
ddmq Documentation

Martin Dahlö

Sep 20, 2019

Introduction:

1 Key Features 3

2 Installation 5

3 Command-Line Usage 7

4 Python Module Usage 9

5 Troubleshooting 11
5.1 Dead Drop Messaging Queue . 11
5.2 Index . 15
5.3 Broker . 15
5.4 Message . 19

Python Module Index 21

Index 23

i

ii

ddmq Documentation

ddmq is a file based and serverless messaging queue, aimed at providing a low throughput* messaging queue when
you don’t want to rely on a server process to handle your requests. It will create a directory for every queue you create
and each message is stored as a JSON objects in a file. ddmq will keep track of which messages has been consumed
and will requeue messages that have not been acknowledged by the consumers after a set timeout. Since there is no
server handling the messages, the houskeeping is done by the clients as they interact with the queue.

ddmq is written in Python and should work for both Python 2.7+ and Python 3+, and can also be run as a command-line
tool either by specifying the order as options and arguments, or by supplying the operation as a JSON object.

* It could handle ~5000-6000 messages per minute (not via CLI) on a SSD based laptop (~10% of RabbitMQ on the
same hardware), but other processes competing for file access will impact performance.

Introduction: 1

ddmq Documentation

2 Introduction:

CHAPTER 1

Key Features

• serverless

• file based

• first in - first out, within the same priority level

• outputs plain text, json or yaml

• input json packaged operations via command-line

• global and queue specific settings

– custom message expiry time lengths

– limit the number of times a message will be requeued after exipry

• message specific settings

– set custom priority of messages (all integers >= 0 are valid, lower number = higher priority)

– all other message properties can also be changed per message

3

ddmq Documentation

4 Chapter 1. Key Features

CHAPTER 2

Installation

pip install ddmq

5

ddmq Documentation

6 Chapter 2. Installation

CHAPTER 3

Command-Line Usage

$ ddmq create -f /tmp/ddmq queue_name
$ ddmq publish /tmp/ddmq queue_name "Hello World!"
$ ddmq consume /tmp/ddmq queue_name

7

ddmq Documentation

8 Chapter 3. Command-Line Usage

CHAPTER 4

Python Module Usage

import ddmq
b = ddmq.broker('/tmp/ddmq', create=True)
b.publish(queue='queue_name', msg_text='Hello World!')
msg = b.consume(queue='queue_name')
print(msg.message)

9

ddmq Documentation

10 Chapter 4. Python Module Usage

CHAPTER 5

Troubleshooting

“ddmq: command not found” when trying to run the command-line tool This is likely because the location where pip
installs the ddmq executable is not in your PATH. Run the following commands to print out the location where it is
installed:

import ddmq
ddmq.get_ddmq_bin_path()

5.1 Dead Drop Messaging Queue

ddmq is a file based and serverless messaging queue, aimed at providing a low throughput* messaging queue when
you don’t want to rely on a server process to handle your requests. It will create a directory for every queue you create
and each message is stored as a JSON objects in a file. ddmq will keep track of which messages has been consumed
and will requeue messages that have not been acknowledged by the consumers after a set timeout. Since there is no
server handling the messages, the houskeeping is done by the clients as they interact with the queue.

ddmq is written in Python and should work for both Python 2.7+ and Python 3+, and can also be run as a command-line
tool either by specifying the order as options and arguments, or by supplying the operation as a JSON object.

5.1.1 Requirements

Python 2.7+ or 3+, should work with both.
Additional modules required: pyyaml
Additional modules recommended: beautifultable

5.1.2 Installation

$ pip install ddmq

11

ddmq Documentation

5.1.3 Key Features

• serverless

• file based

• First in - first out, within the same priority level

• outputs plain text, json or yaml

• input json packaged operations via command-line

• global and queue specific settings

– custom message expiry time lengths

– limit the number of times a message will be requeued after exipry

• message specific settings

– set custom priority of messages (all integers >= 0 are valid, lower number = higher priority)

– all other message properties can also be changed per message

5.1.4 Command-Line Usage

usage: ddmq <command> [<args>]

The available commands are:
view List queues and number of messages
create Create a queue
delete Delete a queue
publish Publish message to queue
consume Consume message from queue
ack Positivly acknowledge a message
nack Negativly acknowledge a message (possibly requeue)
purge Purge all messages from queue
clean Clean out expired messages from queue
json Run a command packaged as a JSON object

For more info about the commands, run
ddmq <command> -h

Command-line interface to Dead Drop Messaging Queue (ddmq).

positional arguments:
command Subcommand to run

optional arguments:
-h, --help show this help message and exit
-v, --version print version

Examples:

create a new queue and publish a message to it
$ ddmq create -f /tmp/ddmq queue_name
$ ddmq publish /tmp/ddmq queue_name "Hello World!"

(continues on next page)

12 Chapter 5. Troubleshooting

ddmq Documentation

(continued from previous page)

consume a message from a queue
$ ddmq consume /tmp/ddmq queue_name

view all queues present in the specified root directory
$ ddmq view /tmp/ddmq

remove all messages from a queue
$ ddmq purge /tmp/ddmq queue_name

delete a queue
$ ddmq delete /tmp/ddmq queue_name

5.1.5 Python Module Usage

imports both the broker and message module
import ddmq

create the broker object and specify the path to the root directory
adding create=True to tell it to create and initiate both the root
directory and queue directories if they don't already exist
b = ddmq.broker('/tmp/ddmq', create=True)

publish a message to the specified queue
b.publish(queue='queue_name', msg_text='Hello World!')

consume a single message from the specified queue
msg = b.consume(queue='queue_name')

print the message contained
print(msg.message)

5.1.6 File Structure

The structure ddmq uses to handle the messages consists of a root directory, with subfolders for each created queue.
The messages waiting in a queue are stored in the queue’s folder, and messages that have been consumed but not yet
acknowledged are stored in the queue’s work directory.

root/
ddmq.yaml
queue_one

999.3.ddmqfc24476c6708416caa2a101845dddd9a
ddmq.yaml
work

1538638378.999.1.ddmq39eb64e1913143aa8d28d9158f089006
1538638379.999.2.ddmq1ed12af3760e4adfb62a9109f9b61214

queue_two
999.1.ddmq6d8742dbde404d5ab556bf229151f66b
999.2.ddmq15463a6680f942489d54f1ec78a53673
ddmq.yaml
work

In the example above there are two queues created (queue_one, queue_two) and both have messages published to
them. In queue_one there are two messages that have been consumed already, but not yet acknowledged (acked), so

5.1. Dead Drop Messaging Queue 13

ddmq Documentation

the messages are stored in the queue_one’s work folder. As soon as a message is acked the message will be deleted by
default. Messages that are negatively acknowledged (nacked) will be requeue by default.

Both the root directory and each queue subfolder will contain config files named ddmq.yaml that contains the settings
to be used. The root’s config file will override the default values, and the queue’s config files will override both the
default values and the root’s config file. If a message is given specific settings when being published/consumed, these
settings will override all the ddmq.yaml files.

The message files themselves contain a JSON string with all the properties that make up a message object.

{"priority": 999, "queue_number": "1234556789356735", "requeue_counter": 0, "filename
→˓": "queue_one/999.2.ddmq1ed12af3760e4adfb62a9109f9b61214", "queue": "queue_one",
→˓"requeue_limit": null, "timeout": null, "message": "msg", "requeue": false, "id":
→˓"1ed12af3760e4adfb62a9109f9b61214"}

5.1.7 ddmq.yaml

The config files in the root and queue directories in YAML format. The parameters that can be changed and their
default values are:

cleaned: 0 # epoch timestamp when the queue was last cleaned
message_timeout: 600 # the number of seconds after which it will be considered
→˓expired, after a message is consumed
priority: 999 # the default priority level of published messages. lower
→˓number = higher priority
requeue: true # nacked messages are requeued by default, set this to false
→˓to delete them instead
requeue_prio: 0 # the priority requeued messages will get (0 = highest prio)

5.1.8 Use case

Since ddmq handles one file per message it will be much slower than other queues. A quick comparison with Rab-
bitMQ showed that first publishing and then consuming 5000 messages is about 10x slower using ddmq (45s vs 4.5s).
The point of ddmq is not performance, but to be used in environments where you can’t run a server for some reason.

My own motivation for writing ddmq was to run on a shard HPC cluster where I could not reliably run a server process
on the same node all the time. The mounted network storage system was available everywhere and all the time though.
The throughput was expected to be really low, maybe <10 messages per day so performance was not the main focus.

Example: parallelization within or beyond nodes with minimal effort

Let’s say you have many task to go through, and each task takes more than a couple of seconds. A singel threaded
approach to process n files could look like this:

program.py:

go through the file names and process directly
for file in file_names:

run_task(file)

This will take n*seconds_per_task to complete. If you instead submit each task to ddmq, you can start
as many consumers as you want to handle the processing, and the time to complete should be around
n*seconds_per_task/number_of_consumers

14 Chapter 5. Troubleshooting

ddmq Documentation

program.py:

init queue
import ddmq
b = ddmq.broker('/tmp/ddmq', create=True)
b.create_queue('tasks')

go through the file names and submit to queue
for file in file_names:

b.publish('tasks', msg_text=file)

consumer.py:

init queue
import ddmq
import time
b = ddmq.broker('/tmp/ddmq', create=True)

while True:
msg = b.consume('tasks')

wait 10s for messages if the queue is empty
if not msg:

time.sleep(10)
else:

run the task and acknowledge the message
run_task(msg.message)
b.ack(msg)

The nice thing about this type of parallelization is that it doesn’t matter if you start 8 instances of the consumer script
on a single node or if you start 80 instances in total spread over 10 nodes, as long as all of them can read/write to the
file system they will work. No need for multithreadded processes or MPI.

5.2 Index

• genindex

5.3 Broker

Defines the broker class which can interact with a ddmq directory. You define a broker by supplying at least a root
directory, for example

>>> import ddmq

>>> b = ddmq.broker('../temp/ddmq', create=True)
>>> print(b)
create = True
default_settings = {'priority': 999, 'requeue': True, 'requeue_prio': 0, 'message_
→˓timeout': 600, 'cleaned': 0}

(continues on next page)

5.2. Index 15

ddmq Documentation

(continued from previous page)

global_settings = {'priority': 999, 'requeue': True, 'requeue_prio': 0, 'message_
→˓timeout': 600, 'cleaned': 0}
queue_settings = {}
root = ../temp/ddmq

>>> b.publish('queue_name', "Hello World!")
filename = queue_name/999.1.ddmq89723438b9d0403c91943f4ffaf8ba35
id = 89723438b9d0403c91943f4ffaf8ba35
message = Hello World!
priority = 999
queue = queue_name
queue_number = 123456782356356256566
requeue = False
requeue_counter = 0
requeue_limit = None
timeout = None

>>> msg = b.consume('queue_name')
filename = 1539702458.999.1.ddmq89723438b9d0403c91943f4ffaf8ba35
id = 89723438b9d0403c91943f4ffaf8ba35
message = Hello World!
priority = 999
queue = queue_name
queue_number = 1234567823561341341356
requeue = False
requeue_counter = 0
requeue_limit = None
timeout = None

>>> print(msg.message)
Hello World!

exception broker.DdmqError(message, error)
Helper class to raise custom errors

class broker.broker(root, create=False, verbose=False, debug=False)
Class to interact with messaging queues

ack(queue, msg_files=None, requeue=None, clean=True)
Positive acknowledgement of message(s)

Parameters

• queue – name of the queue the files are in, or the message object to be acked

• msg_files – either a single path or a list of paths to message(s) to ack

• requeue – True will force message(s) to be requeued, False will force messages to be
purged, None (default) will leave it up to the message itself if it should be requeued or not

• clean – if True, the client will first clean out any expired messages from the queue’s
work directory. If False, the client will just ack the message(s) right away and not bother
doing any cleaning first (faster).

Returns a list of file names of all messages acknowledged

check_dir(path, only_conf=False)
Check if the directory contains a ddmq.yaml file to avoid littering non-queue dirs

16 Chapter 5. Troubleshooting

ddmq Documentation

Parameters

• path – path to the directory to check

• only_conf – if True, only check if the ddmq.yaml file is present. If False, also check
that there is a subdirectory called ‘work’

Returns None

clean(queue, force=False)
Clean out expired message from a specified queue

Parameters queue – name of the queue to clean

Returns True if everything goes according to plan, False if no cleaning was done

clean_all()
Clean all the queues in the root director

Parameters None –

Returns None

consume(queue, n=1, clean=True)
Consume 1 (or more) messages from a specified queue. The consumed messages will be moved to the
queues work folder and have the expiry epoch time prepended to the file name.

Parameters

• queue – name of the queue to consume from

• n – the number (int) of messages to consume

• clean – if True, the client will first clean out any expired messages from the queue’s
work directory. If False, the client will just consume the message(s) right away and not
bother doing any cleaning first (faster).

Returns a single message object if n=1 (default), or a list of the messages that were fetched if n
> 1

create_folder(path)
Create a folder at a specified path

Parameters path – path to the directory to be created

Returns None

create_queue(queue)
Create a specified queue

Parameters queue – name of the queue to create

Returns True if everything goes according to plan

delete_message(path)
Delete a specified message

Parameters path – path to the message, or a message object, to be deleted

Returns None

delete_queue(queue)
Delete a specified queue

Parameters queue – name of the queue to delete

Returns True if everything goes according to plan

5.3. Broker 17

ddmq Documentation

get_config_file(queue=”)
Get the settings from the config file of a queue or the root dir

Parameters queue – if empty, returns the config file from the root folder. If a queue name, will
get the config file for that queue

Returns A dict containing all the settings specified in the config file

get_message(path)
Get a specified message

Parameters path – path to the message to fetch

Returns the requested message

get_message_list(queue)
Gets a list of all messages in the specified queue

Parameters queue – name of the queue to get messages from

Returns returns 2 lists of file names. The first is the list of all messages still waiting in the queue
and the second is a list of all the messages in the queue’s work directory

get_queue_number()
Generate the next incremental queue number for a specified queue (epoch time of creation without the
decimal punctuation)

Parameters None –

Returns a string that is the current timestamp, with the decimal punctuation removed

get_settings(queue)
Get the settings for the specified queue. Will try to give a cached version first, and if it is the first time the
settings are requested it will read the settings from the config file and store the result

Parameters queue – name of the queue to get settings for

Returns None

list_queues()
Generate a list of all valid queues (subdirectories with ddmq.yaml files in them) in the root folder

Parameters None –

Returns a list of names of valid queues

nack(queue, msg_files=None, requeue=None, clean=True)
Negative acknowledgement of message(s)

Parameters

• queue – name of the queue the files are in, or the message object to be nacked

• msg_files – either a single path or a list of paths to message(s) to nack

• requeue – True will force message(s) to be requeued, False will force messages to be
purged, None (default) will leave it up to the message itself if it should be requeued or not

• clean – if True, the client will first clean out any expired messages from the queue’s
work directory. If False, the client will just ack the message(s) right away and not bother
doing any cleaning first (faster).

Returns True if everything goes according to plan

publish(queue, msg_text=None, priority=None, clean=True, requeue=False, requeue_prio=None,
timeout=None, requeue_counter=0, requeue_limit=None)

Publish a message to a queue

18 Chapter 5. Troubleshooting

ddmq Documentation

Parameters

• queue – name of the queue to publish to

• msg_text – the actual message

• priority – the priority of the message (default 999). Lower number means higher
priority when processing

• clean – if True, the client will first clean out any expired messages from the queue’s
work directory. If False, the client will just publish the message right away and not bother
doing any cleaning first (faster).

• requeue – if True, the message will be requeud after it expires. If False it will just be
deleted.

• requeue_prio – if set (int), the message will get this priority when requeued. Default
is 0, meaning requeued messages will be put first in the queue.

• timeout – if set (int), will override the global and queue specific default setting for how
many seconds a message expires after.

Returns a copy of the message published

purge_queue(queue)
Purge the specified queue of all messages, but keep the queue folders and config file

Parameters queue – name of the queue to purge

Returns a list of 2 numbers; the first is how many messages still waiting in the queue were
deleted, and the second how many messages in the queues work directory that was deleted

requeue_message(path, msg=None)
Requeue a specified message

Parameters path – path to the message to requeue

Returns True if everything goes according to plan

update_settings_file(queue=”, package={})
Update the settings in a config file for a specified queue or in the root dir

Parameters

• queue – if empty, change the config in the root folder. If a queue name, will change the
config for that queue

• package – a dict containging the changes to the config file

Returns None

version()
Get package version

Parameters None –

Returns the package version

5.4 Message

Defines the message class which represents a single message. This class is primarily to be used by the methods in the
broker class. You define a message by supplying selected arguments, for example

5.4. Message 19

ddmq Documentation

>>> msg = message(queue='queue_name', message='Hello World!')
>>> print(msg)
filename = None
id = None
message = Hello World!
priority = None
queue = queue_name
queue_number = None
requeue = None
timeout = None

class message.message(queue=None, message=None, timeout=None, id=None, prior-
ity=None, queue_number=None, filename=None, requeue=None, re-
queue_counter=None, requeue_limit=None)

Class to represent a single message

classmethod json2msg(package)
Converty a JSON object to a message object

msg2json()
Convert a message object to a JSON object

update(package)
Update a message object with the parameters supplied by the package (dict)

20 Chapter 5. Troubleshooting

Python Module Index

b
broker, 15

m
message, 19

21

ddmq Documentation

22 Python Module Index

Index

A
ack() (broker.broker method), 16

B
broker (class in broker), 16
broker (module), 15

C
check_dir() (broker.broker method), 16
clean() (broker.broker method), 17
clean_all() (broker.broker method), 17
consume() (broker.broker method), 17
create_folder() (broker.broker method), 17
create_queue() (broker.broker method), 17

D
DdmqError, 16
delete_message() (broker.broker method), 17
delete_queue() (broker.broker method), 17

G
get_config_file() (broker.broker method), 17
get_message() (broker.broker method), 18
get_message_list() (broker.broker method), 18
get_queue_number() (broker.broker method), 18
get_settings() (broker.broker method), 18

J
json2msg() (message.message class method), 20

L
list_queues() (broker.broker method), 18

M
message (class in message), 20
message (module), 19
msg2json() (message.message method), 20

N
nack() (broker.broker method), 18

P
publish() (broker.broker method), 18
purge_queue() (broker.broker method), 19

R
requeue_message() (broker.broker method), 19

U
update() (message.message method), 20
update_settings_file() (broker.broker method),

19

V
version() (broker.broker method), 19

23

	Key Features
	Installation
	Command-Line Usage
	Python Module Usage
	Troubleshooting
	Dead Drop Messaging Queue
	Index
	Broker
	Message

	Python Module Index
	Index

