UI_FLASH_READ_OK (C++ class)

 	DL_TASK_UI_FLASH_VADER (C++ class)

 	dl_task_ui_state (C++ type)

 	

 	DL_TASK_UI_STATE_ERROR (C++ class)

 	DL_TASK_UI_STATE_LOCKED (C++ class)

 	DL_TASK_UI_STATE_UNLOCKED (C++ class)

 	dlTaskCardIDInit (C++ function)

 	dlTaskCardIDStart (C++ function)

 	dlTaskCardIDStartPolling (C++ function)

 	dlTaskCardIDStop (C++ function)

 	dlTaskCardIDStopPolling (C++ function)

 	dlTaskCommInit (C++ function)

 	dlTaskCommSendAM0GotUids (C++ function)

 	dlTaskCommSendRdrFailure (C++ function)

 	dlTaskCommSendSysQueryResp (C++ function)

 	dlTaskCommStart (C++ function)

 	dlTaskCommStop (C++ function)

 	dlTaskUiFlashMessage (C++ function)

 	dlTaskUiInit (C++ function)

 	dlTaskUiSetUIState (C++ function)

 	dlTaskUiStart (C++ function)

 	dlTaskUiStop (C++ function)

 	driver_input_select_t (C++ type)

M

 	

 	mfout_select_t (C++ type)

 	MFRC522_CONN_I2C (C++ class)

 	MFRC522_CONN_SERIAL (C++ class)

 	MFRC522_CONN_SPI (C++ class)

 	mfrc522_conntype_t (C++ type)

 	MFRC522_DRSEL_3STATE (C++ class)

 	MFRC522_DRSEL_HIGH (C++ class)

 	MFRC522_DRSEL_MFIN (C++ class)

 	MFRC522_DRSEL_MPE (C++ class)

 	MFRC522_GAIN_18 (C++ class)

 	MFRC522_GAIN_23 (C++ class)

 	MFRC522_GAIN_33 (C++ class)

 	MFRC522_GAIN_38 (C++ class)

 	MFRC522_GAIN_43 (C++ class)

 	MFRC522_GAIN_48 (C++ class)

 	MFRC522_MAX_DEVICES (C macro)

 	MFRC522_MFSEL_3STATE (C++ class)

 	MFRC522_MFSEL_HIGH (C++ class)

 	MFRC522_MFSEL_LOW (C++ class)

 	MFRC522_MFSEL_MPE (C++ class)

 	MFRC522_MFSEL_SSTRR (C++ class)

 	MFRC522_MFSEL_SSTRT (C++ class)

 	MFRC522_MFSEL_TBUS (C++ class)

 	MFRC522_UINSEL_ANALOG (C++ class)

 	MFRC522_UINSEL_LOW (C++ class)

 	MFRC522_UINSEL_MAN_MFIN (C++ class)

 	MFRC522_UINSEL_NRZ_MFIN (C++ class)

 	MFRC522_USE_I2C (C macro)

 	MFRC522_USE_SPI (C macro)

 	MFRC522_USE_UART (C macro)

 	Mfrc522Config (C++ class)

 	Mfrc522Config::cl_uart_in_sel (C++ member)

 	Mfrc522Config::demod_reg (C++ member)

 	Mfrc522Config::driver_input_select (C++ member)

 	Mfrc522Config::extp (C++ member)

 	Mfrc522Config::interrupt_channel (C++ member)

 	Mfrc522Config::inverse_modulation (C++ member)

 	

 	Mfrc522Config::MFIN_polarity (C++ member)

 	Mfrc522Config::mfout_select (C++ member)

 	Mfrc522Config::min_rx_collision_level (C++ member)

 	Mfrc522Config::min_rx_signal_strength (C++ member)

 	Mfrc522Config::modulation_index_n (C++ member)

 	Mfrc522Config::modulation_index_p (C++ member)

 	Mfrc522Config::receiver_gain (C++ member)

 	Mfrc522Config::reset_line (C++ member)

 	Mfrc522Config::transmit_power_n (C++ member)

 	Mfrc522Config::transmit_power_p (C++ member)

 	Mfrc522Config::tx_control_reg (C++ member)

 	Mfrc522Driver (C++ class)

 	Mfrc522Driver::connection_type (C++ member)

 	Mfrc522Driver::current_config (C++ member)

 	Mfrc522Driver::extp (C++ member)

 	Mfrc522Driver::iface (C++ member)

 	Mfrc522Driver::iface_u (C++ type)

 	Mfrc522Driver::iface_u::i2cp (C++ member)

 	Mfrc522Driver::iface_u::sdp (C++ member)

 	Mfrc522Driver::iface_u::spip (C++ member)

 	Mfrc522Driver::interrupt_channel (C++ member)

 	Mfrc522Driver::interrupt_pending (C++ member)

 	Mfrc522Driver::mutex (C++ member)

 	Mfrc522Driver::pcd (C++ member)

 	Mfrc522Driver::reset_line (C++ member)

 	Mfrc522Driver::resp_last_valid_bits (C++ member)

 	Mfrc522Driver::resp_length (C++ member)

 	Mfrc522Driver::resp_read_bytes (C++ member)

 	Mfrc522Driver::response (C++ member)

 	Mfrc522Driver::state (C++ member)

 	Mfrc522Driver::tr (C++ member)

 	mfrc522Init (C++ function)

 	mfrc522ObjectInitI2C (C++ function)

 	mfrc522ObjectInitSerial (C++ function)

 	mfrc522ObjectInitSPI (C++ function)

 	mfrc522Reconfig (C++ function)

 	mfrc522Start (C++ function)

 	mfrc522Stop (C++ function)

P

 	

 	Pcd (C++ class)

 	Pcd::data (C++ member)

 	Pcd::vmt (C++ member)

 	PCD_ACTIVE (C++ class)

 	PCD_BAD_STATE (C++ class)

 	PCD_ERROR (C++ class)

 	PCD_EXT_CALCULATE_CRC_A (C++ class)

 	PCD_EXT_CALCULATE_CRC_B (C++ class)

 	PCD_EXT_MIFARE_AUTH (C++ class)

 	PCD_EXT_SELFTEST (C++ class)

 	PCD_ISO14443_A (C++ class)

 	PCD_ISO14443_B (C++ class)

 	PCD_OK (C++ class)

 	PCD_OK_COLLISION (C++ class)

 	PCD_OK_TIMEOUT (C++ class)

 	PCD_READY (C++ class)

 	PCD_RF_OFF (C++ class)

 	PCD_RX_ERROR (C++ class)

 	PCD_RX_OVERFLOW (C++ class)

 	PCD_RX_SPEED_106 (C++ class)

 	PCD_RX_SPEED_212 (C++ class)

 	PCD_RX_SPEED_424 (C++ class)

 	PCD_RX_SPEED_848 (C++ class)

 	PCD_STOP (C++ class)

 	PCD_TX_ERROR (C++ class)

 	PCD_TX_OVERFLOW (C++ class)

 	PCD_TX_SPEED_106 (C++ class)

 	PCD_TX_SPEED_212 (C++ class)

 	PCD_TX_SPEED_424 (C++ class)

 	PCD_TX_SPEED_848 (C++ class)

 	PCD_UNINT (C++ class)

 	PCD_UNSUPPORTED (C++ class)

 	pcdAcquireBus (C macro)

 	pcdActivateRFAB (C macro)

 	pcdCallExtFeature (C macro)

 	pcdDeactivateRFAB (C macro)

 	PcdExtCalcCRC_params (C++ class)

 	PcdExtCalcCRC_params::buffer (C++ member)

 	

 	PcdExtCalcCRC_params::length (C++ member)

 	PcdExtCalcCRC_result (C++ class)

 	PcdExtCalcCRC_result::crc (C++ member)

 	PcdExtMifareAuth_params (C++ class)

 	PcdExtMifareAuth_params::authCommandCode (C++ member)

 	PcdExtMifareAuth_params::blockAddr (C++ member)

 	PcdExtMifareAuth_params::cardSerialNumber (C++ member)

 	PcdExtMifareAuth_params::sectorKey (C++ member)

 	PcdExtMifareAuth_result (C++ class)

 	PcdExtMifareAuth_result::authSuccess (C++ member)

 	PcdExtSelftest_params (C++ class)

 	PcdExtSelftest_result (C++ class)

 	PcdExtSelftest_result::passed (C++ member)

 	pcdfeature_t (C++ type)

 	pcdGetRespAB (C macro)

 	pcdGetRespLengthA (C macro)

 	pcdGetStateAB (C macro)

 	pcdGetSupportedParamsAB (C macro)

 	pcdmode_t (C++ type)

 	pcdReleaseBus (C macro)

 	pcdresult_t (C++ type)

 	pcdSetParamsAB (C macro)

 	PcdSParams (C++ class)

 	PcdSParams::max_rx_size (C++ member)

 	PcdSParams::max_tx_size (C++ member)

 	PcdSParams::supported_asym_speeds (C++ member)

 	PcdSParams::supported_crc_off (C++ member)

 	PcdSParams::supported_crc_on (C++ member)

 	PcdSParams::supported_modes (C++ member)

 	PcdSParams::supported_speedsA (C++ member)

 	PcdSParams::supported_speedsB (C++ member)

 	pcdspeed_rx_t (C++ type)

 	pcdspeed_tx_t (C++ type)

 	pcdstate_t (C++ type)

 	pcdSupportsExtFeature (C macro)

 	pcdTransceiveAnticollFrameA (C macro)

 	pcdTransceiveShortFrameA (C macro)

 	pcdTransceiveStandardFrameA (C macro)

R

 	

 	receiver_gain_t (C++ type)

 © Copyright 2018, FMFI ŠVT.
 Last updated on May 03, 2018.
 Created using Sphinx 1.4.8.

 _static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_static/up.png

_images/graphviz-964996bdf6fe4769c33658890f6e255c9a3ccaf6.png

_static/minus.png

_static/down.png

_images/graphviz-f32c12fe87d1f9c33795500528f2ac190f055317.png
PCD_UNINIT

Hriver-specific
init
method

PCD_STOP

Hriver-specific
activation
method

PCD_RF_OFF

pedActivateRFField AB()pedDeactivateRFFieldAB()

PCD_READY

\operation complete
pedTransceive*() | operation timeout
operation error

_images/graphviz-03f1ebaa24f1ae132fb1c756eaac77383d9782a6.png
hal_DESFire_card

hal_iso_7816

/APDU Command Wrapping

hal_abstract_CRCard

hal_iso_14443_picc

A

hal_abstract_iso14443_ped

hal_mfrc522

