
Gizmo Documentation
Release 0.1

BSG et al.

Jul 05, 2019

Contents

1 Syllabus 3

2 Contents 5
2.1 Introduction . 5

2.1.1 Preparing your Computer . 5
2.1.2 Intro to Git & GitHub . 5
2.1.3 Warmup for Python . 8

2.2 Arduino . 18
2.2.1 Introduction to Arduino . 19
2.2.2 Basics . 29
2.2.3 Sensors . 36
2.2.4 Actuators . 42
2.2.5 Combined Sense & Actuation . 46
2.2.6 Why Arduino? . 64
2.2.7 Alternative Microcontrollers . 65

2.3 Raspberry Pi . 65
2.3.1 Assembling Pi workstation . 65
2.3.2 Setting up your SD Card . 71
2.3.3 Configuring the Pi . 72
2.3.4 Headless Setup . 84
2.3.5 Accessing Networks . 84
2.3.6 Software . 87
2.3.7 Connecting Remotely . 88
2.3.8 Backing up your SD card . 104
2.3.9 GPIO . 105
2.3.10 Using Peripherals . 115
2.3.11 Why Raspberry Pi? . 123
2.3.12 Alternatives to the Raspberry Pi . 123

2.4 Communication . 123
2.4.1 Protocol: Serial . 123

2.5 Sensors & Actuators . 127
2.6 Supplementary Material . 127

2.6.1 Crontab - scheduling commands . 128
2.6.2 Material to be added . 129
2.6.3 Useful links . 129

3 Missing Material 131

i

ii

Gizmo Documentation, Release 0.1

Welcome to the Gizmo documentation for 2018.

This new format is designed to be more generalised to support the electromechanical work which happens in many
projects across the Design Engineering undergraduate degree.

Where possible, all contributions and acknowledgements will be put on pages as external links to the source. For more
general acknowledgements, they will be put here rather than trying to find all the specific places in the documentation.

• Syllabus

• Contents

• Missing Material

Contents 1

Gizmo Documentation, Release 0.1

2 Contents

CHAPTER 1

Syllabus

Class Date Contents
DE2 Gizmo Class 4 Wednesday 17th October 2018

• Introduction to Arduino
• Basics
• Sensors
• Actuators

DE2 Gizmo Class 6 Wednesday 24th October 2018
• Combined Sense & Actuation

DE2 Gizmo Class 8 Wednesday 24th October 2018
• Raspberry Pi

– Chapter 1
– Chapter 3
– Chapter 5.2
– Chapter 6
– Chapter 7.1
– Chapter 8

DE2 Gizmo Class 10 Wednesday 14th November 2018
• Raspberry Pi Chapter 8

3

Gizmo Documentation, Release 0.1

4 Chapter 1. Syllabus

CHAPTER 2

Contents

2.1 Introduction

This section of the documentation collates a number of useful topics to learn for the Gizmo project, as well as for other
projects later in the degree. We recommend you take your time to read and follow the examples/tutorials for each of
these as they become necessary in your projects.

2.1.1 Preparing your Computer

Todo: Guidance for managing installs and software on personal computers needs to be written here.

macOS

Brew

Windows

Linux

Text editor

Atom / VSCode / Sublime

2.1.2 Intro to Git & GitHub

5

Gizmo Documentation, Release 0.1

What is a VCS?

A version control system (VCS) is one that allows the author to track changes to a file over a period of time. It
timestamps information and allows multipl copies of the same work to be compared and merged together. Nowadays
‘git’ is the go-to VCS for software and many other types of media.

Understanding Git

To understand Git, there are a number of good tutorials out there to get you started. If you feel like you want to
learn from the source material, you can check that out here. However we recommend that you learn from the videos
produced by The Coding Train.

Tip: If you need a complete explanation on all the different aspects of Git - he has also created a complete playlist of
videos explaining it all.

Overview

For a quick overview, we recommend you check out ‘just a simple guide for getting started with
git<http://rogerdudler.github.io/git-guide/>‘_.

Cheatsheet

If you need a quick cheatsheet for Git commands, Tower has a pretty good one put together

The following graphic, also made by Tower, is a guide to how the Git workflow works:

6 Chapter 2. Contents

https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://www.git-tower.com/blog/git-cheat-sheet/

Gizmo Documentation, Release 0.1

2.1. Introduction 7

Gizmo Documentation, Release 0.1

Using a graphical interface for Git

There are a number of programs that you can use to visually interact with your Git repository. This makes working
with Git very easy.

• GitHub Desktop (free)

• Sourcetree (free)

• GitKraken (free)

• Tower (discounted for students)

GitHub

GitHub and Bitbucket are the two biggest public services for storing VCS repositories. We recommend you use the
official GitHub guides. These will help you transistion your understanding of using Git locally, into using GitHub to
host your files.

2.1.3 Warmup for Python

It is expected that you develop you Python skills within the Computing 1 module of your first year. You will also
be completing your Computing 2 module alongside Gizmo and as such we don’t go into too much detail on how
the language works - you’re expected to know that! What follows is a brief refresher, but in most cases we heavily
recommend a quick Google search if you’ve forgotten certain Python syntax.

About Python Language

Remember that you are intelligent, and you can learn, but the computer is simple and very fast, but can not learn
by itself. Therefore, for you to communicate instructions on the computer, it is easier for you to learn a computer
Language (e.g. Python) than for the computer to learn English.

Python can be easy to pick up and friendly to learn. Python is a general-purpose interpreted , interactive, object-
oriented, and high-level programming language. It was created by Guido van Rossum during 1985-1990. There are
two main python versions: 2.7 and 3. For this course, we will use 2.7 since it is the most common or popular used.

Todo: Review whether Python 2.7 is the correct option nowadays - or whether Python 3.x is more appropriate.

Basic Practise

Let’s get familiar with Python by playing in the terminal in the interactive mode (you type a line at a time, and the
interpreter responds). You invoke the interpreter and brings up the following prompt:

$ python
Python 2.7.9 (default, Sep 17 2016, 20:26:04)
[GCC 4.9.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

8 Chapter 2. Contents

https://desktop.github.com
https://www.sourcetreeapp.com
https://www.gitkraken.com
https://www.git-tower.com/mac
https://guides.github.com
http://www.python.org/

Gizmo Documentation, Release 0.1

Note: The $ symbol when used in a code block like this represents typing on the command line. When you open the
terminal, you username and current folder (directory) is usually shown on the left side of the $ sign and then you can
type your commands to the right side. In this case, we’ve typed the word python and then pressed enter.

Strings, integers, and floating points:

>>> print "Hello, Python!"
>>> x = 1 # Integer assignment
>>> y = 1005.00 # Floating points
>>> name = "John" # A string
>>> print x
1
>>> print y
1005.0
>>> print name
John

In Python, the standard order of operations are evaluated from left to right following order (memorised by many as
PEMDAS):

• P arentheses

• E xponents

• M ultiplication and D ivision

• A ddition and S ubtraction

Note: // is the floor division in which the digits after the decimal point are removed. But if one of the operands is
negative, the result is floored, i.e., rounded away from zero.

>>> 3/4 * 5 # First division and then Multiplication
>>> 3.0 / 4 * 5
>>> (3.0 / 4) * 4
>>> 2**8
>>> -11.0//3
>>> 11.0//3 # Result floored (rounded away from zero)
>>> -11.0/3
>>> z = float(5)
>>> z
>>> z = int(5.25)
>>> z
>>> 10%7 # Remainder of a division
>>> 'abc' + 'fgb' # strings

Comparison operators:

Name Syntax
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to

2.1. Introduction 9

https://en.wikibooks.org/wiki/Python_Programming/Basic_Math

Gizmo Documentation, Release 0.1

>>> 2 == 3
False
We got a boolean
>>> 3 == 3
True
>>> 2 < 3
True
>>> "a" < "aa"
True

Data Types

The data stored in memory can be of different types; Python has five: Numbers, Strings, List, Tuple, and Dictionary.

>>> type(x) # numbers
>>> type(y)
>>> type(name) # String

Strings in Python are a set of characters represented by the quotation marks. Python allows for either pair of single or
double quotes.

Subsets of strings can be taken using the slice operator ([] and [:]) with indexes starting at 0 at the beginning of the
string and working their way from -1 to the end.

The plus (+) sign is the string concatenation operator, and the asterisk (*) is the repetition operator. For example:

>>> string = 'Hello World!'
>>> print string # Prints complete string
>>> print string[0] # Prints first character of the string
>>> print string[2:5] # Prints characters starting from 3rd to 5th
>>> print string[2:] # Prints string starting from 3rd character
>>> print string * 2 # Prints string two times
>>> print string + "TEST" # Prints concatenated string

Lists are the most versatile data types in Python. A list contains items separated by commas and enclosed in square
brackets ([]) — similar to arrays in C. One difference between them is that all the items belonging to a list can be of
different data type.

The values stored in a list can be accessed using the slice operator ([] and [:]) with indexes starting at 0 at the
beginning of the list and working their way to ending -1. The plus (+) sign is the list concatenation operator, and the
asterisk (*) is the repetition operator.

>>> list = ['abcd', 786 , 2.23, 'john', 70.2]
>>> tinylist = [123, 'john']

>>> print list # Prints complete list
>>> print list[0] # Prints first element of the list
>>> print list[1:3] # Prints elements starting from 2nd till 3rd
>>> print list[2:] # Prints elements starting from 3rd element
>>> print tinylist * 2 # Prints list two times
>>> print list + tinylist # Prints concatenated lists

A tuple is another sequence data type that is similar to the list. It consists of some values separated by commas. Unlike
lists, however, tuples are enclosed within parentheses.

The main differences between lists and tuples are: Lists are enclosed in brackets ([]), and their elements and size
can be changed, while tuples are enclosed in parentheses (()) and cannot be updated - immutable. Tuples can be

10 Chapter 2. Contents

Gizmo Documentation, Release 0.1

thought of as read-only lists.

>>> tuple = ('abcd', 786 , 2.23, 'john', 70.2)
tinytuple = (123, 'john')

>>> print tuple # Prints complete list
>>> print tuple[0] # Prints first element of the list
>>> print tuple[1:3] # Prints elements starting from 2nd till 3rd
>>> print tuple[2:] # Prints elements starting from 3rd element
>>> print tinytuple * 2 # Prints list two times
>>> print tuple + tinytuple # Prints concatenated lists

Invalid operations on a tuple but valid on a list:

>>> tuple = ('abcd', 786 , 2.23, 'john', 70.2)
>>> list = ['abcd', 786 , 2.23, 'john', 70.2]
>>> tuple[2] = 1000 # Invalid syntax with tuple
>>> list[2] = 1000 # Valid syntax with list

Python’s dictionaries are hash table type. They work like associative arrays and consist of key-value pairs. A dic-
tionary key can be almost any Python type but are usually numbers or strings. Values, on the other hand, can be any
arbitrary Python object. Dictionaries are enclosed by curly braces ({}), and values can be assigned and accessed using
square braces ([]).

>>> dict = {}
>>> dict['one'] = "This is one"
>>> dict[2] = "This is two"
keys are: name, code and dept; values are: john, 6734 and sales
>>> tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

>>> print dict['one'] # Prints value for 'one' key
>>> print dict[2] # Prints value for 2 key
>>> print tinydict # Prints complete dictionary
>>> print tinydict.keys() # Prints all the keys
>>> print tinydict.values() # Prints all the values

To quit the Python interpreter:

>>> quit()

Scripts

A Script is a sequence of statements (lines) into a file using a text editor and tells Python interpreter to execute the
statements in the file.

• We can write a program in our script like a recipe or installation of software. At the end of the day, a program is
a sequence of steps to be done in order.

• Some of the steps can be conditional, that means that sometimes they can be skipped.

• Sometimes a step or group of steps are to be repeated.

• Sometimes we store a set of steps that will be used over and over again in several parts of the program
(functions).

Note: Have a look on the code style guide for a good coding practise. As a fist good practise, do not name files or
folders with space in between:

2.1. Introduction 11

https://www.python.org/dev/peps/pep-0008/#indentation

Gizmo Documentation, Release 0.1

• Bad -> example 1.py

• Good -> example_one.py

Further explanation as to why we use underscores, and not exampleOne.py for example, can be found in documents
such as the PEP8 Guide to Python.

We will make a simple script:

$ pwd
$ /home/pi
$ mkdir codes/python_examples
$ cd codes/python_examples
$ nano example_flow.py

Then you can type in the editor:

#!/usr/bin/env python
x = 2
print x
x = x + 2
print x

When a program is running, it flows from one step to the next. As programmers, we set up “paths” for the program to
follow.

Close the text editor, and then you can execute it in two ways:

$ python example_flow.py

The other is to give the script the access permissions to be an executable file through the chmod Linux command:

12 Chapter 2. Contents

https://en.wikipedia.org/wiki/Chmod

Gizmo Documentation, Release 0.1

$ chmod u+x example_flow.py
$./example_flow.py

Now let’s do an example where we have a conditional that implies a decision-making about a situation. Decision mak-
ing is the anticipation of conditions occurring while execution of the program and specifying actions taken according
to the conditions. The following diagram illustrates the conditional:

$ nano example_conditional.py

Now let’s add the code:

#!/usr/bin/env python
x = 5
if x < 10:

print 'Smaller'
elif x > 20:

print 'Bigger'
print 'Finis' #outside conditional

$ chmod u+x example_conditional.py
$./example_conditional.py

Flow of the code:

2.1. Introduction 13

Gizmo Documentation, Release 0.1

A loop statement allows us to execute a statement or group of statements multiple times. The following diagram
illustrates a loop statement:

While loops repeats a statement or group of statements while a given condition is True. It tests the condition before
executing the loop body.

14 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Now let’s add the code to our script called example_while_loop.py:

#!/usr/bin/env python
n = 5
while n > 0:

print n
n = n - 1

print 'Blastoff!' #outside loop

Before running, remember to give the permissions:

$ chmod u+x example_while_loop.py
$./example_while_loop.py

Flow of the code:

Loops (repeated steps) have iteration variables that change each time through a loop (like n). Often these iteration
variables go through a sequence of numbers.

For loop executes a sequence of statements multiple times and abbreviates the code that manages the loop variable.

Now let’s add the code to our script called _example_for_loop.py_:

#!/usr/bin/env python

Area of a circle = pi * r**2

Library
import numpy as np

List are called interables
list = [1, 2, 3, 4, 5, 6]

for radius in list:

(continues on next page)

2.1. Introduction 15

Gizmo Documentation, Release 0.1

(continued from previous page)

area = np.pi * radius ** 2
print "The area of a circle of radius ", radius
print "cm is", area, "cm^2"

print "Finished to calculate the areas of circles"

$ chmod u+x example_for_loop.py
$./example_for_loop.py

Here we are importing the Numpy library. That is the fundamental package for scientific computing with Python. We
are adding a short alias to the library to call its methods, in this case, the value of Pi.

Functions

A function is a block of organised, reusable code that is used to perform a single, related action. Functions provide
better modularity for your application and a high degree of code reusing.

Now, let’s make a function that can be used in the for loop example.

$ nano example_function_circle_area.py

#!/usr/bin/env python

Area of a circle = pi * r**2

Library Numpy
import numpy as np

def area_circle(radius):
'Function that calculates the area of a circle'
area = np.pi * radius ** 2
return area

List are called interables
list = [1, 2, 3, 4, 5, 6]

for radius in list:
area = area_circle(radius)
print "The area of a circle of radius ", radius
print "cm is", area, "cm^2"

print "Finished to calculate the areas of circles"

$ chmod u+x example_function_circle_area.py
$./example_function_circle_area.py

We can see that we get the same result but it is more organise and we can use the function in other section of our code.

Now let’s ask the user to provide a list:

$ nano example_function_circle_area_user_1.py

Area of a circle = pi * r**2

Library Numpy

(continues on next page)

16 Chapter 2. Contents

http://www.numpy.org/

Gizmo Documentation, Release 0.1

(continued from previous page)

import numpy as np
Library to Safely evaluate an expression node
or a string containing a Python expression
import ast

List are called interables
list_raw = raw_input('Provide a list of radius in cm like \
[3, 2, 12, 6]: \n')
list = ast.literal_eval(list_raw)

def area_circle(radius):
'Function that calculates the area of a circle'
area = np.pi * radius ** 2
return area

for radius in list:
area = area_circle(radius)
print "The area of a circle of radius ", radius
print "cm is", area, "cm^2"

print "Finished to calculate the areas of circles"

$ chmod u+x example_function_circle_area_user_1.py
$./example_function_circle_area_user_1.py

If we do not use the ast library to evaluate a string containing a Python expression (in this case a list), we will get an
error since Python will interpret as a string type and not a list type.

A second way to do it is by using the sys module which provides access to some variables used or maintained by the
interpreter and to functions that interact strongly with the interpreter.

Now let’s ask the user to provide a list by passing the strings directly:

$ nano example_function_circle_area_user_2.py

#!/usr/bin/env python

Usage instructions:
./example_function_circle_area_user_2.py "[1, 2, 3]"

Area of a circle = pi * r**2

Library Numpy
import numpy as np
Library to Safely evaluate an expression node
or a string containing a Python expression
import ast
Module provides access to some variables
used or maintained by the interpreter
import sys

list_raw = sys.argv[1]
list = ast.literal_eval(list_raw)

(continues on next page)

2.1. Introduction 17

https://docs.python.org/2/library/ast.html
https://docs.python.org/2/library/sys.html

Gizmo Documentation, Release 0.1

(continued from previous page)

def area_circle(radius):
'Function that calculates the area of a circle'
area = np.pi * radius ** 2
return area

for radius in list:
area = area_circle(radius)
print "The area of a circle of radius ", radius
print "cm is", area, "cm^2"

print "Finished to calculate the areas of circles"

$ chmod u+x example_function_circle_area_user_2.py
$./example_function_circle_area_user_2.py "[1, 2, 3]"

References

1. Charles Severance course: Python for everybody

2.2 Arduino

Welcome to the guide on Arduino. See below for Why Arduino? and possible Alternative Microcontrollers.

18 Chapter 2. Contents

https://www.tutorialspoint.com/python/

Gizmo Documentation, Release 0.1

2.2.1 Introduction to Arduino

• What is Arduino?

• What is Arduino: Hardware

– Arduino UNO Board Structure

– Digital pins

– Analog pins

– PWM

• What is Arduino: Software

– Quick tour of the Arduino IDE

– Anatomy of an Arduino Sketch

– Arduino Language

* Variables

* Further Arduino Syntax

2.2. Arduino 19

Gizmo Documentation, Release 0.1

What is Arduino?

What is Arduino: Hardware

An Arduino is essentially a microcontroller. That is a small “computer” (SoC - System on a Chip) on a single integrated
circuit containing a processor core, memory and programmable input/output peripherals (a.k.a. sensors and actuators).

Arduino UNO Board Structure

1. Digital pins Use these pins with digitalRead(), digitalWrite(), and analogWrite().
analogWrite() works only on the pins with the PWM symbol.

2. Pin 13 LED The only actuator built-in to your board. Besides being a handy target for your first blink sketch,
this LED is very useful for debugging.

3. Power LED Indicates that your Arduino is receiving power. Useful for debugging.

4. ATmega microcontroller The heart of your board.

5. Analog in Use these pins with analogRead().

20 Chapter 2. Contents

Gizmo Documentation, Release 0.1

6. GND and 5V pins Use these pins to provide +5V power and ground to your circuits.

7. Power connector This is how you power your Arduino when it’s not plugged into a USB port for power. Can
accept voltages between 7-12V.

8. TX and RX LEDs These LEDs indicate communication between your Arduino and your computer. Expect them
to flicker rapidly during sketch upload as well as during serial communication. Useful for debugging.

9. USB port Used for powering your Arduino Uno, uploading your sketches to your Arduino, and for communi-
cating with your Arduino sketch (via Serial.println() etc.).

10. Reset button Resets the ATmega microcontroller.

Here’s a scheme of it’s pin’s functionalities:

Digital pins

All the pins on the Arduino are programmable. They can be configured as either inputs or outputs using the
pinMode() function.

They can be controlled with two functions:

• digitalRead(): reads the value of the pin

• digitalWrite(): sets the output of the pin to either HIGH (1, drives the pin to 5V) or LOW (0, drives the
pin to 0V)

We will see in detail how to control them later on.

2.2. Arduino 21

Gizmo Documentation, Release 0.1

Note: When a digital pin is high (at 5V) it can be represented as HIGH or 1. Conversely when it is low (at 0V) it can
be represented as LOW or 0.

Pins Configured as INPUT

Arduino (Atmega) pins default to inputs, so they don’t need to be explicitly declared as inputs with pinMode()
when you’re using them as inputs. Pins configured this way are said to be in a high-impedance state. Input pins make
extremely small demands on the circuit that they are sampling. This means that it takes very little current to move the
input pin from one state to another, and can make the pins useful for such tasks as implementing a capacitive touch
sensor, reading an LED as a photodiode, or reading an analog sensor with a scheme such as RCTime.

This also means however, that pins configured as pinMode(pin, INPUT) with nothing connected to them, or with
wires connected to them that are not connected to other circuits, will report seemingly random changes in pin state,
picking up electrical noise from the environment, or capacitively coupling the state of a nearby pin.

Pins Configured as INPUT with Pullup/Pulldown Resistors

Often it is useful to steer an input pin to a known state if no input is present. In doing so you cancel the random values
of the pin when nothing is connected to it. This can be done by adding a pull-up resistor (to +5V), or a pulldown
resistor (resistor to ground) on the input. A 10K resistor is a good value for a pull-up or pull-down resistor.

Note: On the Arduino there are built-in pullup resistors that can be activate via code setting pinMode() as
INPUT_PULLUP. This effectively inverts the behaviour of the INPUT mode, where HIGH means the sensor is off,
and LOW means the sensor is on.

When connecting a sensor to a pin configured with INPUT_PULLUP, the other end should be connected to ground.
In the case of a simple switch, this causes the pin to read HIGH when the switch is open, and LOW when the switch is
pressed.

You can find more information about pull-up/pull-down resistors in this guide.

Pins configured as OUTPUT

Pins configured as OUTPUT with pinMode() are said to be in a low-impedance state. This means that they can
provide a substantial amount of current to other circuits. Atmega pins can source (provide positive current) or sink
(provide negative current) up to 40 mA (milliamps) of current to other devices/circuits. This is enough current to
brightly light up an LED (don’t forget the series resistor), or run many sensors, for example, but not enough current to
run most relays, solenoids, or motors.

Short circuits on Arduino pins, or attempting to run high current devices from them, can damage or destroy the output
transistors in the pin, or damage the entire Atmega chip. Often this will result in a “dead” pin in the microcontroller
but the remaining chip will still function adequately. For this reason it is a good idea to connect OUTPUT pins to other
devices with 470Ω or 1k resistors, unless maximum current draw from the pins is required for a particular application.

Analog pins

The Atmega controllers used for the Arduino contain an onboard 6 channel analog-to-digital (A/D) converter, that
correspond to the analog pins (A0-A5). The converter has 10 bit resolution, returning integers from 0 to 1023. This
means that when we want to read the pin’s value it maps input voltages between 0 and 5 volts into integer values
between 0 and 1023. The analog pins can be controlled with two functions:

• analogRead(): reads the value of the pin

• analogWrite(): sets the output value of the pin

22 Chapter 2. Contents

https://playground.arduino.cc/CommonTopics/PullUpDownResistor

Gizmo Documentation, Release 0.1

While the main function of the analog pins for most Arduino users is to read analog sensors, the analog pins also have
all the functionality of general purpose input/output (GPIO) pins (the same as digital pins 0 - 13). Therefore they can
used as digital pins with the digital functions.

The Atmega datasheet also cautions against switching analog pins in close temporal proximity to making A/D readings
(analogRead) on other analog pins. This can cause electrical noise and introduce jitter in the analog system. It may
be desirable, after manipulating analog pins (in digital mode), to add a short delay before using analogRead() to
read other analog pins.

PWM

In the graphic below, the green lines represent a regular time period. This duration or period is the inverse of the
PWM frequency. In other words, with Arduino’s PWM frequency at about 500Hz, the green lines would measure 2
milliseconds each. A call to analogWrite() is on a scale of 0 - 255, such that analogWrite(255) requests a 100% duty
cycle (always on), and analogWrite(127) is a 50% duty cycle (on half the time) for example.

2.2. Arduino 23

Gizmo Documentation, Release 0.1

Note: For more informations you can check the Arduino Microcontroller section of their Foundations.

What is Arduino: Software

Please download the Arduino IDE from Arduino’s website if you are having any trouble there are setup guides for
every operating system on this page.

Quick tour of the Arduino IDE

Arduino has it’s own integrated development environment that simplifies some of the operations. The IDE manages
library, offers a built-in compiler and has a lot of examples and references.

Here is a screenshot of how the IDE looks like and all its functionalities:

1. Verify: Compiles and approves your code. It will catch errors in syntax (like missing semi-colons or parenthesis).
2. Upload: Sends your code to the Uno. When you click it, you should see the lights on your board blink rapidly. 3.
New: This buttons opens up a new code window tab. 4. Open: This button will let you open up an existing sketch.
5. Save: This saves the currently active sketch. 6. Serial Monitor: This will open a window that displays any serial
information your Uno Board is transmitting. It is very useful for debugging. 7. Sketch Name: This shows the name

24 Chapter 2. Contents

https://www.arduino.cc/en/Tutorial/Foundations
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Guide/HomePage

Gizmo Documentation, Release 0.1

of the sketch you are currently working on. 8. Code Area: This is the area where you compose the code for your
sketch. 9. Message Area: This is where the IDE tells you if there were any errors in your code. 10. Text Console:
The text console shows complete error messages. When debugging, the text console is very useful. 11. Board and
Serial Port: Shows you what board and the serial port selections

Anatomy of an Arduino Sketch

Each Arduino program is called a “sketch”. Each Sketch has two main function setup() and loop():

• setup() is called when a sketch starts. Use it to initialise variables, pin modes, start using libraries, etcetera.
The setup function will only run once, after each powerup or reset of the Arduino board.

• loop() is called after setup(), and it loops consecutively, allowing your program to change and respond.
Use it to actively control the Arduino board.

Here’s an example of what an Arduino sketch looks like:

/*
Blink
Turns on an LED on for one second, then off for one second, repeatedly.

This example code is in the public domain.

*/

// Pin 13 has an LED connected.
// give it a name:
int pin = 13;

// the setup routine runs once when you press reset:

(continues on next page)

2.2. Arduino 25

Gizmo Documentation, Release 0.1

(continued from previous page)

void setup() {
// initialize the digital pin as an output.
pinMode(pin, OUTPUT);

}

// the loop routine runs over and over again forever:
void loop() {

digitalWrite(pin, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalWrite(pin, LOW); // turn the LED off by making the voltage LOW
delay(1000); // wait for a second

}

Arduino Language

The programming language used in Arduino comes from C++ and it is quite different from Python. Although the
names of the functions are self explanatory as they are written in plain English.

The most visible difference is that you have to terminate each line with a semicolon (;) to end a statement, if you
forget one the compiler will warn you about it.

Variables

The fundamental difference from Python is that Arduino doesn’t use dynamic typing. This means that when we create
a variable we have to tell the compiler what type of variable it is:

int pin = 13;

We have just created a variable whose type is int, whose name is pin, whose value is 13. Later on in the program,
you can refer to this variable by its name, at which point its value will be looked up and used. For example, in this
statement:

pinMode(pin, OUTPUT);

We are setting the pin 13 as an OUTPUT pin, what we have written would be equivalent to pinMode(13,
OUTPUT);. You can change the value of a variable using an assignment (indicated by an equals sign). For example:

pin = 12;

will change the value of the variable to 12. Notice that we don’t specify the type of the variable: it’s not changed by
the assignment. That is, the name of the variable is permanently associated with a type; only its value changes.

When you assign one variable to another, you’re making a copy of its value and storing that copy in the location in
memory associated with the other variable. Changing one has no effect on the other. For example, after:

int pin = 13;
int pin2 = pin;
pin = 12;

only pin has the value 12; pin2 is still 13.

Arduino has many types. To name a few: int, float, string, boolean, char. To learn more about the
specificities about each type we invite you to look at the Arduino Reference Page.

26 Chapter 2. Contents

https://www.arduino.cc/en/Reference/HomePage

Gizmo Documentation, Release 0.1

Further Arduino Syntax

We have collected useful examples of Arduino syntax for some major functions you are familiar with in Python.

If statement

if (pinFiveInput < 500) {
// action A

} else {
// action B

}

While loop

while (expression) {
// statement(s)

}

For loop

for (int i=0; i <= 255; i++) {
analogWrite(pwmPin, i);
delay(10);

}

That can be translated into pseudocode as:

for (initialisation; condition; increment) {
//statement(s);

}

Comments

For inline comments you can use //. For multiple-lines comments instead use /* at the beginning and */ at the end.

// this is an inline comment

/* this is a comment
on multiple lines */

Comparison Operators

• x == y (x is equal to y)

• x != y (x is not equal to y)

• x < y (x is less than y)

• x > y (x is greater than y)

• x <= y (x is less than or equal to y)

• x >= y (x is greater than or equal to y)

Arithmetic Operations

• = (assignment operator)

• + (addition)

• - (subtraction)

• * (multiplication)

2.2. Arduino 27

Gizmo Documentation, Release 0.1

• / (division)

• % (modulo)

Boolean Operations

• && (and)

• || (or)

• ! (not)

Functions

Segmenting code into functions allows a programmer to create modular pieces of code that perform a defined task and
then return to the area of code from which the function was “called”. The typical case for creating a function is when
one needs to perform the same action multiple times in a program. Standardising code fragments into functions has
several advantages:

• Functions help the programmer stay organised. Often this helps to conceptualise the program.

• Functions codify one action in one place so that the function only has to be thought out and debugged once.

• This also reduces chances for errors in modification, if the code needs to be changed.

• Functions make the whole sketch smaller and more compact because sections of code are reused many times.

• They make it easier to reuse code in other programs by making it more modular, and as a nice side effect, using
functions also often makes the code more readable.

• There are two required functions in an Arduino sketch, setup() and loop(). Other functions must be created
outside the brackets of those two functions. As an example, we will create a simple function to multiply two
numbers.

Our function needs to be declared outside any other function, so myMultiplyFunction() can go either above or
below the loop() function.

28 Chapter 2. Contents

Gizmo Documentation, Release 0.1

void setup(){
Serial.begin(9600);

}

void loop() {
int i = 2;
int j = 3;
int k;

k = myMultiplyFunction(i, j); // k now contains 6
Serial.println(k);
delay(500);

}

int myMultiplyFunction(int x, int y) {
int result;
result = x * y;
return result;

}

Another Function Example: This function will read a sensor five times with analogRead() and calculate the
average of five readings. It then scales the data to 8 bits (0-255), and inverts it, returning the inverted result.

int readAndCompute() {
int i;
int sval = 0;

for (i = 0; i < 5; i++){
sval = sval + analogRead(0); // sensor on analog pin 0

}

sval = sval / 5; // average
sval = sval / 4; // scale to 8 bits (0 - 255)
sval = 255 - sval; // invert output
return sval;

}

To call our function we just assign it to a variable, the following code should be placed inside loop().

int sens;
sens = readAndCompute();

For further reference about the syntax and language you can check these notes:

• https://www.arduino.cc/en/Tutorial/Variables

• https://www.arduino.cc/en/Reference/HomePage

2.2.2 Basics

In this section we are going to see the Arduino equivalent of the scripts we ran from the Raspberry Pi.

• Example: Blink

– Alternative Hardware

2.2. Arduino 29

https://www.arduino.cc/en/Tutorial/Variables
https://www.arduino.cc/en/Reference/HomePage

Gizmo Documentation, Release 0.1

– Understanding the “Blink” code

• Example: Led PWM

– Hardware

– Code

– Understanding the “Fade” code

• Example: Button

– Hardware

– Code

• Challenge

Example: Blink

We are going to run the “blink” sketch we have seen early on in this tutorial. It is the most basic sketch a sort of “Hello
World!” for Arduino. It makes the built-in LED on pin 13 blink in intervals of 1 second.

1. Connect the Arduino to your laptop with the USB cable

2. Open the IDE

30 Chapter 2. Contents

Gizmo Documentation, Release 0.1

3. Click Tools → Serial Port and select the USB serial port to which your Arduino is connected to (the path
changes with operating system and USB port you are using, so the name might be different for you).

4. Then, select the right board: click Tools → Board → Arduino Uno.

5. Then you can open the basic sketch “Blink” by clicking on File → Example → 01. Basics → Blink.

6. You can then upload the sketch on the Arduino by clicking the “Upload” button (the one with a right arrow).

2.2. Arduino 31

Gizmo Documentation, Release 0.1

7. Once uploaded you will see the LED on pin 13 blink.

Alternative Hardware

You might want to try to use an external LED. Here’s the wiring diagram:

32 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Understanding the “Blink” code

void setup() {
pinMode(LED_BUILTIN, OUTPUT);

}

void loop() {
digitalWrite(LED_BUILTIN, HIGH);
delay(1000);
digitalWrite(LED_BUILTIN, LOW);
delay(1000);

}

• pinMode(LED_BUILTIN, OUTPUT); here we are initialising pin 13 as a output pin, note that instead of
using a pin number we are using the LED_BUILTIN constant that stands for “pin 13”

• digitalWrite(LED_BUILTIN, HIGH); here we are turning the LED on by setting the digital output as
HIGH (HIGH is maximum voltage level, 5V)

• delay(1000); here we are waiting for a second, note that the delay() function takes as a parameter millisec-
onds

• digitalWrite(LED_BUILTIN, LOW); here we are turning the LED off by making the voltage LOW (0V)

• delay(1000); here we are waiting for a second again

We have setup general instructions in our setup, those instructions won’t change when our sketch is running. We have
inserted all the functions in the main loop so that they can be repeated infinitely.

Try to tweak the delays to see how the timing differs.

Example: Led PWM

Here we will see how to do pulse-width modulation with the Arduino using a LED.

Hardware

2.2. Arduino 33

Gizmo Documentation, Release 0.1

Code

For the code you can upload the built-in example “Fade” from File → Example → 01. Basics → Fade.

Understanding the “Fade” code

int led = 9;
int brightness = 0;
int fadeAmount = 5;

void setup() {
pinMode(led, OUTPUT);

}

void loop() {

analogWrite(led, brightness);
brightness = brightness + fadeAmount;

if (brightness <= 0 || brightness >= 255) {
fadeAmount = -fadeAmount;

}

delay(30);
}

• int led = 9; here we are creating a variable of type int with name led and storing in it the pin number that
our LED is connected to, note that we are using pin number 9 which is one of the PWM-capable pins (marked
by the ~ sign).

• int brightness = 0; here we are creating a variable of type int with name brightness and assigning
the initial value of 0

• int fadeAmount = 5; here we are storing the amount we want the LED to fade for each interval in the
fadeAmount variable

• pinMode(led, OUTPUT); here we are declaring the led pin as an output note that this would be equivalent
to this pinMode(9, OUTPUT);

• analogWrite(led, brightness); here we are writing on pin 9 (led) the brightness values

• brightness = brightness + fadeAmount; here we are adding a fadeAmount to the brightness level

• Then

if (brightness <= 0 || brightness >= 255) {
fadeAmount = -fadeAmount;

}

checks that the brightness level never takes invalid values (below 0 or above 255)

• delay(30); a short delay to make the dimming effect more visible

Example: Button

Here we are going to see how Arduino receives signals from input devices using a button.

34 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Hardware

Code

For the code you can copy and paste the following code:

int pushButton = 2;

void setup() {
Serial.begin(9600);
pinMode(pushButton, INPUT);

}

void loop() {
int buttonState = digitalRead(pushButton);
Serial.println(buttonState);
delay(1);

}

• Serial.begin(9600); here we are opening the serial communication with a baud rate of 9600 Bauds

• pinMode(pushButton, INPUT); here we are setting the button’s pin as input

• int buttonState = digitalRead(pushButton); here we are reading the voltage of the button and
memorising it in the variable buttonState

• Serial.println(buttonState); here we are printing the values in the Serial Monitor

• delay(1); a short delay to stabilise the readings

To monitor what your Arduino is printing open the serial monitor by clicking on the serial monitor button:

2.2. Arduino 35

https://www.arduino.cc/en/Reference/Serial

Gizmo Documentation, Release 0.1

Challenge

Important: You must demonstrate your build & code to the tutor team

We challenge you to combine the previous three sketches (Blink, Fade, Button) to create one that, with the press of the
button, controls 2 LEDs such that:

• when the button is pressed one of the two LEDs fades to 25% of its brightness and the other one blinks once

• when the button is released the faded LED returns to 100% brightness.

You can find further help here.

Acknowledgements

Some material was taken from the Arduino website.

2.2.3 Sensors

In this section we are going to see how to receive data from different sensors on the Arduino. The sensors we are going
to use are:

1. Potentiometer

2. Light Sensor

At the beginning of this session you should have collected a kit that is made of:

• Arduino

• 1 Potentiometer

• 1 Photo-resistor

• 1 LED

• 1 Resistor (you determine the value)

Reading the sensor information

For these exercises, there are two approaches to reading the sensor data.

36 Chapter 2. Contents

https://www.arduino.cc/en/tutorial/pushbutton
https://www.arduino.cc/

Gizmo Documentation, Release 0.1

The easy approach: You could use your computer (Windows/Mac) to run the Arduino IDE. For this approach you
need to view your output from the Arduino with the Serial Monitor. Your sensor information will be output here when
the Serial.println() / Serial.print() / Serial.write() function is used. This can be found with the
image below:

Potentiometer

A potentiometer is a three-terminal resistor with a sliding or rotating contact that forms an adjustable voltage divider.
In this example, potentiometer values are read in through an ‘Analog In’ pin. The values are then used to control the
brightness of an LED.

Example Circuit

2.2. Arduino 37

Gizmo Documentation, Release 0.1

Code

/* FSR simple testing sketch.

Connect one end of FSR to power, the other end to Analog 0.
Then connect one end of a 10K resistor from Analog 0 to ground

For more information see www.ladyada.net/learn/sensors/fsr.html */

int fsrPin = 0; // the FSR and 10K pulldown are connected to a0
int fsrReading; // the analog reading from the FSR resistor divider

void setup(void) {
// We'll send debugging information via the Serial monitor
Serial.begin(9600);

}

void loop(void) {
fsrReading = analogRead(fsrPin);

Serial.print("Analog reading = ");
Serial.print(fsrReading); // the raw analog reading

// We'll have a few threshholds, qualitatively determined
if (fsrReading < 10) {
Serial.println(" - No pressure");

} else if (fsrReading < 200) {
Serial.println(" - Light touch");

} else if (fsrReading < 500) {
Serial.println(" - Light squeeze");

} else if (fsrReading < 800) {
Serial.println(" - Medium squeeze");

} else {
Serial.println(" - Big squeeze");

}
delay(1000);

}

Light Sensor

For the light sensing are going to use a photo-resistor or Cadmium-sulfide cell. CdS cells are little light sensors. As
the squiggly face is exposed to more light, the resistance goes down. When its light, the resistance is about 5-10KΩ,
when dark it goes up to 200KΩ.

They are very low cost, easy to get in many sizes and specifications, but are very inaccurate. Each photocell sensor
will act a little differently than the other, even if they are from the same batch. The variations can be really large,
50% or higher! For this reason, they shouldn’t be used to try to determine precise light levels in lux or millicandela.
Instead, you can expect to only be able to determine basic light changes.

For most light-sensitive applications like “is it light or dark out”, “is there something in front of the sensor (that would
block light)”, “is there something interrupting a laser beam” (break-beam sensors), or “which of multiple sensors has
the most light hitting it”, photocells can be a good choice!

38 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Example Circuit

To use, connect one side of the photo cell (either one, its symmetric) to power (for example 5V) and the other side to
your microcontroller’s analog input pin. Then connect a 10K pull-down resistor from that analog pin to ground. The
voltage on the pin will be 2.5V or higher when its light out and near ground when its dark.

2.2. Arduino 39

Gizmo Documentation, Release 0.1

Code

In the Arduino IDE you will find under File → Examples → 10.StarterKit_BasicKit → p04ColorMixingLamp an
example sketch that uses three photo-resistors to control three LEDs to create a colour-changing lamp. We challenge
you to tweak the code to fit your needs and to read the value from one photo-resistor.

Challenge

Important: You must demonstrate your build & code to the tutor team

Modify the code and circuit to read the value from one photo-resistor and operate 3 LEDs.

Colour Mixing Lamp Code:

/*
Arduino Starter Kit example

Project 4 - Color Mixing Lamp

This sketch is written to accompany Project 3 in the
Arduino Starter Kit

Parts required:
1 RGB LED
three 10 kilohm resistors
3 220 ohm resistors
3 photoresistors
red green and blue colored gels

(continues on next page)

40 Chapter 2. Contents

Gizmo Documentation, Release 0.1

(continued from previous page)

Created 13 September 2012
Modified 14 November 2012
by Scott Fitzgerald
Thanks to Federico Vanzati for improvements

http://www.arduino.cc/starterKit

This example code is part of the public domain

*/

const int greenLEDPin = 9; // LED connected to digital pin 9
const int redLEDPin = 10; // LED connected to digital pin 10
const int blueLEDPin = 11; // LED connected to digital pin 11

const int redSensorPin = A0; // pin with the photoresistor with the red gel
const int greenSensorPin = A1; // pin with the photoresistor with the green gel
const int blueSensorPin = A2; // pin with the photoresistor with the blue gel

int redValue = 0; // value to write to the red LED
int greenValue = 0; // value to write to the green LED
int blueValue = 0; // value to write to the blue LED

int redSensorValue = 0; // variable to hold the value from the red sensor
int greenSensorValue = 0; // variable to hold the value from the green sensor
int blueSensorValue = 0; // variable to hold the value from the blue sensor

void setup() {
// initialize serial communications at 9600 bps:
Serial.begin(9600);

// set the digital pins as outputs
pinMode(greenLEDPin, OUTPUT);
pinMode(redLEDPin, OUTPUT);
pinMode(blueLEDPin, OUTPUT);

}

void loop() {
// Read the sensors first:

// read the value from the red-filtered photoresistor:
redSensorValue = analogRead(redSensorPin);
// give the ADC a moment to settle
delay(5);
// read the value from the green-filtered photoresistor:
greenSensorValue = analogRead(greenSensorPin);
// give the ADC a moment to settle
delay(5);
// read the value from the blue-filtered photoresistor:
blueSensorValue = analogRead(blueSensorPin);

// print out the values to the serial monitor
Serial.print("raw sensor Values \t red: ");
Serial.print(redSensorValue);
Serial.print("\t green: ");
Serial.print(greenSensorValue);
Serial.print("\t Blue: ");

(continues on next page)

2.2. Arduino 41

Gizmo Documentation, Release 0.1

(continued from previous page)

Serial.println(blueSensorValue);

/*
In order to use the values from the sensor for the LED,
you need to do some math. The ADC provides a 10-bit number,
but analogWrite() uses 8 bits. You'll want to divide your
sensor readings by 4 to keep them in range of the output.

*/

redValue = redSensorValue / 4;
greenValue = greenSensorValue / 4;
blueValue = blueSensorValue / 4;

// print out the mapped values
Serial.print("Mapped sensor Values \t red: ");
Serial.print(redValue);
Serial.print("\t green: ");
Serial.print(greenValue);
Serial.print("\t Blue: ");
Serial.println(blueValue);

/*
Now that you have a usable value, it's time to PWM the LED.

*/
analogWrite(redLEDPin, redValue);
analogWrite(greenLEDPin, greenValue);
analogWrite(blueLEDPin, blueValue);

}

Acknowledgements

Based on this Adafruit guide and Adafruit’s Photocell’s page.

2.2.4 Actuators

In this section we are going to learn about actuators and how to control them.

1. Piezo Buzzer

2. Servo Motor

At the beginning of this session you should have collected a kit that is made of:

• Buzzer

• Servo Motor

Piezo Buzzer

A piezoelectric speaker (sometimes colloquially called a “piezo”) or buzzer is a loudspeaker that uses the piezoelectric
effect for generating sound. The initial mechanical motion is created by applying a voltage to a piezoelectric material,
and this motion is typically converted into audible sound using diaphragms and resonators.

42 Chapter 2. Contents

https://learn.adafruit.com/photocells/using-a-photocell
https://www.adafruit.com/product/161
http://uk.rs-online.com/web/p/piezo-buzzer-components/0457011/
https://www.rapidonline.com/feetech-fs90-mini-servo-120-9g-37-1339
https://www.wikiwand.com/en/Piezoelectric_speaker

Gizmo Documentation, Release 0.1

When fixed to a metallic diaphragm and excited with an alternating voltage, the diameter of the disc varies by a small
amount, this causes dishing of the diaphragm which gives a much louder sound.

Example Circuit

From the kit you are going to need:

• Buzzer

• Jumper Wires

• Arduino

Code

For the code you can use the Example → 2.Digital → toneMelody. Play around with the sketch and tone()
command. You may find it useful for whenever you want to make musical notes. More information on the pitches
Arduino library and tone command here. Try also Example → 10.StarterKit_BasicKit → p06 LightTheremin.

Servo Motor

A servo motor is a rotary actuator or linear actuator that allows for precise control of angular or linear position, velocity
and acceleration. It consists of a suitable motor coupled to a sensor for position feedback. It also requires a relatively
sophisticated controller, often a dedicated module designed specifically for use with servomotors.

2.2. Arduino 43

https://www.arduino.cc/en/Tutorial/ToneMelody?from=Tutorial.Tone
https://www.wikiwand.com/en/Servomotor#/RC_servos

Gizmo Documentation, Release 0.1

Example Circuit

From the kit you are going to need:

• Servo Motor

• Jumper Wires

• Arduino

Code

For this example you are going to use the built-in servo library by Arduino and we are going to use the built-in sketch
Example → Servo → Sweep.

44 Chapter 2. Contents

https://www.arduino.cc/en/Reference/Servo

Gizmo Documentation, Release 0.1

/* Sweep
by BARRAGAN <http://barraganstudio.com>
This example code is in the public domain.

modified 8 Nov 2013
by Scott Fitzgerald
http://www.arduino.cc/en/Tutorial/Sweep

*/

#include <Servo.h>

Servo myservo; // create servo object to control a servo
// twelve servo objects can be created on most boards

int pos = 0; // variable to store the servo position

void setup() {
myservo.attach(9); // attaches the servo on pin 9 to the servo object

}

void loop() {
for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
// in steps of 1 degree
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position

}

(continues on next page)

2.2. Arduino 45

Gizmo Documentation, Release 0.1

(continued from previous page)

for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position

}
}

Challenge

Important: You must demonstrate your build & code to the tutor team

We challenge you to combine previous sketches (Button, Sweep, tone) to create one that:

• With the press of a button, sweeps a servo in one direction

• With the press of a second button, sweeps the same servo in the opposite direction

• When the servo has swept its maximum travel, the buzzer should sound (beep).

Acknowledgements

• Adafruit Learn

• Wikiwand Piezoelectric Speaker

2.2.5 Combined Sense & Actuation

Material Covered

• DC motor control (speed and direction)

• Capacitive touch

Motor

46 Chapter 2. Contents

https://learn.adafruit.com/
https://www.wikiwand.com/en/Piezoelectric_speaker

Gizmo Documentation, Release 0.1

Intro to Motor Driver

A motor driver is a current amplifier; the function of motor drivers is to take a low-current control signal and transform
it into a higher-current signal that can drive a motor.

The Adafruit DRV8833 Motor Driver contains two full H-bridges (four half H-bridges). That means you can spin two
DC motors bi-directionally or step one bi-polar or uni-polar stepper with up to 1.2A per channel. This motor driver
chip is a nice alternative to the TB6612 driver.

The DRV8833 chip is better for low voltage uses (it can run from 2.7V up to 10.8V motor power) and has built in
current limiting capability. The driver is set it up for 1A current limiting so you don’t get more than 2A per chip, but
you can also disable the current limiting, or change it to a different limit!

2.2. Arduino 47

Gizmo Documentation, Release 0.1

The DRV8833 chip is soldered to a breakout board, with a polarity protection FET on the motor voltage input. Only
use with motors that draw 1.2 Amp or less. This is the limit of the chip. They can handle a peak of 2A but only for a
short amount of time.

The Driver comes with built in kick-back diodes internally so you do not have to worry about the inductive kick
damaging your project or driver! You also don’t have to worry as much about burning out the chip with overdriving
since there is current limiting.

48 Chapter 2. Contents

Gizmo Documentation, Release 0.1

There’s two digital inputs per H-bridge (one for each half of the bridge), you can PWM one of the inputs to control
motor speed. Runs at 2.7V-10.8V logic/motor power. The motor voltage is the same as the logic voltage, but logic
voltage from 2.7V or greater will work so no need to worry if you are powering the motors from 9V and using 3.3V
logic. For higher voltages, check out the TB6612. For much higher voltages and currents check out the DRV8871!

The Motor Driver Comes as one assembled and tested breakout board plus a small strip of header. We’ve done the
soldering to attach the header onto the breakout PCB.

2.2. Arduino 49

https://adafru.it/sdc
http://adafru.it/3190

Gizmo Documentation, Release 0.1

Pinouts

Power Pins

• Vmotor - This is the voltage for the motors, not for the logic level. Keep this voltage between 2.7V and 10.8V.
This power supply will get noisy so if you have a system with analog readings or RF other noise-sensitive
parts, you may need to keep the power supplies separate (or filtered!). The terminal block has a simple polarity
protection on the + pin that feeds into VM. The VM pin is not protected, but VMotor is!

• GND - This is the shared logic and motor ground. All grounds are connected.

Signal in Pins

These are all “2.7V or higher logic level” inputs:

• AIN1, AIN2 - these are the two inputs to the Motor A H-bridges. If you want to use speed control, PWM the
pin that is normally high. If you dont need PWM control, connect them to logic high/low.

• BIN1, BIN2 - these are the two inputs to the Motor B H-bridges. If you want to use speed control, PWM the
pin that is normally high. If you dont need PWM control, connect them to logic high/low.

• FLT - This is the Fault output, which will drive low if there’s a thermal shutdown or overcurrent. Note it is
open drain so connect a pull-up resistor to your desired logic voltage!

50 Chapter 2. Contents

Gizmo Documentation, Release 0.1

• SLP - this is the sleep pin for quickly disabling the driver. By default it is pulled low with an internal 500K
resistor, so the chip is not active! Connect to a logic high pin (or 5V supply) either directly or via a pull-up
resistor to enable the motor control!

Current Limit Pins

The DRV8833 can perform current limiting for each motor H-bridge. Basically a resistor is connected between Asen
and ground to set the Motor A limit (ditto for Bsen and Motor B)

The current limiting rule is:

𝐿𝑖𝑚𝑖𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡(𝑎𝑚𝑝𝑠) =
0.2𝑉

𝑅𝑆𝐸𝑁𝑆𝐸

By default, there are two 1206-sized 0.2 Ω resistors on the board for both motors.

If you’d like to raise the limit, you can put a 0.2 Ω from Asen to ground, which will then make the RSENSE equal to
0.1 Ω (2 parallel 0.2Ω resistors) for a limit of 2A.

You can also disable current limiting by soldering closed the two jumpers on the back.

If you want a lower current limit, remove/destroy the 0.2Ω resistor on the board and add your own resistor value
between Asen or Bsen and ground.

2.2. Arduino 51

Gizmo Documentation, Release 0.1

Motor Out Pins

These are motor power outputs

• Motor A - these are the two outputs for motor A, controlled by AIN1 and AIN2

• Motor B - these are the two outputs for motor B, controlled by BIN1 and BIN2

DC Motor

A DC motor is any of a class of rotary electrical machines that converts direct current electrical energy into mechanical
energy. The most common types rely on the forces produced by magnetic fields. Nearly all types of DC motors have
some internal mechanism, either electromechanical or electronic, to periodically change the direction of current flow
in part of the motor.

Assembly

• AIN1 to pin 9

• AIN2 to pin 10

• SLP to 5V

• GND to Arduino GND

• Vm to 5V

• motorA to DC motor

Code

For this sketch copy and paste the following code. You should see the motor speed up in one direction, slow down and
then rotate in the opposite direction:

52 Chapter 2. Contents

https://www.wikiwand.com/en/DC_motor

Gizmo Documentation, Release 0.1

#define MOTOR_AIN1 9
#define MOTOR_AIN2 10

int MAX_PWM = 255;
int MIN_PWM = 50;

void setup() {
Serial.begin(9600);
pinMode(MOTOR_AIN1, OUTPUT);
pinMode(MOTOR_AIN2, OUTPUT);

}

void loop() {
// ramp up forward
digitalWrite(MOTOR_AIN1, LOW);

for (int i=MIN_PWM; i<MAX_PWM; i++) {
analogWrite(MOTOR_AIN2, i);
delay(10);

}

// forward full speed for one second
delay(1000);

// ramp down forward
for (int i=MAX_PWM; i>=MIN_PWM; i--) {
analogWrite(MOTOR_AIN2, i);
delay(10);

}

// ramp up backward

digitalWrite(MOTOR_AIN2, LOW);

for (int i=MIN_PWM; i<MAX_PWM; i++) {
analogWrite(MOTOR_AIN1, i);
delay(10);

}

// backward full speed for one second
delay(1000);

// ramp down backward
for (int i=MAX_PWM; i>=MIN_PWM; i--) {
analogWrite(MOTOR_AIN1, i);
delay(10);

}
}

Challenge 1

Important: You must demonstrate your build & code to the tutor team

We challenge you to combine the previous sketch with the potentiometer (Pot) sketch from the previous Chapters such
that the Pot controls the speed of the motor. No need to reverse it!

2.2. Arduino 53

Gizmo Documentation, Release 0.1

Challenge 2

Important: You must demonstrate your build & code to the tutor team

We challenge you to combine the first motor sketch, with your sketch from Challenge 1 and the photocell sketches
from previous Chapters:

• Use two photocells to control the direction and speed of two brushed DC motors

• Assume that you want to use this circuit and software, in order to cause a robot to move toward a light source

Capacitive Touch Sensor

Add lots of touch sensors to your next microcontroller project with this easy-to-use 12-channel capacitive touch sensor
breakout board, starring the MPR121. This chip can handle up to 12 individual touch pads.

54 Chapter 2. Contents

Gizmo Documentation, Release 0.1

The MPR121 has support for only I2C, which can be implemented with nearly any microcontroller. You can select
one of 4 addresses with the ADDR pin, for a total of 48 capacitive touch pads on one I2C 2-wire bus. Using this
chip is a lot easier than doing the capacitive sensing with analog inputs: it handles all the filtering for you and can be
configured for more or less sensitivity.

2.2. Arduino 55

Gizmo Documentation, Release 0.1

The breakout board provides a 3V regulator and I2C level shifting so its safe to use with any 3V or 5V microcontroller/
processor like Arduino. There is an LED onto the IRQ line so it will blink when touches are detected, making
debugging by sight a bit easier on you. For contacts, we suggest using copper foil or pyralux, then solder a wire that
connects from the foil pad to the breakout.

56 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Pinouts

The little chip in the middle of the PCB is the actual MPR121 sensor that does all the capacitive sensing and filtering.
The breakout board comes with all the extra components you need to get started, and ‘break out’ all the other pins you
may want to connect to onto the PCB.

Power Pins

The sensor on the breakout requires 3V power. Since many customers have 5V microcontrollers like Arduino, we
tossed a 3.3V regulator on the board. Its ultra-low dropout so you can power it from 3.3V-5V

• Vin - this is the power pin. Since the chip uses 3 VDC, we have included a voltage regulator on board that will
take 3-5VDC and safely convert it down. To power the board, give it the same power as the logic level of your
microcontroller - e.g. for a 5V micro like Arduino, use 5V

• 3Vo - this is the 3.3V output from the voltage regulator, you can grab up to 100mA from this if you like

• GND - common ground for power and logic

I2C Pins

Don’t worry too much about how these work - it will be covered in a later Chapter!

• SCL - I2C clock pin, connect to your microcontrollers I2C clock line.

2.2. Arduino 57

Gizmo Documentation, Release 0.1

• SDA - I2C data pin, connect to your microcontrollers I2C data line.

IRQ and ADDR Pins

• ADDR is the I2C address select pin. By default this is pulled down to ground with a 100K resistor, for an I2C
address of 0x5A. You can also connect it to the 3Vo pin for an address of 0x5B, the SDA pin for 0x5C or SCL
for address 0x5D

• IRQ is the Interrupt Request signal pin. It is pulled up to 3.3V on the breakout and when the sensor chip detects
a change in the touch sense switches, the pin goes to 0V until the data is read over i2c

Wiring

You can easily wire this breakout to any microcontroller, we’ll be using an Arduino. For another kind of microcon-
troller, just make sure it has I2C, then port the code - its pretty simple stuff!

• Connect Vin to the power supply, 3-5V is fine. Use the same voltage that the microcontroller logic is based off
of. For most Arduinos, that is 5V

• Connect GND to common power/data ground

• Connect the SCL pin to the I2C clock SCL pin on your Arduino. On an UNO & ‘328 based Arduino, this is
also known as A5, on a Mega it is also known as digital 21 and on a Leonardo/Micro, digital 3

58 Chapter 2. Contents

Gizmo Documentation, Release 0.1

• Connect the SDA pin to the I2C data SDA pin on your Arduino. On an UNO & ‘328 based Arduino, this is also
known as A4, on a Mega it is also known as digital 20 and on a Leonardo/Micro, digital 2

The MPR121 ADDR pin is pulled to ground and has a default I2C address of 0x5A You can adjust the I2C address by
connecting ADDR to other pins:

• ADDR not connected: 0x5A

• ADDR tied to 3V: 0x5B

• ADDR tied to SDA: 0x5C

• ADDR tied to SCL: 0x5D

We suggest sticking with the default for the test demo, you can always change it later.

Download Adafruit_MPR121

To begin reading sensor data, you will need to download Adafruit_MPR121_Library from our github repository. You
can do that by visiting the GitHub repo and manually downloading or, easier, just click this button to download the
zip:

Rename the uncompressed folder Adafruit_MPR121 and check that the Adafruit_MPR121 folder contains
Adafruit_MPR121.cpp and Adafruit_MPR121.h

Place the Adafruit_MPR121 library folder your arduinosketchfolder/libraries/ folder. You may need
to create the libraries/ subfolder if its your first library. Restart the IDE.

There is a great tutorial on Arduino library installations.

Load Demo

Open up File → Examples → Adafruit_MPR121 → MPR121test and upload to your Arduino wired up to the sensor.

2.2. Arduino 59

https://adafru.it/dKE
https://adafru.it/aYM

Gizmo Documentation, Release 0.1

Thats it! Now open up the serial terminal window at 9600 speed to begin the test.

60 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Make sure you see the “MPR121 found!” text which lets you know that the sensor is wired correctly. Now touch the
12 pads with your fingertip to activate the touch-detection:

2.2. Arduino 61

Gizmo Documentation, Release 0.1

For most people, that’s all you’ll need! Our code keeps track of the 12 ‘bits’ for each touch and has logic to let you
know when a contect is touched or released.

If you’re feeling more advanced, you can see the ‘raw’ data from the chip. Basically, what it does it keep track of the
capacitance it sees with “counts”. There’s some baseline count number that depends on the temperature, humidity,
PCB, wire length etc. Where’s a dramatic change in number, its considered that a person touched or released the wire.

Comment this “return” line to activate that mode:

// comment out this line for detailed data from the sensor! return;

Then reupload. Open up the serial console again - you’ll see way more text.

Each reading has 12 columns. One for each sensor, #0 to #11. There’s two rows, one for the ‘baseline’ and one for
the current filtered data reading. When the current reading is within about 12 counts of the baseline, that’s considered
untouched. When the reading is more than 12 counts smaller than the baseline, the chip reports a touch.

62 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Most people don’t need raw data too much, but it can be handy if doing intense debugging. It can be helpful if you are
tweaking your sensors to get good responsivity.

Library Reference

Since the sensors use I2C, there’s no pins to be defined during instantiation. You can just use:

Adafruit_MPR121 cap = Adafruit_MPR121();

When you initialise the sensor, pass in the I2C address. It can range from 0x5A (default) to 0x5D

cap.begin(0x5A)

begin() returns true if the sensor was found on the I2C bus, and false if not.

Touch detection

99% of users will be perfectly happy just querying what sensors are currently touched. You can read all at once with
cap.touched() which returns a 16 bit value. Each of the bottom 12 bits refers to one sensor. So if you want to test
if the #4 is touched, you can use

if (cap.touched() && (1 << 4)) {
// do something

}

You can check its not touched with:

2.2. Arduino 63

Gizmo Documentation, Release 0.1

if (!(cap.touched() && (1 << 4))) {
// do something

}

Raw Data

You can grab the current baseline and filtered data for each sensor with:

filteredData(sensornumber);
baselineData(sensornumber);

It returns a 16-bit number which is the number of counts, there’s no unit like “mg” or “capacitance”. The baseline
is initialized to the current ambient readings when the sensor begin() is called - you can always reinitialize by
re-calling begin()! The baseline will drift a bit, that’s normal! It is trying to compensate for humidity and other
environmental changes.

If you need to change the threshholds for touch detection, you can do that with:

setThreshholds(uint8_t touch, uint8_t release)

By default, the touch threshhold is 12 counts, and the release is 6 counts. It’s reset to these values whenever you call
begin() by the way.

Challenge 3

Important: You must demonstrate your build & code to the tutor team

We challenge you to combine the touch sensor sketch with a simple analog output. Either a sound output using the
tone() command to create a touch sensitive electric organ. . . or a RGB LED that changes colour when a touch pad
is activated.

Acknowledgements

Adapted from these guides [1, 2]

2.2.6 Why Arduino?

The Raspberry Pi and Arduino are complementary platforms and one doesn’t exclude the other. If you combine their
capabilities you can achieve amazing results. But why would you use Arduino?

• The community! Arduino has a lot of materials readily available online, from libraries, to examples. If you
have something in mind probably someone has already done it and shared the documentation.

• Uses very little power and boots very quickly.

• Runs at 5V logic level whereas the Pi digital pins operate at 3.3V.

• Incredibly cheap hardware which is useful for powering/controlling prototype electronics which might end
up damaging your controller. You have to be more careful with a Pi as they are more easily damaged and more
expensive to replace!

64 Chapter 2. Contents

https://learn.adafruit.com/adafruit-drv8833-dc-stepper-motor-driver-breakout-board
https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-tutorial

Gizmo Documentation, Release 0.1

• Real-time capabilities are more readily accessible whereas there are limitations and constraints to getting the
same performance from the Linux-based kernal in Raspbian.

2.2.7 Alternative Microcontrollers

• ARM mBed

• STM32

• Teensy

• pyBoard runs microPython

Note that microPython is an incredibly useful alternative to the Arduino community and there are a number of new
and highly functional boards built specially for microPython.

2.3 Raspberry Pi

Welcome to the Raspberry Pi guide. In this you will find information and tutorials on all aspects of setting up and
using your Pi. See below for Why Raspberry Pi? and possible Alternatives to the Raspberry Pi.

2.3.1 Assembling Pi workstation

The goal of this section is to set up the physical components to the Raspberry Pi. Later on we will look at how we
might run a Pi ‘headless’. This means we can control the Pi remotely without the need for a screen, keyboard, mouse,
or any other peripherals directly connected to the Pi itself.

2.3. Raspberry Pi 65

https://os.mbed.com/platforms/mbed-LPC1768/
http://www.st.com/en/microcontrollers/stm32-32-bit-arm-cortex-mcus.html
https://www.pjrc.com/teensy/
https://store.micropython.org/#/store

Gizmo Documentation, Release 0.1

To do this, we will be using SSH protocol. SSH will remotely connect you to a Pi over a local or global network. For
this, you need to complete the Networks section before you can move onto the Connecting Remotely section.

When using the Pi in this advanced format, we will be using the ‘Terminal’ a lot. If you are new to the terminal can
be a bit overwhelming at first, don’t panic and just follow the steps carefully! There are many great resources on the
internet to help you understand how to use a terminal, including this website.

Getting going

At first we will setup the Pi using peripherals. Each team should get the following equipment:

• 1 Touchscreen

• 1 Raspberry to touchscreen HDMI-HDMI plug

• 1 Touchscreen pen

• 1 Raspberry Pi Power Supply

• 1 Raspberry Pi

• 1 Keyboard

• 1 SD Card

• 1 Wooden plate

• 8 M2.5 Bolts

• 4 M2.5 Standoffs

• 3 M3 Bolts

• 4 M3 Spacers

• 4 M3 Nuts

• 1 Breadboard

• 1 Arduino

• 1 USB A to USB B Cable

• 1 Screwdriver

• 1 Pair of Pliers

66 Chapter 2. Contents

https://en.wikipedia.org/wiki/Secure_Shell

Gizmo Documentation, Release 0.1

1. Attach the Raspberry Pi to the wooden plate, first bolt the 4 M2.5 Standoffs to the plate and then attach the RPi
to the plate with 4 more bolts (don’t tighten them too much):

2. Repeat the same operation with the Arduino using the M3 spacers, nuts and bolts. You will be able only to
secure it with three bolts, remember not to tighten them too much:

2.3. Raspberry Pi 67

Gizmo Documentation, Release 0.1

3. To attach the breadboard to the wooden plate, peel off the back of it to expose the adhesive strip and glue it to
the wooden plate:

68 Chapter 2. Contents

Gizmo Documentation, Release 0.1

4. Insert the micro-SD card in the back of the Pi, like so:

5. Connect the touchscreen to the Pi, connecting it to the pins and with the HDMI plug, like so:

2.3. Raspberry Pi 69

Gizmo Documentation, Release 0.1

6. Connect the keyboard with the USB.

7. Using the power cable, power up the Pi and the screen:

70 Chapter 2. Contents

Gizmo Documentation, Release 0.1

8. The Pi will start the setup, if the screen doesn’t illuminate check that it is on.

Note: Go to the next section to find out more about the SD card we have provided.

2.3.2 Setting up your SD Card

When setting up a new Raspberry Pi, you will need to install an operating system (OS) onto your SD card. There are
many operating system options, however the official and most commonly used is Raspbian OS. For Gizmo you will
set up a modified version of Raspian.

When setting up a new SD card yourself, we recommend using NOOBS (New Out Of Box Software). It is an easy
installer to get a Pi up and running quickly (including Raspian OS). For information on how to set up with NOOBS,
use this guide.

Downloading your Disk Image

Usually, you would download a zipped image file directly from the Raspberry Pi website.

However, for Gizmo we have already added the drivers required to use the touchscreen. We followed this guide from
the manufacturer. You can use it to find additional steps to modify the configuration of the touchscreen if you need to.

Flashing your Disk Image

1. First you must format (wipe) the SD Card. Download SDFormatter here .

2. Use SDFormatter to format the SD card. Please be careful and make sure you select the correct drive letter.

3. Download Etcher if not installed.

2.3. Raspberry Pi 71

https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/help/noobs-setup/2/
https://www.raspberrypi.org/downloads/
https://www.waveshare.com/wiki/5inch_HDMI_LCD
https://www.sdcard.org/downloads/formatter_4/
https://www.etcher.io

Gizmo Documentation, Release 0.1

4. Use Etcher to flash the image to the SD card.

• Please be careful that the correct drive letter is selected.

• On Mac: if you backed up the image yourself (see Chapter 8: Backing up your SD card) you may have to
change the file extension from “.cdr” to “.iso”

5. You’re done! If all has gone well the Raspberry Pi should now boot when started with the new SD Card.

Tip: Your Gizmo Raspian OS has been optimised for the 5 inch touchscreen - so will always display the screen in
low resolution (800x480). If you move to a full size screen you should reverse the steps taken here to avoid potato
resolution.

2.3.3 Configuring the Pi

raspi-config

• Keyboard

• Timezone

• User password

• Enable SSH

• Expand root partition

• Reboot

A lot of the Pi’s system settings are configured in raspi-config, a terminal/shell based tool. When we run this
tool, we will run them as a root user, the root has the permission to modify files or default settings as an administrator.
By default on Raspbian (the operating system of our Pi) the root user is pi and the root password associated to the
root user is raspberry. To operate as a root user in the terminal every command is preceded by the sudo (super
user do) command.

Type the following command and press ‘Enter’ to open the configuration menu of the Pi:

$ sudo raspi-config

Note: The $ symbol in front of the command signifies when this command should be written in the terminal window.
When writing the command you should not write the dollar sign, only the command: sudo raspi-config.

The terminal will show a menu. The options can be navigated with the vertical keys of your keyboard, to accept the
options press ‘Enter’, to finish press the lateral keys of the keyboard.

72 Chapter 2. Contents

https://www.waveshare.com/wiki/5inch_HDMI_LCD
https://en.wikipedia.org/wiki/Command-line_interface

Gizmo Documentation, Release 0.1

Keyboard

First we set up the keyboard to prevent any problem when we will change the root password. We access the option: 4
Localisation Options:

Then Change Keyboard Layout:

2.3. Raspberry Pi 73

Gizmo Documentation, Release 0.1

Then we choose Generic 105 key:

And then English (UK):

74 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Then we can choose the default options that the menu is prompting by pressing enter:

2.3. Raspberry Pi 75

Gizmo Documentation, Release 0.1

Timezone

Then we are re-directed to the main menu, now we change the timezone from the 4 Localisation Options menu.

Then we choose Change Timezone:

76 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Then Europe:

Then London:

2.3. Raspberry Pi 77

Gizmo Documentation, Release 0.1

User password

Now we will change the root user password. This increases the security of the connection we will establish from
our laptop to the Pi. Since you are sharing this Pi with your colleagues choose a password together. To change the
password we are re-directed to the main menu and here we choose the first option: 1 Change User Password:

Then we agree to change the password:

78 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Type the new password twice:

Note: Nothing will appear on screen when you are typing the password. This is normal - it’s still working! If you
need to cancel, press Ctrl+C on the keyboard.

2.3. Raspberry Pi 79

Gizmo Documentation, Release 0.1

We have set the new password. Do not reboot the Pi yet.

Enable SSH

We will now check that the SSH is enabled. We need to enable it to connect with the Pi remotely. From
the main menu we access: 5 Interfacing Options:

Then we select SSH:

80 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Then we confirm that we want to enable the SSH server:

We confirm again:

2.3. Raspberry Pi 81

Gizmo Documentation, Release 0.1

Exit the menu by pressing the right arrow twice to select Finish and press the Enter key. You will re-enter the terminal.

Expand root partition

Lastly we will expand the root partition to fill the SD card. From the main menu we access: 7 Advanced Options:

We select 1 Expand Filesystem.

We confirm the changes. You will need to reboot the Pi for changes to be implemented (see next step).

82 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Note: SD Cards can be split into partitions to separate storage of data. The partition has been shrunk to make the
download size smaller, but we now want to expand the root parition to fill the whole SD card (allowing more space for
file storage). If you do not do this you will find you are unable to create new files.

Reboot

Now reboot the Pi to ensure all your changes are made:

$ sudo reboot now

Tip: Following the new kernal update “Raspian Stretch” released in September 2017, some users have found that
their settings are reset after reboot. If so, please perform Pi Configuration within the X-Environment:

1. Click on Raspbian Icon

2. Preference

3. Raspberry Pi Settings

Adding users

A guide on adding new users to the Pi can be found here. Generally this is not necessary, and you can continue to use
the pi account. Just remember to change the user password for pi from raspberry to something new!

You can create additional users on your Raspbian installation with the adduser command. Enter sudo adduser
bob and you will be prompted for a password for the new user bob. Leave this blank if you do not want a password.
However, we recommend that each user get a password to access remotely in the future, for example:

2.3. Raspberry Pi 83

https://www.raspberrypi.org/documentation/linux/usage/users.md

Gizmo Documentation, Release 0.1

ssh bob@123.343.1.105

You can delete a user on your system with the command userdel. Apply the -r flag to remove their home folder
too:

sudo userdel -r bob

The default pi user on Raspbian is a sudoer. This gives the ability to run commands as root when preceded by sudo,
and to switch to the root user with sudo su.

2.3.4 Headless Setup

Important: You do not need to do this setup is you are using a screen and keyboard. If you have a screen and
keyboard available, move onto the next chapter.

It can be useful to set up a new Pi even when you don’t have a monitor and keyboard spare to do a normal set up.
Fortunately, there is a way to set up a new Pi without using these peripherals. This is called ‘setting the Pi up headless’.
The following guide is derived from the official Pi documentation.

Note: This method is slightly more advanced, so if you are a little unsure of how to do it, ask someone to help you
with it.

1. Download the latest Raspbian disk image from the Pi website.

2. Format the SD card using SDFormatter.

3. Use Etcher to flash the Raspbian image (.img) to the SD card.

4. Open the boot folder on the SD card.

5. Copy the example wpa_supplicant.conf file (see Accessing Networks) into the boot folder.

6. Copy the ssh file into the boot folder.

7. Insert the SD into the Pi and power on.

2.3.5 Accessing Networks

WiFi via GUI

When running the Pi in desktop mode, you can join new Wifi Networks in a similar way to how you would do it on
a Macintosh. In the menu bar at the top, on the right-hand side click on the wireless icon. Then from their you can
select from the list of discovered networks to join them.

Note: If they have a padlock next to them then they require a password to join.

WPA Supplicant

84 Chapter 2. Contents

https://www.raspberrypi.org/documentation/configuration/wireless/headless.md
https://www.raspberrypi.org/downloads/raspbian/
https://www.sdcard.org/downloads/formatter_4
http://etcher.io/

Gizmo Documentation, Release 0.1

• Backup

• Edit

• Encrypting Your Password

Since the College has a more complex form of authentication (username and password required). We will setup the
Pi to connect to the IC network a slightly different way. We are going to modify a modify a configuration file called
wpa_supplicant.conf.

Backup

First we back up the configuration file wpa_supplicant.conf. We create the backup file wpa_supplicant.
conf_backup in case we need to restore it later. It’s important that you don’t edit this backup after creating it. To
do so we enter the command:

$ sudo cp /etc/wpa_supplicant/wpa_supplicant.conf /etc/wpa_supplicant/wpa_supplicant.
→˓conf_backup

Edit

Then we edit the wpa_supplicant.conf. The default text editor installed in the Pi is nano. To edit a file with the
nano editor is sufficient to enter the command nano /path/to/file. Therefore to edit wpa_supplicant.
conf we enter the following command with admin user permission:

$ sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

We edit the file so that the all the content appears like this:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

network={
ssid="Imperial-WPA"
proto=RSN
key_mgmt=WPA-EAP
pairwise=CCMP
auth_alg=OPEN
eap=PEAP
identity="ic\COLLEGE_USERNAME"
password="YOUR_PASSWORD"
priority=7

}

Where COLLEGE_USERNAME has to be replaced with your college username and YOUR_PASSWORD with the pass-
word associated to it.

Important: The configuration is case sensitive, so make sure you do not have typos. Even the slightest error in this
file can cause the networking to fail so make sure it exactly like this.

2.3. Raspberry Pi 85

Gizmo Documentation, Release 0.1

Note: If you want to connect your Pi to the eduroam network, then set identity="COLLEGE_USERNAME@ic.
ac.uk". Apply the same procedure for setting the password as seen below.

In the nano editor, to exit, press Ctrl + x. The editor will then present you with different options such as save the
file or exit without modifying the file: y/n. We press y and then press enter. The editor now asks us for the name of
the file we are saving, but as it already fills out the previous name for us, we press enter again.

Now we can check if the connection works by rebooting your RPi. Reboot it by entering:

$ sudo reboot now

One the system starts again the Pi should connect automatically to the WiFi.

Encrypting Your Password

1. In order not to store the password in a plain text we substitute our password with an encrypted one using a
MD4 hash generator. You can generate the hash with the following Linux command:

$ echo -n 'YOUR_PASSWORD' | iconv -t utf16le | openssl md4

You will have to substitute YOUR_PASSWORD with the password related to the account in the
wpa_supplicant.conf. This will be the only time you’ll have to type it in plain text. Ask your colleagues
to look away from the screen if you are not comfortable in them seeing your password.

2. The previous command will display the encrypted password on your terminal like this:

$ (stdin)= a6c71eedc2eacbca84003336a4a62a1c

We copy the string that was generated in your terminal screen (i.e.
'a6c71eedc2eacbca84003336a4a62a1c').

Tip: You can save the hash from your password in a file and then read its content:

$ echo -n 'YOUR_PASSWORD' | iconv -t utf16le | openssl md4 > hash.txt
$ cat hash.txt

The first command creates the encrypted password and stores it in the __hash.txt__ file. The second
command reads the content of the __hash.txt__ file. In general we use the cat command to read and
concatenate files.

3. Then we open the wpa_supplicant.conf file again:

$ sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

4. In the password field replace "YOUR_PASSWORD" with the string you generated as hexadecimal characters,
adding the ‘hash:’ prefix as shown in the example bellow:

network={
ssid="Imperial-WPA"
proto=RSN
key_mgmt=WPA-EAP
pairwise=CCMP
auth_alg=OPEN

(continues on next page)

86 Chapter 2. Contents

Gizmo Documentation, Release 0.1

(continued from previous page)

eap=PEAP
identity="ic\COLLEGE_USERNAME"
password=hash:a6c71eedc2eacbca84003336a4a62a1c

}

5. The last security step to perform is to remove the bash history (the one that stores all the commands we had
typed on the terminal). Therefore, we enter the following commands:

$ history -w
$ history -c

6. Then we reboot the Pi to check that the password was properly set up:

$ sudo reboot now

7. And you are done!

Pi as a hotspot

The Raspberry Pi can act as a standalone network. This can be useful in some situations where you do not want to rely
on a separate wireless network, or when you might be going to a new location that cannot provide you with a network
to use. Remember though that a standalone network made by the Pi will not be connected to the internet. You can find
the guide to set up a standalone network here.

2.3.6 Software

Now that you have your Pi connected to the internet, you should make sure it is completely up-to-date.

Removing packages

When you install a standard build of Raspbian, a lot of packages get installed for you. To make sure some of the larger
packages aren’t wasting space on you SD card, you can remove them. We recommend you remove some of these.
This can be done by running each of the following lines one-by-one on the command line.

sudo apt-get purge libreoffice wolfram-engine sonic-pi scratch
sudo apt-get clean
sudo apt-get autoremove

You can reinstall any of these again later if you need them.

Operating System

Run the following line in the terminal to update your Pi. Note: this might take some time.

sudo apt-get update && sudo apt-get upgrade

Installing packages

Now the OS is updated, we need to install Python. To install Linux packages onto our Pi we use the command: sudo
apt-get install <name_of_package> in the terminal. Each installation could take a few minutes.

2.3. Raspberry Pi 87

https://www.raspberrypi.org/documentation/configuration/wireless/access-point.md

Gizmo Documentation, Release 0.1

1. Run each of the following two lines to install C lib, needed by Python

sudo apt-get -y install libffi-dev
sudo apt-get -y install libssl-dev

2. Installing Python, run each line one-by-one ensuring they complete

sudo apt-get -y install build-essential python-dev python-openssl
sudo apt-get -y install python-setuptools
sudo apt-get -y remove --purge python-pip
sudo apt-get -y install python-pip
sudo pip install --upgrade pip

Next, we’re going to take you through how to connect remotely to your Pi over a network (without needing to use a
monitor keyboard and mouse with the Pi). However we strongly recommend you remember to take a backup of your
SD card later. You can find a guide on how to do this later on: Backing up your SD card.

2.3.7 Connecting Remotely

SSH via remot3.it

remot3.it services allow you to connect easily and securely to your Pi from a mobile app, browser window and a
terminal. It allows you to control remote computers (such as the Pi) using TCP hosts such as SSH. You will be able to
connect to your Pi from laptop or desktop at home. The free remot3.it account allows for multiple registered services
and 8 hours connections on up to 1 concurrent service(s).

1. To configure weaved in our Pi, first we need to open an account on the remot3.it website. You can register from
your laptop or desktop.

2. Once you have an account: from your Pi terminal, we need to install weaved (which is the precursor on which
remot3.it is based) to be able to connect our Pi. To install it:

sudo apt-get -y install weavedconnectd

3. Then we will open the weaved installer to link your Pi to your remot3.it account:

sudo weavedinstaller

4. Enter your remot3.it account username and password. Next, you will see this menu:

88 Chapter 2. Contents

https://www.remot3.it/web/index.html

Gizmo Documentation, Release 0.1

5. Then enter a name for your Pi (e.g. “pi01”). You can make it up, but remember to make a name easy for you to
identify a specific Pi in case you have more than one attached to the weaved service:

6. Initially you won’t have any Weaved services installed, so the upper part is empty. Enter 1 to attach Weaved to
an existing TCP service (host) on your Raspberry Pi. You should now see the following screen:

2.3. Raspberry Pi 89

Gizmo Documentation, Release 0.1

7. Enter 1 for SSH.

8. Next, we accept the default port (y).

9. The installer confirms your choice and asks you to give this connection a name:

10. You will now return to the main menu, where you can see your Weaved Service Connection installed, then enter
3 to exit.

90 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Your Pi is now ready to run headless (without a direct connection to a screen), we just have to connect with it over
SSH on our laptop to control it from the terminal. We have created two access guides, one for Linux and Mac Users
and the other for Windows (Accessing from Windows).

Accessing from Linux or macOS

1. We will now see how to access using your laptop to your Pi from the terminal. First, if you login to your
remot3.it account, you will get a list of your devices:

2. In your case you will have just one item. When you click on the name of you device, a pop-up will open:

2.3. Raspberry Pi 91

Gizmo Documentation, Release 0.1

3. Click on the name of your ssh service and then “Confirm”.

4. A second pop-up will appear:

92 Chapter 2. Contents

Gizmo Documentation, Release 0.1

We copy the command after For pi username, in this example it is: ssh -l pi proxy54.yoics.
net -p 30015. For you it will be different.

5. Then, paste the command in your laptop or desktop terminal app. (Optional alternative app for Mac)

6. The terminal is going to show you this message:

Type yes.

7. Then, you will be prompted to enter a password, you should enter the password of the pi user of your Pi. By
default it is raspberry but you should have changed it in an earlier chapter (User password).

You will see on your laptop’s terminal that now you are user pi. You are connected from your laptop to your Pi. As
long as your Pi is connected to the internet, you can remotely log into it and control it, so you don’t need to use the
display and mouse anymore.

For some more details on remote connections see Alternative ways to connect via SSH.

Tip: To manage remote terminal sessions we suggest you use Screen, check out the guide later in the section SSH

2.3. Raspberry Pi 93

https://iterm2.com

Gizmo Documentation, Release 0.1

using Screen.

Accessing from Windows

If your computer operative system is Windows, to access remotely you will need to install PuTTY, which is a free
implementation of SSH and Telnet for Windows and Unix platforms.

1. To download it click here.

2. Once downloaded, proceed with the standard installation.

3. Once installed double click on the putty.exe and you will see a window that looks like the one below:

94 Chapter 2. Contents

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Gizmo Documentation, Release 0.1

4. Then, if you login to your remot3.it account, you will get a list of the services linked to your devices:

5. In your case you will have just one item. When you click on the name of you device, a pop-up will open:

2.3. Raspberry Pi 95

Gizmo Documentation, Release 0.1

6. Click on the name of your ssh service and then “Confirm”.

7. A second pop-up will appear:

96 Chapter 2. Contents

Gizmo Documentation, Release 0.1

5. Insert the server address and port obtained from remot3.it into Putty and connect!

Note: Rather than typing in ssh -l pi <server> -p <port>, you just need to insert the server
url and port from remot3.it.

6. When asked for username and password, use your Pi username and password to log-in.

Note: This is not weaved username and password. The default password is raspberry but you should
have changed it in an earlier chapter (User password).

To exit your putty session, type “exit” and enter.

Tip: To manage remote terminal sessions we suggest you use Screen, check out the guide later in the section SSH
using Screen.

2.3. Raspberry Pi 97

Gizmo Documentation, Release 0.1

For some more details on remote connections see Alternative ways to connect via SSH.

SSH using Screen

Remember you can be connected to your Pi for up to 8 hours using remot3.it, after that time you have to connect again
to your account and do the same access procedure we explained in the previous sections. Therefore we will show you
how a virtual terminal can help you when you are working remotely on your Pi.

Screen is a full-screen software program allows you to use multiple windows (virtual VT100 terminals) in Unix. It
offers a user to open several separate terminal instances inside a one single terminal window manager.

The screen application is very useful, if you are dealing with multiple programs from a command line interface and
for separating programs from the terminal shell. It also allows you to share your sessions with others users and
detach/attach terminal sessions.

When to use Screen?

One of the advantages of Screen, is that you can detach it. Then, you can restore it without losing anything you have
done on the Screen. One of the typical scenario where Screen is of great help is when you are in the middle of SSH
session and you want to download a file, update the operative, or transfer a big file to your RPi. The process could
be 2 hours long. If you disconnect the SSH session, or suddenly the connection lost by accident, then the download
process will stop. You have to start from the beginning again. To avoid that, we can use screen and detach it.

Installing Screen

Screen allows you to use multiple windows (virtual VT100 terminals) in Unix. If your local computer crashes, or you
are connected remotely and lose the connection, the processes or login sessions you establish through screen don’t get
lost. To install Screen you can enter the following command on the Pi terminal:

sudo apt-get -y install screen

How to use Screen

• When you are in your terminal, you can create a screen or virtual terminal e.g. we will name the screen
mysession:

• Then you will be automatically attached to the mysession screen, that from now on we will call just “screen”.
You can now execute commands and work in the terminal without worrying to loose your work:

• You can detach from the “screen” by pressing Ctrl-A and then d. Once detached we will be returned to our
Pi terminal outside any screen session. To check the list of active screens: screen -ls

98 Chapter 2. Contents

Gizmo Documentation, Release 0.1

• We get a list with all the screen IDs. If we want to attach to a particular screen we can enter screen -r
name_of_terminal like in the example below:

Basic commands to work with Screen

Screen command Description
screen -S
name_of_terminal

Assigning name to the virtual terminal or screen session

screen -ls List all the virtual sessions or screens opened
screen -X -S
name_of_terminal quit

Kill an specific virtual terminal.

screen -r
name_of_terminal

Attach to the virtual terminal or screen

Press Ctrl-A and d Detach from virtual terminal or screen
Press Ctrl-A and K This command will leave and kill the virtual terminal or screen
Press Ctrl-A and n Switching to the next virtual terminal or screen
Press Ctrl-A and p Switching to the previous virtual terminal or screen

For additional commands check out the Screen Cheatsheet

Alternative ways to connect via SSH

We already know how to connect through remot3.it service, but we know that the connection lasts 8 hours and it allows
us to work on one terminal session at a time. Therefore, with the help of remot3.it and another commands we can
connect to or Pi for longer and using multiple terminals. In this section we are going to connect to our Pi using its IP
address.

If you do not know what is an IP address, please go to the this video for a quick explanation. The IPs can be dynamic
or static, but what is the difference? When a device is assigned a static IP address, the address does not change. Most
devices use dynamic IP addresses, which are assigned by the network when they connect and change over time (which
is the case for our Pi on the Imperial-WPA).

Get IP address from remot3.it

remot3.it displays the external IP of the devices you have registered. You can get your Pi’s one in the External IP Tab:

2.3. Raspberry Pi 99

https://github.com/ICL-DE/Gizmo/blob/master/SupplementaryMaterial/Screen_cheatsheet.md
https://www.youtube.com/watch?v=7_-qWlvQQtY

Gizmo Documentation, Release 0.1

Note: If you are connected with your laptop to the same network of your RPi the internal and external IP addresses
will be the same like in the example above.

Get IP address from the terminal

We can use a command to check the different internet connections available on our system: ifconfig or ifconfig
-a.

$ ifconfig

This command allows to know the IP addresses assigned to our Pi. The wlan0, indicates the status of the WiFi,
and eth0 shows the status of the Ethernet (wired) connection. In the next screen shoot shows an example of a Pi
connected to the internet using the ethernet port. The red oval shows where to find the IP address assigned to the Pi
for the Ethernet connection.

You can find your IP address for the WiFi connection in the corresponding wlan0 inet addr field.

100 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Connect knowing your IP

Once you know the IP (e.g. your IP is 192.31.123.122), you can access using your laptop terminal to the Pi like
this:

$ ssh pi@192.31.123.122

Tip: The syntax for this command is ssh username@ipaddress. You may want to log in using a different
username to the default pi if you created one.

Note: The IP addresses at Imperial are dynamic (most IPs are dynamic), meaning they are constantly changing and
being reallocated as needed. It could be that your IP changes in a couple of hours, a day, or a bit longer, so be prepared
to have to repeat the steps above to rediscover what your new IP address is.

VNC GUI control

Todo: Using VNC for remote GUI control will be added later.

Transferring files

Using terminal

If are programming on your laptop and you want to transfer your code to test it in your Pi, you can use a number of
different methods:

• Secure Copy (scp)

• SSH File Transfer Protocol (sftp).

• Secure File Transfer Protocol (ftps)

Secure Copy (scp)

scp - Securely copy a file from one location to another.

The general syntax is as follows: scp copy_from copy_to

The locations are written relatively. So if you were to copy a file from one place on your local computer to anther
place, you would simply provide the path:

scp /home/pi/Desktop/myprogram.py /home/pi/Desktop/myfolder/

Which would copy the file myprogram.py to a folder within the same location.

Note: When you use SSH to remotely ‘log in’ to a computer such as a Pi, then all the commands you then type into
your terminal are considered ‘local’.

2.3. Raspberry Pi 101

https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol

Gizmo Documentation, Release 0.1

If you wanted to copy something from your computer to the Pi then that would be considered a local-to-remote copy.

For that you would need to :

1. Get the path to the file locally on your computer.

2. Get the path to the location on the Pi you would like to save it.

scp /Users/username/Desktop/program.py pi@192.168.1.10:/home/pi/Desktop

As you can see we copied the file /Users/username/Desktop/program.py from the local computer to a
remote computer (which is why we need to prefix it with the username and IP address pi@192.168.1.10) in the
location specified /home/pi/Desktop.

We can even copy a file back by reversing the order of the commands:

scp pi@192.168.1.10:/home/pi/Desktop/program.py /Users/username/Desktop/

Hint: If you want to copy a folder (not an individual file) then you need to add the recursive flag to the command.
This tells the terminal that you want to copy the folder and all its sub-contents to the new location. i.e.

scp /Users/username/Desktop/Gizmo_Folder/ pi@192.168.1.10:/home/pi/Desktop/

SFTP

1. First we log into a session with the Pi using the correct username and IP address

sftp pi@192.168.1.1

2. Once establish the connection through SFTP, we can navigate around using cd (change directory) and pwd
(print working directory) and ls (to list contents of current directory).

3. Once we have the a file to download from the remote computer (Pi):

get /path/to/file

Or for a folder:

get -r /path/to/directory/

4. To transfer files on our (local) computers to the remote (Pi) we can put:

put /path/of/local/file

The same flags that work with get apply to put. So to copy an entire local directory:

put -r /path/of/local/directory/

Note: More details and examples of SFTP can be found here.

102 Chapter 2. Contents

https://www.digitalocean.com/community/tutorials/how-to-use-sftp-to-securely-transfer-files-with-a-remote-server

Gizmo Documentation, Release 0.1

Using Software

Instead a terminal, we can use to transfer files using a software that mounts any remote server storage as a local disk
in the Finder.app on Mac and the File Explorer on Windows. We suggest:

• Cyberduck

• For just Windows you can use: WinSCP

2.3. Raspberry Pi 103

https://cyberduck.io/?l=en
https://winscp.net/eng/index.php

Gizmo Documentation, Release 0.1

2.3.8 Backing up your SD card

It is useful and always advisable to backup a working copy of your Pi image. For example, make a backup copy after
setting up WiFi. The next time the WiFi is not working, you can reformat the SD card and reinsert this backup copy
to revert back to previous version. After this, your Pi will connect to the WiFi right away like before.

Important: Remember that if you SD card becomes corrupted you will likely have to wipe it and lose all your files
to reformat it. Despite this being unlikely, always remember to take backups at key milestones throughout a project so
that you can restore to a recent state and not lose too much work.

We also strongly recommend using Git to manage project files. It allows for collaborative working and means you can
easily restore your project files onto any new device you might need.

Backup using Windows

1. Download Win 32 Disk Imager if none installed on your computer.

2. Insert the SDCard into your computer (e.g. via card reader or SD card slot if your computer has one).

3. Open Win 32 Disk Imager. Select a location and give a file name for the backup image.

4. Select the right drive.

5. Click Read.

104 Chapter 2. Contents

https://sourceforge.net/projects/win32diskimager/

Gizmo Documentation, Release 0.1

6. Once done, keep this backup copy safe. Please note that the size of the backup is the same size of your SD Card.
So please be mindful that it will take a considerable amount of disk space.

Backup using macOS

1. Open DiskUtility

2. Select “APPLE SD Card Reader Media”

3. Click on File → New File → Image from “Untitled”

4. Leave the selections “CD/DVD” and “no encryption”

5. Insert your password when asked

6. You’re done!

Restoring and image to the SD Card

If you have an image saved somewhere, you can restore it to your SD card at any time to revert back to that version.
To do this, check the section on Flashing your Disk Image.

If you wish to install a fresh Raspbian OS, you should look at the chapter on Setting up your SD Card.

2.3.9 GPIO

The Raspberry Pi has General Purpose Input Output pins. This guide will give an short insight into controlling the
GPIO pins on the Raspberry Pi using a Python library called GPIOzero.

1. Materials needed

2. GPIO pinout

3. Analog vs. Digital

4. Blink

5. LED PWM

6. Button

7. Combining everything

Your Raspberry Pi is more than just a small computer, it is a hardware prototyping tool! The RPi has bi-directional
I/O pins, which you can use to drive LEDs, spin motors, or read button presses. To drive the RPi’s I/O lines requires
a bit or programming. You can use a variety of programing languages, but we decided to use a really solid, easy
language for driving I/O: Python.

Materials needed

• Raspberry Pi 3 B

• Breadboard

• Jumper Wires(M/F)

• Momentary Pushbutton Switch

• Resistors

• 2 LEDs

2.3. Raspberry Pi 105

http://elinux.org/RPi_GPIO_Code_Samples
https://www.sparkfun.com/products/12002?_ga=1.251311686.1915117394.1476705504
https://www.sparkfun.com/products/12794
https://www.sparkfun.com/products/9190?_ga=1.213562324.1915117394.1476705504
https://www.sparkfun.com/products/11507?_ga=1.213562324.1915117394.1476705504
https://www.sparkfun.com/products/9590?_ga=1.213548756.1915117394.1476705504

Gizmo Documentation, Release 0.1

GPIO Pinout

Raspberry has its GPIO over a standard male header on the board. From the first models to the latest, the header has
expanded from 26 pins to 40 pins while maintaining the original pinout.

There are (at least) two, different numbering schemes you may encounter when referencing Pi pin numbers:

1. Broadcom (SoC) chip-specific pin numbers.

2. P1 physical pin numbers.

You can use either number-system, but when you are programming how to use the pins, it requires that you declare
which scheme you are using at the very beginning of your program. We will see this later.

The next table shows all 40 pins on the P1 header, including any particular function they may have, and their dual
numbers:

106 Chapter 2. Contents

Gizmo Documentation, Release 0.1

In the next table, we show another numbering system along with the ones we showed above: Pi pin header numbers
and element14 given names, wiringPi numbers, Python numbers, and related silkscreen on the wedge. The
Broadcom pin numbers in the table are related to RPi Model 2 and later only.

2.3. Raspberry Pi 107

Gizmo Documentation, Release 0.1

This table shows that the RPi not only gives you access to the bi-directional I/O pins, but also

• Serial (UART),

• I2C,

• SPI,

• and even some Pulse width modulation (PWM — a.k.a. “analog output”).

Tip: There is a useful online guide for finding the assignment and numbering of each pin, along with other guides,
that you may find useful at: pinout.xyz

Analog vs. Digital

Before starting with our practise, we will revise the difference between analog and digital signals. Both are used to
transmit information, usually through electric signals. In both these technologies, the information, such as any audio

108 Chapter 2. Contents

https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/pulse-width-modulation
pinout.xyz

Gizmo Documentation, Release 0.1

or video, is transformed into electric signals. The difference between analog and digital:

• In analog technology, information is translated into electric pulses of varying amplitude.

• In digital technology, translation of information is into binary format (zero or one) where each bit is represen-
tative of two distinct amplitudes.

Comparison chart

Blink

We will start with a very easy example, the classic “Blink” example, later we will do the same with our Arduino and
see the differences.

Hardware Setup

We start assembling the circuit as shown in the diagram below.

2.3. Raspberry Pi 109

Gizmo Documentation, Release 0.1

The Code

For the code we are going to use the GPIOzero library which is based on the standard GPIO library.

1. From your laptop’s terminal connect to the RPi

2. Create a folder called “code” and inside it a file called “blinker.py”:

$ mkdir code
$ cd code
$ nano blinker.py

Note: You may not need to create a new folder every time for the script. i.e. once you have created the folder code,
you can create the scripts within the folder with nano <script name>. The command nano in this case is to
open the nano editor.

3. Copy and paste this code:

#!/usr/bin/env python

from gpiozero import LED
from time import sleep

led = LED(17)

while True:

(continues on next page)

110 Chapter 2. Contents

https://gpiozero.readthedocs.io/en/stable/
https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/

Gizmo Documentation, Release 0.1

(continued from previous page)

led.on()
sleep(1)
led.off()
sleep(1)

4. Save and exit

5. Run this script with the command:

sudo python ./blinker.py

6. To stop the script from running press CTRL+C

7. To make the script an executable run:

$ sudo chmod u+x blinker.py

Now you can execute it with just this command:

$./blinker.py

8. Yay! The LED is blinking!

Understanding the “Blink” example

#!/usr/bin/env python

This line is used to tell which interpreter (in our case Python) to use when the file is made into an executable.

When we use Python to control our GPIO pins, we always need to import the corresponding Python module, which
goes at the top of the script:

import gpiozero as gpio

Here, we are giving a shorter name to the module “GPIOzero”, in order to call the module through our script. This line
is fundamental for every script requiring GPIO functions. If you want to import only certain classes from “GPIOzero”
you could also specify the components. As an example, let’s say if you are interested in only the LED:

from gpiozero import LED

Or if want to use the Button and LED class.

from gpiozero import LED, Button

And if we are just importing the function sleep from the time library, we will later use it to make the LED blink.

from time import sleep

In the next line:

led = LED(17)

Here we are creating a variable called led and we are initialising it with an object of the class LED. On object of the
class LED to be initialised takes as a parameter the pin number to which the LED is connected to, in our case the pin
number is 17 (BCM 17, not physical pin number 17).

2.3. Raspberry Pi 111

https://www.tutorialspoint.com/python/time_sleep.htm
https://gpiozero.readthedocs.io/en/stable/api_output.html#led

Gizmo Documentation, Release 0.1

Note: GPIOzero uses ONLY Broadcom (BCM) pin numbering, instead of physical pin numbering and it is not
configurable, so when referring to pins in one of your scripts always use this numbering:

while True:

Here we are are basically asking to Python to loop forever. In fact the while statements loops through its code until
the initial condition becomes false, in our case never.

led.on()
sleep(1)
led.off()
sleep(1)

Here we are using two methods of the class LED of GPIOzero. on() switches the device on and off() turns it off.
We are calling the two functions with a 1 second interval, in fact the function sleep() suspends execution for the
given number of seconds.

LED PWM

Use the same layout for the electronics as before.

What is PWM?

Pulse Width Modulation, or PWM, is a technique for getting analog results with digital means. Digital control is used
to create a square wave, a signal switched between on and off. This on-off pattern can simulate voltages in between
full on (3.3 Volts for RPi and 5 Volts for Arduino) and off (0 Volts) by changing the portion of the time the signal
spends on versus the time that the signal spends off. The duration of “on time” is called the pulse width. To get varying
analog values, you change, or modulate, that pulse width. If you repeat this on-off pattern fast enough with an LED
for example, the result is as if the signal is a steady voltage between 0 and 5v controlling the brightness of the LED.

Hint: For more information check out this link.

The Code

Repeat the same steps of “Blink” to upload the code below, this time call the file led-pwm.py and save it in the code
folder that we have previously created. It’s up to you to make the code executable or not.

#!/usr/bin/env python

from gpiozero import PWMLED
from time import sleep

led = PWMLED(17)

while True:
led.value = 0 # off
sleep(1)

(continues on next page)

112 Chapter 2. Contents

https://gpiozero.readthedocs.io/en/stable/api_output.html#led
https://learn.sparkfun.com/tutorials/pulse-width-modulation

Gizmo Documentation, Release 0.1

(continued from previous page)

led.value = 0.5 # half brightness
sleep(1)
led.value = 1 # full brightness
sleep(1)

Understanding “LED PWM” code

The main difference here is that we are using the class PWMLED instead of the class LED. The PWMLED class has
an extra parameter that we can tweak which is value. value indicates the duty cycle of this PWM device. 0.0 is
off, 1.0 is fully on. Values in between may be specified for varying levels of power in the device.

Button

Hardware Setup

We start assembling the circuit as shown in the diagram below.

The Code

Repeat the same steps of “Blink” to upload the code below, this time call the file button.py and save it in the code
folder that we have previously created. It’s up to you to make the code executable or not.

#!/usr/bin/env python

from gpiozero import Button

button = Button(2) # we first create an instance of the Button class
buttonWasPressed = False # 1st flag will help us track if the button was pressed in
→˓the last loop
buttonWasReleased = False # 2nd flag will help us track if the button was released in
→˓the last loop

(continues on next page)

2.3. Raspberry Pi 113

https://gpiozero.readthedocs.io/en/stable/api_output.html#gpiozero.PWMLED

Gizmo Documentation, Release 0.1

(continued from previous page)

while True:

if button.is_pressed:
buttonWasReleased = False # reset back to false since the button is now

→˓being pressed

we only want the print() code to be run once,
so if it was pressed the last time the code looped, don't print it this

→˓time!
if not buttonWasPressed:

print("Button is pressed")

since we have now run this code, we don't want
it to run the next time the code loops, so
buttonWasPressed = True

else:
this code is run when the button is not being pressed
buttonWasPressed = False
if not buttonWasReleased:

print("Button is released")
buttonWasReleased = True

Understanding “Button” code

Here we are using the class Button from GPIOzero. This class has many functions and parameter, so make sure you
check out the reference. Here we are using the is_pressed property of the class. is_pressed returns True if the
device is currently active and False otherwise.

In this example, we also introduce the concept of flags. Flags are a way to help us keep track of the binary state of a
particular thing by storing them as boolean variables (1/0 or True/False). In this case, we need to keep track of the
binary state of whether the button is was pressed, and the binary state of whether the button was released.

Note: We need to keep track of the actions that occurred, not the state of the button itself as this is already monitored
is_pressed property of the Button() class.

In the code above, we use these flags to prevent the repetition of a print statement. i.e. If we did not have them, then
the “Button is released” statement would print repetitively until the button was pressed, and vice versa.

Flags allow us to ensure the print statement is only printed on the first iteration of the loop. Every iteration thereafter
will skip the print statement. This occurs until there is a change in the is_pressed property, at which point the
respective flag is reset to False.

Combining Everything

Now we challenge you to combine all the previous three scripts to create one. Make the script in order that:

• when the button is pressed one of the two LEDs fades to 25% of its brightness and the other one blinks once

• when the button is released the PWM LED goes back to 100% brightness.

114 Chapter 2. Contents

https://gpiozero.readthedocs.io/en/stable/api_input.html#button

Gizmo Documentation, Release 0.1

Hardware Setup

We start assembling the circuit as shown in the diagram below.

Code Tips

Use the when_pressed and when_released properties of the Button class. You can find the code to control one
LED with the button, here.

Acknowledgements

• Based on the GPIOzero library notes,

• this reference,

• and this Sparkfun intro.

2.3.10 Using Peripherals

Motor HAT

Overview

The DC+Stepper Motor HAT from Adafruit is a perfect add-on for any motor project as it can drive up to 4 DC or
2 Stepper motors with full PWM speed control. However, the Raspberry Pi does not have a lot of PWM pins, we use a
fully-dedicated PWM driver chip onboard to both control motor direction and speed. This chip handles all the motor
and speed controls over I2C. Only two GPIO pins (SDA & SCL) are required to drive the multiple motors, and since
it is I2C you can also connect any other I2C devices or HATs to the same pins.

2.3. Raspberry Pi 115

https://gpiozero.readthedocs.io/en/stable/api_input.html#button
https://gpiozero.readthedocs.io/en/stable/recipes.html#button-controlled-led
https://gpiozero.readthedocs.io/en/stable/index.html
http://www.diffen.com/difference/Analog_vs_Digital
https://learn.sparkfun.com/tutorials/raspberry-gpio

Gizmo Documentation, Release 0.1

Note: I2C is a very commonly used standard designed to allow one chip to talk to another. So, since the Raspberry
Pi can talk I2C we can connect it to a variety of I2C capable chips and modules.

You can find out more information on I2C in the Communication section.

Features

• 4 H-Bridges: TB6612 MOSFET chipset provides 1.2A per bridge (3A brief peak) with thermal shutdown pro-
tection, internal kickback protection diodes. Can run motors on 4.5VDC to 13.5VDC.

• Up to 4 bi-directional DC motors with individual 8-bit speed selection (so, about 0.5% resolution).

• Up to 2 stepper motors (unipolar or bipolar) with single coil, double coil, interleaved or micro-stepping.

• Big terminal block connectors to easily hook up wires (18-26AWG) and power.

• Polarity protected 2-pin terminal block and jumper to connect external 5-12VDC power.

• Install the easy-to-use Python library.

Assembly

The Motor HAT comes with an assembled and tested HAT, terminal blocks, and 2x20 plain header. Some soldering
is required to assemble the headers on. Here we leave a link with a step-by-step guide of how to solder the headers
and a video to show you tips on soldering.

Once the motor HAT is assembled, we place it on top so that the short pins of the 2x20 header line up with the pads
on the HAT.

116 Chapter 2. Contents

https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c
https://learn.adafruit.com/adafruit-dc-and-stepper-motor-hat-for-raspberry-pi/assembly
https://www.youtube.com/watch?v=QKbJxytERvg

Gizmo Documentation, Release 0.1

Powering Motors

Note the HAT does not power the Raspberry Pi, and we strongly recommend having two separate power supplies -
one for the Pi and one for the motors, as motors can put a lot of noise onto a power supply and it could cause stability
problems.

Voltage requirements

The motor controllers on this HAT are designed to run from 5V to 12V. Therefore, the first important thing is to verify
the voltage specifications for the motor. Some small hobby motors are only intended to run at 1.5V, but its just as
common to have 6-12V motors.

Warning: Most 1.5-3V motors WILL NOT WORK or will be damaged by 5V power.

Current requirements

The motor driver chips that come with the kit are designed to provide up to 1.2 A per motor, with 3A peak current.
Note that once you head towards 2A you will probably want to put a heat-sink on the motor driver, otherwise you will
get thermal failure, possibly burning out the chip.

Important: You can not run motors off of a 9V battery, so don’t waste your time/batteries!

Therefore, you can use a 9V 1A, 12V 1A, or 12V 5A DC regulated switching power adapter. In case you want to make
it portable, you can use a big Lead Acid or multiple-AA NiMH battery pack of 4 to 8 batteries to vary the voltage from
about 6V to 12V as your motors require.

2.3. Raspberry Pi 117

Gizmo Documentation, Release 0.1

Connecting DC Motors

To connect a motor, simply solder two wires to the terminals and then connect them to either the M1, M2, M3, or M4.
If your motor is running ‘backwards’ from the way you like, just swap the wires in the terminal block. For this demo,
please connect it to M3.

118 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Installing Software

1. We can download the Python library to control DC and stepper motors. Before you start, we need to install the
python smbus library. For the latter, execute the following command:

$ sudo apt-get install python-smbus

2. Now, we download the code as:

$ cd code
$ git clone https://github.com/adafruit/Adafruit-Motor-HAT-Python-Library.git
$ cd Adafruit-Motor-HAT-Python-Library
$ sudo python setup.py install

3. Before going further to the next step, we need to configuring the I2C if has not been done yet. Run:

$ sudo raspi-config

and follow the prompts to install I2C support for the ARM core and linux kernel:

2.3. Raspberry Pi 119

Gizmo Documentation, Release 0.1

120 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Now reboot!

4. Now you can get started with testing to watch your motor spin back and forth. First access to:

$ cd Adafruit-Motor-HAT-Python/examples
$ nano DCTest.py

Here you will see the code which shows you everything the MotorHAT library can do and how to do it.

DC motor control

1. Start with importing at least these libraries:

#!/usr/bin/python
from Adafruit_MotorHAT import Adafruit_MotorHAT, Adafruit_DCMotor

import time
import atexit

2. The MotorHAT library contains a few different classes, one is the MotorHAT class itself which is the main
PWM controller. You always need to create an object, and set the address (or frequency). By default the address
is 0x60. We can change this address, but for now we are not going to do it.

create a default object, no changes to I2C address or frequency
mh = Adafruit_MotorHAT(addr=0x60)

3. The PWM driver is ‘free running’ - that means that even if the python code or Pi linux kernel crashes, the PWM
driver will still continue to work. But it means that the motors DO NOT STOP when the python code quits.

For that reason, we strongly recommend this ‘at exit’ code when using DC motors, it will do its best to
shut down all the motors.

recommended for auto-disabling motors on shutdown!
def turnOffMotors():

mh.getMotor(1).run(Adafruit_MotorHAT.RELEASE)
mh.getMotor(2).run(Adafruit_MotorHAT.RELEASE)
mh.getMotor(3).run(Adafruit_MotorHAT.RELEASE)
mh.getMotor(4).run(Adafruit_MotorHAT.RELEASE)

atexit.register(turnOffMotors)

4. Now that you have the motor HAT object, note that each HAT can control up to 4 motors. That means you can
have multiple HATs running.

2.3. Raspberry Pi 121

Gizmo Documentation, Release 0.1

To create the actual DC motor object, you can request it from the MotorHAT object you created above
with getMotor(num) with a value between 1 and 4, for the terminal number that the motor is attached
to

In this case is M3
myMotor = mh.getMotor(3)

DC motors are simple beasts, you can basically only set the speed and direction.

5. To set the speed, call setSpeed(speed) where speed varies from 0 (off) to 255 (Maximum). This is the
PWM duty cycle of the motor.

set the speed to start, from 0 (off) to 255 (max speed)
myMotor.setSpeed(150)

6. To set the direction, we use the function run(direction) where direction is a constant from one of
the following:

7. Remember that

• Adafruit_MotorHAT.FORWARD - DC motor spins forward.

• Adafruit_MotorHAT.BACKWARD - DC motor spins backward.

• Adafruit_MotorHAT.RELEASE - DC motor is ‘off’, not spinning but will also not hold its place.

while True:
print("Forward! ")
myMotor.run(Adafruit_MotorHAT.FORWARD)

print("\tSpeed up...") # This will loop from 0-254
for i in range(255):

myMotor.setSpeed(i)
time.sleep(0.01) # It will stop 10 ms

print("\tSlow down...") # This will loop from 244-0
for i in reversed(range(255)):

myMotor.setSpeed(i)
time.sleep(0.01)

print("Backward! ")
myMotor.run(Adafruit_MotorHAT.BACKWARD)

print("\tSpeed up...")
for i in range(255):

myMotor.setSpeed(i)
time.sleep(0.01)

print("\tSlow down...")
for i in reversed(range(255)):

myMotor.setSpeed(i)
time.sleep(0.01)

print("Release")
myMotor.run(Adafruit_MotorHAT.RELEASE)
time.sleep(1.0)

Acknowledgements

122 Chapter 2. Contents

Gizmo Documentation, Release 0.1

Reference [1] Reference [2]

Available I/O e.g. cameras/screens/touch screens/drivers

Todo: More information will be added here soon.

2.3.11 Why Raspberry Pi?

The Raspberry Pi definitely performs best when there are heavy calculations into play but also is great for:

• More processing power, so the Raspberry can come to the rescue.

• Graphical applications

• Big Data projects

• Internet or network connectivity projects (IoT)

• The need for USB peripherals such as a web cam

• . . . and many more applications!

To choose between the two there’s is this Make:zine article that can help you out.

2.3.12 Alternatives to the Raspberry Pi

Here are some alternatives to the Raspberry Pi, although it’s important to remember that the Pi really is the best in its
field with many many examples available around the internet.

• Arduino Yun it is an Arduino with WiFi connection capabilities ideal for IoT

• Intel IoT Developer Kit

• Photon very tiny Wifi enabled board

• Beaglebone it is a Raspberry Pi competitor with some analog pins functionality

• ESP8266

2.4 Communication

2.4.1 Protocol: Serial

Serial is an important protocol for transferring data between two computational devices. In telecommunication and
data transmission, serial communication is the process of sending data one bit at a time, sequentially, over a com-
munication channel or computer bus. This is in contrast to parallel communication, where several bits are sent as a
whole, on a link with several parallel channels. Serial communication is used for all long-haul communication and
most computer networks. [1]

2.4. Communication 123

https://learn.adafruit.com/adafruit-dc-and-stepper-motor-hat-for-raspberry-pi/overview
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c#installing-kernel-support-manually
http://makezine.com/2015/12/04/admittedly-simplistic-guide-raspberry-pi-vs-arduino/
https://store.arduino.cc/arduino-yun
https://software.intel.com/en-us/iot/hardware/dev-kit
https://store.particle.io/
http://beagleboard.org/bone
http://espressif.com/en/products/hardware/esp8266ex/overview
https://en.wikipedia.org/wiki/Serial_communication

Gizmo Documentation, Release 0.1

Combining the Arduino for the Raspberry Pi

In this tutorial we will see how to connect your Raspberry Pi to your Arduino. We will start by installing the Arduino
IDE that you have already seen and then move to some command line tools. These tools don’t need a graphical
interface and you can use them without a monitor. The last section will give you some advices on how to install these
tools on your laptop.

By combining the strengths of both the Raspberry Pi and an Arduino we get a very useful control system - you can
think of the Raspberry Pi as a computer that offers computational power and network capabilities, whereas Arduino
communicates with sensors and actuators:

Talking Over Serial

To communicate between the Raspberry Pi and the Arduino over a serial connection, we’ll use the built-in Serial
library on the Arduino side, and the Python serial module on the Pi side.

1. To install the serial module, run the following commands on your Pi terminal:

$ sudo apt-get install python-serial python3-serial

2. Now we want to upload a new sketch on the Arduino. Plug into your personal computer and upload the code
as follows:

void setup() {
Serial.begin(9600);
}

void loop() {
for(byte n=0; n<255; n++){

Serial.write(n);
delay(50);

}
}

This code counts upward and sends each number over the serial connection. Note that in Arduino,
Serial.write() sends the actual number in the byte type, the actual 8-bit representation of the num-
ber.

3. Now plug the Arduino to the USB of the Raspberry. Then in the Pi terminal let’s open the Python shell by
typing:

$ python

This will launch the Python interpreter and the >>> prompt should appear.

4. Now we type:

124 Chapter 2. Contents

Gizmo Documentation, Release 0.1

from serial import Serial

If successful, when you press enter you should see no errors, and the cursor will return to the >>> prompt.
Now we can use the Serial class to connect to our Arduino.

5. We create a variable of type Serial that represents the serial connection with our Arduino:

serial_from_arduino = Serial('/dev/ttyACM0')

6. We can read one bit at a time what the Arduino has written over serial like this:

input = serial_from_arduino.read(1)

7. Then we print it in the console like this:

print(ord(input))

The function ord(), given a string of length one, returns the value of the byte when the argument is an
8-bit string. You should see a 0 being printed.

Note: If you have problems with this step, make sure you have properly done step 2 (uploading the new
sketch to Arduino).

Tip: For the next step, you need to use Ctrl+D to exit the Python prompt.

8. Now that we have tested that the connection works we want to write a Python script that reads the messages
from serial, so we type:

$ cd home/pi/
$ nano serialEcho.py

And we paste this code:

import serial
port = "/dev/ttyACM0"
serial_from_arduino = serial.Serial(port, 9600)
serial_from_arduino.flushInput()
while True:
if (serial_from_arduino.inWaiting() > 0):

input = serial_from_arduino.read(1)
print(ord(input))

The meaning of each line is as follows:

• import serial: just like before we import the serial library

• port = "/dev/ttyACM0": this time we save the port path in a variable

• serial_from_arduino = serial.Serial(port, 9600): we create an object of the class Serial,
this time we specify the baud rate of our serial connection

• serial_from_arduino.flushInput(): we clear out the input buffer

• while True::we put the reading functions in a loop so we keep on reading the values written by the Arduino
constantly

2.4. Communication 125

Gizmo Documentation, Release 0.1

• if (serial_from_arduino.in_Waiting() > 0):: we check that we are receiving bytes (i.e. that
the input buffer is not empty)

• input = serial_from_arduino.read(1): we read the content of the input buffer one byte at a time

• print(ord(input)): we interpret the incoming byte and we print it in the console

The Arduino is sending a number to the Python script, which interprets that number as a string. The input variable
will contain whatever character maps to that number in the ASCII table. To get a better idea, try replacing the last line
of the Python script with this:

print(str(ord(input)) + " = the ASCII character " + input + ".")

In Python to check if what you are getting is a string you can use the method explained here.

Raspberry Pi to Arduino

To have the Raspberry Pi write and Arduino read (and turn on the built-in LED) you can use this code:

1. On the Arduino side upload this code:

const int ledPin = 13;

void setup() {
pinMode(ledPin, OUTPUT);
Serial.begin(9600);

}

void loop() {
if (Serial.available()) {
light(Serial.read() - '0');

}
delay(500);

}

void light(int n) {
for (int i = 0; i < n; i++) {
digitalWrite(ledPin, HIGH);
delay(100);
digitalWrite(ledPin, LOW);
delay(100);

}
}

2. On the Raspberry Pi run this code:

import serial
serialToArduino = serial.Serial('/dev/ttyACM0', 9600)
serialToArduino.write('3')

Other methods

Sometimes the communication over Serial is not the best option for your project or you might want to make your
Pi and Arduino communicate in another way, or maybe communicate to other boards, so see the other Chapters for
possible alternatives, but don’t limit yourself to the ones listed. They are just brief introductions with plenty of links
for a more in-depth knowledge. We leave this exploration to your curiosity!

126 Chapter 2. Contents

https://stackoverflow.com/questions/5319922/python-check-if-word-is-in-a-string

Gizmo Documentation, Release 0.1

Serial over GPIO with this method you can use the same code we have used before, the only difference is the physical
connection. Remember you need to use the same voltage level between the two digital pins. Since the Pi and Arduino
operate at different voltage levels you will need a voltage converter.

Tip: Since you are connecting the Arduino to the Pi using USB, and the Pi is a computer, there’s no reason why you
couldn’t run the Python scripts above using your own computer instead of the Pi.

This is very easy to set up on a Mac or Linux.

If you have Mac special attention to the path of the USB port. It is going to look like this /dev/tty.usbmodem411
to find your port name you can enter the command ls /dev/tty.usb*.

Also on Mac there is no apt-get command. You have to install another package manager, the most common one
which we also recommend using Homebrew and to install any package use brew install PACKAGE_NAME.

• I2C is protocol that allows two devices to talk to each other using only two buses: a clock one (SCL bus) and a
data on (SDA bus). It can allow up to 127 slaves connected to one master to exchange information. It is a very
common protocol for Arduino as it is used to communicate with various sensors. There is a dedicated library
called Wire in Arduino that you can readily use.

• SPI is a synchronous serial communication interface specification used for short distance communication, pri-
marily in embedded systems. It uses four buses: clock (SCK), two data lines (MISO: Master Output Slave Input,
MOSI: Master Input Slave Output) and a select line(SS) to choose among the multiple slave devices.

• Noduino is a JavaScript and Node.js framework for accessing basic Arduino controls from web applications
using HTML5, Socket.IO and Node.js.

• UDP

• MQTT

2.5 Sensors & Actuators

Todo: Sensors & Actuators index page

• Basic Electronics

• Sensors

• Actuators

2.6 Supplementary Material

Please feel free to make additional suggestions!

This section documents common tools, commands, and functionality of Unix-based operating systems such as Rasp-
bian, Linux, and macOS.

Todo: More supplementary material will be added here later.

2.5. Sensors & Actuators 127

https://oscarliang.com/raspberry-pi-and-arduino-connected-serial-gpio/
https://brew.sh/
https://www.youtube.com/watch?v=DsSBTYbXAKg
https://www.arduino.cc/en/Reference/Wire
https://www.arduino.cc/en/Reference/Wire
http://radiostud.io/understanding-spi-in-raspberry-pi/
https://sbstjn.com/noduino/
https://www.howtogeek.com/190014/htg-explains-what-is-the-difference-between-tcp-and-udp/
https://randomnerdtutorials.com/what-is-mqtt-and-how-it-works/

Gizmo Documentation, Release 0.1

2.6.1 Crontab - scheduling commands

Crontab (chron tab → time table) is a scheduling assistant built into Unix systems. It is very useful for running
commands in a terminal environment at specific times.

Say you have a python3 file called script.py that posts to the internet, and you need to run it at a regular interval.
One option would be to keep the script running and sleep it using time.sleep(s) to pause it for s seconds.
However if this is running over a long period, this is not ideal. What happens if the script crashes for some reason?

First thing is to make the python3 script an executable. To do this you must first ensure you have included a shebang
line. In the python file, it must be the first line of the file:

#!/usr/bin/python3
import a
import b
import c

... rest of file

Then you can change the permissions of the file to make it executable:

$ chmod u+x /home/pi/script.py

Note: This assumes that script.py is saved in the /home/pi directory.

To check that this worked, you can use the ls command when in the home directory.

$ cd /home/pi
$ ls

The contents of the directory will be printed, and the script.py file will be coloured differently (either green or
red) instead of white. This means the script can now be executed directly (meaning you don’t need to write python3
beforehand):

$ /home/pi/script.py

This is important as you can now add it to the crontab configuration file.

$ crontab -e

This will open the crontab configuration looks like this:

Edit this file to introduce tasks to be run by cron.
#
Each task to run has to be defined through a single line
indicating with different fields when the task will be run
and what command to run for the task
#
To define the time you can provide concrete values for
minute (m), hour (h), day of month (dom), month (mon),
and day of week (dow) or use '*' in these fields (for 'any').#
Notice that tasks will be started based on the cron's system
daemon's notion of time and timezones.
#
Output of the crontab jobs (including errors) is sent through
email to the user the crontab file belongs to (unless redirected).

(continues on next page)

128 Chapter 2. Contents

https://www.in-ulm.de/~mascheck/various/shebang/
https://www.in-ulm.de/~mascheck/various/shebang/

Gizmo Documentation, Release 0.1

(continued from previous page)

#
For example, you can run a backup of all your user accounts
at 5 a.m every week with:
0 5 * * 1 tar -zcf /var/backups/home.tgz /home/
#
For more information see the manual pages of crontab(5) and cron(8)
#
m h dom mon dow command

@reboot /home/pi/script.py

*/10 * * * * /home/pi/script.py

As you can see, two lines have been added to the bottom. The first one set runtime to @reboot which means the
/home/pi/script.py command gets run right away once the Pi is rebooted.

The second line is configured to run the command on every 10th minute. You can use sites such as crontab.guru to
help you configure the exact timings you wish.

2.6.2 Material to be added

• Supplementary Material

– Screen cheatsheet (remote connection to Pi)

– Github cheatsheet

– Git workflow

– Git cheatsheet

– Markdown cheatsheet

– Pi vs Arduino

– Other useful links

• Helpful Resources (port from Robotics 1)

– Github and Git

– Python

* Structuring large Python projects

* Writing code: conventions and documentation

* Differences between Python 2 and 3

* Python tricks (pyclean)

* RST (restructuredtext) and sphinx markup

* sphinx and read the docs

– Ground rules for programming

2.6.3 Useful links

Text Editors

• Pycharm (for Python)

2.6. Supplementary Material 129

https://crontab.guru
https://www.jetbrains.com/pycharm/

Gizmo Documentation, Release 0.1

• Atom

• Sublime

• Visual Studio Code

File Transfer Software

• WinSCP

• Cyberduck

• MobaXTerm

SSH Applications

• Putty for Windows

Git

• Setting up a Github Account at Imperial

• GitHub Basic Course

• Try Git

• Collaboration Workflow (Short)

• Collaboration Workflow (Comprehensive)

• Github for Desktop

• Github Student Developer Pack

• Sourcetree

Raspberry Pi

• RaspberryPi

• Adafruit Learn

• Make

3D Objects Library

• Thingiverse

• MyMiniFactory

Specific for Imperial College Students

• Getting GitHub Enterprise

130 Chapter 2. Contents

https://atom.io/
www.sublimetext.com
https://code.visualstudio.com
https://winscp.net/eng/download.php
https://cyberduck.io/?l=en
mobaxterm.mobatek.net
http://www.putty.org/
http://www.imperial.ac.uk/admin-services/ict/self-service/research-support/research-support-systems/github/working-with-githubcom/
https://services.github.com/on-demand/
https://try.github.io/levels/1/challenges/1
https://code.tutsplus.com/tutorials/how-to-collaborate-on-github--net-34267
https://www.atlassian.com/git/tutorials/comparing-workflows
https://desktop.github.com/
https://education.github.com/pack
https://raspberrypi.org
https://learn.adafruit.com/
https://makezine.com/
https://www.thingiverse.com/
https://www.myminifactory.com/
https://www.imperial.ac.uk/admin-services/ict/self-service/research-support/research-support-systems/github/

CHAPTER 3

Missing Material

Todo: Guidance for managing installs and software on personal computers needs to be written here.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/de-
gizmo/checkouts/latest/docs/source/introduction/computers.rst, line 5.)

Todo: Review whether Python 2.7 is the correct option nowadays - or whether Python 3.x is more appropriate.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/de-
gizmo/checkouts/latest/docs/source/introduction/python.rst, line 14.)

Todo: More information will be added here soon.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/de-
gizmo/checkouts/latest/docs/source/raspberrypi/peripherals.rst, line 238.)

Todo: Using VNC for remote GUI control will be added later.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/de-
gizmo/checkouts/latest/docs/source/raspberrypi/remote-connection.rst, line 284.)

Todo: Sensors & Actuators index page

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/de-
gizmo/checkouts/latest/docs/source/sense-actuate/index.rst, line 4.)

131

Gizmo Documentation, Release 0.1

Todo: More supplementary material will be added here later.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/de-
gizmo/checkouts/latest/docs/source/supplementary/index.rst, line 9.)

132 Chapter 3. Missing Material

	Syllabus
	Contents
	Introduction
	Preparing your Computer
	Intro to Git & GitHub
	Warmup for Python

	Arduino
	Introduction to Arduino
	Basics
	Sensors
	Actuators
	Combined Sense & Actuation
	Why Arduino?
	Alternative Microcontrollers

	Raspberry Pi
	Assembling Pi workstation
	Setting up your SD Card
	Configuring the Pi
	Headless Setup
	Accessing Networks
	Software
	Connecting Remotely
	Backing up your SD card
	GPIO
	Using Peripherals
	Why Raspberry Pi?
	Alternatives to the Raspberry Pi

	Communication
	Protocol: Serial

	Sensors & Actuators
	Supplementary Material
	Crontab - scheduling commands
	Material to be added
	Useful links

	Missing Material

