
DDI Documentation
Release 4.0 dev

DDI

Aug 22, 2018

Table of contents

1 About 3
1.1 DDI Background . 3
1.2 History . 3

2 Introduction 5
2.1 Description of the Model . 5
2.2 Production Framework . 11
2.3 Design Principles . 13
2.4 DDI Base Blocks . 14
2.5 Simple example . 16

3 Use Cases 17

4 User Guides 19
4.1 Using the Collection pattern . 19
4.2 Using the Process pattern . 26
4.3 The Variable Cascade . 29

5 Packages 33
5.1 NewObjectsForSimpleInstruments . 33
5.2 Identification . 33
5.3 Discovery . 38
5.4 Primitives . 52
5.5 Processing . 52
5.6 Utility . 60
5.7 SimpleDiscovery . 62
5.8 Representations . 62
5.9 DDIUtility . 105
5.10 DDIDocument . 106
5.11 Comparison . 106
5.12 Collections . 106
5.13 BaseObjects . 117
5.14 ComplexDataTypes . 117
5.15 Conceptual . 188
5.16 DataCapture . 206
5.17 Correspondences . 217
5.18 CoreProcess . 217

i

5.19 Agents . 239

6 Glossary 251

7 Guide to editing 255
7.1 Links . 255
7.2 Strong . 255
7.3 Italic . 255
7.4 Code . 255
7.5 Headings . 256
7.6 Images . 256
7.7 Lists . 256
7.8 Table . 257
7.9 Glossary . 257
7.10 Notes . 258

ii

DDI Documentation, Release 4.0 dev

Warning: this is a development build, not a final product.

Table of contents 1

DDI Documentation, Release 4.0 dev

2 Table of contents

CHAPTER 1

About

1.1 DDI Background

DDI Is a metadata standard for describing data files and events sorounding the creation of the material.

Published versions of DDI

Ver-
sion

Year pub-
lished

Documentation link

2.1 2003 http://www.ddialliance.org/Specification/DDI-Codebook/2.1/DTD/Documentation/
DDI2-1-tree.html

2.5 2012 http://www.ddialliance.org/Specification/DDI-Codebook/2.5/XMLSchema/field_level_
documentation.html

3.0 2008 http://www.ddialliance.org/Specification/DDI-Lifecycle/3.0/XMLSchema/
Documentation/

3.1 2009 http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/
FieldLevelDocumentation/

3.2 2012 http://www.ddialliance.org/Specification/DDI-Lifecycle/3.2/XMLSchema/
FieldLevelDocumentation/

1.2 History

Adding short text about the history of DDI.

3

http://www.ddialliance.org/Specification/DDI-Codebook/2.1/DTD/Documentation/DDI2-1-tree.html
http://www.ddialliance.org/Specification/DDI-Codebook/2.1/DTD/Documentation/DDI2-1-tree.html
http://www.ddialliance.org/Specification/DDI-Codebook/2.5/XMLSchema/field_level_documentation.html
http://www.ddialliance.org/Specification/DDI-Codebook/2.5/XMLSchema/field_level_documentation.html
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.0/XMLSchema/Documentation/
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.0/XMLSchema/Documentation/
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/FieldLevelDocumentation/
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.1/XMLSchema/FieldLevelDocumentation/
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.2/XMLSchema/FieldLevelDocumentation/
http://www.ddialliance.org/Specification/DDI-Lifecycle/3.2/XMLSchema/FieldLevelDocumentation/

DDI Documentation, Release 4.0 dev

4 Chapter 1. About

CHAPTER 2

Introduction

2.1 Description of the Model

2.1.1 Introduction

The intent of the Model-Based DDI Specification Class Description is to provide information on the individual classes
used in the model, their relationship to each other and their relationship to DDI Lifecycle 3.2 and other standards such
as General Statistical Information Model (GSIM). The model based DDI specification consists of two parts – a Library
of classes and Functional Views of the model. The Library of classes encompasses the entire DDI-Lifecycle (MD)
model. The classes in the Library are the building blocks used to construct the Functional Views. These Functional
Views are in essence profiles of the full specification oriented around specific user needs. The model is primarily being
developed and surfaced to the user community at http://lion.ddialliance.org/

A Note on Terminology During the development process, the terminology for what is now called classes (to reflect the
language used in UML) was previously referred to as ‘objects’

2.1.2 Structure of the DDI-Lifecycle (MD) Model

The model contains a Library and Functional Views. The Library is composed of Library Packages which contain
other data types (primitives or complex) or classes. The Functional Views contain references to the classes used by
the particular Functional View that are needed to meet the needs of the use case or business application.

Figure 1. DDI-Lifecycle (MD) Model and its components

5

http://lion.ddialliance.org/

DDI Documentation, Release 4.0 dev

2.1.3 Library of Classes

The Library of Classes encompasses the entire DDI-Lifecycle (MD) model, but without any specific schemas or
vocabularies for Functional Views. The classes in the Library contain primitives and complex data types and are the
building blocks used to construct the Functional Views. Classes are organized into Library Packages.

2.1.4 Functional Views

Functional Views are made up of a set of references to the classes in the Library. Functional Views are subsets of the
model grouped to support a specific application (for example the description of a questionnaire). The Functional Views
are divided into sections. Each section loosely corresponds to a DDI lifecycle business area. Within each business
area section there are separate subsections for Functional Views and compositions. Note that Functional Views may
include placeholders like an abstract class that need to be substituted before the Functional View can actually be
used. Functional Views are always a strict subset of the existing published or (for customization) extended classes. A
Functional View identifies a set of classes that are needed to perform a specific task. It primarily consists of a set of
references to specific versions of classes. Functional Views are the method used to restrict the portions of the model
that are used, and as such they function very much like DDI profiles in DDI 3.*. The subsetting with Functional Views
is done on the model and not on the instance level as in DDI Profiles. One may

• restrict the use of non-mandatory properties on a class;

• restrict the cardinality of a class’s relationships and properties;

• restrict the use of non-mandatory relationships.

Restrictions may never be made that would violate the mandatory inclusion of a relationship or property. Functional
Views may combine classes from any package or set of packages needed. The creation of Functional Views thus has
no dependency on the organization of metadata classes within the Library Packaging structure.

Figure 2. Interoperability of Functional Views

6 Chapter 2. Introduction

DDI Documentation, Release 4.0 dev

As shown in Figure 2, Each Functional View is a subset of the classes in the Library. Functional Views might be
distinct, overlapping in their function or be a subset or superset of another Functional View. Interoperability between
two Functional Views is only given for the Library classes which are used in both Functional Views.

A global Functional View could be created which comprehends all classes in the Library and their relationships. It
represents all functionality of the class in the Library. Each Functional View would be interoperable to this global
Functional View.

2.1.5 Model Constructs and Their Relationships

Figure 3 below shows the basic relationships between the types of constructs in the model. At the lowest level, we
have the primitives. These are used directly by classes, and are also used to create complex data types. The complex
data types are also used by classes. Classes themselves can relate to other classes, building increasingly complex
structures. The classes – along with the primitives and complex data types – form the Class Library. Classes can
relate to each other in two ways: a class may have a “direct” relationship (composition, aggregation) with another
class, or it may have an inheritance relationship. In this latter case, the DDI model uses additive extension. One class
may extend another by inheriting all of its properties and relationships, to which the new class may add additional
properties and relationships. This mechanism is used to take more generic classes and alter them for a more specific
purpose. Extension is explained more fully below.

Figure 3. DDI-Lifecycle (MD) Organization of the Model

2.1. Description of the Model 7

DDI Documentation, Release 4.0 dev

2.1.6 Extension

Extension is the inheritance of one class’s properties and relationships from another class. It also has a semantic
relationship – an extending class provides a specialized use of the extended class.

Extensions are used within the DDI-published Library Packages to provide relationships between classes as they
increase in complexity to meet increasingly complex functionality. Thus, a “simple” version of a questionnaire class
might be extended into a more complex class, describing a more complex questionnaire. Some classes exist only for
the purpose of extension, and are declared abstract. A Functional View may never include an abstract class. Non-
abstract classes may never have direct relationships with abstract classes. Extension is illustrated in Figure 4 below.

Figure 4. Extensions in DDI-Lifecycle (MD)

Here, an abstract class – Instrument, which is any tool used to collect data – is extended by Simple Questionnaire,
which is itself extended by Complex Questionnaire. As we proceed through this chain of extension, the classes have
increasingly large numbers of properties and relationships.

8 Chapter 2. Introduction

DDI Documentation, Release 4.0 dev

For example, if an Instrument class has a name property, a description property, and an ID property, these would be
inherited by Simple Questionnaire, which might add a relationship to one or more Question classes. The Complex
Questionnaire in turn might add a relationship to a Questionnaire Flow class, to add conditional logic to the question-
naire.

The second use of extension in the DDI model is to allow users to add needed metadata fields for the purposes of
customization. Thus, a specific user community may decide to have a standard set of additional properties, classes,
and relationships and create their own model Library Package which contains classes extending the classes in the
DDI-published Library Packages. The creator of the extensions is the owner and maintainer of the extended classes
and Library Packages – this is not the business of the DDI Alliance.

Extension in DDI is strictly defined: you are able to add new properties to existing classes, and add new relationships
to existing classes. Extension is always done on a class which is referenced and inherited from: that is, a new class is
declared which inherits all the properties and relationships of an existing class. New properties and relationships are
then declared for it. Extension is always additive extension. There is no concept of refinement – that is handled using
Functional Views.

Those creating their own custom Library Packages based on extensions to the DDI model may also declare entirely
new classes which are not extension of DDI classes.

Extensions made by those customizing the DDI model are expressed using the same modeling techniques and infor-
mation that are used for the development of the model published by the DDI Alliance itself. As a result of this, the
same tools for the creation of documentation and syntax artefacts (XML schemas, RDF vocabularies) could potentially
be used.

2.1.7 Managing the Library

In order to manage the Library effectively, the classes, together with primitives and complex data types, are grouped
into Library Packages. The organization of Library Packages is currently flat. As development continues and the
number of Library Packages increases the DDI model may be organized in a hierarchy of Library Packages arranged
according to the types of constructs.

Library Packages are mutually exclusive and comprehensive. They are organic entities with a logical organization and
are labeled in an accessible way so that developers and modelers can easily understand their content. They are stable
and should not be changed often.

Provisional Library Organization

• Core

– Primitives

– Complex Data Types

– Identification and versioning

– Grouping and Comparison

– Utility classes

• Conceptual

– Universe, concept, category unit

– Representations, code lists, classifications

– Represented and conceptual variables

• Study

2.1. Description of the Model 9

DDI Documentation, Release 4.0 dev

– Study info

– Study inception

– Collection

– Archiving and preservation

– Access and discovery

• Data

– Logical data structures

– Physical data structures

– Datasets

– Instance variables (raw and derived variables)

• Process

• Geography

• Instrument and data source

– Questionnaires, routing

– Access to administrative data

– Questions, items

• Methodology

– Data transformations e.g. formulas

2.1.8 Versioning the Library

The classes within each Library Package as well as Functional Views are versioned. The whole model has a specific
release date that acts as part of its identification. The Library Packages are versioned primarily for maintenance
purposes

The versioning rule is that if the contents of a versioned class change, it is versioned. This means that versions “trickle
up” – a new class is added to a Library Package, which versions the Library Package; the new version of the Library
Package can drive a new release of the Model, and so on.

However, if a class does not change, its version does not change, even if the Library Package within which it lives
in is versioned. Once published, a class is always available for use within Functional Views, even if it is not the
latest version of the class. (If the old version of a class is good enough, it is still available for use in a new version
of a Functional View, etc.) Once published, classes are never removed from the Library. All published classes and
Functional Views will be available in the model forever

This has the effect of de-coupling the dependencies created by the use of extensions to add new things to the model.
Decisions about what release packages consist of are driven by the needs of users and marketing considerations, and
not by the chain of dependencies between classes, Library Packages, etc.

It is foreseen that at least initially, the Library will be released alongside sets of useful Functional Views, but incre-
mental releases are possible without causing problems – a new version of the Library is released, but it will always
contain all classes already in use.

10 Chapter 2. Introduction

DDI Documentation, Release 4.0 dev

2.1.9 Example of a Functional View

Figure 5 shows a diagram of the initial Discovery View, which includes the Access, Annotation and Coverage classes.
Access and Coverage inherits from the AnnotatedIdentifiable class, while Annotation inherits from the Identifiable
class. Coverage has aggregation relationships to TemporalCoverage, TopicalCoverage and SpatialCoverage.

Figure 5. Example Functional View

2.2 Production Framework

The model is being developed in Drupal at http://lion.ddialliance.org

2.2.1 Documentation Flow

Figure 1. Documentation Flow in the Production Process

2.2. Production Framework 11

http://lion.ddialliance.org

DDI Documentation, Release 4.0 dev

2.2.2 Bindings Production Flow in the Production Framework

Figure 2. Bindings Flow in the Production Process

12 Chapter 2. Introduction

DDI Documentation, Release 4.0 dev

The XMI for a portion of the model (as configured in Drupal) is exported as XMI for the platform-independent model
(PIM). This is then transformed again, for each binding type (XML or RDF) to be produced, creating the platform-
specific model (PSM) specific to that binding. This transformation from PIM to a specific PSM is informed by any
needed configuration information. The PSM is optimized for the expressive capabilities of the binding to be produced
(RDF and XML have different expressive capabilities). A transformation is then run on each PSM to produce the
desired bindings. Each view will be expressed as an XML document type and as an RDF Vocabulary expressed in
OWL. There will also be an XML and OWL binding for the library as a whole.

2.3 Design Principles

A set of design principles has been identified during the course of the development of DDI4, The list is shown below:

2.3. Design Principles 13

DDI Documentation, Release 4.0 dev

Principle Definition
Interoperability and
Standards

The model is optimized to facilitate interoperability with other relevant standards

Simplicity The model is as simple as possible and easily understandable by different stakeholders
User Driven User perspectives inform the model to ensure that it meets the needs of the international

DDI user community
Terminology The model uses clear terminology and when possible, uses existing terms and definitions
Iterative Develop-
ment

The model is developed iteratively, bringing in a range of views from the user community

Documentation The model includes and is supplemented by robust and accessible documentation
Lifecycle Orienta-
tion

The model supports the full research data lifecycle and the statistical production process,
facilitating replication and the scientific method

Reuse and Ex-
change

The model supports the reuse, exchange, and sharing of data and metadata within and among
institutions

Modularity The model is modular and these modules can be used independently
Stability The model is stable and new versions are developed in a controlled manner
Extensibility The model has a common core and is extensible
Tool Independence The model is not dependent on any specific IT setting or tool
Innovation The model supports both current and new ways of documenting, producing, and using data

and leverages modern technologies
Actionable Meta-
data

The model provides actionable metadata that can be used to drive production and data col-
lection processes

Additional lower-level principles have surfaced during initial DDI model development:

Principle Definition
Remodelling Dis-
couraged

The model leverages existing structures in the specification whenever possible to avoid
inefficiencies

Classes Represent
Actual Things

The model includes classes that are functional and are used

Separation of Logi-
cal and Physical

The model supports a distinction between logical and physical representations

Names are Mutable The model contains names and labels that may change to encourage accessibility
Common Expres-
sions

The model will only have features that reflect the common expressive capabilities of sup-
ported syntaxes/technologies (e.g., no multiple inheritances)

2.4 DDI Base Blocks

2.4.1 Complex Data Types

These are extensions of base type Primitives All complex data types (that is, the set of complex structures which are
treated within the Drupal modeling platform as primitives, as for the values of properties) are located in the Complex
Data Types package. There is a distinct style of modeling these: each complex data type which has a primary content
will have a property named “content” of whatever primitive type is needed. Complex data types will not be extensions
of the primitive type of their primary content. [A set of complex structures which are used as datatypes for properties
within a class description. There is a distinct style of modeling these: each complex data type which has a primary
content will have a property named “content” of whatever primitive type is needed. Complex data types will not be
extensions of the primitive type of their primary content. This allows standard structures, such as capturing structured
language strings, to be expressed in a single way throughout DDI.]

14 Chapter 2. Introduction

DDI Documentation, Release 4.0 dev

2.4.2 Relationships

DDI classes are associated via binary relationships. Relationships have cardinality constraints, e.g. 1..1, 1..n, 0..n, and
can be of different types, i.e. aggregation, composition, and neither (simple, untyped). Even though most relationships
in the model are undirected, in the Drupal they are always defined within one of the classess participating in the
relationship, i.e. the source; the class at the other end of the relationship is called the target. Similarly with names: the
predicate represented in a relationship name does not impose a direction since the implicit converse predicate is also
true in all undirected relationships. It’s important to note that this is just a convention used in the Drupal and by no
means imposes an actual conceptual direction in the association. For instance, RepresentedVariable has a relationship
with ValueDomain. The relationship is defined in ValueDomain, which is the source, and it is named by a predicate, i.e.
takesValuesFrom. This seems to imply a direction from RepresentedVariable to ValueDomain. However, the converse
predicate, i.e. providesValuesFor, although not represented in the model, is also valid since such a relationship is
conceptually undirected. In general, and unless otherwise indicated, all relationships in the Drupal are undirected.

2.4.3 Identification (Identifiable class)

The Identifiable class is core to the functioning of the standard. The purpose of the DDI Identifiable class is to: *
Uniquely identify major objects in a persistent manner to ensure accurate reference and retrieval of the object content
* Provide context for classes where an understanding of related class types within a packaging structure is essential to
the understanding of the class (i.e., a specific classification within a classification scheme) * Manage metadata object
change over time * Support the range of object management used by different organizations * Support early and late
binding of references * Support interaction with closely related standards, in particular ISO/IEC 11179 and SDMX

Many organizations may have preexisting URI schemes, or have URI patterns imposed on them other organizations or
governments. Unlike DDI3.x DDI4 will not require any specific information or pattern to be contained in the URIs of
described resource.

To align with both DDI 3.x and ISO/IEC 11179-6, the Identifiable object will continue to be based on a combination
of: * Agency Identifier (a unique identifier for the agency managing the object) * Item Identifier (a unique identifier of
the object within the context of the agency) * Item Version (a version number of the object to track change over time)

These parts correspond to the agency, id, and version used in DDI 3.x and to the registration authority identifier
(RAI), data identifier (DI), and version identifier (VI) constituting the international registration data identifier (IRDI)
in ISO/IEC 11179-6

In DDI 3.x, all items had an agency, item id, and version. However, some types of items could inherit a parent item’s
agency. Some items would inherit a parent item’s version. In DDI 4, all items will have their own Agency, Item
Identifier, and Item Version specified. This three part structure is the equivalent of a unique persistent identifier for an
object, such as described by DOIs and other similar structures. Note that while use of a version number with a DOI is
optional, based on local practice, the Version Number in DDI is required due to the need to manage metadata within a
dynamic workflow over time

2.4.4 Character Restrictions

In DDI 3.x, regular expressions restricted the Agency Identifier, Item Identifier, and Item Version. This has been
removed for DDI 4. The only restrictions are that it is a string without colons and whitespace. Note that these are
restrictions on the specific content not the structure of a DDI URN. The restriction on the use of a colon supports the
use of this character as a URN separator. This complies with ISO/IEC 11179-6 as it imposes no limitations on the
contents of the IRDI fields. In DDI 3.2, versions are restricted to integers that may be separated by periods. This
forces implementers to use a specific versioning system. A more flexible system would use a “based on” reference to
determine version history. In addition, a “based on” system adds the ability to branch and merge. A Based On system
would be backwards compatible with DDI 3.x versioning systems.

2.4. DDI Base Blocks 15

DDI Documentation, Release 4.0 dev

2.5 Simple example

For documenting a dataset the content could look something like this.

ID subj q1
0 Anders 3
1 Lars 2
2 Krister 3

2.5.1 A DDI Example

<DDI>
<DataFile>
<path>ct-2015.survey.csv</path>
<haveLogicalDataset>dataset1</haveLogicalDataset>

</DataFile>
<LogicalDataset id="dataset1">
<hasVariable>ID</hasVariable>
<hasVariable>subj</hasVariable>
<hasVariable>q1</hasVariable>

</LogicalDataset>
<Variable id="ID">
<Label>The record id of the collection</Label>
<Type>Numreric</Type>

</Variable>
<Variable id="subj">
<Label>Person interviewd</Label>
<Type>String</Type>

</Variable>
<Variable id="q1">
<Label>Relation to cats</Label>
<hasCodeList>c_list_1</hasCodeList>

</Variable>
<CodeList id="c_list_1">
<hasCode>c2</hasCode>
<hasCode>c3</hasCode>

</CodeList>
<Code id="c2">
<value>2</value>
<Label>Yes</Label>

</Code>
<Code id="c3">
<value>3</value>
<label>No</label>

</Code>
</DDI>

16 Chapter 2. Introduction

CHAPTER 3

Use Cases

Contents:

17

DDI Documentation, Release 4.0 dev

18 Chapter 3. Use Cases

CHAPTER 4

User Guides

4.1 Using the Collection pattern

DDI-Views introduces a generic Collection pattern that can be used to model different types of groupings, from simple
unordered sets to all sorts of hierarchies, nesting and ordered sets/bags. A collection is a container, which could be
either a set (i.e. unique elements) or a bag (i.e. repeated elements), of Members. Collections can also be extended
with richer semantics (e.g. generic, partitive, and instance, among others) to support a variety of DDI 3.x and GSIM
structures, such as Node Sets, Schemes, Groups, sequences of Process Steps, etc. Collections together with their
related classes provide an abstraction to capture commonalities among a variety of seemingly disparate structures.
A Collection consists of zero, one or more Members (Figure 1). A Member could potentially belong to multiple
Collections. A Collection is also a Member, which allows for nesting of Collections in complex structures. Members
have to belong to some Collection, except in the case of nested Collections where the top level Collection is a Member
that doesn’t belong to any Collection.

Figure 1. Collections class

This pattern can be used via a special type of association called realizes. DDI-Views uses realizes to say that a class
“behaves” like a Collection. For instance, consider a Set that consists of Elements, they implement the Collection

19

DDI Documentation, Release 4.0 dev

pattern as follows: Set realizes Collection and Element realizes Member. To realize this pattern all classes involved
must be associated in a way that is compatible with the pattern. As a rule of thumb, a more restrictive type of
association than the one that appears in the pattern is compatible, a looser one is not. For instance, since the collection
pattern has an aggregation association (denoted by the empty diamond), classes realizing the Collection pattern need
to be related by either an aggregation or a composition, nothing else. In addition, source and target, when applicable,
must also match, e.g. the diamond of the aggregation/composition needs to be on the class realizing Collection,
not Member. Similar compatibility rules apply to cardinality. Furthermore, all associations must be realized, with the
exception of IsA associations, which are usually part of the pattern definition and do not apply to individual realizations
in the same way. Renaming associations does not affect compatibility as long as the documentation clearly explains
how they map to the association in the pattern. For instance, consider Figure 2.. In this example, a Set class is defined
as being composed of at least one Element, i.e. no empty Sets are allowed. In addition, an Element always belong
to one and only one Set, which means that deleting the Set will also delete its Elements. Such an association is
compatible with the contains association in the Collection pattern and thus Set and Element can realize Collection and
Member, respectively. In contrast, Schema and XML Instance cannot realize the pattern: the association is neither an
aggregation nor a composition, Schema is not a grouping of XML Instances, and the association points from XML
Instance to Schema. None of this is compatible with the Collection pattern, in particular with the semantics of the
contains association between Collection and Member.

Figure 2. Compatibility with Collections class

Collections can be structured with Binary Relations, (Figure 3) which are sets of pairs of Members in a Collection.
Binary Relations can have different properties, e.g. totality, reflexivity, symmetry, and transitivity, all of which can be
useful for reasoning.

Figure 3. Binary Relations

20 Chapter 4. User Guides

DDI Documentation, Release 4.0 dev

A Binary Relation is said to be symmetric if for any pair of Members a, b in the associated Collection, whenever a
is related to b then also b is related to a. Based on this property we define two specializations of Binary Relation:
Symmetric Binary Relation, when the property is true, and Asymmetric Binary Relation, when the property is false.
Symmetric Binary Relations can be viewed as collections of Unordered Pairs themselves, whereas Asymmetric Bi-
nary Relations can be viewed as collections of Ordered Pairs. However, for simplicity, we do not model Relations
themselves with the Collection pattern. We can further classify Binary Relations based on additional properties. We
say that a Binary Relation is total if all Members of the associated Collection are related to each other. We call it
reflexive if all Members of the associated Collection are related to themselves. Finally, we say it is transitive if for any
Members a, b, c in the associated Collection, whenever a is related to b and b is related to c then a is also related to
c. [Refer to Dan’s document on Relations for more details.] These properties can be combined to define subtypes of
Binary Relations, e.g. Equivalence Relation, Order Relation, Strict Order Relation, Immediate Precedence Relation,
and Acyclic Precedence Relation, among others. Equivalence Relations are useful to define partitions and equivalence
classes (e.g. Levels in a Classification). Order Relations can be used to represent lattices (e.g. class hierarchies,
partitive relationships), Immediate Precedence Relations can define sequences and trees (e.g. linear orderings, parent-
child structures) and Acyclic Precedence Relation can represent directed acyclic graphs (e.g. molecular interactions,
geospatial relationships between regions).

Figure 4. Binary Relations specialization

4.1. Using the Collection pattern 21

DDI Documentation, Release 4.0 dev

These subtypes can also have various semantics, e.g. Part-Of and Subtype-Of for Order Relations, to support a variety
of use cases and structures, such as Node Sets, Schemes, Groups, sequences of Process Steps, etc. Note that some of
them include temporal semantics, e.g. Strict Order Relation and Acyclic Precedence Relation. A modeller can use the
different semantics types as a guide when trying to decide what type of Binary Relation to realize. For instance, if the
new class to be added to the model is a Node Set containing Nodes that will be organized in a parent-child hierarchy,
the modeller can define a Node Hierarchy class with PARENT_OF semantics to structure the Node Set. The type of
Binary Relation to realize then is Immediate Precedence Relation because it is the one that has the required semantics
in its Semantics Type. Alternatively, a modeller familiar with the definitions of the Binary Relation properties, i.e.
symmetry, reflexivity and transitivity, could make the choice based on what combination represents the type they are
looking for. For instance, a parent-child hierarchy requires the Binary Relation to be ANTI_SIMMETRIC (if a Node
is the parent of another, the latter is not the parent of the former), ANTI_REFLEXIVE (a Node cannot be a parent of
itself) and ANTI_TRANSITIVE (a Node is not the parent of its children’s children). It is easy to see that the only
one that satisfies that criteria is the Immediate Precedence Relation. Figure 5 shows an example of the realization of
the pattern. We can model Node Hierarchy and Node Hierarchy Pair classes as realizations of Immediate Precedence
Relation and Ordered Pair, respectively.

Figure 5. Node Set

22 Chapter 4. User Guides

DDI Documentation, Release 4.0 dev

Let us illustrate how this model works with a simple instance. Consider a geographical Statistical Classification with
Classification Items (Figure 6) representing Canada, its provinces and cities.

Figure 6. Node Set example

Since Statistical Classifications are Node Sets and Classification Items are Nodes, we can view Classification Items
such as Canada, Ontario, Quebec, Toronto, etc. as Members in a Collection structured by a Node Hierarchy Relation.
Node Hierarchy Pairs represent the parent-child relationships in the Node Hierarchy Relation. For instance, (Canada,
Ontario) is a Node Hierarchy Pair in which Canada is the parent and Ontario is the child. Other Node Hierarchy
Pairs are (Canada, Quebec) and (Canada, Toronto). Note that by maintaining the hierarchy in a separate structure, i.e.
the Node Hierarchy, Items can be reused in multiple Classifications. For instance, in another geography Statistical
Classification provinces grouped into regions, Ontario can be made the child of the Central Region instead of Canada
without changing the definition of the Classification Items involved, i.e. Canada, Ontario and Central Region in this

4.1. Using the Collection pattern 23

DDI Documentation, Release 4.0 dev

case. Interestingly enough, Binary Relations might not be enough for some purposes. First of all, some structures
cannot be reduced to binary representations, e.g. hypergraphs. In addition, a Binary Relation could be too verbose in
some cases since the same Member in a Collection could appear multiple times in different pairs, e.g. one-to-many
relationships like parent-child and ancestor-descendent. An n-ary Relation provides a more compact representation
for such cases. Like Binary Relations they come in two flavours: Symmetric Relation and Asymmetric Relation. Let
us consider the asymmetric case (Figure 7) first.

Figure 7. Asymmetric relations

Asymmetric Relations provide an equivalent, yet more compact, n-ary representation for multiple Ordered Pairs that
share the same source and/or target Members. In addition, they can be used to model Ordered Correspondences to
map Collections and their Members based on some criterion (e.g. similarity, provenance, etc.). Ordered Collection and
Member Correspondences realize Asymmetric Relation and Ordered Tuple, respectively. Consider now a geography
classification tree like the Canadian example (Figure 6) above. All Node Hierarchy Pairs that have the same parent
Member could be represented with a single Node Hierarchy Tuple that realizes the Ordered Tuple in the model. The
realization will also rename source as parent and target as child. Although only two cities are shown in the example,
Ontario has hundreds of them. Using a Node Hierarchy realizing and Asymmetric Relation, all pairs that have Ontario
as parent, e.g. (Ontario, Toronto), (Ontario, Ottawa), (Ontario, Kingston), etc., could be joined into a single n-ary Node
Hierarchy Tuple with Ontario as parent and Toronto, Ottawa, Kingston, etc. as children. With this representation we
replaced multiple pairs with a single tuple and avoid the repetition of Ontario hundreds of times for each individual
pair. Symmetric Relations are similarly structured as Asymmetric Relations (Figure 8). They provide an equivalent,
yet more compact, n-ary representation for multiple Unordered Pairs that have some Members in common. In addition,
they can be used to model (unordered) Correspondences between Collections and Members.

Figure 8. Symmetric relations

24 Chapter 4. User Guides

DDI Documentation, Release 4.0 dev

Back to our geography Statistical Classification example (Figure 6), we can have two variants with similar structure
as shown in Figure 9.

Figure 9. Example showing both Asymmetric and Symmetric relations

4.1. Using the Collection pattern 25

DDI Documentation, Release 4.0 dev

4.2 Using the Process pattern

The process pattern consists of classes to describe business functions and workflows that can be mapped to process
execution languages like BPEL or BPMN. A Process is a Sequence of Process Steps that perform one or more business
functions. Each Process Step can be performed by a Service. There are two types of Process Steps: Acts and Control
Constructs. Acts represent actions and are atomic Process Steps, i.e. they cannot be composed of other Process Steps.
An Act is similar to an instruction in a programming language and a terminal in the production rules of a formal
grammar. A Control Construct describes logical flows between Process Steps.

Figure 1. Process Step class

Process Steps can be nested and thus describe processes at multiple levels of detail. The nesting of Process Steps
always terminate in an Act. All nesting of Process Steps occur via Sequences, a specialization of Control Constructs.
Control Constructs include Sequence and Conditional Control Construct (Figure 2). The former models linear execu-
tion of Process Steps whereas the latter includes three types of iterative constructs: repeatWhile, repeatUntil and Loop.
The Sequence at the end of the contains association represents the body of the Conditional Control Construct, which
is executed depending on the result of the condition evaluation. The specialized sub-classes determine whether the
Sequence is executed in each iteration before the condition is evaluated (RepeatUntil), or after (RepeatWhile, Loop).
The Loop also provides a counter with initialValue and stepValue that can be used to specify in the condition how
many times the Sequence in the body is executed.

Figure 2. Control Construct class

In addition to the iterative constructs, Conditional Control Constructs includes IfThenElse, which provides a means
to specify branching control flows. It contains the condition inherited from the parent class and two associations:
contains (also inherited from the parent class), to the Sequence of Process Steps that is executed when the condition
is true, and containsElse, to an optional Sequence to be executed if the condition is evaluated to false. Optionally,
IfThenElse can also have an associated ElseIf construct to model switch statements. It is important to note that the

26 Chapter 4. User Guides

DDI Documentation, Release 4.0 dev

model also covers parallel processing: Conditional Control Constructs can contain multiple Sequences that could be
executed in parallel (more on this later). A Sequence can be viewed as a Collection whose Members are Process Steps
that can be ordered in three different ways: with a Sequence Order (traditional design-time total ordering), with one or
more Temporal Interval Relations (design-time temporal constraint or “fuzzy” ordering), or with a Rule (constructor)
to determine ordering at run-time. We discuss Sequence Order first. A Sequence Order realizes Collection pattern as
follows (Figure 3).

Figure 3. Sequence Order

Sequence Order and Sequence Order Pair realize Strict Order Relation and Ordered Pair, respectively. Let us remember
from the Binary Relations Specialization diagram [hyperlink to Collections Figure ???] that Strict Order Relation is an
Asymmetric Binary Relation that is ANTI_SYMMETRIC, ANTI_REFLEXIVE and TRANSITIVE. In addition, the
Sequence Order realization has totality=TOTAL and semantics=SUCCESSOR_OF, which means that it can specify a
total order of the Process Steps in the Sequence where the order semantics is given by SUCCESOR_OF. We discuss
next Temporal Interval Relations. They provide a mechanism for capturing Allen’s interval relations, one of the best
established formalisms for temporal reasoning. Temporal Interval Relations can be used to define temporal constraints
between pairs of Process Steps, e.g. whether the execution of two Process Steps can overlap in time or not, or one has
to finish before the other one starts, etc. This also supports parallel processing. There are thirteen Temporal Interval
Relations: twelve asymmetric ones, i.e. precedes, meets, overlaps, finishes, contains, starts and their converses, plus
equals, which is the only one that has no converse, or rather, it is the same as its converse. Together these relations
are distinct (any pair of definite intervals are described by one and only one of the relations), exhaustive (any pair
of definite intervals are described by one of the relations), and qualitative (no numeric time spans are considered).
Following Allen’s, Temporal Interval Relations are defined as follows.

Figure 4. Allen’s Temporal Interval Relations

4.2. Using the Process pattern 27

DDI Documentation, Release 4.0 dev

In DDI-Views, each one of the asymmetric Allen’s interval relations is a Temporal Interval Relation that realizes
different Binary Relations with specific temporal semantics. All asymmetric Temporal Interval Relation contains
Ordered Interval Pairs whereas the only symmetric one, i.e. Equals, contains Unordered Interval Pairs (Figure 5). For
instance, the Precedes Interval Relation realizes the pattern as follows.

Figure 5. Precedes Interval Relation

Precedes Interval Relation and Ordered Interval Pair realize Strict Order Relation and Ordered Pair, respectively. If we
look back to the Binary Relations Specialization diagram in the previous section we notice that Strict Order Relation
has the TEMPORAL_PRECEDES semantics, among others, which means that the Process Step at the end of the
source association in the Ordered Interval Pair has to finish before the one at the end of target starts. The Equals
Interval Relation (Figure 6) is a slightly different case because it is an equivalence relation rather than an asymmetric
one and therefore it contains Unordered Interval Pairs.

Figure 6. Equals Interval Relation

28 Chapter 4. User Guides

DDI Documentation, Release 4.0 dev

Equals Interval Relation and Unordered Interval Pair realize Equivalence Relation and Unordered Pair, respectively.
Equivalence Relation is simply a Symmetric Binary Relation that is REFLEXIVE and TRANSITIVE with some
additional semantics, among which we find TEMPORAL_EQUALS, the one required by the Equals Interval Relation.
This means that the execution of the two Process Steps at the end of the maps association in Unordered Interval Pair
begin and end at the same time. Temporal Interval Relations and Sequence Orders can be combined in the same
Sequence. For instance, consider Figure 7:

Figure 7. Combination of Interval Relations

Question Q2 requires the answer of question Q1 so it has to be executed after Q1. That is an example of the traditional
sequence ordering given by the Sequence Order Relation. However, note that there is no dependency between Q2 and
Q3 since both require only the answer of Q1. Therefore Q2 and Q3 could be executed at the same time, which can be
expressed with the Equals Interval Relation.

4.3 The Variable Cascade

The DDI-Lifecycle standard is intended to address the metadata needs for the entire survey lifecycle. This particular
document is dedicated to a description of variables as part of the DDI-Lifecycle. It contains a UML (Unified Modeling

4.3. The Variable Cascade 29

DDI Documentation, Release 4.0 dev

Language) class diagram of a model for describing variables, and the model is part of the larger development effort
called DDI Moving Forward to express DDI-Lifecycle using UML.

Typical models for describing variables take advantage of much reuse, and the model provided here is no exception.
It is reuse that makes metadata management such an effective approach. However, effectiveness is due to other factors
as well, and an important one is to keep the number of objects described to a minimum. For finding relevant data is
much more complicated as the number of objects rises.

For variables, reusable descriptions are brittle in the sense that if one of the related records to a variable changes, then
a new variable needs to be defined. This is especially true when considering the allowed values (the Value Domain)
for a variable. Many small variations in value domains exist in production databases, yet these differences are often
gratuitous (e.g., simple differences in the way some category is described that do not alter the meaning), differences in
representation (e.g., simple changes from letter codes to numeric ones), or differences in the way missing (or sentinel)
values are represented.

Gratuitous differences in expressions of meaning are reduced or eliminated by encouraging the usage of URIs (Uni-
form Resource Identifiers) to point to definition entries in taxonomies of terms and concepts. The principle of “write
once – use many”, very similar to the idea of reuse, is employed. Pointing to an entry rather than writing its value
eliminates transcription errors and simple expression differences, promotes comparability, and ensures interoperability.

Differences in representations, including codes, are simplified by separating them from the underlying meaning. This
is equivalent to the terminological issue of allowing for synonyms and homonyms of terms. Through reuse, all repre-
sentations with the same meaning are linked to the same concept. This is achieved through the use of Value Domains
and Conceptual Domains in the model presented here.

Sentinel values are important for any processing of statistical or experimental data, as there are multiple reasons some
data are not obtainable. Typically, these values are added to the value domain for a variable. However, each time
in the processing cascade the list of sentinel values changes, the value domain changes, which forces the variable to
change as well. Given that each stage of the processing cascade make require a different set of sentinel values due
to processing requirements, the number of variables mushrooms. And this variable proliferation is unmanageable and
unsustainable.

The model developed here is based on two important standards for the statistical community, GSIM (Generic Statistical
Information Model) and ISO/IEC 11179 (Metadata Registries). In fact, the model in the conceptual section of GSIM
is based closely on the metamodel defined in ISO/IEC 11179. Both models help to perpetuate the problems described
here, if each standard is followed in a conforming way. They reduce redundancy by separating value domains and
conceptual domains. However, they do not directly support the use of URIs and they do not separate value domains
from sentinel value lists. Also, they do not fully exploit the traceability that inheres in certain relationships between
the value and conceptual domains to create a continuum of connected variables that further reduces redundancy.

The purpose of this document is to present a model that significantly reduces the overhead described above. In
particular, we separate the sentinel values from the substantive ones. This separation allows us to greatly reduce the
number of value domains, and thus variables, that need to be maintained. With this separation, now there are three
classes of connected variables in which the represented variable specializes a conceptual variable by adding a value
domain, and the instance variable specializes the represented variable by adding a sentinel value domain.

Figure 1. Variable Cascade

30 Chapter 4. User Guides

DDI Documentation, Release 4.0 dev

4.3. The Variable Cascade 31

DDI Documentation, Release 4.0 dev

4.3.1 Example

Detergents

Imagine we are assessing environmental influences at the household level. One question we might ask is “What
detergents are used in the home?” In connection with this question we prepared show cards. Each show card lists a
series of detergents. There are multiple show cards because products vary by region. Each show card corresponds to
a code list. There are overlaps among the code lists but there are differences too.

In our model there is a conceptual variable. It has an enumerated conceptual domain that takes its categories from a
category set. Here the category set is an unduplicated list of detergents taken from all the show cards put together. The
conceptual domain might be exposure to chemicals in household detergents. The unit type might be households.

In our survey we ask a question corresponding to multiple represented variables, one corresponding to each show card.
Each represented variable is measured by an enumerated value domain that takes its values from the show card code
list.

All the represented variables here are derived from the same conceptual variable. This is the main point of the example:
a conceptual variable under the right conditions can connect multiple represented variables.

Sentinel Values

The represented variable code list in our model excludes sentinel values. Sentinel values were introduced into ISO/IEC
11404 in 2007. ISO/IEC 11404 describes a set of language independent datatypes and defines a sentinel value as
follows: a sentinel value is a “signaling” value such as nil, NaN (not a number), +inf and –inf (infinities), and so on.
Depending on the study, sentinel values may include missing values. ISO 21090 is a health datatypes standard based
on ISO/IEC 11404. ISO 21090 identifies 15 “nullflavors” that correspond to the concept of sentinel values introduced
in ISO 11404 .

In our model the instance variable adds a sentinel value domain to the represented variable from which it is derived.
In the process it grows the code list it derived from the represented variable to include a set of sentinel values. These
sentinel values reference a category set of sentinels called the sentinel conceptual domain. The sentinel values included
in any instance variable need not cover all the members of the sentinel conceptual domain. Instead they may refer just
to a subset.

During data acquisition, we ask a question that allows don’t know and refused, which an interviewer may ask or not,
depending on the skip logic. We create an instance variable corresponding to this question based on a represented
variable. The instance variable includes sentinel values. Note that the value domain of the represented variable need
not be an enumerated value domain. Instead it can be a described value domain. We choose to include three sentinel
values corresponding to three ISO 21090 nullflavors:

Nullflavor Description
UNK A proper value is applicable, but not known. Corresponds to Refused.
ASKU Information was sought but not found Corresponds to Don’t Know.
NA No proper value is applicable in this context (e.g., last menstrual period for a male)

Subsequently, we prepare the collected data for processing by SAS. SAS has its own set of sentinel values. For each
sentinel category the data acquisition instance variable accounts for, SAS has its own set of sentinel values. As a
consequence, the answers that correspond to sentinel values are different, and in the process of constructing a SAS
file, a second instance variable is created for the purposes of data processing.

However, both the data acquisition instance variable and the data processing instance variable are derived from the
same represented variable. That is the point of this example.

32 Chapter 4. User Guides

CHAPTER 5

Packages

5.1 NewObjectsForSimpleInstruments

New objects to enter the simple instrument view Contents

5.2 Identification

Objects to support Identification and Versioning Contents

5.2.1 AnnotatedIdentifiable

Used to identify objects for purposes of internal and/or external referencing. Elements of this type are versioned.
Provides administrative metadata about the object in addition to what is provided by Identifiable, including more details
on the versioning of the object. Most objects except for the ComplexDataTypes will inherit AnnotatedIdentfiable.

Extends

Identifiable

33

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
versionResponsibility xs:string 0..1
versionRationale xs:string 0..1
versionDate xs:dateTime 0..1
isUniversallyUnique xs:boolean 1..1
isPersistent xs:boolean 1..1
localId LocalId 0..n
basedOnObject BasedOnObject 0..1

versionResponsibility

Contributor who has the ownership and responsiblity for the current version.

versionRationale

The reason for making this version of the object.

versionDate

The date and time the object was changed.

isUniversallyUnique

Usually the combination of agency and id (ignoring different versions) is unique. If isUniversallyUnique is set to true,
it indicates that the id itsef is universally unique (unique across systems and/or agencies) and therefore the agency part
is not required to ensure uniqueness. Default value is false.

isPersistent

Usually the content of the current version is allowed to change, for example as the contibutor is working on the object
contents. However, when isPersistent is true, it indicates the there will be no more changes to the current version.
Default value is false.

localId

This is an identifier in a given local context that uniquely references an object, as opposed to the full ddi identifier
which has an agency plus the id. For example, localId could be a variable name in a dataset.

basedOnObject

The object/version that this object version is based on.

34 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

5.2. Identification 35

DDI Documentation, Release 4.0 dev

Graph

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

Identifiable

+ agency : xs :s tring
 + id : xs :s tring
 + vers ion : xs :s tring

Annotation

+ title : InternationalString
 + subTitle : InternationalString
 + alternateTitle : InternationalString
 + creator : AgentAssociation
 + publisher : AgentAssociation
 + contributor : AgentAssociation
 + date : AnnotationDate
 + language : CodeValueType
 + identifier : InternationalIdentifier
 + copyright : InternationalString
 + typeOfResource : CodeValueType
 + informationSource : InternationalString
 + vers ionIdentification : xs :s tring
 + vers ionRespons ibility : AgentAssociation
 + abstract : InternationalString
 + relatedResource : ResourceIdentifier
 + provenance : InternationalString
 + rights : InternationalString
 + recordCreationDate : xs :date
 + recordLastRevis ionDate : xs :date

0..1

1..n

36 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

5.2.2 Identifiable

Used to identify objects for purposes of internal and/or external referencing. Elements of this type are versioned. Most
objects except for the ComplexDataTypes will inherit from Identifiable or the more specialised AnnotatedIdentfiable.

Properties

Name Type Cardinality
agency xs:string 1..1
id xs:string 1..1
version xs:string 1..1

agency

This is the registered agency code with optional sub-agencies separated by dots. For example, diw.soep, ucl.qss,
abs.essg.

id

The ID of the object. This must conform to the allowed structure of the DDI Identifier and must be unique within the
declared scope of uniqueness (Agency or Maintainable).

version

The version number of the object. The version number is incremented whenever the non-administrative metadata
contained by the object changes.

Graph

Identifiable

+ agency : xs :s tring
 + id : xs :s tring
 + vers ion : xs :s tring

5.2. Identification 37

DDI Documentation, Release 4.0 dev

5.3 Discovery

Contains objects used to provide annotation and coverage information for DDI publications (views, object sets, data
files, etc.) Contents

5.3.1 Access

Describes access to the annotated object. This item includes a confidentiality statement, descriptions of the access
permissions required, restrictions to access, citation requirements, depositor requirements, conditions for access, a
disclaimer, any time limits for access restrictions, and contact information regarding access.

Extends

AnnotatedIdentifiable

Properties

Name Type Cardinality
description StructuredString 0..1
confidentialityStatement StructuredString 0..1
accessPermission Form 0..n
restrictions StructuredString 0..1
citationRequirement StructuredString 0..1
depositRequirement StructuredString 0..1
accessConditions StructuredString 0..1
disclaimer StructuredString 0..1
contactAgent AgentAssociation 0..n
applyAccessTo InternationalIdentifier 0..n
validDates Date 0..1

description

A description of the content and purpose of the access description. May be expressed in multiple languages and
supports the use of structured content.

confidentialityStatement

A statement regarding the confidentiality of the related data or metadata.

accessPermission

A link to a form used to provide access to the data or metadata including a statement of the purpose of the form.

38 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

restrictions

A statement regarding restrictions to access. May be expressed in multiple languages and supports the use of structured
content.

citationRequirement

A statement regarding the citation requirement. May be expressed in multiple languages and supports the use of
structured content.

depositRequirement

A statement regarding depositor requirements. May be expressed in multiple languages and supports the use of struc-
tured content.

accessConditions

A statement regarding conditions for access. May be expressed in multiple languages and supports the use of structured
content.

disclaimer

A disclaimer regarding the liability of the data producers or providers. May be expressed in multiple languages and
supports the use of structured content.

contactAgent

The agent to contact regarding access including the role of the agent.

applyAccessTo

Identification for an object covered by the access description. This may be any annotated object (collection, publica-
tion, identifiable object).

validDates

The date range or start date of the access description.

5.3. Discovery 39

DDI Documentation, Release 4.0 dev

Graph

Access

+ description : StructuredString
 + confidentialityStatement : StructuredString
 + accessPermiss ion : Form
 + restrictions : StructuredString
 + citationRequirement : StructuredString
 + depos itRequirement : StructuredString
 + accessConditions : StructuredString
 + disclaimer : StructuredString
 + contactAgent : AgentAssociation
 + applyAccessTo : InternationalIdentifier
 + validDates : Date

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.3.2 Annotation

Provides annotation information on the object to support citation and crediting of the creator(s) of the object.

Extends

Identifiable

40 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
title InternationalString 0..1
subTitle InternationalString 0..n
alternateTitle InternationalString 0..n
creator AgentAssociation 0..n
publisher AgentAssociation 0..n
contributor AgentAssociation 0..n
date AnnotationDate 0..n
language CodeValueType 0..n
identifier InternationalIdentifier 0..n
copyright InternationalString 0..n
typeOfResource CodeValueType 0..n
informationSource InternationalString 0..n
versionIdentification xs:string 0..1
versionResponsibility AgentAssociation 0..n
abstract InternationalString 0..1
relatedResource ResourceIdentifier 0..n
provenance InternationalString 0..n
rights InternationalString 0..n
recordCreationDate xs:date 0..1
recordLastRevisionDate xs:date 0..1

title

Full authoritative title. List any additional titles for this item as AlternativeTitle.

subTitle

Secondary or explanatory title.

alternateTitle

An alternative title by which a data collection is commonly referred, or an abbreviation for the title.

creator

Person, corporate body, or agency responsible for the substantive and intellectual content of the described object.

publisher

Person or organization responsible for making the resource available in its present form.

contributor

The name of a contributing author or creator, who worked in support of the primary creator given above.

5.3. Discovery 41

DDI Documentation, Release 4.0 dev

date

A date associated with the annotated object (not the coverage period). Use typeOfDate to specify the type of date such
as Version, Publication, Submitted, Copyrighted, Accepted, etc.

language

Language of the intellectual content of the described object. Strongly recommend the use of language codes supported
by xs:language which include the 2 and 3 character and extended structures defined by RFC4646 or its successors.

identifier

An identifier or locator. Contains identifier and Managing agency (ISBN, ISSN, DOI, local archive). Indicates if it is
a URI.

copyright

The copyright statement.

typeOfResource

Provide the type of the resource. This supports the use of a controlled vocabulary. It should be appropriate to the level
of the annotation.

informationSource

The name or identifier of source information for the annotated object.

versionIdentification

Means of identifying the current version of the annotated object.

versionResponsibility

The agent responsible for the version. May have an associated role.

abstract

An a abstract (description) of the annotated object.

relatedResource

Provide the identifier, managing agency, and type of resource related to this object.

42 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

provenance

A statement of any changes in ownership and custody of the resource since its creation that are significant for its
authenticity, integrity, and interpretation.

rights

Information about rights held in and over the resource. Typically, rights information includes a statement about various
property rights associated with the resource, including intellectual property rights.

recordCreationDate

Date the record was created

recordLastRevisionDate

Date the record was last revised

5.3. Discovery 43

DDI Documentation, Release 4.0 dev

Graph

Annotation

+ title : InternationalString
 + subTitle : InternationalString
 + alternateTitle : InternationalString
 + creator : AgentAssociation
 + publisher : AgentAssociation
 + contributor : AgentAssociation
 + date : AnnotationDate
 + language : CodeValueType
 + identifier : InternationalIdentifier
 + copyright : InternationalString
 + typeOfResource : CodeValueType
 + informationSource : InternationalString
 + vers ionIdentification : xs :s tring
 + vers ionRespons ibility : AgentAssociation
 + abstract : InternationalString
 + relatedResource : ResourceIdentifier
 + provenance : InternationalString
 + rights : InternationalString
 + recordCreationDate : xs :date
 + recordLastRevis ionDate : xs :date

Identifiable

+ agency : xs :s tring
 + id : xs :s tring
 + vers ion : xs :s tring

5.3.3 BoundingBox

A type of Spatial coverage describing a rectangular area within which the actual range of location fits. A BoundingBox
can be described by 4 numbers, or two x,y coordinates - the maxima of the north, south, east, and west coordinates
found in the area.

Extends

AnnotatedIdentifiable

44 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
eastLongitude xs:decimal 1..1
westLongitude xs:decimal 1..1
northLatitude xs:decimal 1..1
southLatitude xs:decimal 1..1

eastLongitude

The easternmost coordinate expressed as a decimal between the values of -180 and 180 degrees

westLongitude

The westernmost coordinate expressed as a decimal between the values of -180 and 180 degrees

northLatitude

The northernmost coordinate expressed as a decimal between the values of -90 and 90 degrees.

southLatitude

The southermost latitude expressed as a decimal between the values of -90 and 90 degrees

5.3. Discovery 45

DDI Documentation, Release 4.0 dev

Graph

BoundingBox

+ eastLongitude : xs :decimal
 + westLongitude : xs :decimal
 + northLatitude : xs :decimal
 + southLatitude : xs :decimal

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.3.4 Coverage

Coverage information for an annotated object. Includes coverage information for temporal, topical, and spatial cover-
age.

Extends

AnnotatedIdentifiable

Properties

Name Type Cardinality
description Description 0..n

46 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

description

A generic description including temporal, topical, and spatial coverage that is the equivalent of dc:coverage (the
refinement base of dcterms:spatial and dcterms:temporal. Use specific coverage content for detailed information.

Graph

Coverage

+ description : Description

hasTemporalCoverage

hasTopicalCoverage

hasSpatialCoverage

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

TemporalCoverage

+ coverageDate : ReferenceDate

0..n

0..1

TopicalCoverage

+ subject : InternationalCodeValueType
 + keyword : InternationalCodeValueType

0..n

0..1

SpatialCoverage

+ description : Description
 + spatialAreaCode : CodeValueType
 + spatialObject : SpatialObject

hasBoundingBox

0..n

0..1

5.3.5 SpatialCoverage

A description of spatial coverage (geographic coverage) of the annotated object. Spatial coverage is described using a
number of objects that support searching by a wide range of systems (geospatial coordinates, geographic classification
systems, and general systems using dcterms:spatial.

Extends

AnnotatedIdentifiable

5.3. Discovery 47

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
description Description 0..1
spatialAreaCode CodeValueType 0..n
spatialObject SpatialObject 0..1

description

A textual description of the spatial coverage to support general searches.

spatialAreaCode

Supports the use of a standardized code such as ISO 3166-1, the Getty Thesaurus of Geographic Names, FIPS-5, etc.

spatialObject

Indicates the most discrete spatial object type identified for a single case. Note that data can be collected at a geographic
point (address) and reported as such in a protected file, and then aggregated to a polygon for a public file.

48 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

SpatialCoverage

+ description : Description
 + spatialAreaCode : CodeValueType
 + spatialObject : SpatialObject

hasBoundingBox

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

BoundingBox

+ eastLongitude : xs :decimal
 + westLongitude : xs :decimal
 + northLatitude : xs :decimal
 + southLatitude : xs :decimal

0..n

0..n

5.3.6 TemporalCoverage

Describes the date or time period covered by the annotated object. Allows for the use of a specifying the type of
coverage date as well as associated subjects or keywords.

Extends

AnnotatedIdentifiable

5.3. Discovery 49

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
coverageDate ReferenceDate 0..n

coverageDate

A date referencing a specific aspect of temporal coverage. The date may be typed to reflect coverage date, collection
date, referent date, etc. Subject and Keywords may be associated with the date to specify a specific set of topical
information (i.e. Residence associated with a date 5 years prior to the collection date).

Graph

TemporalCoverage

+ coverageDate : ReferenceDate

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.3.7 TopicalCoverage

Describes the topical coverage of the module using Subject and Keyword. Note that upper level modules should
include all the members of lower level modules. Subjects are members of structured classification systems such as
formal subject headings in libraries. Keywords may be structured (e.g. TheSoz thesauri) or unstructured and reflect
the terminology found in the document and other related (broader or similar) terms.

50 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Extends

AnnotatedIdentifiable

Properties

Name Type Cardinality
subject InternationalCodeValueType 0..n
keyword InternationalCodeValueType 0..n

subject

A subject that describes the topical coverage of the content of the annotated object. Subjects are members of structured
classification systems such as formal subject headings in libraries. Uses and InternationalCodeValue and may indicate
the language of the code used.

keyword

A keyword that describes the topical coverage of the content of the annotated object. Keywords may be structured
(e.g. TheSoz thesauri) or unstructured and reflect the terminology found in the document and other related (broader or
similar) terms. Uses and InternationalCodeValue and may indicate the language of the code used.

5.3. Discovery 51

DDI Documentation, Release 4.0 dev

Graph

TopicalCoverage

+ subject : InternationalCodeValueType
 + keyword : InternationalCodeValueType

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.4 Primitives

Base data types, a restricted set of object only available as properties of other objects Contents

5.5 Processing

Contents

5.5.1 Command

Provides the following information on the command The content of the command, the programming language used,
the pieces of information (InParameters) used by the command, the pieces of information created by the command
(OutParameters) and the source of the information used by the InParameters (Binding).

Extends

AnnotatedIdentifiable

52 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
programLanguage CodeValueType 0..1
commandContent xs:string 0..1

programLanguage

Designates the programming language used for the command. Supports the use of a controlled vocabulary.

commandContent

Content of the command itself expressed in the language designated in Programming Language.

Graph

Command

+ programLanguage : CodeValueType
 + commandContent : xs :s tring

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.5.2 CommandFile

Identifies and provides a link to an external copy of the command, for example, a SAS Command Code script. Des-
ignates the programming language of the command file, designates input and output parameters, binding information

5.5. Processing 53

DDI Documentation, Release 4.0 dev

between input and output parameters, a description of the location of the file , and a URN or URL for the command
file.

Extends

AnnotatedIdentifiable

Properties

Name Type Cardinality
programLanguage CodeValueType 0..1
location InternationalString 0..1
uri xs:anyURI 0..1

programLanguage

Designates the programming language used for the command. Supports the use of a controlled vocabulary.

location

A description of the location of the file. This may not be machine actionable. It supports a description expressed in
multiple languages.

uri

The URL or URN of the command file.

54 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

CommandFile

+ programLanguage : CodeValueType
 + location : InternationalString
 + uri : xs :anyURI

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.5.3 GenerationInstruction

Processing instructions for recodes, derivations from multiple question or variable sources, and derivations based on
external sources. Instructions should be listed separately so they can be referenced individually.

Extends

Act

Properties

Name Type Cardinality
externalInformation AccessRights 0..n
description StructuredString 0..1
commandCode CommandCode 0..n
isDerived xs:boolean 0..1

5.5. Processing 55

DDI Documentation, Release 4.0 dev

externalInformation

Reference to an external source of information used in the coding process, for example a value from a chart, etc.

description

A description of the generation instruction. May be expressed in multiple languages and supports the use of structured
content.

commandCode

Structured information used by a system to process the instruction.

isDerived

Default setting is “true”, the instruction describes a derivation. If the instruction is a simple recode, set to “false”.

Graph

GenerationInstruction

+ externalInformation : AccessRights
 + description : StructuredString
 + commandCode : CommandCode
 + isDerived : xs :boolean

sourceVariable

aggregation

Act

DDI4_SourceReferenceType

0..1

0..n

DDI4_Aggregation

0..1

0..1

56 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

5.5.4 Parameter

A parameter is a structure that specifically identifies a source of input or output information so that it can be use
pragmatically.

Extends

AnnotatedIdentifiable

Properties

Name Type Cardinality
alias xs:NMTOKEN 0..1
defaultValue Value 0..1
isArray xs:boolean 0..1

alias

If the content of the parameter is being used in a generic set of code as an alias for the value of an object in a formula
(for example source code for a statistical program) enter that name here. This provides a link from the identified
parameter to the alias in the code.

defaultValue

Provides a default value for the parameter if there is no value provided by the object it is bound to or the process that
was intended to produce a value.

isArray

If set to “true” indicates that the content of the parameter is a delimited array rather than a single object and should be
processed as such.

5.5. Processing 57

DDI Documentation, Release 4.0 dev

Graph

Parameter

+ alias : xs :NMTOKEN
 + defaultValue : Value
 + isArray : xs :boolean

valueRepresentation

ValueDomain

+ unitOfMeasurement : xs :s tring
 + label : Label
 + definition : StructuredString
 + description : StructuredString

0..n

1..1

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.5.5 ProcessingInstruction

Extends

ControlConstruct

Properties

Name Type Cardinality
commandCode CommandCode 0..n

commandCode

Structured information used by a system to process the instruction.

58 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

Process ingInstruction

+ commandCode : CommandCode

ControlConstruct

5.5.6 StructuredCommand

This type structures an empty stub which is used as the basis for extensions added using external namespaces such as
MathML. The DDI 3.0 extension methodology is used here - a new module is declared, and the StructuredCommand
element is used as the head of a substitution group to insert whatever XML is needed to express the command.

Extends

AnnotatedIdentifiable

5.5. Processing 59

DDI Documentation, Release 4.0 dev

Graph

StructuredCommand

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.6 Utility

Contents

5.6.1 Note

A note related to one or more identifiable objects. Note is designed to be an inherent part of the DDI. (Unlike XML
comments or other types of system-level annotations, which may be removed during processing.) DDI recommends
placing the note within the maintainable object containing the objects this note relates to in order to assist tracking
of note items within a study. Each note may indicate who is responsible for the note, its type using a controlled
vocabulary, the subject of the note, a head and note content, a set of key/value pairs and language specification for the
overall note. In addition each note must be related to one or more identifiable objects.

Extends

AnnotatedIdentifiable

60 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
typeOfNote CodeValueType 0..1
noteSubject CodeValueType 0..1
relationship Relationship 0..n
responsibility xs:string 0..1
header InternationalString 0..1
noteContent StructuredString 0..1
proprietaryInfo StandardKeyValuePair 0..1
xml:lang xs:language 0..1

typeOfNote

Specifies the type of note. Supports the use of a controlled vocabulary.

noteSubject

The subject of the note.

relationship

Reference to one or more identifiable objects which the note is related to.

responsibility

The person or agency responsible for adding the note.

header

A brief label or heading for the note contents.

noteContent

The content of the note. Note should contain content except when it is a production flag that is fully explained by its
“type”. If the note provides system specific information in a structured way using XHTML formating, DDI strongly
recommends the use of local extensions or the Key/Value pair structure in ProprietaryInfo whenever possible.

proprietaryInfo

A set of actions related to the object as described by a set of name-value pairs. This would commonly be used in a
case where additional information needs to be recorded regarding the content of a new element or attribute that has
not yet been added to the schema, for example when a bug for a missing object has been filed and the user wishes to
record the content prior to correction in the schema. Ideally this should be handled by local extensions of the schema
as described in Part 2 of the formal documentation. However, the structure in Note allows for an unanticipated need
for an extension at run time by providing a means of capturing system specific information in a structured way.

5.6. Utility 61

DDI Documentation, Release 4.0 dev

xml:lang

Indicates the language of content. Note that xmlang allows for a simple 2 or 3 character language code or a language
code extended by a country code , for example en-au for English as used in Australia.

Graph

Note

+ typeOfNote : CodeValueType
 + noteSubject : CodeValueType
 + relationship : Relationship
 + respons ibility : xs :s tring
 + header : InternationalString
 + noteContent : StructuredString
 + proprietaryInfo : StandardKeyValuePair
 + xml:lang : xs :language

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.7 SimpleDiscovery

Contents

5.8 Representations

Logical Data Description covers the logical content of a dataset - the “variable cascade”. Contents

62 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

5.8.1 CategorySet

A Category Set is a type of Node Set which groups Categories.

Extends

NodeSet

Graph

CategorySet

hasCategory

NodeSet

isBasedOn

contains

hasLevel

hasNodeParentChild

hasNodePartWhole

hasNodeSetParentChild

hasNodeSetPartWhole

hasLevelParentChild

Category

1..n

1..n

5.8. Representations 63

DDI Documentation, Release 4.0 dev

5.8.2 ClassificationFamily

A Classification Family is a group of Classification Series related from a particular point of view. The Classification
Family is related by being based on a common Concept (e.g. economic activity).[GSIM1.1]

Extends

Collection

64 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

Class ificationFamily

has

groups

Class ificationIndex

+ releaseDate : Date
 + maintenanceUnit : InternationalString
 + contactPersons : InternationalString
 + publications : InternationalString
 + languages : InternationalString
 + corrections : InternationalString
 + codingInstructions : InternationalString

isOrderedBy

groups

0..n

0..n

Collection

+ type : CollectionType

contains

isOrderedBy

Class ificationSeries

+ context : StructuredString
 + objectsOrUnitsClass ified : StructuredString
 + subjectAreas : StructuredString
 + owners : String
 + keywords : StructuredString

groups

1..n

0..1

5.8.3 ClassificationIndex

A Classification Index is an ordered list (alphabetical, in code order etc) of Classification Index Entries. A Clas-
sification Index can relate to one particular or to several Statistical Classifications. [GSIM Statistical Classification
Model]

5.8. Representations 65

DDI Documentation, Release 4.0 dev

Extends

Collection

Properties

Name Type Cardinality
releaseDate Date 0..1
maintenanceUnit InternationalString 0..1
contactPersons InternationalString 0..1
publications InternationalString 0..n
languages InternationalString 0..n
corrections InternationalString 0..n
codingInstructions InternationalString 0..n

releaseDate

Date when the current version of the Classification Index was released.

maintenanceUnit

The unit or group of persons within the organisation responsible for the Classification Index, i.e. for adding, changing
or deleting Classification Index Entries.

contactPersons

Person(s) who may be contacted for additional information about the Classification Index.

publications

A list of the publications in which the Classification Index has been published.

languages

A Classification Index can exist in several languages. Indicates the languages available. If a Classification Index exists
in several languages, the number of entries in each language may be different, as the number of terms describing the
same phenomenon can change from one language to another. However, the same phenomena should be described in
each language.

corrections

Verbal summary description of corrections, which have occurred within the Classification Index. Corrections include
changing the item code associated with an Classification Index Entry.

66 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

codingInstructions

Additional information which drives the coding process for all entries in a Classification Index.

Graph

Class ificationIndex

+ releaseDate : Date
 + maintenanceUnit : InternationalString
 + contactPersons : InternationalString
 + publications : InternationalString
 + languages : InternationalString
 + corrections : InternationalString
 + codingInstructions : InternationalString

isOrderedBy

groups

Collection

+ type : CollectionType

contains

isOrderedBy

IndexOrder

precedingEntry

followingEntry

1..n

1..n

Class ificationIndexEntry

+ text : InternationalString
 + validfrom : Date
 + validto : Date
 + codingInstructions : InternationalString

1..n

1..n

5.8. Representations 67

DDI Documentation, Release 4.0 dev

5.8.4 ClassificationIndexEntry

A Classification Index Entry is a word or a short text (e.g. the name of a locality, an economic activity or an occu-
pational title) describing a type of object/unit or object property to which a Classification Item applies, together with
the code of the corresponding Classification Item. Each Classification Index Entry typically refers to one item of the
Statistical Classification. Although a Classification Index Entry may be associated with a Classification Item at any
Level of a Statistical Classification, Classification Index Entries are normally associated with items at the lowest Level.

Extends

Member

Properties

Name Type Cardinality
text InternationalString 1..n
validfrom Date 0..1
validto Date 0..1
codingInstructions InternationalString 0..n

text

Text describing the type of object/unit or object property.

validfrom

Date from which the Classification Index Entry became valid. The date must be defined if the Classification Index
Entry belongs to a floating Classification Index.

validto

Date at which the Classification Index Entry became invalid. The date must be defined if the Classification Index Entry
belongs to a floating Classification Index and is no longer valid.

codingInstructions

Additional information which drives the coding process. Required when coding is dependent upon one or many other
factors.

68 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

Class ificationIndexEntry

+ text : InternationalString
 + validfrom : Date
 + validto : Date
 + codingInstructions : InternationalString

Member

+ label : Label
 + definition : StructuredString
 + description : StructuredString

5.8.5 ClassificationItem

A Classification Item represents a Category at a certain Level within a Statistical Classification.

Extends

Node

Properties

Name Type Cardinality
isValid xs:boolean 0..1
isGenerated xs:boolean 0..1
explanatoryNotes StructuredString 0..n
futureNotes InternationalString 0..n
changeLog InternationalString 0..1
changeFromPreviousVersion InternationalString 0..1
validDate Date 0..1
officialName Name 1..1

5.8. Representations 69

DDI Documentation, Release 4.0 dev

isValid

Indicates whether or not the item is currently valid. If updates are allowed in the Statistical Classification, an item may
be restricted in its validity, i.e. it may become valid or invalid after the Statistical Classification has been released.

isGenerated

Indicates whether or not the item has been generated to make the level to which it belongs complete

explanatoryNotes

A Classification Item may be associated with explanatory notes, which further describe and clarify the contents of the
Category. Explanatory notes consist of: General note: Contains either additional information about the Category, or a
general description of the Category, which is not structured according to the “includes”, “includes also”, “excludes”
pattern. Includes: Specifies the contents of the Category. Includes also: A list of borderline cases, which belong to the
described Category. Excludes: A list of borderline cases, which do not belong to the described Category. Excluded
cases may contain a reference to the Classification Items to which the excluded cases belong.

futureNotes

The future events describe a change (or a number of changes) related to an invalid item. These changes may e.g. have
turned the now invalid item into one or several successor items. This allows the possibility to follow successors of the
item in the future.

changeLog

Describes the changes, which the item has been subject to during the life time of the actual Statistical Classification.

changeFromPreviousVersion

Describes the changes, which the item has been subject to from the previous version to the actual Statistical Classifi-
cation

validDate

Dates for which the classification is valid. Date from which the item became valid. The date must be defined if the
item belongs to a floating Statistical classification. Date at which the item became invalid. The date must be defined if
the item belongs to a floating Statistical classification and is no longer valid

officialName

A Classification Item has a name as provided by the owner or maintenance unit. The name describes the content of
the category. The name is unique within the Statistical Classification to which the item belongs, except for categories
that are identical at more than one level in a hierarchical classification

70 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

Class ificationItem

+ isValid : xs :boolean
 + isGenerated : xs :boolean
 + explanatoryNotes : StructuredString
 + futureNotes : InternationalString
 + changeLog : InternationalString
 + changeFromPreviousVers ion : InternationalString
 + validDate : Date
 + officialName : Name

caseLaw

groups

excludes

0..n

0..n

Node

contains

takesMeaningFrom

AuthorizationSource

+ statementOfAuthorization : StructuredString
 + legalMandate : InternationalString
 + authorizationDate : xs :dateTime
 + description : StructuredString

authorizingOrganization

authorizingIndividual

0..n

0..n

Class ificationIndexEntry

+ text : InternationalString
 + validfrom : Date
 + validto : Date
 + codingInstructions : InternationalString

1..n

0..n

5.8.6 ClassificationSeries

A Classification Series is an ensemble of one or more Statistical Classifications, based on the same concept, and related
to each other as versions or updates. Typically, these Statistical Classifications have the same name (for example, ISIC
or ISCO).

5.8. Representations 71

DDI Documentation, Release 4.0 dev

Extends

Collection

Properties

Name Type Cardinality
context StructuredString 0..1
objectsOrUnitsClassified StructuredString 1..1
subjectAreas StructuredString 1..1
owners String 0..1
keywords StructuredString 0..n

context

ClassificationSeries can be designed in a specific context.

objectsOrUnitsClassified

A ClassificationSeries is designed to classify a specific type of object/unit according to a specific attribute.

subjectAreas

Areas of statistics in which the ClassificationSeries is implemented.

owners

The statistical office or other authority, which created and maintains the StatisticalClassification (s) related to the
ClassificationSeries. A ClassificationSeries may have several owners.

keywords

A ClassificationSeries can be associated with one or a number of keywords.

72 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

5.8. Representations 73

DDI Documentation, Release 4.0 dev

Graph

Class ificationSeries

+ context : StructuredString
 + objectsOrUnitsClass ified : StructuredString
 + subjectAreas : StructuredString
 + owners : String
 + keywords : StructuredString

groups

Collection

+ type : CollectionType

contains

isOrderedBy

Statis ticalClass ification

+ introduction : StructuredString
 + releaseDate : Date
 + terminationDate : Date
 + validDate : Date
 + isCurrent : xs :boolean
 + isFloating : xs :boolean
 + changeFromBase : StructuredString
 + purposeOfVariant : StructuredString
 + copyright : String
 + updateChanges : StructuredString
 + availableLanguage : xs :language

hasClass ificationItem

isMaintainedBy

hasDis tribution

variantOf

has

predecessor

successor

0..n

1..n

74 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

5.8.7 Code

A Designation for a Category.

Extends

Designation

Properties

Name Type Cardinality
value Value 1..1

value

Specified value of the code

5.8. Representations 75

DDI Documentation, Release 4.0 dev

Graph

Code

+ value : Value

hasCategory

Des ignation

+ label : Label
 + description : StructuredString

hasVocabulary

Category

0..n

1..1

5.8.8 CodeList

A list of Codes and associated Categories. May be flat or hierarchical.

Extends

NodeSet

76 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

CodeLis t

hasCode

references

represents

CategorySet

hasCategory

0..1

1..n

EnumeratedValueDomain

references

0..n

1..n

NodeSet

isBasedOn

contains

hasLevel

hasNodeParentChild

hasNodePartWhole

hasNodeSetParentChild

hasNodeSetPartWhole

hasLevelParentChild

Code

+ value : Value

hasCategory

1..n

1..n

5.8.9 CorrespondenceTable

A Correspondence Table expresses a relationship between two NodeSets.

5.8. Representations 77

DDI Documentation, Release 4.0 dev

Extends

OrderedCollectionCorrespondence

Properties

Name Type Cardinality
owners String 0..1
maintenanceUnit String 0..1
contactPersons String 0..n
publications StructuredString 0..n
effectivePeriod Date 0..1

owners

The statistical office, other authority or section that created and maintains the Correspondence Table. A Correspon-
dence Table may have several owners.

maintenanceUnit

The unit or group of persons who are responsible for the Correspondence Table, i.e. for maintaining and updating it.

contactPersons

The person(s) who may be contacted for additional information about the Correspondence Table.

publications

A list of the publications in which the Correspondence Table has been published.

effectivePeriod

Effective period of validity of the CorrespondenceTable. The correspondence table expresses the relationships between
the two NodeSets as they existed on the period specified in the table.

78 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

5.8. Representations 79

DDI Documentation, Release 4.0 dev

Graph

CorrespondenceTable

+ owners : String
 + maintenanceUnit : String
 + contactPersons : String
 + publications : StructuredString
 + effectivePeriod : Date

contains

source

target

sourceLevel

targetLevel

NodeSet

isBasedOn

contains

hasLevel

hasNodeParentChild

hasNodePartWhole

hasNodeSetParentChild

hasNodeSetPartWhole

hasLevelParentChild

1..n

0..n

1..n

0..n

Level

groups

isDefinedBy

0..1

0..n

0..1

0..n

OrderedCollectionCorrespondence

source

target

contains

Map

+ validFrom : Date
 + validTo : Date

mapsSource

mapsTarget

1..n

1..n

80 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

5.8.10 DataType

Set of distinct values, characterized by properties of those values, and by operations on those values. (From ISO/IEC
11404 - General purpose datatypes)

Extends

AnnotatedIdentifiable

Properties

Name Type Cardinality
scheme InternationalString 1..1

scheme

ISO 11404, Excel, SAS, R, etc.

Graph

DataType

+ scheme : InternationalString

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.8. Representations 81

DDI Documentation, Release 4.0 dev

5.8.11 DescribedSentinelValueDomain

A described value domain whose values are used only for the processing of data after capture but before dissemination.

Extends

DescribedValueDomain

Graph

DescribedSentinelValueDomain

measures

Ins tanceVariable

+ variableRole : StructuredString

measures

isPopulatedBy

hasPhys icalType

0..n

0..1

DescribedValueDomain

references

5.8.12 DescribedSubstantiveValueDomain

A described value domain whose values are associated with the scientific questions of interest in a study.

Extends

DescribedValueDomain

82 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

DescribedSubstantiveValueDomain

measures

RepresentedVariable

takesValueFrom

hasUniverse

has IntendedType

0..n

0..1

DescribedValueDomain

references

5.8.13 DescribedValueDomain

A Value Domain defined by an expression. [GSIM 1.1]

Extends

ValueDomain

5.8. Representations 83

DDI Documentation, Release 4.0 dev

Graph

DescribedValueDomain

references

DescribedConceptualDomain

1..1

0..n

ValueDomain

+ unitOfMeasurement : xs :s tring
 + label : Label
 + definition : StructuredString
 + description : StructuredString

5.8.14 Designation

The name given to an object for identification.

Extends

AnnotatedIdentifiable

Properties

Name Type Cardinality
label Label 0..n
description StructuredString 0..1

label

A display label for the Designation. May be expressed in multiple languages. Repeat for labels with different content,
for example, labels with differing length limitations.

84 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

description

A description of the purpose or use of the Designation. May be expressed in multiple languages and supports the use
of structured content.

Graph

Des ignation

+ label : Label
 + description : StructuredString

hasVocabulary

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

Vocabulary

+ abbreviation : InternationalString
 + location : URI
 + comments : StructuredString

1..n

0..n

5.8.15 EnumeratedSentinelValueDomain

An enumerated value domain whose values are used only for the processing of data after capture but before dissemi-
nation.

5.8. Representations 85

DDI Documentation, Release 4.0 dev

Extends

EnumeratedValueDomain

Graph

EnumeratedSentinelValueDomain

measures

InstanceVariable

+ variableRole : StructuredString

measures

isPopulatedBy

hasPhys icalType

0..n

0..1

EnumeratedValueDomain

references

5.8.16 EnumeratedSubstantiveValueDomain

An enumerated value domain whose values are associated with the scientific questions of interest in a study.

Extends

EnumeratedValueDomain

86 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

EnumeratedSubstantiveValueDomain

measures

RepresentedVariable

takesValueFrom

hasUniverse

has IntendedType

0..n

0..1

EnumeratedValueDomain

references

5.8.17 EnumeratedValueDomain

A Value domain expressed as a list of categories and associated codes.

Extends

ValueDomain

5.8. Representations 87

DDI Documentation, Release 4.0 dev

Graph

EnumeratedValueDomain

references

EnumeratedConceptualDomain

takesCategoriesFrom

1..1

0..n

ValueDomain

+ unitOfMeasurement : xs :s tring
 + label : Label
 + definition : StructuredString
 + description : StructuredString

5.8.18 IndexOrder

Indexing order, defined either by predecessor-successor pairs or by a criteria (e.g. alphabetical, in code order, etc.)

Extends

OrderRelation

88 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

IndexOrder

precedingEntry

followingEntry

Class ificationIndexEntry

+ text : InternationalString
 + validfrom : Date
 + validto : Date
 + codingInstructions : InternationalString

1..1

0..1

1..1

0..1

OrderRelation

+ type : OrderRelationshipType
 + criteria : StructuredString
 + isRegularHierarchy : xs :boolean
 + label : Label
 + definition : StructuredString
 + description : StructuredString

predecessor

successor

5.8.19 Level

The Level describes the nesting structure of a hierarchical collection.

Extends

Collection

5.8. Representations 89

DDI Documentation, Release 4.0 dev

Graph

Level

groups

isDefinedBy

Concept

0..1

0..n

Collection

+ type : CollectionType

contains

isOrderedBy

Node

contains

takesMeaningFrom

1..1

1..n

5.8.20 LevelParentChild

Parent-child specialization of OrderRelation between Levels within a NodeSet. The inherited type property is set to
“total” to specify that the parent-child relationships among Levels in any given NodeSet define a linear sequence.

Extends

OrderRelation

90 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

LevelParentChild

parent

child

Level

groups

isDefinedBy

1..1

0..1

1..1

0..1

OrderRelation

+ type : OrderRelationshipType
 + criteria : StructuredString
 + isRegularHierarchy : xs :boolean
 + label : Label
 + definition : StructuredString
 + description : StructuredString

predecessor

successor

5.8.21 Map

Extends

OrderedMemberCorrespondence

Properties

Name Type Cardinality
validFrom Date 0..1
validTo Date 0..1

validFrom

Date from which the Map became valid. The date must be defined if the Map belongs to a floating Correspondenc-
eTable.

5.8. Representations 91

DDI Documentation, Release 4.0 dev

validTo

Date at which the Map became invalid. The date must be defined if the Map belongs to a floating Correspondence
Table and is no longer valid.

Graph

Map

+ validFrom : Date
 + validTo : Date

mapsSource

mapsTarget

OrderedMemberCorrespondence

source

target

Node

contains

takesMeaningFrom

0..n

1..n

0..n

1..n

5.8.22 Node

A combination of a category and related attributes.

Extends

Member

92 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

Node

contains

takesMeaningFrom

Category

1..1

0..n

Member

+ label : Label
 + definition : StructuredString
 + description : StructuredString

Des ignation

+ label : Label
 + description : StructuredString

hasVocabulary

0..n

0..n

5.8.23 NodeParentChild

Parent-child specialization of OrderRelation between Nodes within a NodeSet. The inherited type property is set to
“partial” to specify that the parent-child relationships among Nodes define a tree structure.

Extends

OrderRelation

5.8. Representations 93

DDI Documentation, Release 4.0 dev

Graph

NodeParentChild

parent

child

Node

contains

takesMeaningFrom

1..1

0..n

1..1

0..1

OrderRelation

+ type : OrderRelationshipType
 + criteria : StructuredString
 + isRegularHierarchy : xs :boolean
 + label : Label
 + definition : StructuredString
 + description : StructuredString

predecessor

successor

5.8.24 NodePartWhole

Part-whole specialization of OrderRelation between Nodes within a NodeSet. The inherited type property is set to
“partial” to specify that the part-whole relationships among Nodes define a tree structure.

Extends

OrderRelation

94 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

NodePartWhole

whole

part

Node

contains

takesMeaningFrom

1..1

0..n

1..1

0..1

OrderRelation

+ type : OrderRelationshipType
 + criteria : StructuredString
 + isRegularHierarchy : xs :boolean
 + label : Label
 + definition : StructuredString
 + description : StructuredString

predecessor

successor

5.8.25 NodeSet

A NodeSet is a set of Nodes, which could be organized into a hierarchy of Levels.

Extends

Collection

5.8. Representations 95

DDI Documentation, Release 4.0 dev

Graph

NodeSet

isBasedOn

contains

hasLevel

hasNodeParentChild

hasNodePartWhole

hasNodeSetParentChild

hasNodeSetPartWhole

hasLevelParentChild

Concept

1..n

0..n

Collection

+ type : CollectionType

contains

isOrderedBy

Node

contains

takesMeaningFrom

1..n

1..n

Level

groups

isDefinedBy

1..n

0..n

NodeParentChild

parent

child

1..n

0..n

NodePartWhole

whole

part

1..n

0..n

NodeSetParentChild

parent

child

1..n

0..n

NodeSetPartWhole

whole

part

1..n

0..n

LevelParentChild

parent

child

1..n

0..n

5.8.26 NodeSetParentChild

Parent-child specialization of OrderRelation between NodeSets. The inherited type property is set to “partial” to
specify that the parent-child relationships among NodeSets define a tree structure.

Extends

OrderRelation

96 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

NodeSetParentChild

parent

child

NodeSet

isBasedOn

contains

hasLevel

hasNodeParentChild

hasNodePartWhole

hasNodeSetParentChild

hasNodeSetPartWhole

hasLevelParentChild

1..1

0..n

1..10..1

OrderRelation

+ type : OrderRelationshipType
 + criteria : StructuredString
 + isRegularHierarchy : xs :boolean
 + label : Label
 + definition : StructuredString
 + description : StructuredString

predecessor

successor

5.8.27 NodeSetPartWhole

Part-whole specialization of OrderRelation between NodeSets. The inherited type property is set to “partial” to specify
that the part-whole relationships among NodeSets define a tree structure.

Extends

OrderRelation

5.8. Representations 97

DDI Documentation, Release 4.0 dev

Graph

NodeSetPartWhole

whole

part

NodeSet

isBasedOn

contains

hasLevel

hasNodeParentChild

hasNodePartWhole

hasNodeSetParentChild

hasNodeSetPartWhole

hasLevelParentChild

1..1

0..n

1..10..1

OrderRelation

+ type : OrderRelationshipType
 + criteria : StructuredString
 + isRegularHierarchy : xs :boolean
 + label : Label
 + definition : StructuredString
 + description : StructuredString

predecessor

successor

5.8.28 Sign

Something that suggests the presence or existence of a fact, condition, or quality.

Extends

AnnotatedIdentifiable

Properties

Name Type Cardinality
value StructuredString 1..1
label Label 0..n
description StructuredString 0..1

98 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

value

The text representation

label

A display label for the object. May be expressed in multiple languages. Repeat for labels with different content, for
example, labels with differing length limitations.

description

A description of the content and purpose of the object. May be expressed in multiple languages and supports the use
of structured content.

Graph

Sign

+ value : StructuredString
 + label : Label
 + description : StructuredString

denotes

Des ignation

+ label : Label
 + description : StructuredString

hasVocabulary

1..1

1..1

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.8.29 StatisticalClassification

A Statistical Classification is a set of Categories which may be assigned to one or more variables registered in statistical
surveys or administrative files, and used in the production and dissemination of statistics. The Categories at each Level

5.8. Representations 99

DDI Documentation, Release 4.0 dev

of the classification structure must be mutually exclusive and jointly exhaustive of all objects/units in the population
of interest. (Source: GSIM StatisticalClassification)

Extends

NodeSet

Properties

Name Type Cardinality
introduction StructuredString 0..1
releaseDate Date 0..1
terminationDate Date 0..1
validDate Date 0..1
isCurrent xs:boolean 0..1
isFloating xs:boolean 0..1
changeFromBase StructuredString 0..1
purposeOfVariant StructuredString 0..1
copyright String 0..n
updateChanges StructuredString 0..n
availableLanguage xs:language 0..n

introduction

The introduction provides a detailed description of the Statistical Classification, the background for its creation, the
classification variable and objects/units classified, classification rules etc. (Source: GSIM StatisticalClassification

releaseDate

Date the Statistical Classification was released

terminationDate

Date on which the Statistical Classification was superseded by a successor version or otherwise ceased to be valid.
(Source: GSIM Statistical Classification)

validDate

The date the statistical classification enters production use.

isCurrent

Indicates if the Statistical Classification is currently valid.

100 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

isFloating

Indicates if the Statistical Classification is a floating classification. In a floating statistical classification, a validity
period should be defined for all Classification Items which will allow the display of the item structure and content at
different points of time. (Source: GSIM StatisticalClassification/Floating

changeFromBase

Describes the relationship between the variant and its base Statistical Classification, including regroupings, aggrega-
tions added and extensions. (Source: GSIM StatisticalClassification/Changes from base Statistical Classification)

purposeOfVariant

If the Statistical Classification is a variant, notes the specific purpose for which it was developed. (Source: GSIM
StatisticalClassification/Purpose of variant)

copyright

Copyright of the statistical classification.

updateChanges

Summary description of changes which have occurred since the most recent classification version or classification
update came into force.

availableLanguage

A list of languages in which the Statistical Classification is available. Repeat for each langauge.

5.8. Representations 101

DDI Documentation, Release 4.0 dev

Graph

Statis ticalClass ification

+ introduction : StructuredString
 + releaseDate : Date
 + terminationDate : Date
 + validDate : Date
 + isCurrent : xs :boolean
 + isFloating : xs :boolean
 + changeFromBase : StructuredString
 + purposeOfVariant : StructuredString
 + copyright : String
 + updateChanges : StructuredString
 + availableLanguage : xs :language

hasClass ificationItem

isMaintainedBy

hasDis tribution

variantOf

has

predecessor

successor

0..1

0..n

0..1

0..1

0..1

0..1

Class ificationIndex

+ releaseDate : Date
 + maintenanceUnit : InternationalString
 + contactPersons : InternationalString
 + publications : InternationalString
 + languages : InternationalString
 + corrections : InternationalString
 + codingInstructions : InternationalString

isOrderedBy

groups

0..n

1..n

NodeSet

isBasedOn

contains

hasLevel

hasNodeParentChild

hasNodePartWhole

hasNodeSetParentChild

hasNodeSetPartWhole

hasLevelParentChild

Organization

+ organizationName : OrganizationName
 + imageURL : PrivateImage
 + ddiId : xs :s tring
 + contactInformation : ContactInformation

0..n

0..n

Class ificationItem

+ isValid : xs :boolean
 + isGenerated : xs :boolean
 + explanatoryNotes : StructuredString
 + futureNotes : InternationalString
 + changeLog : InternationalString
 + changeFromPreviousVers ion : InternationalString
 + validDate : Date
 + officialName : Name

caseLaw

groups

excludes

1..n

1..n

DDI4_OtherMaterial

0..n

0..n

102 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

5.8.30 ValueDomain

The permitted range of values for a characteristic of a variable. [GSIM 1.1]

Extends

AnnotatedIdentifiable

Properties

Name Type Cardinality
unitOfMeasurement xs:string 0..1
label Label 0..n
definition StructuredString 0..1
description StructuredString 0..1

unitOfMeasurement

The unit in which the data values are measured (kg, pound, euro).

label

A display label for the object. May be expressed in multiple languages. Repeat for labels with different content, for
example, labels with differing length limitations.

definition

A definition of the object. May be expressed in multiple languages and supports the use of structured content.

description

A description of the content and purpose of the object. May be expressed in multiple languages and supports the use
of structured content.

5.8. Representations 103

DDI Documentation, Release 4.0 dev

Graph

ValueDomain

+ unitOfMeasurement : xs :s tring
 + label : Label
 + definition : StructuredString
 + description : StructuredString

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.8.31 Vocabulary

A vocabulary is an established list of standardized terminology for use in indexing and retrieval of information.

Extends

ConceptSystem

Properties

Name Type Cardinality
abbreviation InternationalString 0..n
location URI 0..1
comments StructuredString 0..n

104 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

abbreviation

Abbreviation of vocabulary title.

location

Location of external resource providing information about the vocabulary.

comments

Information for the user regarding the reasons for use of the vocabulary and appropriate usage constraints.

Graph

Vocabulary

+ abbreviation : InternationalString
 + location : URI
 + comments : StructuredString

ConceptSystem

contains

hasConceptParentChild

hasConceptPartWhole

5.9 DDIUtility

DDI Utility Package Contents

5.9. DDIUtility 105

DDI Documentation, Release 4.0 dev

5.10 DDIDocument

DDI Document Package Contents

5.11 Comparison

A maintainable module containing maps between objects of the same or similar type. Maps allow for pair-wise
mapping of two objects by describing their similarities and differences in order to make assertions regarding their
comparability. Currently maps allow for the comparison of concepts, variables, questions, categories, universes, and
representations that have managed content (code, category, numeric, text, datetime and scale). These mapping(s) in-
form users on the comparability of two objects and facilitate automation. Note that all maps are pairwise, identifying
two schemes and the correlation between two items in those schemes. Due to the complexity of some objects, multiple
mappings may be required to cover details of the comparison of component parts, e.g. a QuestionMap may also have
a related RepresentationMap. By using a set of pairwise comparisons, it is possible to describe complex correspon-
dences - pairwise comparisons are easier to process. In addition to providing a standard name, label, and description,
Comparison consists of a simple stack of comparison maps. Comparison maps are currently limited to those objects
that can be referenced and are sufficiently structured to support a clear comparison. Contents

5.12 Collections

Generic collection structure to support managed and unmanaged collections containing both unique and non-unique
members. It also supports the definition of correspondences, unordered and ordered, between collections and members.
Such a generic structure can be used to model different types of groupings, from simple unordered sets to all sorts of
hierarchies, nesting and ordered sets/bags. In addition, they can be extended with richer semantics (e.g. generic,
partitive, and instance, among others). Contents

5.12.1 Collection

Collection container (set or bag). It could have an optional order relation (total or partial) associated to it to model
linear order, hierarchies and nesting. A Collection is also a subtype of Member to allow for nested collections.

Extends

Member

Properties

Name Type Cardinality
type CollectionType 0..1

type

Whether the collection is a bag or a set.

106 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

Collection

+ type : CollectionType

contains

isOrderedBy

Member

+ label : Label
 + definition : StructuredString
 + description : StructuredString

0..n

1..n

OrderRelation

+ type : OrderRelationshipType
 + criteria : StructuredString
 + isRegularHierarchy : xs :boolean
 + label : Label
 + definition : StructuredString
 + description : StructuredString

predecessor

successor

1..n

0..n

5.12.2 CollectionCorrespondence

Generic (untyped) relationship between collections.

Extends

AnnotatedIdentifiable

5.12. Collections 107

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
label Label 0..n
definition StructuredString 0..1
description StructuredString 0..1

label

A display label for the CollectionCorrespondence. May be expressed in multiple languages. Repeat for labels with
different content, for example, labels with differing length limitations.

definition

A definition of the CollectionCorrespondence. May be expressed in multiple languages and supports the use of struc-
tured content.

description

A description of the purpose or use of the CollectionCorrespondence. May be expressed in multiple languages and
supports the use of structured content.

108 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

CollectionCorrespondence

+ label : Label
 + definition : StructuredString
 + description : StructuredString

maps

contains

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

Collection

+ type : CollectionType

contains

isOrderedBy

0..n

2..n

MemberCorrespondence

+ type : CorrespondenceType
 + label : Label
 + definition : StructuredString
 + description : StructuredString

maps

1..n

1..n

5.12.3 Member

Generic class representing members of a collection.

Extends

AnnotatedIdentifiable

5.12. Collections 109

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
label Label 0..n
definition StructuredString 0..1
description StructuredString 0..1

label

A display label for the Member. May be expressed in multiple languages. Repeat for labels with different content, for
example, labels with differing length limitations.

definition

A definition of the Member. May be expressed in multiple languages and supports the use of structured content.

description

A description of the purpose or use of the Member. May be expressed in multiple languages and supports the use of
structured content.

110 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

Member

+ label : Label
 + definition : StructuredString
 + description : StructuredString

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.12.4 MemberCorrespondence

Generic (untyped) relationship between members of collections.

Extends

AnnotatedIdentifiable

Properties

Name Type Cardinality
type CorrespondenceType 0..1
label Label 0..n
definition StructuredString 0..1
description StructuredString 0..1

5.12. Collections 111

DDI Documentation, Release 4.0 dev

type

Type of correspondence in terms of commonalities and differences between two members.

label

A display label for the MemberCorrespondence. May be expressed in multiple languages. Repeat for labels with
different content, for example, labels with differing length limitations.

definition

A definition of the MemberCorrespondence. May be expressed in multiple languages and supports the use of structured
content.

description

A description of the purpose or use of the MemberCorrespondence. May be expressed in multiple languages and
supports the use of structured content.

112 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

MemberCorrespondence

+ type : CorrespondenceType
 + label : Label
 + definition : StructuredString
 + description : StructuredString

maps

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

Member

+ label : Label
 + definition : StructuredString
 + description : StructuredString

0..n

2..n

5.12.5 OrderRelation

Binary relation over members in a collection (set or bag) that is always reflexive, antisymmetric, and transitive. It can
also be either total or partial. It must contain like items.

Extends

AnnotatedIdentifiable

5.12. Collections 113

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
type OrderRelationshipType 0..1
criteria StructuredString 0..1
isRegularHierarchy xs:boolean 0..1
label Label 0..n
definition StructuredString 0..1
description StructuredString 0..1

type

Whether the order relation is total or partial.

criteria

Intensional definition of the order criteria (e.g. alphabetical, numerical, increasing, decreasing, etc.)

isRegularHierarchy

Indicates whether the tree defined by the order relation is regular or not. i.e., all leaves are at the same level..

label

A display label for the OrderRelation. May be expressed in multiple languages. Repeat for labels with different
content, for example, labels with differing length limitations.

definition

A definition of the OrderRelation. May be expressed in multiple languages and supports the use of structured content.

description

A description of the purpose or use of the OrderRelation. May be expressed in multiple languages and supports the
use of structured content.

114 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

OrderRelation

+ type : OrderRelationshipType
 + criteria : StructuredString
 + isRegularHierarchy : xs :boolean
 + label : Label
 + definition : StructuredString
 + description : StructuredString

predecessor

successor

Member

+ label : Label
 + definition : StructuredString
 + description : StructuredString

1..1

0..n

1..1

0..n

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.12.6 OrderedCollectionCorrespondence

Generic (untyped) ordered relationship between collections.

Extends

CollectionCorrespondence

5.12. Collections 115

DDI Documentation, Release 4.0 dev

Graph

OrderedCollectionCorrespondence

source

target

contains

Collection

+ type : CollectionType

contains

isOrderedBy

1..n

0..n

1..n

0..n

CollectionCorrespondence

+ label : Label
 + definition : StructuredString
 + description : StructuredString

maps

contains

OrderedMemberCorrespondence

source

target

1..n

1..n

5.12.7 OrderedMemberCorrespondence

Ordered relationship between members of collections.

Extends

MemberCorrespondence

116 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

OrderedMemberCorrespondence

source

target

Member

+ label : Label
 + definition : StructuredString
 + description : StructuredString

1..n

0..n

1..n
0..n

MemberCorrespondence

+ type : CorrespondenceType
 + label : Label
 + definition : StructuredString
 + description : StructuredString

maps

5.13 BaseObjects

The package is a holding place for objects that are widely used but are not treated as properties; primarily identifiable
types. A decision on the status and location of these objects needs to be made. Contents

5.14 ComplexDataTypes

Extensions of base type Primitives Contents

5.14.1 AccessLocation

A set of access information for a Machine including external and internal URL, mime type, and physical location

5.13. BaseObjects 117

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
externalURLReference URL 0..n
internalURLReference xs:anyURI 0..1
mimeType CodeValueType 0..1
physicalLocation InternationalString 0..n

externalURLReference

An external URL

internalURLReference

The internal URL.

mimeType

physicalLocation

The physical location of the machine

Graph

AccessLocation

+ externalURLReference : URL
 + internalURLReference : xs :anyURI
 + mimeType : CodeValueType
 + phys icalLocation : InternationalString

5.14.2 Address

Location address identifying each part of the address as separate elements, identifying the type of address, the level of
privacy associated with the release of the address, and a flag to identify the preferred address for contact.

118 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
typeOfAddress CodeValueType 0..1
line xs:string 0..n
cityPlaceLocal xs:string 0..1
stateProvince xs:string 0..1
postalCode xs:string 0..1
countryCode CountryCode 0..1
timeZone CodeValueType 0..1
effectivePeriod xs:date 0..1
privacy CodeValueType 0..1
isPreferred xs:boolean 0..1
geographicPoint Point 0..1
regionalCoverage CodeValueType 0..1
typeOfLocation CodeValueType 0..1
locationName Name 0..1

typeOfAddress

Indicates address type (i.e. home, office, mailing, etc.)

line

Number and street including office or suite number. May use multiple lines.

cityPlaceLocal

City, place, or local area used as part of an address.

stateProvince

A major subnational division such as a state or province used to identify a major region within an address.

postalCode

Postal or ZIP Code

countryCode

Country of the location

timeZone

Time zone of the location expressed as code.

5.14. ComplexDataTypes 119

DDI Documentation, Release 4.0 dev

effectivePeriod

Clarifies when the identification information is accurate.

privacy

Specify the level privacy for the address as public, restricted, or private. Supports the use of an external controlled
vocabulary

isPreferred

Set to “true” if this is the preferred location for contacting the organization or individual.

geographicPoint

Geographic coordinates corresponding to the address.

regionalCoverage

The region covered by the agent at this address

typeOfLocation

The type or purpose of the location (i.e. regional office, distribution center, home)

locationName

Name of the location if applicable.

120 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

Address

+ typeOfAddress : CodeValueType
 + line : xs :s tring
 + cityPlaceLocal : xs :s tring
 + s tateProvince : xs :s tring
 + postalCode : xs :s tring
 + countryCode : CountryCode
 + timeZ one : CodeValueType
 + effectivePeriod : xs :date
 + privacy : CodeValueType
 + isPreferred : xs :boolean
 + geographicPoint : Point
 + regionalCoverage : CodeValueType
 + typeOfLocation : CodeValueType
 + locationName : Name

5.14.3 AgentAssociation

A basic structure for declaring the name of an Agent inline, reference to an Agent, and role specification. This object
is used primarily within Annotation.

Properties

Name Type Cardinality
agent BibliographicName 0..1
role PairedCodeValueType 0..n

agent

Full name of the contributor. Language equivalents should be expressed within the International String structure.

role

The role of the of the Agent within the context of the parent property name with information on the extent to which the
role applies. Allows for use of external controlled vocabularies. Reference should be made to the vocabulary within
the structure of the role.

5.14. ComplexDataTypes 121

DDI Documentation, Release 4.0 dev

Graph

AgentAssociation

+ agent : BibliographicName
 + role : PairedCodeValueType

agentAssociation

Agent

+ agentId : AgentId
 + description : StructuredString

0..n0..1

5.14.4 AgentId

Persistent identifier for a researcher using a system like ORCID

Properties

Name Type Cardinality
agentIdValue xs:string 1..1
agentIdType xs:string 1..1

agentIdValue

The identifier for the agent.

agentIdType

The identifier system in use.

122 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

AgentId

+ agentIdValue : xs :s tring
 + agentIdType : xs :s tring

5.14.5 AnnotationDate

A generic date type for use in Annotation which provides that standard date structure plus a property to define the
date type (Publication date, Accepted date, Copyrighted date, Submitted date, etc.). Equivilent of http://purl.org/dc/
elements/1.1/date where the type of date may identify the Dublin Core refinement term.

Extends

Date

Properties

Name Type Cardinality
typeOfDate CodeValueType 0..n

typeOfDate

Use to specify the type of date. This may reflect the refinements of dc:date such as dateAccepted, dateCopyrighted,
dateSubmitted, etc.

5.14. ComplexDataTypes 123

http://purl.org/dc/elements/1.1/date
http://purl.org/dc/elements/1.1/date

DDI Documentation, Release 4.0 dev

Graph

AnnotationDate

+ typeOfDate : CodeValueType

Date

+ s impleDate : BaseDateType
 + his toricalDate : His toricalDate
 + s tartDate : BaseDateType
 + his toricalStartDate : His toricalDate
 + endDate : BaseDateType
 + his toricalEndDate : His toricalDate
 + cycle : xs :integer

5.14.6 AudioSegment

Describes the type and length of the audio segment.

Properties

Name Type Cardinality
typeOfAudioClip CodeValueType 0..1
audioClipBegin xs:string 0..1
audioClipEnd xs:string 0..1

typeOfAudioClip

The type of audio clip provided. Supports the use of a controlled vocabulary.

audioClipBegin

The point to begin the audio clip. If no point is provided the assumption is that the start point is the beginning of the
clip provided.

124 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

audioClipEnd

The point to end the audio clip. If no point is provided the assumption is that the end point is the end of the clip
provided.

Graph

AudioSegment

+ typeOfAudioClip : CodeValueType
 + audioClipBegin : xs :s tring
 + audioClipEnd : xs :s tring

5.14.7 BasedOnObject

Use when creating an object that is based on an existing object or objects that are managed by a different agency or
when the new object is NOT simply a version change but you wish to maintain a reference to the object that served
as a basis for the new object. BasedOnObject may contain references to any number of objects which serve as a
basis for this object, a BasedOnRationaleDescription of how the content of the referenced object was incorporated or
altered, and a BasedOnRationaleCode to allow for specific typing of the BasedOnReference according to an external
controlled vocabulary.

Properties

Name Type Cardinality
basedOnRationaleDescription InternationalString 0..1
basedOnRationaleCode CodeValueType 0..1

basedOnRationaleDescription

Textual description of the rationale/purpose for the based on reference to inform users as to the extent and implication
of the version change. May be expressed in multiple languages.

basedOnRationaleCode

RationaleCode is primarily for internal processing flags within an organization or system. Supports the use of an
external controlled vocabulary.

5.14. ComplexDataTypes 125

DDI Documentation, Release 4.0 dev

Graph

BasedOnObject

+ basedOnRationaleDescription : InternationalString
 + basedOnRationaleCode : CodeValueType

basedOn

Identifiable

+ agency : xs :s tring
 + id : xs :s tring
 + vers ion : xs :s tring

1..n0..n

5.14.8 BibliographicName

Personal names should be listed surname or family name first, followed by forename or given name. When in doubt,
give the name as it appears, and do not invert. In the case of organizations where there is clearly a hierarchy present,
list the parts of the hierarchy from largest to smallest, separated by full stops and a space. If it is not clear whether
there is a hierarchy present, or unclear which is the larger or smaller portion of the body, give the name as it appears
in the item. The name may be provided in one or more languages.

Extends

InternationalString

Properties

Name Type Cardinality
affiliation xs:string 0..1

affiliation

The affiliation of this person to an organization. This is generally an organization or sub-organization name and should
be related to the specific role within which the individual is being listed.

126 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

BibliographicName

+ affiliation : xs :s tring

InternationalString

+ string : String

5.14.9 CharacterOffset

Specification of the character offset for the beginning and end of the segment.

Properties

Name Type Cardinality
startCharOffset xs:integer 0..1
endCharOffset xs:integer 0..1

startCharOffset

Number of characters from beginning of the document, indicating the inclusive start of the text range.

endCharOffset

Number of characters from the beginning of the document, indicating the inclusive end of the text segment.

5.14. ComplexDataTypes 127

DDI Documentation, Release 4.0 dev

Graph

CharacterOffset

+ s tartCharOffset : xs :integer
 + endCharOffset : xs :integer

5.14.10 CodeValueType

Allows for string content which may be taken from an externally maintained controlled vocabulary (code value). If the
content is from a controlled vocabulary provide the code value, as well as a reference to the code list from which the
value is taken. Provide as many of the identifying attributes as needed to adequately identify the controlled vocabulary.
Note that DDI has published a number of controlled vocabularies applicable to several locations using the CodeValue
structure. Use of shared controlled vocabularies helps support interoperability and machine actionability.

Properties

Name Type Cardinality
codeValue xs:string 1..1
codeListID xs:string 0..1
codeListName xs:string 0..1
codeListAgencyName xs:string 0..1
codeListVersionID xs:string 0..1
otherValue xs:string 0..1
codeListURN xs:string 0..1
codeListSchemeURN xs:string 0..1

codeValue

The actual value.

codeListID

The ID of the code list (controlled vocabulary) that the content was taken from.

codeListName

The name of the code list.

128 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

codeListAgencyName

The name of the agency maintaining the code list.

codeListVersionID

The version number of the code list (default is 1.0).

otherValue

If the value of the string is “Other” or the equivalent from the codelist, this attribute can provide a more specific value
not found in the codelist.

codeListURN

The URN of the codelist.

codeListSchemeURN

If maintained within a scheme, the URN of the scheme containing the codelist.

Graph

CodeValueType

+ codeValue : xs :s tring
 + codeLis tID : xs :s tring
 + codeLis tName : xs :s tring
 + codeLis tAgencyName : xs :s tring
 + codeLis tVers ionID : xs :s tring
 + otherValue : xs :s tring
 + codeLis tURN : xs :s tring
 + codeLis tSchemeURN : xs :s tring

5.14.11 CommandCode

Contains information on the command used for processing data. Contains a description of the command which should
clarify for the user the purpose and process of the command, an in-line provision of the command itself, a reference to
an external version of the command such as a coding script, and the option for attaching an extension to DDI to permit

5.14. ComplexDataTypes 129

DDI Documentation, Release 4.0 dev

insertion of a command code in a foreign namespace. The definition of the InParameter, OutParameter, and Binding
declared within CommandCode are available for use by all formats of the command.

Properties

Name Type Cardinality
description StructuredString 0..1
binding Binding 0..n

description

A description of the purpose and use of the command code provided. Supports multiple languages.

binding

Defines the link between the OutParameter of an external object to an InParameter of this CommandCode.

Graph

CommandCode

+ description : StructuredString
 + binding : Binding

s tructuredCommand

commandFile

command

StructuredCommand

0..1

1..1

CommandFile

+ programLanguage : CodeValueType
 + location : InternationalString
 + uri : xs :anyURI

0..1

1..1

Command

+ programLanguage : CodeValueType
 + commandContent : xs :s tring

0..1

1..1

5.14.12 ConditionalText

Text which has a changeable value depending on a stated condition, response to earlier questions, or as input from a
set of metrics (pre-supplied data).

130 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Extends

TextContent

Properties

Name Type Cardinality
expression CommandCode 0..1

expression

The condition on which the associated text varies expressed by a command code. For example, a command that inserts
an age by calculating the difference between today’s date and a previously defined date of birth.

Graph

ConditionalText

+ express ion : CommandCode

TextContent

+ description : StructuredString

5.14.13 ContactInformation

Contact information for the individual or organization including location specification, address, URL, phone numbers,
and other means of communication access. Address, location, telephone, and other means of communication can be
repeated to express multiple means of a single type or change over time. Each major piece of contact information (with
the exception of URL) contains the element EffectiveDates in order to date stamp the period for which the information
is valid.

5.14. ComplexDataTypes 131

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
website URL 0..n
email Email 0..n
electronicMessaging ElectronicMessageSystem 0..n
address Address 0..n
telephone Telephone 0..n

website

The URL of the Agent’s website

email

Email contact information

electronicMessaging

Electronic messaging other than email

address

The address for contact.

telephone

Telephone for contact

Graph

ContactInformation

+ webs ite : URL
 + email : Email
 + electronicMessaging : ElectronicMessageSystem
 + address : Address
 + telephone : Telephone

132 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

5.14.14 Content

Supports the optional use of XHTML formatting tags within the string structure. XHTML tag content is controlled by
the schema, see http://www.w3.org/1999/xhtml/ for a detailed list of available tags. Language of the string is defined by
the attribute xmlang. The content can be identified as translated (isTranslated), subject to translation (isTranslatable),
the result of translation from one or more languages (translationSourceLanguages), and carry an indication whether or
not it should be treated as plain text (isPlain).

Properties

Name Type Cardinality
content xhtml:BlkNoForm.mix 1..n
xmlLang xs:language 0..1
isTranslated xs:boolean 0..1
isTranslatable xs:boolean 0..1
translationSourceLanguage xs:language 0..n
translationDate xs:date 0..1
isPlainText xs:boolean 0..1

content

The following xhtml tags are available for use in Content: address, blockquote, pre, h1, h2, h3, h4, h5, h6, hr, div, p, a,
abbr, acronym, cite, code, dfn, em, kbd, q, samp, strong, var, b, big, i, small, sub, sup, tt, br, span, dl, dt, dd, ol, ul, li,
table, caption, thead, tfoot, tbody, colgroup, col, tr, th, and td. They should be used with the xhtml namespace prefix,
i.e., xhtmdiv. See DDI Technical Manual Part I for additional details.

xmlLang

Indicates the language of content.

isTranslated

Indicates whether content is a translation (true) or an original (false).

isTranslatable

Indicates whether content is translatable (true) or not (false).

translationSourceLanguage

List the language or language codes in a space delimited array. The language original may or may not be provided in
this bundle of language specific strings.

5.14. ComplexDataTypes 133

http://www.w3.org/1999/xhtml/

DDI Documentation, Release 4.0 dev

translationDate

The date the content was translated. Provision of translation date allows user to verify if translation was available
during data collection or other time linked activity.

isPlainText

Indicates that the content is to be treated as plain text (no formatting). You may use DDIProfile to fix the value of this
attribute to ‘true’ in cases where you wish to indicate that your system treats all content should be treated as plain text.

Graph

Content

+ content : xhtml:BlkNoForm.mix
 + xmlLang : xs :language
 + isTrans lated : xs :boolean
 + isTrans latable : xs :boolean
 + trans lationSourceLanguage : xs :language
 + trans lationDate : xs :date
 + isPlainText : xs :boolean

5.14.15 ContentDateOffset

Identifies the difference between the date applied to the data as a whole and this specific item such as previous year’s
income or residence 5 years ago. A value of true for the attribute isNegativeOffset indicates that the offset is the
specified number of declared units prior to the date of the data as a whole and false indicates information regarding a
future state.

Extends

CodeValueType

Properties

Name Type Cardinality
numberOfUnits xs:decimal 0..1
isNegativeOffset xs:boolean 0..1

134 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

numberOfUnits

The number of units to off-set the date for this item expressed as a decimal.

isNegativeOffset

If set to “true” the date is offset the number of units specified PRIOR to the default date of the data. A setting of
“false” indicates a date the specified number of units in the FUTURE from the default date of the data.

Graph

ContentDateOffset

+ numberOfUnits : xs :decimal
 + isNegativeOffset : xs :boolean

CodeValueType

+ codeValue : xs :s tring
 + codeLis tID : xs :s tring
 + codeLis tName : xs :s tring
 + codeLis tAgencyName : xs :s tring
 + codeLis tVers ionID : xs :s tring
 + otherValue : xs :s tring
 + codeLis tURN : xs :s tring
 + codeLis tSchemeURN : xs :s tring

5.14.16 CorrespondenceType

Describes the commonalities and differences between two items using a textual description of both commonalities and
differences plus an optional coding of the type of commonality.

5.14. ComplexDataTypes 135

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
commonality StructuredString 0..1
difference StructuredString 0..1
commonalityTypeCode CodeValueType 0..n

commonality

A description of the common features of the two items using a StructuredString to support multiple language versions
of the same content as well as optional formatting of the content.

difference

A description of the differences between the two items using a StructuredString to support multiple language versions
of the same content as well as optional formatting of the content.

commonalityTypeCode

Commonality expressed as a term or code. Supports the use of an external controlled vocabulary. If repeated, clarify
each external controlled vocabulary used.

Graph

CorrespondenceType

+ commonality : StructuredString
 + difference : StructuredString
 + commonalityTypeCode : CodeValueType

5.14.17 CountryCode

Provides means of expressing a code/term for the country plus an optional valid date.

136 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
effectiveDate xs:dateTime 0..1
country InternationalCodeValueType 1..1

effectiveDate

If it is important to specify the date that this code is effective in order to accurately capture a name or similar change,
specify that here.

country

The code or term used to designate the country. If a term, indicate the language.

Graph

CountryCode

+ effectiveDate : xs :dateTime
 + country : InternationalCodeValueType

5.14.18 Date

Provides the structure of a Date element, which allows a choice between single, simple dates (of BaseDateType) or
date ranges. If the Date element contains a range, Cycle may be used to indicate occurrence of this range within a series
of ranges as an integer identifying the cycle, i.e. the 4th wave of a data collection cycle would have. BaseDateType
allows for different date time combinations to provide a simple and convenient mechanism to specify different date
and time values with a machine actionable format specified by regular expressions.

5.14. ComplexDataTypes 137

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
simpleDate BaseDateType 0..1
historicalDate HistoricalDate 0..1
startDate BaseDateType 0..1
historicalStartDate HistoricalDate 0..1
endDate BaseDateType 0..1
historicalEndDate HistoricalDate 0..1
cycle xs:integer 0..1

simpleDate

A single point in time. If a duration is expressed as a SimpleDate it is defining a period of time without a designated
Start or End date.

historicalDate

A simple date expressed in a historical date format, including a specification of the date format and calendar used.

startDate

Start of a date range. If there is a start date with no end date provided, this implies that the end date is unknown but
that the date being recorded is not just a simple date but a range of unknown duration.

historicalStartDate

A start date expressed in a historical date format, including a specification of the date format and calendar used.

endDate

End of a date range which may or may not have a known start date.

historicalEndDate

An end date expressed in a historical date format, including a specification of the date format and calendar used.

cycle

Use to indicate occurrence of this range within a series of ranges as an integer identifying the cycle, i.e. the 4th wave
of a data collection cycle would have

138 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

Date

+ s impleDate : BaseDateType
 + his toricalDate : His toricalDate
 + s tartDate : BaseDateType
 + his toricalStartDate : His toricalDate
 + endDate : BaseDateType
 + his toricalEndDate : His toricalDate
 + cycle : xs :integer

5.14.19 DynamicText

Structure supporting the use of dynamic text, where portions of the textual content change depending on external
information (pre-loaded data, response to an earlier query, environmental situations, etc.).

Properties

Name Type Cardinality
content TextContent 1..n
isStructureRequired xs:boolean 0..1
audienceLanguage xs:language 0..1

content

This is the head of a substitution group and is never used directly as an element name. Instead it is replaced with either
LiteralText or ConditionalText.

isStructureRequired

If textual structure (e.g. size, color, font, etc.) is required to understand the meaning of the content change value to
“true”.

audienceLanguage

Specifies the language of the intended audience. This is particularly important for clarifying the primary language of a
mixed language textual string, for example when language testing and using a foreign word withing the question text.

5.14. ComplexDataTypes 139

DDI Documentation, Release 4.0 dev

Graph

DynamicText

+ content : TextContent
 + isStructureRequired : xs :boolean
 + audienceLanguage : xs :language

5.14.20 ElectronicMessageSystem

Any non-email means of relaying a message electronically. This would include text messaging, Skype, Twitter, ICQ,
or other emerging means of electronic message conveyance.

Properties

Name Type Cardinality
contactAddress xs:string 0..1
typeOfService CodeValueType 0..1
effectivePeriod Date 0..1
privacy CodeValueType 0..1
isPreferred xs:boolean 0..1

contactAddress

Account identification for contacting

typeOfService

Indicates the type of service used. Supports the use of a controlled vocabulary.

effectivePeriod

Time period during which the account is valid.

140 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

privacy

Specify the level privacy for the address as public, restricted, or private. Supports the use of an external controlled
vocabulary.

isPreferred

Set to “true” if this is the preferred address.

Graph

ElectronicMessageSystem

+ contactAddress : xs :s tring
 + typeOfService : CodeValueType
 + effectivePeriod : Date
 + privacy : CodeValueType
 + isPreferred : xs :boolean

5.14.21 Email

An e-mail address which conforms to the internet format (RFC 822) including its type and time period for which it is
valid.

Properties

Name Type Cardinality
internetEmail xs:string 0..1
typeOfEmail CodeValueType 0..1
effectivePeriod Date 0..1
privacy CodeValueType 0..1
isPreferred xs:boolean 0..1

internetEmail

The email address expressed as a string (should follow the Internet format specification - RFC 5322) e.g.
user@server.ext, more complex and flexible examples are also supported by the format.

5.14. ComplexDataTypes 141

mailto:user@server.ext

DDI Documentation, Release 4.0 dev

typeOfEmail

Code indicating the type of e-mail address. Supports the use of an external controlled vocabulary. (e.g. home, office)

effectivePeriod

Time period for which the e-mail address is valid.

privacy

Indicates the level of privacy

isPreferred

Set to true if this is the preferred email

Graph

Email

+ internetEmail : xs :s tring
 + typeOfEmail : CodeValueType
 + effectivePeriod : Date
 + privacy : CodeValueType
 + isPreferred : xs :boolean

5.14.22 Form

A link to a form used by the metadata containing the form number, a statement regarding the contents of the form, a
statement as to the mandatory nature of the form and a privacy level designation.

Properties

Name Type Cardinality
formNumber xs:string 0..1
uri xs:anyURI 0..1
statement InternationalString 0..1
isRequired xs:boolean 0..1

142 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

formNumber

The number or other means of identifying the form.

uri

The URN or URL of the form.

statement

A statement regarding the use, coverage, and purpose of the form.

isRequired

Set to “true” if the form is required. Set to “false” if the form is optional.

Graph

Form

+ formNumber : xs :s tring
 + uri : xs :anyURI
 + s tatement : InternationalString
 + isRequired : xs :boolean

5.14.23 HistoricalDate

Used to preserve an historical date, formatted in a non-ISO fashion.

Properties

Name Type Cardinality
nonISODate xs:string 1..1
historicalDateFormat CodeValueType 0..1
calendar CodeValueType 0..1

5.14. ComplexDataTypes 143

DDI Documentation, Release 4.0 dev

nonISODate

This is the date expressed in a non-ISO compliant structure. Primarily used to retain legacy content or to express
non-Gregorian calender dates.

historicalDateFormat

Indicate the structure of the date provided in NonISODate. For example if the NonISODate contained 4/1/2000 the
Historical Date Format would be mm/dd/yyyy. The use of a controlled vocabulary is strongly recommended to support
interoperability.

calendar

Specifies the type of calendar used (e.g., Gregorian, Julian, Jewish).

Graph

His toricalDate

+ nonISODate : xs :s tring
 + his toricalDateFormat : CodeValueType
 + calendar : CodeValueType

5.14.24 Image

A reference to an image, with a description of its properties and type.

Properties

Name Type Cardinality
imageLocation xs:anyURI 0..1
typeOfImage CodeValueType 0..1
dpi xs:integer 0..1
languageOfImage xs:language 0..1

144 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

imageLocation

A reference to the location of the image using a URI.

typeOfImage

Brief description of the image type. Supports the use of an external controlled vocabulary.

dpi

Provides the resolution of the image in dots per inch to assist in selecting the appropriate image for various uses.

languageOfImage

Language of image.

Graph

Image

+ imageLocation : xs :anyURI
 + typeOfImage : CodeValueType
 + dpi : xs :integer
 + languageOfImage : xs :language

5.14.25 ImageArea

Defines the shape and area of an image used as part of a location representation. The shape is defined as a Rectangle,
Circle, or Polygon and Coordinates provides the information required to define it.

Properties

Name Type Cardinality
coordinates xs:string 0..1
shape ShapeCoded 1..1

5.14. ComplexDataTypes 145

DDI Documentation, Release 4.0 dev

coordinates

A comma-delimited list of x,y coordinates, listed as a set of adjacent points for rectangles and polygons, and as a
center-point and a radius for circles (x,y,r).

shape

A fixed set of valid responses includes Rectangle, Circle, and Polygon.

Graph

ImageArea

+ coordinates : xs :s tring
 + shape : ShapeCoded

5.14.26 IndividualName

The name of an individual broken out into its component parts of prefix, first/given name, middle name,
last/family/surname, and suffix. The preferred compilation of the name parts may also be provided. The legal or
formal name of the individual should have the isFormal attribute set to true. The preferred name should be noted with
the isPreferred attribute. The attribute sex provides information to assist in the appropriate use of pronouns.

Properties

Name Type Cardinality
prefix xs:string 0..1
firstGiven xs:string 0..1
middle xs:string 0..n
lastFamily xs:string 0..1
suffix xs:string 0..1
fullName InternationalString 0..1
effectivePeriod Date 0..1
abbreviation InternationalString 0..1
typeOfIndividualName CodeValueType 0..1
sex SexSpecificationType 0..1
isPreferred xs:boolean 0..1
context xs:string 0..1
isFormal xs:boolean 0..1

146 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

prefix

Title that precedes the name of the individual, such as Ms., or Dr.

firstGiven

First (given) name of the individual

middle

Middle name or initial of the individual

lastFamily

Last (family) name /surname of the individual

suffix

Title that follows the name of the individual, such as Esq.

fullName

This provides a means of providing a full name as a single object for display or print such as identification badges etc.
For example a person with the name of William Grace for official use may prefer a display name of Bill Grace on a
name tag or other informal publication.

effectivePeriod

Clarifies when the name information is accurate.

abbreviation

An abbreviation or acronym for the name. This may be expressed in multiple languages. It is assumed that if only a
single language is provided that it may be used in any of the other languages within which the name itself is expressed.

typeOfIndividualName

The type of individual name provided. the use of a controlled vocabulary is strongly recommended. At minimum his
should include, e.g. PreviousFormalName, Nickname (or CommonName), Other.

sex

Sex allows for the specification of male, female or neutral. The purpose of providing this information is to assist others
in the appropriate use of pronouns when addressing the individual. Note that many countries/languages may offer a
neutral pronoun form.

5.14. ComplexDataTypes 147

DDI Documentation, Release 4.0 dev

isPreferred

If more than one name for the object is provided, use the isPreferred attribute to indicate which is the preferred name
content. All other names should be set to isPreferred=”false”.

context

A name may be specific to a particular context, i.e. common usage, business, social, etc.. Identify the context related
to the specified name.

isFormal

The legal or formal name of the individual should have the isFormal attribute set to true. To avoid confusion only one
individual name should have the isFormal attribute set to true. Use the TypeOfIndividualName to further differentiate
the type and applied usage when multiple names are provided.

Graph

IndividualName

+ prefix : xs :s tring
 + firs tGiven : xs :s tring
 + middle : xs :s tring
 + las tFamily : xs :s tring
 + suffix : xs :s tring
 + fullName : InternationalString
 + effectivePeriod : Date
 + abbreviation : InternationalString
 + typeOfIndividualName : CodeValueType
 + sex : SexSpecificationType
 + isPreferred : xs :boolean
 + context : xs :s tring
 + isFormal : xs :boolean

5.14.27 InternationalCodeValueType

Allows for string content which may be taken from an externally maintained controlled vocabulary (code value). If
the content is from a controlled vocabulary provide the code value, as well as a reference to the code list from which
the value is taken. This differs from a CodeValue only by the provision of a language-location specification. DDI uses
the International CodeValue in cases where controlled vocabularies are assumed to be highly language specific, such
as nationally maintained subject headings, thesauri, or keywords derived from the content of documents. The ability
to identify language is especially important when supporting searches by external language-specific search engines.
Provide as many of the identifying attributes as needed to adequately identify the controlled vocabulary.

148 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Extends

String

Properties

Name Type Cardinality
codeListID xs:string 0..1
codeListName xs:string 0..1
codeListAgencyName xs:string 0..1
codeListVersionID xs:string 0..1
otherValue xs:string 0..1
codeListURN xs:string 0..1
codeListSchemeURN xs:string 0..1

codeListID

The ID of the code list (controlled vocabulary) that the content was taken from.

codeListName

The name of the code list.

codeListAgencyName

The name of the agency maintaining the code list.

codeListVersionID

The version number of the code list (default is 1.0).

otherValue

If the value of the string is “Other” or the equivalent from the codelist, this attribute can provide a more specific value
not found in the codelist.

codeListURN

The URN of the codelist.

codeListSchemeURN

If maintained within a scheme, the URN of the scheme containing the codelist.

5.14. ComplexDataTypes 149

DDI Documentation, Release 4.0 dev

Graph

InternationalCodeValueType

+ codeLis tID : xs :s tring
 + codeLis tName : xs :s tring
 + codeLis tAgencyName : xs :s tring
 + codeLis tVers ionID : xs :s tring
 + otherValue : xs :s tring
 + codeLis tURN : xs :s tring
 + codeLis tSchemeURN : xs :s tring

String

+ content : xs :s tring
 + xmlLang : xs :language
 + isTrans lated : xs :boolean
 + isTrans latable : xs :boolean
 + trans lationSourceLanguage : xs :language
 + trans lationDate : xs :date

5.14.28 InternationalIdentifier

An identifier whose scope of uniqueness is broader than the local archive. Common forms of an international identifier
are ISBN, ISSN, DOI or similar designator. Provides both the value of the identifier and the agency who manages it.

Properties

Name Type Cardinality
identifierContent xs:string 0..1
managingAgency CodeValueType 0..1
isURI xs:boolean 0..1

identifierContent

An identifier as it should be listed for identification purposes.

150 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

managingAgency

The identification of the Agency which assigns and manages the identifier, i.e., ISBN, ISSN, DOI, etc.

isURI

Set to “true” if Identifier is a URI

Graph

InternationalIdentifier

+ identifierContent : xs :s tring
 + managingAgency : CodeValueType
 + isURI : xs :boolean

5.14.29 InternationalString

Packaging structure for multiple language versions of the same string content. Where an element of this type is
repeatable, the expectation is that each repetition contains different content, each of which can be expressed in multiple
languages. The language designation goes on the individual String.

Properties

Name Type Cardinality
string String 0..n

string

A non-formatted string of text with an attribute that designates the language of the text. Repeat this object to express
the same content in another language.

5.14. ComplexDataTypes 151

DDI Documentation, Release 4.0 dev

Graph

InternationalString

+ string : String

5.14.30 Label

A structured display label. Label provides display content of a fully human readable display for the identification of
the object.

Extends

StructuredString

Properties

Name Type Cardinality
locationVariant xs:string 0..1
validForStartDate Date 0..1
validForEndDate Date 0..1
maxLength xs:integer 0..1

locationVariant

Indicate the locality specification for content that is specific to a geographic area. May be a country code, sub-country
code, or area name.

validForStartDate

Allows for the specification of a starting date for the period that this label is valid. The date must be formatted
according to ISO 8601.

validForEndDate

Allows for the specification of a ending date for the period that this label is valid. The date must be formatted according
to ISO 8601.

152 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

maxLength

A positive integer indicating the maximum number of characters in the label.

Graph

Label

+ locationVariant : xs :s tring
 + validForStartDate : Date
 + validForEndDate : Date
 + maxLength : xs :integer

StructuredString

+ content : Content

5.14.31 LineParameter

Specification of the line and offset for the beginning and end of the segment.

Properties

Name Type Cardinality
startLine xs:integer 0..1
startOffset xs:integer 0..1
endLine xs:integer 0..1
endOffset xs:integer 0..1

startLine

Number of lines from beginning of the document.

5.14. ComplexDataTypes 153

DDI Documentation, Release 4.0 dev

startOffset

Number of characters from start of the line specified in StartLine.

endLine

Number of lines from beginning of the document.

endOffset

Number of characters from the start of the line specified in EndLine.

Graph

LineParameter

+ s tartLine : xs :integer
 + s tartOffset : xs :integer
 + endLine : xs :integer
 + endOffset : xs :integer

5.14.32 LiteralText

Literal (static) text to be used in the instrument using the StructuredString structure plus an attribute allowing for the
specification of white space to be preserved.

Extends

TextContent

Properties

Name Type Cardinality
text Text 0..1

154 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

text

The value of the static text string. Supports the optional use of XHTML formatting tags within the string structure.
If the content of a literal text contains more than one language, i.e. “What is your understanding of the German
word ‘Gesundheit’?”, the foreign language element should be placed in a separate LiteralText component with the
appropriate xmlang value and, in this case, isTranslatable set to “false”. If the existence of white space is critical to the
understanding of the content (such as inclusion of a leading or trailing white space), set the attribute of Text xmspace
to “preserve”.

Graph

LiteralText

+ text : Text

TextContent

+ description : StructuredString

5.14.33 LocalId

This is an identifier in a given local context that uniquely references an object, as opposed to the full ddi identifier
which has an agency plus the id.

Properties

Name Type Cardinality
localIdValue xs:string 1..1
localIdType xs:string 1..1
localIdVersion xs:string 0..1

5.14. ComplexDataTypes 155

DDI Documentation, Release 4.0 dev

localIdValue

Value of the local ID.

localIdType

Type of identifier, specifying the context of the identifier.

localIdVersion

Version of the Local ID.

Graph

LocalId

+ localIdValue : xs :s tring
 + localIdType : xs :s tring
 + localIdVers ion : xs :s tring

5.14.34 LocationName

Name of the location using the DDI Name structure and the ability to add an effective date.

Extends

Name

Properties

Name Type Cardinality
effectivePeriod Date 0..1

effectivePeriod

The time period for which this name is accurate and in use.

156 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

LocationName

+ effectivePeriod : Date

Name

+ isPreferred : xs :boolean
 + context : xs :s tring

5.14.35 Name

A reusable type assigned to an element with the naming convention XxxName e.g. OrganizationName at selected
locations where the element may be assumed to be administered by a registry or is otherwise shared. This is a human
understandable name (word, phrase, or mnemonic) that reflects the ISO/IEC 11179-5 naming principles. An item
administered by a registry should have at least one name. Names within an administered registry should follow the
naming conventions of the registry. If more than one name is provided the context of each name should be noted and
one name selected as the preferred name. See ISO/IEC 11179-5 Information Technology - Metadata Registries (MDR)
Part 5: naming and identification principles. ISO/IEC1179-5:2005(E).

Extends

InternationalString

Properties

Name Type Cardinality
isPreferred xs:boolean 0..1
context xs:string 0..1

5.14. ComplexDataTypes 157

DDI Documentation, Release 4.0 dev

isPreferred

If more than one name for the object is provided, use the isPreferred attribute to indicate which is the preferred name
content. All other names should be set to isPreferred=”false”.

context

A name may be specific to a particular context, i.e., a type of software, or a section of a registry. Identify the context
related to the specified name.

Graph

Name

+ isPreferred : xs :boolean
 + context : xs :s tring

InternationalString

+ string : String

5.14.36 OrganizationName

Names by which the organization is known. Use the attribute isFormal=”true” to designate the legal or formal name
of the Organization. The preferred name should be noted with the isPreferred attribute. Names may be typed with
TypeOfOrganizationName to indicate their appropriate usage.

Extends

Name

158 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
abbreviation InternationalString 0..1
typeOfOrganizationName CodeValueType 0..1
effectivePeriod Date 0..1
isFormal xs:boolean 0..1

abbreviation

An abbreviation or acronym for the name. This may be expressed in multiple languages. It is assumed that if only a
single language is provided that it may be used in any of the other languages within which the name itself is expressed.

typeOfOrganizationName

The type of organization name provided. the use of a controlled vocabulary is strongly recommended. At minimum
this should include, e.g. PreviousFormalName, Nickname (or CommonName), Other.

effectivePeriod

The time period for which this name is accurate and in use.

isFormal

The legal or formal name of the organization should have the isFormal attribute set to true. To avoid confusion only
one organization name should have the isFormal attribute set to true. Use the TypeOfOrganizationName to further
differentiate the type and applied usage when multiple names are provided.

5.14. ComplexDataTypes 159

DDI Documentation, Release 4.0 dev

Graph

OrganizationName

+ abbreviation : InternationalString
 + typeOfOrganizationName : CodeValueType
 + effectivePeriod : Date
 + isFormal : xs :boolean

Name

+ isPreferred : xs :boolean
 + context : xs :s tring

5.14.37 PairedCodeValueType

A tightly bound pair of items from a controlled vocabulary. The extent property describes the extent to which the
parent term applies for the specific case.

Extends

CodeValueType

Properties

Name Type Cardinality
extent CodeValueType 0..1

extent

Describes the extent to which the parent term applies for the specific case using an external controlled vocabulary.

160 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

PairedCodeValueType

+ extent : CodeValueType

CodeValueType

+ codeValue : xs :s tring
 + codeLis tID : xs :s tring
 + codeLis tName : xs :s tring
 + codeLis tAgencyName : xs :s tring
 + codeLis tVers ionID : xs :s tring
 + otherValue : xs :s tring
 + codeLis tURN : xs :s tring
 + codeLis tSchemeURN : xs :s tring

5.14.38 Point

A geographic point consisting of an X and Y coordinate. Each coordinate value is expressed separately providing its
value and format.

Properties

Name Type Cardinality
xCoordinate SpatialCoordinate 0..1
yCoordinate SpatialCoordinate 0..1

xCoordinate

An X coordinate (latitudinal equivalent) value and format expressed using the Spatial Coordinate structure.

yCoordinate

A Y coordinate (longitudinal equivalent) value and format expressed using the Spatial Coordinate structure.

5.14. ComplexDataTypes 161

DDI Documentation, Release 4.0 dev

Graph

Point

+ xCoordinate : SpatialCoordinate
 + yCoordinate : SpatialCoordinate

5.14.39 Polygon

A closed plane figure bounded by three or more line segments, representing a geographic area. Contains either the URI
of the file containing the polygon, a specific link code for the shape within the file, and a file format, or a minimum of 4
points to describe the polygon in-line. Note that the first and last point must be identical in order to close the polygon.
A triangle has 4 points. A geographic time designating the time period that the shape is valid should be included. If
the date range is unknown use a SingleDate indicating a date that the shape was known to be valid.

Properties

Name Type Cardinality
externalURI xs:anyURI 0..1
polygonLinkCode xs:string 0..1
shapeFileFormat CodeValueType 0..1
point Point 4..n

externalURI

Note that ExternalURI points to the boundary file location.

polygonLinkCode

The PolygonLinkCode is the identifier of the specific polygon within the file. For example in an NHGIS file the
LinkCodeForPolygon for Tract 101.01 in Hennepin County in Minnesota is 2700530010101.

shapeFileFormat

The format of the shape file existing at the location indicated by the sibling ExternalURI element.

162 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

point

A geographic point defined by a latitude and longitude. A minimum of 4 points is required as the first and last point
should be identical in order to close the polygon. Note that a triangle has three sides and requires 3 unique points plus
a fourth point replicating the first point in order to close the polygon.

Graph

Polygon

+ externalURI : xs :anyURI
 + polygonLinkCode : xs :s tring
 + shapeFileFormat : CodeValueType
 + point : Point

5.14.40 PrivateImage

References an image using the standard Image description. In addition to the standard attributes provides an effective
date (period), the type of image, and a privacy ranking.

Extends

Image

Properties

Name Type Cardinality
effectivePeriod Date 0..1
privacy CodeValueType 0..1

effectivePeriod

The period for which this image is effective/valid.

privacy

Specify the level privacy for the image as public, restricted, or private. Supports the use of an external controlled
vocabulary.

5.14. ComplexDataTypes 163

DDI Documentation, Release 4.0 dev

Graph

PrivateImage

+ effectivePeriod : Date
 + privacy : CodeValueType

Image

+ imageLocation : xs :anyURI
 + typeOfImage : CodeValueType
 + dpi : xs :integer
 + languageOfImage : xs :language

5.14.41 ProprietaryInfo

Contains information proprietary to the software package which produced the data file. This is expressed as a set of
key(name)-value pairs.

Properties

Name Type Cardinality
proprietaryProperty StandardKeyValuePair 0..n

proprietaryProperty

A structure that supports the use of a standard key value pair. Note that this information is often not interoperable and
is provided to support the use of the metadata within specific systems.

164 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

ProprietaryInfo

+ proprietaryProperty : StandardKeyValuePair

5.14.42 Range

Indicates the range of items expressed as a string, such as an alphabetic range.

Properties

Name Type Cardinality
rangeUnit xs:string 0..1
minimumValue RangeValue 0..1
maximumValue RangeValue 0..1

rangeUnit

Specifies the units in the range.

minimumValue

Minimum value in the range.

maximumValue

Maximum value in the range.

5.14. ComplexDataTypes 165

DDI Documentation, Release 4.0 dev

Graph

Range

+ rangeUnit : xs :s tring
 + minimumValue : RangeValue
 + maximumValue : RangeValue

5.14.43 RangeValue

Describes a bounding value of a string.

Extends

Value

Properties

Name Type Cardinality
included xs:boolean 0..1

included

Set to “true” if the value is included in the range.

166 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

RangeValue

+ included : xs :boolean

Value

+ content : xs :s tring
 + whiteSpace : WhiteSpace

5.14.44 ReferenceDate

The date covered by the annotated object. In addition to specifying a type of date (e.g. collection period, census year,
etc.) the date or time span may be associated with a particular subject or keyword. This allows for the expression of
a referent date associated with specific subjects or keywords. For example, a set of date items on income and labor
force status may have a referent date for the year prior to the collection date.

Extends

AnnotationDate

Properties

Name Type Cardinality
subject InternationalCodeValueType 0..n
keyword InternationalCodeValueType 0..n

subject

If the date is for a subset of data only such as a referent date for residence 5 years ago, use Subject to specify the
coverage of the data this date applies to. May be repeated to reflect multiple subjects.

5.14. ComplexDataTypes 167

DDI Documentation, Release 4.0 dev

keyword

If the date is for a subset of data only such as a referent date for residence 5 years ago, use keyword to specify the
coverage of the data this date applies to. May be repeated to reflect multiple keywords.

Graph

ReferenceDate

+ subject : InternationalCodeValueType
 + keyword : InternationalCodeValueType

AnnotationDate

+ typeOfDate : CodeValueType

5.14.45 Relationship

Relationship specification between this item and the item to which it is related. Provides a reference to any identifiable
object and a description of the relationship.

Properties

Name Type Cardinality
relationshipDescription StructuredString 0..1

relationshipDescription

A description of the nature of the relationship between the parent element of the relationship item and the DDI object
to which it is related.

168 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

Relationship

+ relationshipDescription : StructuredString

relatedToAssociation

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

1..10..n

5.14.46 ResourceIdentifier

Provides a means of identifying a related resource and provides the typeOfRelationship. Makes use of a controlled
vocabulary for typing the relationship. Standard usage may include: describesDate, isDescribedBy, isFormatOf, is-
PartOf, isReferencedBy, isReplacedBy, isRequiredBy, isVersionOf, references, replaces, requires, etc.

Extends

InternationalIdentifier

Properties

Name Type Cardinality
typeOfRelatedResource CodeValueType 0..n

typeOfRelatedResource

The type of relationship between the annotated object and the related resource. Standard usage may include: describes-
Date, isDescribedBy, isFormatOf, isPartOf, isReferencedBy, isReplacedBy, isRequiredBy, isVersionOf, references,

5.14. ComplexDataTypes 169

DDI Documentation, Release 4.0 dev

replaces, requires, etc.

Graph

ResourceIdentifier

+ typeOfRelatedResource : CodeValueType

InternationalIdentifier

+ identifierContent : xs :s tring
 + managingAgency : CodeValueType
 + isURI : xs :boolean

5.14.47 Segment

A structure used to express explicit segments or regions within different types of external materials (Textual, Audio,
Video, XML, and Image). Provides the appropriate start, stop, or region definitions for each type.

Properties

Name Type Cardinality
audioSegment AudioSegment 0..n
videoSegment VideoSegment 0..n
xml xs:string 0..n
textualSegment TextualSegment 0..n
imageArea ImageArea 0..n

audioSegment

Describes the type and length of the audio segment.

170 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

videoSegment

Describes the type and length of the video segment.

xml

An X-Pointer expression identifying a node in the XML document.

textualSegment

Defines the segment of textual content used by the parent object. Can identify a set of lines and or characters used to
define the segment

imageArea

Defines the shape and area of an image used as part of a location representation. The shape is defined as a Rectangle,
Circle, or Polygon and Coordinates provides the information required to define it.

Graph

Segment

+ audioSegment : AudioSegment
 + videoSegment : VideoSegment
 + xml : xs :s tring
 + textualSegment : TextualSegment
 + imageArea : ImageArea

5.14.48 Software

Describes a specific software package, which may be commercially available or custom-made.

5.14. ComplexDataTypes 171

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
softwareName Name 0..n
softwarePackage CodeValueType 0..1
softwareVersion xs:string 0..1
description StructuredString 0..1
date Date 0..1
function CodeValueType 0..n
xmlLang xs:language 0..1

softwareName

The name of the software package, including its producer.

softwarePackage

A coded value from a controlled vocabulary, describing the software package.

softwareVersion

The version of the software package. Defaults to ‘1.0’.

description

A description of the content and purpose of the software. May be expressed in multiple languages and supports the
use of structured content.

date

Supported date of the software package with, at minimum, a release date if known.

function

Identifies the functions handled by this software. Repeat for multiple functions. It may be advisable to note only those
functions used in the specific usage of the software.

xmlLang

Language (human language) of the software package.

172 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

Software

+ softwareName : Name
 + softwarePackage : CodeValueType
 + softwareVers ion : xs :s tring
 + description : StructuredString
 + date : Date
 + function : CodeValueType
 + xmlLang : xs :language

5.14.49 SpatialCoordinate

Lists the value and format type for the coordinate value. Note that this is a single value (X coordinate or Y coordinate)
rather than a coordinate pair.

Properties

Name Type Cardinality
coordinateValue xs:string 0..1
coordinateType PointFormat 1..1

coordinateValue

The value of the coordinate expressed as a string.

coordinateType

Identifies the type of point coordinate system using a controlled vocabulary. Point formats include decimal degree,
degrees minutes seconds, decimal minutes, meters, and feet.

5.14. ComplexDataTypes 173

DDI Documentation, Release 4.0 dev

Graph

SpatialCoordinate

+ coordinateValue : xs :s tring
 + coordinateType : PointFormat

5.14.50 SpecificSequence

Describes the ordering of items when not otherwise indicated. There are a set number of values for ItemSequenceType,
but also a provision for describing an alternate ordering using a command language.

Properties

Name Type Cardinality
itemSequence ItemSequence 1..1
alternateSequence CommandCode 0..1

itemSequence

Identifies the type of sequence to use. Values include InOrderOfAppearance, Random, Rotate, and Other.

alternateSequence

Information on the command used to generate an alternative means of determining sequence changes. If used, the
ItemSequenceType should be “Other”.

174 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

SpecificSequence

+ itemSequence : ItemSequence
 + alternateSequence : CommandCode

5.14.51 StandardKeyValuePair

A basic data representation for computing systems and applications expressed as a tuple (attribute key, value). Attribute
keys may or may not be unique.

Properties

Name Type Cardinality
attributeKey CodeValueType 0..1
attributeValue CodeValueType 0..1

attributeKey

This key (sometimes referred to as a name) expressed as a string. Supports the use of an external controlled vocabulary
which is the recommended approach.

attributeValue

The value assigned to the named Key expressed as a string. Supports the use of an external controlled vocabulary.

5.14. ComplexDataTypes 175

DDI Documentation, Release 4.0 dev

Graph

StandardKeyValuePair

+ attributeKey : CodeValueType
 + attributeValue : CodeValueType

5.14.52 Statistic

The value of the statistics and whether it is weighted and/or includes missing values.

Properties

Name Type Cardinality
isWeighted xs:boolean 0..1
computationBase ComputationBaseList 0..1
content xs:string 1..1

isWeighted

Set to “true” if the statistic is weighted using the weight designated in VariableStatistics.

computationBase

Defines the cases included in determining the statistic. The options are total=all cases, valid and missing (invalid); vali-
dOnly=Only valid values, missing (invalid) are not included in the calculation; missingOnly=Only missing (invalid)
cases included in the calculation.

176 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

content

Graph

Statis tic

+ isWeighted : xs :boolean
 + computationBase : ComputationBaseLis t
 + content : xs :s tring

5.14.53 String

Allows for non-formatted strings that may be translations from other languages, or that may be translatable into other
languages. Only one string per language/location type is allowed. String contains the following attributes, xmlang to
designate the language, isTranslated with a default value of false to designate if an object is a translation of another
language, isTranslatable with a default value of true to designate if the content can be translated, translationSource-
Language to indicate the source languages used in creating this translation, and translationDate.

Properties

Name Type Cardinality
content xs:string 1..1
xmlLang xs:language 0..1
isTranslated xs:boolean 0..1
isTranslatable xs:boolean 0..1
translationSourceLanguage xs:language 0..n
translationDate xs:date 0..1

content

value of this string

xmlLang

Indicates the language of content. Note that xmlang allows for a simple 2 or 3 character language code or a language
code extended by a country code , for example en-au for English as used in Australia.

5.14. ComplexDataTypes 177

DDI Documentation, Release 4.0 dev

isTranslated

Indicates whether content is a translation (true) or an original (false).

isTranslatable

Indicates whether content is translatable (true) or not (false). An example of something that is not translatable would
be a MNEMONIC of an object or a number.

translationSourceLanguage

List the language code of the source. Repeat of multiple language sources are used.

translationDate

The date the content was translated. Provision of translation date allows user to verify if translation was available
during data collection or other time linked activity.

Graph

String

+ content : xs :s tring
 + xmlLang : xs :language
 + isTrans lated : xs :boolean
 + isTrans latable : xs :boolean
 + trans lationSourceLanguage : xs :language
 + trans lationDate : xs :date

5.14.54 StructuredString

Packaging structure for multiple language versions of the same string content, for objects that allow for internal
formatting using XHTML tags. Where an element of this type is repeatable, the expectation is that each repetition
contains different content, each of which can be expressed in multiple languages.

Properties

Name Type Cardinality
content Content 1..n

178 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

content

Supports the optional use of XHTML formatting tags within the string structure. In addition to the language desig-
nation and information regarding translation, the attribute isPlain can be set to true to indicate that the content should
be treated as plain unstructured text, including any XHTML formatting tags. Repeat the content element to provide
multiple language versions of the same content.

Graph

StructuredString

+ content : Content

5.14.55 Telephone

Details of a telephone number including the number, type of number, a privacy setting and an indication of whether
this is the preferred contact number.

Properties

Name Type Cardinality
telephoneNumber xs:string 0..1
typeOfTelephone CodeValueType 0..1
effectivePeriod Date 0..1
privacy CodeValueType 0..1
isPreferred xs:boolean 0..1

telephoneNumber

The telephone number including country code if appropriate.

typeOfTelephone

Indicates type of telephone number provided (home, fax, office, cell, etc.). Supports the use of a controlled vocabulary.

5.14. ComplexDataTypes 179

DDI Documentation, Release 4.0 dev

effectivePeriod

Time period during which the telephone number is valid.

privacy

Specify the level privacy for the telephone number as public, restricted, or private. Supports the use of an external
controlled vocabulary.

isPreferred

Set to “true” if this is the preferred telephone number for contact.

Graph

Telephone

+ telephoneNumber : xs :s tring
 + typeOfTelephone : CodeValueType
 + effectivePeriod : Date
 + privacy : CodeValueType
 + isPreferred : xs :boolean

5.14.56 Text

The static portion of the text expressed as a StructuredString with the ability to preserve whitespace if critical to the
understanding of the content.

Extends

Content

Properties

Name Type Cardinality
whiteSpace WhiteSpace 0..1

180 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

whiteSpace

The default setting states that leading and trailing white space will be removed and multiple adjacent white spaces will
be treated as a single white space. If the existance of any of these white spaces is critical to the understanding of the
content, change the value of this attribute to “preserve”.

Graph

Text

+ whiteSpace : WhiteSpace

Content

+ content : xhtml:BlkNoForm.mix
 + xmlLang : xs :language
 + isTrans lated : xs :boolean
 + isTrans latable : xs :boolean
 + trans lationSourceLanguage : xs :language
 + trans lationDate : xs :date
 + isPlainText : xs :boolean

5.14.57 TextContent

Abstract type existing as the head of a substitution group. May be replaced by any valid member of the substitution
group TextContent. Provides the common element Description to all members using TextContent as an extension base.

Properties

Name Type Cardinality
description StructuredString 0..1

5.14. ComplexDataTypes 181

DDI Documentation, Release 4.0 dev

description

A description of the content and purpose of the text segment. May be expressed in multiple languages and supports
the use of structured content.

Graph

TextContent

+ description : StructuredString

5.14.58 TextualSegment

Defines the segment of textual content used by the parent object. Can identify a set of lines and or characters used to
define the segment.

Properties

Name Type Cardinality
lineParamenter LineParameter 1..1
characterParameter CharacterOffset 1..1

lineParamenter

Specification of the line and offset for the beginning and end of the segment.

characterParameter

Specification of the character offset for the beginning and end of the segment.

182 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

TextualSegment

+ lineParamenter : LineParameter
 + characterParameter : CharacterOffset

5.14.59 URI

A URN or URL for a file with a flag to indicate if it is a public copy.

Properties

Name Type Cardinality
isPublic xs:boolean 0..1
content xs:string 1..1

isPublic

Set to “true” (default value) if this file is publicly available. This does not imply that there are not restrictions to access.
Set to “false” if this is not publicly available, such as a backup copy, an internal processing data file, etc.

5.14. ComplexDataTypes 183

DDI Documentation, Release 4.0 dev

content

Graph

URI

+ isPublic : xs :boolean
 + content : xs :s tring

5.14.60 URL

A web site URL

Properties

Name Type Cardinality
isPreferred xs:boolean 0..1
content xs:anyURI 1..1
typeOfWebsite CodeValueType 0..1
effectivePeriod Date 0..1
privacy CodeValueType 0..1

isPreferred

Set to “true” if this is the preferred URL.

content

The content of the URL

typeOfWebsite

The type of URL for example personal, project, organization, division, etc.

effectivePeriod

The period for which this URL is valid.

184 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

privacy

Indicates the privacy level of this URL

Graph

URL

+ isPreferred : xs :boolean
 + content : xs :anyURI
 + typeOfWebs ite : CodeValueType
 + effectivePeriod : Date
 + privacy : CodeValueType

5.14.61 Value

The Value expressed as an xs:string with the ability to preserve whitespace if critical to the understanding of the
content.

Properties

Name Type Cardinality
content xs:string 1..1
whiteSpace WhiteSpace 0..1

content

The actual content of this value as a string

whiteSpace

The default setting states that leading and trailing white space will be removed and multiple adjacent white spaces will
be treated as a single white space. If the existence of any of these white spaces is critical to the understanding of the
content, change the value of this attribute to “preserve”.

5.14. ComplexDataTypes 185

DDI Documentation, Release 4.0 dev

Graph

Value

+ content : xs :s tring
 + whiteSpace : WhiteSpace

5.14.62 VideoSegment

Describes the type and length of the video segment.

Properties

Name Type Cardinality
typeOfVideoClip CodeValueType 0..1
videoClipBegin xs:string 0..1
videoClipEnd xs:string 0..1

typeOfVideoClip

The type of video clip provided. Supports the use of a controlled vocabulary.

videoClipBegin

The point to begin the video clip. If no point is provided the assumption is that the start point is the beginning of the
clip provided.

videoClipEnd

The point to end the video clip. If no point is provided the assumption is that the end point is the end of the clip
provided.

186 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

VideoSegment

+ typeOfVideoClip : CodeValueType
 + videoClipBegin : xs :s tring
 + videoClipEnd : xs :s tring

5.14.63 XMLPrefixMap

Maps a specified prefix to a namespace. For each XML namespace used in the profile’s XPath expressions, the XML
namespaces must have their prefix specified using this element.

Properties

Name Type Cardinality
xmlPrefix xs:string 0..1
xmlNamespace xs:string 0..1

xmlPrefix

Specify the exact prefix used.

xmlNamespace

Specify the namespace which the prefix represents.

5.14. ComplexDataTypes 187

DDI Documentation, Release 4.0 dev

Graph

XMLPrefixMap

+ xmlPrefix : xs :s tring
 + xmlNamespace : xs :s tring

5.15 Conceptual

Conceptual covers all of the basic components of ISO/IEC 11179 as captured and represented in the GSIM Concepts
Group http://www1.unece.org/stat/platform/display/GSIMclick/Concepts+Group The Conceptual package will review
all parts of the GSIM Concepts Group content and determine if and where adjustments need to be made to interact
well with the overall mandate of DDI regarding support for work outside of the GSIM sphere and required levels of
abstraction.

Contents

5.15.1 Category

A Concept whose role is to define and measure a characteristic.

Extends

Concept

188 Chapter 5. Packages

http://www1.unece.org/stat/platform/display/GSIMclick/Concepts+Group

DDI Documentation, Release 4.0 dev

Graph

Category

Concept

5.15.2 Concept

Unit of thought differentiated by characteristics [GSIM 1.1]

Extends

Member

5.15. Conceptual 189

DDI Documentation, Release 4.0 dev

Graph

Concept

Member

+ label : Label
 + definition : StructuredString
 + description : StructuredString

5.15.3 ConceptParentChild

Parent-child specialization of OrderRelation between Concepts within a ConceptSystem.

Extends

OrderRelation

190 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

ConceptParentChild

parent

child

Concept

1..1

0..n

1..1

0..n

OrderRelation

+ type : OrderRelationshipType
 + criteria : StructuredString
 + isRegularHierarchy : xs :boolean
 + label : Label
 + definition : StructuredString
 + description : StructuredString

predecessor

successor

5.15.4 ConceptPartWhole

Part-whole specialization of OrderRelation between Concepts within a ConceptSystem.

Extends

OrderRelation

5.15. Conceptual 191

DDI Documentation, Release 4.0 dev

Graph

ConceptPartWhole

whole

part

Concept

1..1

0..n

1..1

0..n

OrderRelation

+ type : OrderRelationshipType
 + criteria : StructuredString
 + isRegularHierarchy : xs :boolean
 + label : Label
 + definition : StructuredString
 + description : StructuredString

predecessor

successor

5.15.5 ConceptSystem

A set of Concepts structured by the relations among them. [GSIM 1.1]

Extends

Collection

192 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

ConceptSystem

contains

hasConceptParentChild

hasConceptPartWhole

Collection

+ type : CollectionType

contains

isOrderedBy

Concept

0..n

1..n

ConceptParentChild

parent

child

1..n

0..n

ConceptPartWhole

whole

part

1..n

0..n

5.15.6 ConceptSystemCorrespondence

Extends

CollectionCorrespondence

5.15. Conceptual 193

DDI Documentation, Release 4.0 dev

Graph

ConceptSystemCorrespondence

maps

contains

CollectionCorrespondence

+ label : Label
 + definition : StructuredString
 + description : StructuredString

maps

contains

ConceptSystem

contains

hasConceptParentChild

hasConceptPartWhole

0..n

2..n

SimilarConcept

maps

1..n

1..n

5.15.7 ConceptualDomain

Set of valid Concepts. The Concepts can be described by either enumeration or by an expression.

Extends

AnnotatedIdentifiable

194 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
label Label 0..n
definition StructuredString 0..1
description StructuredString 0..1

label

A display label for the Conceptual Domain. May be expressed in multiple languages. Repeat for labels with different
content, for example, labels with differing length limitations.

definition

A description of the content and purpose of the Conceptual Domain. May be expressed in multiple languages and
supports the use of structured content.

description

A description of the purpose or use of a concept. May be expressed in multiple languages and supports the use of
structured content.

5.15. Conceptual 195

DDI Documentation, Release 4.0 dev

Graph

ConceptualDomain

+ label : Label
 + definition : StructuredString
 + description : StructuredString

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.15.8 ConceptualVariable

The use of a Concept as a characteristic of a Universe intended to be measured [GSIM 1.1]

Extends

Concept

196 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

ConceptualVariable

hasConcept

uses

Concept

ConceptualDomain

+ label : Label
 + definition : StructuredString
 + description : StructuredString

1..1

1..n

0..n

0..1

5.15.9 DescribedConceptualDomain

A Conceptual Domain defined by an expression.

Extends

ConceptualDomain

5.15. Conceptual 197

DDI Documentation, Release 4.0 dev

Graph

DescribedConceptualDomain

ConceptualDomain

+ label : Label
 + definition : StructuredString
 + description : StructuredString

5.15.10 EnumeratedConceptualDomain

A Conceptual Domain expressed as a list of Categories.

Extends

ConceptualDomain

198 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

EnumeratedConceptualDomain

takesCategoriesFrom

CategorySet

hasCategory

0..1

1..n

ConceptualDomain

+ label : Label
 + definition : StructuredString
 + description : StructuredString

5.15.11 InstanceVariable

The use of a Represented Variable within a Data Set.

Extends

RepresentedVariable

Properties

Name Type Cardinality
variableRole StructuredString 0..1

variableRole

An Instance Variable can take different roles, e.g. Identifier, Measure and Attribute. Note that DataStructure takes
care of the ordering of Identifiers.

5.15. Conceptual 199

DDI Documentation, Release 4.0 dev

Graph

Ins tanceVariable

+ variableRole : StructuredString

measures

isPopulatedBy

hasPhys icalType

Population

hasSubpopulation

contains

1..1

0..n

RepresentedVariable

takesValueFrom

hasUniverse

has IntendedType

Capture

usesResponseDomain

hasConcept

elicitsObservation

0..n

1..n

DataType

+ scheme : InternationalString

0..1

1..1

5.15.12 Population

Set of specific units (people, entities, objects, events), usually in a given time and geography.

Extends

Universe

200 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

Population

hasSubpopulation

contains

1..1

0..n

Universe

+ is Inclus ive : xs :boolean

hasSubuniverse

Unit

+ label : Label
 + definition : StructuredString

0..n

1..n

5.15.13 RepresentedVariable

A combination of a characteristic of a universe to be measured and how that measure will be represented.

Extends

ConceptualVariable

5.15. Conceptual 201

DDI Documentation, Release 4.0 dev

Graph

RepresentedVariable

takesValueFrom

hasUniverse

has IntendedType

ValueDomain

+ unitOfMeasurement : xs :s tring
 + label : Label
 + definition : StructuredString
 + description : StructuredString

1..1

0..n

Universe

+ is Inclus ive : xs :boolean

hasSubuniverse

1..1

0..n

ConceptualVariable

hasConcept

uses

DataType

+ scheme : InternationalString

0..1

1..1

5.15.14 SimilarConcept

A reference to a concept with similar meaning and a description of their differences. The similar concept structure
allows specification of similar concepts to address cases where confusion may affect the appropriate use of the concept.

Extends

MemberCorrespondence

202 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

SimilarConcept

maps

MemberCorrespondence

+ type : CorrespondenceType
 + label : Label
 + definition : StructuredString
 + description : StructuredString

maps

Concept

0..n

2..n

5.15.15 Unit

The object of interest in a process step related to the collection or use of observational data.

Extends

AnnotatedIdentifiable

Properties

Name Type Cardinality
label Label 0..n
definition StructuredString 0..1

5.15. Conceptual 203

DDI Documentation, Release 4.0 dev

label

A display label for the Unit. May be expressed in multiple languages. Repeat for labels with different content, for
example, labels with differing length limitations.

definition

A description of the content and purpose of the Unit. May be expressed in multiple languages and supports the use of
structured content.

Graph

Unit

+ label : Label
 + definition : StructuredString

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.15.16 UnitType

A Unit Type is a class of objects of interest.

Extends

Concept

204 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

UnitType

has Instance

Concept

Unit

+ label : Label
 + definition : StructuredString

1..1

0..n

5.15.17 Universe

A defined class of people, entities, events, or objects, with no specification of time and geography, contextualizing a
Unit Type

Extends

UnitType

Properties

Name Type Cardinality
isInclusive xs:boolean 0..1

5.15. Conceptual 205

DDI Documentation, Release 4.0 dev

isInclusive

The default value is “true”. The description statement of a universe is generally stated in inclusive terms such as “All
persons with university degree”. Occasionally a universe is defined by what it excludes, i.e., “All persons except those
with university degree”. In this case the value would be changed to “false”.

Graph

Universe

+ is Inclus ive : xs :boolean

hasSubuniverse

1..1

0..n

UnitType

has Instance

5.16 DataCapture

The DataCapture package contains objects used to describe the process of collecting, acquiring, or capturing data
from various sources. Sources could include surveys, databases, registries, administrative data, bio-medical devices,
environmental sensors, or any other source or instrument.

Note: this package was previously referred to as SimpleInstrument. Contents

5.16.1 Capture

A Capture is an abstract object. Concrete objects that extend Capture describe the means of obtaining research data.

206 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Extends

InstrumentComponent

Graph

Capture

usesResponseDomain

hasConcept

elicitsObservation

Observation

producedbyProcessStep

answersCapture

0..n

1..1

InstrumentComponent

has Instructions

hasExternalAids

Concept

0..n

0..n

ResponseDomain

isCodedBy

1..1

0..n

5.16.2 ConceptualInstrument

Design plan for creating a data capture tool. From GSIM: The complete questionnaire design with a relationship to
the top level questionnaire component (control construct).

Extends

AnnotatedIdentifiable

5.16. DataCapture 207

DDI Documentation, Release 4.0 dev

Graph

ConceptualInstrument

has ImplementedInstruments

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

ImplementedInstrument

hasProcessSteps

1..1

0..n

5.16.3 ExternalAid

Any external stimulus material used in an instrument that aids or facilitates data capture, or that is presented to a
respondent and about which measurements are made.

Extends

OtherMaterial

208 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
stimulusType CodeValueType 0..1

stimulusType

Graph

ExternalAid

+ stimulusType : CodeValueType

DDI4_OtherMaterial

5.16.4 ImplementedInstrument

ImplementedInstruments are mode and/or unit specific.

Extends

AnnotatedIdentifiable

5.16. DataCapture 209

DDI Documentation, Release 4.0 dev

Graph

ImplementedInstrument

hasProcessSteps

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

ProcessStep

+ label : Label
 + description : StructuredString
 + definition : StructuredString
 + binding : Binding

isPerformedBy

has Input

hasOutput

1..1

0..n

5.16.5 Instruction

Provides the content and description of data capture instructions. Contains the “how to” information for administering
an instrument.

Extends

InstrumentComponent

210 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
associatedImage StructuredString 0..1
instructionText DynamicText 0..n

associatedImage

An image associated with the Instruction, located at the provided URN or URL.

instructionText

The content of the Instruction text provided using DynamicText. Note that when using Dynamic Text, the full Instruc-
tionText must be repeated for multi-language versions of the content. The InstructionText may also be repeated to
provide a dynamic and plain text version of the instruction. This allows for accurate rendering of the instruction in a
non-dynamic environment like print.

Graph

Ins truction

+ associatedImage : StructuredString
 + ins tructionText : DynamicText

Ins trumentComponent

has Instructions

hasExternalAids

5.16.6 InstrumentComponent

InstrumentComponent is an abstract object which extends ProcessStep. The purpose of InstrumentComponent is to
provide a common parent for Capture (e.g., Question, Measure), Statement, and Instructions.

5.16. DataCapture 211

DDI Documentation, Release 4.0 dev

Extends

ProcessStep

Graph

Ins trumentComponent

has Instructions

hasExternalAids

ProcessStep

+ label : Label
 + description : StructuredString
 + definition : StructuredString
 + binding : Binding

isPerformedBy

has Input

hasOutput

Ins truction

+ associatedImage : StructuredString
 + ins tructionText : DynamicText

1..1

0..n

ExternalAid

+ stimulusType : CodeValueType

1..1

0..n

5.16.7 Measurement

Any data capture method other than Question.

212 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Extends

Capture

Graph

Measurement

Capture

usesResponseDomain

hasConcept

elicitsObservation

5.16.8 Observation

The result of applying a particular Capture in an Instrument to some experimental Unit

5.16. DataCapture 213

DDI Documentation, Release 4.0 dev

Graph

Observation

producedbyProcessStep

answersCapture

Capture

usesResponseDomain

hasConcept

elicitsObservation

1..10..n

ProcessStep

+ label : Label
 + description : StructuredString
 + definition : StructuredString
 + binding : Binding

isPerformedBy

has Input

hasOutput

0..n

1..1

5.16.9 Question

A query of a human subject

Extends

Capture

214 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
text Text 1..1
language xs:language 1..1

text

Literal question text

language

Graph

Question

+ text : Text
 + language : xs :language

usedinInstrument

Capture

usesResponseDomain

hasConcept

elicitsObservation

ConceptualInstrument

has ImplementedInstruments

1..n

0..n

5.16. DataCapture 215

DDI Documentation, Release 4.0 dev

5.16.10 ResponseDomain

The possible list of values that are allowed by a Capture.

Extends

AnnotatedIdentifiable

Graph

ResponseDomain

isCodedBy

ValueDomain

+ unitOfMeasurement : xs :s tring
 + label : Label
 + definition : StructuredString
 + description : StructuredString

1..n

1..1

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.16.11 Statement

A Statement is human readable text or referred material.

Extends

InstrumentComponent

Properties

Name Type Cardinality
text StructuredString 1..1

216 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

text

Structured human-readable text

Graph

Statement

+ text : StructuredString

InstrumentComponent

has Instructions

hasExternalAids

5.17 Correspondences

Correspondences package Contents

5.18 CoreProcess

CoreProcess model for DDI 4. The CoreProcess contains a set of objects that serve as the basis for describing specific
processes using DDI object. It is intended to be specialized to support specific applications. Some examples of its use
can be seen in DataCapture, HistoricalProcess, and PrescriptiveProcess. Contents

5.18.1 Act

An Act is a type of ControlConstruct. An Act has many subtypes including an Instruction, a Question, an Instrument
and a StudyUnit. Both Acts and ControlConstructs are triggered when the conditions of a ControlConstruct are met.

5.17. Correspondences 217

DDI Documentation, Release 4.0 dev

Extends

ControlConstruct

Graph

Act

ControlConstruct

5.18.2 Binding

A structure used to bind the content of a parameter declared as the source to a parameter declared as the target. For
example, binding the output of a question to the input of a generation instruction. Question A has an OutParameter X.
Generation Instruction has an InParameter Y used in the recode instruction. Binding defines the content of InParameter
Y to be whatever is provided by OutParameter X for use in the calculation of the recode.

Properties

Name Type Cardinality
sourceParameter xs:string 1..1
targetParameter xs:string 1..1

sourceParameter

A structure used to bind the content of a parameter declared as the source to a parameter declared as the target. For
example, binding the output of a question to the input of a generation instruction. Question A has an OutParameter X.
Generation Instruction has an InParameter Y used in the recode instruction. Binding defines the content of InParameter
Y to be whatever is provided by OutParameter X for use in the calculation of the recode.[Referenced object not explicit]

218 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

targetParameter

A structure used to bind the content of a parameter declared as the source to a parameter declared as the target. For
example, binding the output of a question to the input of a generation instruction. Question A has an OutParameter X.
Generation Instruction has an InParameter Y used in the recode instruction. Binding defines the content of InParameter
Y to be whatever is provided by OutParameter X for use in the calculation of the recode.[Referenced object not explicit]

Graph

Binding

+ sourceParameter : xs :s tring
 + targetParameter : xs :s tring

5.18.3 ContainsTemporalRelation

Extends

TemporalRelation

5.18. CoreProcess 219

DDI Documentation, Release 4.0 dev

Graph

ContainsTemporalRelation

contains

during

ProcessStep

+ label : Label
 + description : StructuredString
 + definition : StructuredString
 + binding : Binding

isPerformedBy

has Input

hasOutput

1..1

0..1

1..10..1

TemporalRelation

fuzzyPredecessor

fuzzySuccessor

5.18.4 ControlConstruct

A ControlConstruct is used in the definition of the sequence of execution of process steps.

Extends

ProcessStep

220 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

ControlConstruct

ProcessStep

+ label : Label
 + description : StructuredString
 + definition : StructuredString
 + binding : Binding

isPerformedBy

has Input

hasOutput

5.18.5 EqualTemporalRelation

Extends

TemporalRelation

5.18. CoreProcess 221

DDI Documentation, Release 4.0 dev

Graph

EqualTemporalRelation

equalA

equalB

ProcessStep

+ label : Label
 + description : StructuredString
 + definition : StructuredString
 + binding : Binding

isPerformedBy

has Input

hasOutput

1..1

0..1

1..10..1

TemporalRelation

fuzzyPredecessor

fuzzySuccessor

5.18.6 FinishesTemporalRelation

Extends

TemporalRelation

222 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

FinishesTemporalRelation

finishedBy

finishes

ProcessStep

+ label : Label
 + description : StructuredString
 + definition : StructuredString
 + binding : Binding

isPerformedBy

has Input

hasOutput

1..1

0..1

1..10..1

TemporalRelation

fuzzyPredecessor

fuzzySuccessor

5.18.7 IfThenElse

IfThenElse describes an if-then-else decision type of control construct. IF the stated condition is met, the THEN clause
is trigged, otherwise the ELSE clause is triggered.

Extends

ControlConstruct

Properties

Name Type Cardinality
ifCondition CommandCode 1..1

ifCondition

The condition which must be met to trigger the Then clause, expressed as a CommandCode. The condition is an
expression in the programming language used in the instrument.

5.18. CoreProcess 223

DDI Documentation, Release 4.0 dev

Graph

IfThenElse

+ ifCondition : CommandCode

hasElse

hasThen

ControlConstruct

0..1

1..1

1..11..1

5.18.8 Input

Input to a process step, either a type of an object or an instance.

Extends

Parameter

Properties

Name Type Cardinality
limitArrayIndex xs:NMTOKENS 0..1

limitArrayIndex

When the Input represents an array of items, this attribute specifies the index identification of the items within the
zero-based array which should be treated as input parameters. If not specified, the full array is treated as the input
parameter.

224 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

Input

+ limitArrayIndex : xs :NMTOKENS

Parameter

+ alias : xs :NMTOKEN
 + defaultValue : Value
 + isArray : xs :boolean

valueRepresentation

5.18.9 Loop

Describes an action which loops until a limiting condition is met.

Extends

ControlConstruct

Properties

Name Type Cardinality
initialValue xs:integer 0..1
loopWhile CommandCode 0..1
stepValue xs:integer 0..1

initialValue

The command used to set the initial value for the process. Could be a simple value.

5.18. CoreProcess 225

DDI Documentation, Release 4.0 dev

loopWhile

The command used to determine whether the “LoopWhile” condition is met.

stepValue

The command used to set the incremental or step value for the process. Could be a simple value.

Graph

Loop

+ initialValue : xs :integer
 + loopWhile : CommandCode
 + s tepValue : xs :integer

hasLoop

ControlConstruct

1..11..1

5.18.10 MeetsTemporalRelation

Extends

TemporalRelation

226 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

MeetsTemporalRelation

meets

isMetBy

ProcessStep

+ label : Label
 + description : StructuredString
 + definition : StructuredString
 + binding : Binding

isPerformedBy

has Input

hasOutput

1..1

0..1

1..10..1

TemporalRelation

fuzzyPredecessor

fuzzySuccessor

5.18.11 Output

Output to a process step, either a type of an object or an instance.

Extends

Parameter

5.18. CoreProcess 227

DDI Documentation, Release 4.0 dev

Graph

Output

Parameter

+ alias : xs :NMTOKEN
 + defaultValue : Value
 + isArray : xs :boolean

valueRepresentation

5.18.12 OverlapsTemporalRelation

Extends

TemporalRelation

228 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

OverlapsTemporalRelation

overlaps

isOverlappedBy

ProcessStep

+ label : Label
 + description : StructuredString
 + definition : StructuredString
 + binding : Binding

isPerformedBy

has Input

hasOutput

1..1

0..1

1..10..1

TemporalRelation

fuzzyPredecessor

fuzzySuccessor

5.18.13 PredecessorTemporalRelation

Extends

TemporalRelation

5.18. CoreProcess 229

DDI Documentation, Release 4.0 dev

Graph

PredecessorTemporalRelation

predecessor

successor

ProcessStep

+ label : Label
 + description : StructuredString
 + definition : StructuredString
 + binding : Binding

isPerformedBy

has Input

hasOutput

1..1

0..1

1..10..1

TemporalRelation

fuzzyPredecessor

fuzzySuccessor

5.18.14 ProcessStep

Work package performed by a service to transform inputs to outputs considering rules as defined in the control con-
struct.

Extends

AnnotatedIdentifiable

Properties

Name Type Cardinality
label Label 0..1
description StructuredString 0..1
definition StructuredString 0..1
binding Binding 0..1

230 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

label

description

definition

binding

A structure used to bind the content of a parameter declared as the source to a parameter declared as the target. The
binding may be defined as part of the ProcessStep in which case it is called “in line”. The binding may also be defined
by a ProcessStep user such as an Instance Variable which might get its value from the ProcessStep. In this case we say
the ProcessStep or a set of ProcessSteps that form a processing pipeline is reusable and “declarative” only.

5.18. CoreProcess 231

DDI Documentation, Release 4.0 dev

Graph

ProcessStep

+ label : Label
 + description : StructuredString
 + definition : StructuredString
 + binding : Binding

isPerformedBy

has Input

hasOutput

Service

+ interface : CodeValueType
 + location : CodeValueType

hasAgent

1..1

0..n

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

Input

+ limitArrayIndex : xs :NMTOKENS

0..n

1..1

Output

0..n

1..1

5.18.15 RepeatUntil

Specifies a ControlConstruct to be repeated until a specified condition is met. Before each iteration the condition is
tested. When the condition is met, control passes back to the containing control construct.

232 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Extends

ControlConstruct

Properties

Name Type Cardinality
untilCondition CommandCode 1..1

untilCondition

Information on the command used to determine whether the “Until” condition is met.

Graph

RepeatUntil

+ untilCondition : CommandCode

hasUntil

ControlConstruct

1..11..1

5.18.16 RepeatWhile

Specifies a ControlConstruct to be repeated while a specified condition is met. Before each iteration the condition is
tested. When the condition is not met, control passes back to the containing control construct.

Extends

ControlConstruct

5.18. CoreProcess 233

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
whileCondition CommandCode 1..1

whileCondition

Information on the command used to determine whether the “While” condition is met.

Graph

RepeatWhile

+ whileCondition : CommandCode

hasWhile

ControlConstruct

1..11..1

5.18.17 Sequence

Provides a sequence order for operations expressed as control constructs. The sequence can be typed to support local
processing or classification flags and alternate sequencing instructions (such as randomize for each respondent).

Extends

ControlConstruct

Properties

Name Type Cardinality
typeOfSequence CodeValueType 0..n
constructSequence SpecificSequence 0..1

234 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

typeOfSequence

Provides the ability to “type” a sequence for classification or processing purposes. Supports the use of an external
controlled vocabulary.

constructSequence

Describes alternate ordering for different cases using the SpecificSequence structure. If you set the sequence to any-
thing other than order of appearance the only allowable children are QuestionConstruct or Sequence. Contents must
be randomizable.

Graph

Sequence

+ typeOfSequence : CodeValueType
 + constructSequence : SpecificSequence

isOrderedBy

ControlConstruct

TemporalRelation

fuzzyPredecessor

fuzzySuccessor

1..n

0..n

5.18.18 Service

A means of performing a Business Function (an ability that an organization possesses, typically expressed in general
and high level terms and requiring a combination of organization, people, processes and technology to achieve).

5.18. CoreProcess 235

DDI Documentation, Release 4.0 dev

(source: GSIM)

Extends

ProcessStep

Properties

Name Type Cardinality
interface CodeValueType 0..1
location CodeValueType 0..1

interface

Specifies how to communicate with the service.

location

Specifies where the service can be accessed.

236 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Graph

Service

+ interface : CodeValueType
 + location : CodeValueType

hasAgent

Agent

+ agentId : AgentId
 + description : StructuredString

0..n

0..n

ProcessStep

+ label : Label
 + description : StructuredString
 + definition : StructuredString
 + binding : Binding

isPerformedBy

has Input

hasOutput

5.18.19 StartsTemporalRelation

Extends

TemporalRelation

5.18. CoreProcess 237

DDI Documentation, Release 4.0 dev

Graph

StartsTemporalRelation

starts

isStartedBy

ProcessStep

+ label : Label
 + description : StructuredString
 + definition : StructuredString
 + binding : Binding

isPerformedBy

has Input

hasOutput

1..1

0..1

1..10..1

TemporalRelation

fuzzyPredecessor

fuzzySuccessor

238 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

5.18.20 TemporalRelation

Graph

TemporalRelation

fuzzyPredecessor

fuzzySuccessor

ProcessStep

+ label : Label
 + description : StructuredString
 + definition : StructuredString
 + binding : Binding

isPerformedBy

has Input

hasOutput

1..1

0..1

1..10..1

5.19 Agents

Agents Package covers the description of Organizations, Individuals, and Machines (non-human) and their relation-
ships over time. Agents are related to by processes, annotation content, and other locations where individuals, organi-
zations, or machines are involved with the activities covered by DDI metadata. Contents

5.19.1 Agent

An actor that performs a role in relation to a process.

Extends

AnnotatedIdentifiable

5.19. Agents 239

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
agentId AgentId 0..n
description StructuredString 0..1

agentId

An identifier within a specified system for specifying an agent

description

Multilingual description allowing for internal formatting using XHTML tags.

Graph

Agent

+ agentId : AgentId
 + description : StructuredString

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.19.2 AuthorizationSource

Identifies the authorizing agency and allows for the full text of the authorization (law, regulation, or other form of
authorization).

240 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Extends

AnnotatedIdentifiable

Properties

Name Type Cardinality
statementOfAuthorization StructuredString 0..1
legalMandate InternationalString 0..1
authorizationDate xs:dateTime 0..1
description StructuredString 0..1

statementOfAuthorization

Text of the authorization (law, mandate, approved business case).

legalMandate

Provide a legal citation to a law authorizing the study/data collection. For example, a legal citation for a law authorizing
a country’s census.

authorizationDate

Identifies the date of Authorization.

5.19. Agents 241

DDI Documentation, Release 4.0 dev

description

Graph

AuthorizationSource

+ statementOfAuthorization : StructuredString
 + legalMandate : InternationalString
 + authorizationDate : xs :dateTime
 + description : StructuredString

authorizingOrganization

authorizingIndividual

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

Organization

+ organizationName : OrganizationName
 + imageURL : PrivateImage
 + ddiId : xs :s tring
 + contactInformation : ContactInformation

0..1

0..n

Individual

+ individualName : IndividualName
 + imageURL : PrivateImage
 + ddiId : xs :s tring
 + contactInformation : ContactInformation

0..n

0..n

5.19.3 Individual

A person who acts, or is designated to act towards a specific purpose.

242 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Extends

Agent

Properties

Name Type Cardinality
individualName IndividualName 1..n
imageURL PrivateImage 0..n
ddiId xs:string 0..n
contactInformation ContactInformation 0..1

individualName

The name of an individual broken out into its component parts of prefix, first/given name, middle name,
last/family/surname, and suffix.

imageURL

The URL of an image of the individual.

ddiId

The agency identifier of the individual according to the DDI Alliance agent registry.

5.19. Agents 243

DDI Documentation, Release 4.0 dev

contactInformation

Graph

Individual

+ individualName : IndividualName
 + imageURL : PrivateImage
 + ddiId : xs :s tring
 + contactInformation : ContactInformation

Agent

+ agentId : AgentId
 + description : StructuredString

5.19.4 Machine

Mechanism or computer program used to implement a process.

Extends

Agent

Properties

Name Type Cardinality
typeOfMachine CodeValueType 0..1
machineName Name 0..1
accessLocation AccessLocation 0..1
function CodeValueType 0..n
interface CodeValueType 0..n
imageURL PrivateImage 0..n
ownerOperatorContact ContactInformation 0..1

244 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

typeOfMachine

The kind of machine used - software, web service, physical machine, from a controlled vocabulary

machineName

The name of the machine

accessLocation

The locations where the machine can be access

function

The function of the machine

5.19. Agents 245

DDI Documentation, Release 4.0 dev

interface

imageURL

ownerOperatorContact

Graph

Machine

+ typeOfMachine : CodeValueType
 + machineName : Name
 + accessLocation : AccessLocation
 + function : CodeValueType
 + interface : CodeValueType
 + imageURL : PrivateImage
 + ownerOperatorContact : ContactInformation

Agent

+ agentId : AgentId
 + description : StructuredString

5.19.5 Organization

A framework of authority designated to act toward some purpose.

Extends

Agent

246 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

Properties

Name Type Cardinality
organizationName OrganizationName 1..n
imageURL PrivateImage 0..n
ddiId xs:string 0..n
contactInformation ContactInformation 0..1

organizationName

Names by which the organization is known.

imageURL

The URL of an image of the organization.

ddiId

The agency identifier of the organization as registered at the DDI Alliance register.

5.19. Agents 247

DDI Documentation, Release 4.0 dev

contactInformation

Graph

Organization

+ organizationName : OrganizationName
 + imageURL : PrivateImage
 + ddiId : xs :s tring
 + contactInformation : ContactInformation

Agent

+ agentId : AgentId
 + description : StructuredString

5.19.6 Relation

Describes the relationship between any two organizations or individuals, or an individual and an organization. This
is a pairwise relationship and relationships may be unidirectional. Identifies the Source organization or individual
and the Target organization or individual, describes the relationship, provides a keyword to classify the relationship,
provides and effective period for the relationship, allows for addition information to be provided, and can contain a
privacy specification.

Extends

AnnotatedIdentifiable

Properties

Name Type Cardinality
description StructuredString 0..1
effectivePeriod Date 0..n
privacy CodeValueType 0..1
typeOfRelationship InternationalCodeValueType 0..1

248 Chapter 5. Packages

DDI Documentation, Release 4.0 dev

description

A description of the relationship. May be expressed in multiple languages and supports the use of structured content.

effectivePeriod

Time period during which this relationship is valid.

privacy

Specifies the level of privacy for the relationship specification as public, restricted, or private. Supports the use of an
external controlled vocabulary.

typeOfRelationship

A brief textual identification of the type of relation. Supports the use of an external controlled vocabulary.

Graph

Relation

+ description : StructuredString
 + effectivePeriod : Date
 + privacy : CodeValueType
 + typeOfRelationship : InternationalCodeValueType

sourceObject

targetObject

Agent

+ agentId : AgentId
 + description : StructuredString

1..1

0..n

1..1

0..n

AnnotatedIdentifiable

+ vers ionRespons ibility : xs :s tring
 + vers ionRationale : xs :s tring
 + vers ionDate : xs :dateTime
 + isUniversallyUnique : xs :boolean
 + isPers is tent : xs :boolean
 + localId : LocalId
 + basedOnObject : BasedOnObject

hasAnnotation

5.19. Agents 249

DDI Documentation, Release 4.0 dev

250 Chapter 5. Packages

CHAPTER 6

Glossary

Abstract class In programming languages, an abstract type is a type in a nominative type system which cannot be
instantiated directly. Its only purpose is for other classes to extend (see http://en.wikipedia.org/wiki/Abstract_
type).

Binding Data binding is a way to un/serialize objects across programs, languages, and platforms. The structure and
the data remain consistent and coherent throughout the journey, and no custom formats or parsing are required
(see http://en.wikipedia.org/wiki/XML_data_binding).

Canonical Conforming to a general rule or acceptable procedure (see http://www.merriam-webster.com/dictionary/
canonical).

Codebook A codebook is a type of document used for gathering and storing codes. Originally codebooks were
often literally books, but today codebook is a byword for the complete record of a series of codes, regardless
of physical format (see http://en.wikipedia.org/wiki/Codebook). DDI Codebook is the development line of the
DDI specification that reflects the content of codebooks.

Class In the DDI model, as in software engineering, a class diagram in the Unified Modeling Language (UML)
is a type of static structure diagram that describes the structure of a system by showing the system’s classes,
their attributes, operations (or methods), and the relationships among objects, (see https://en.wikipedia.org/
wiki/Class_diagram).

Content Capture Content capture refers to the process of harvesting content from other sources. For DDI 4 develop-
ment, content is being captured using the Drupal content management system to permit machine-processing.

Content Modeler One of the group of people determining the requirements for a Functional View and then identi-
fying the set of objects needed to meet those requirements. In this process they may also need to describe new
objects.

Data Modeler These people work with Content Modelers to insure that new objects are consistent with the objects
accepted into the approved model. Data Modelers also arrange objects into the final namespace structure of the
published model.

DDI The Data Documentation Initiative (DDI) is an effort to create an international standard for describing data
from the social, behavioral, and economic sciences. The DDI metadata specification now supports the entire
research data life cycle. DDI metadata accompanies and enables data conceptualization, collection, processing,
distribution, discovery, analysis, repurposing, and archiving.

251

http://en.wikipedia.org/wiki/Abstract_type
http://en.wikipedia.org/wiki/Abstract_type
http://en.wikipedia.org/wiki/XML_data_binding
http://www.merriam-webster.com/dictionary/canonical
http://www.merriam-webster.com/dictionary/canonical
http://en.wikipedia.org/wiki/Codebook
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/Class_diagram

DDI Documentation, Release 4.0 dev

Drupal Drupal is a free and open-source content management framework written in PHP and distributed under the
GNU General Public License. It is also used for knowledge management and business collaboration (see http:
//en.wikipedia.org/wiki/Drupal).

Enterprise Architect Enterprise Architect is a visual modeling and design tool based on the OMG UML. The plat-
form supports: the design and construction of software systems; modeling business processes; and modeling
industry based domains. It is used by businesses and organizations to not only model the architecture of their
systems, but to process the implementation of these models across the full application development life-cycle
(see http://en.wikipedia.org/wiki/Enterprise_Architect_(Visual_Modeling_Platform).

Extended Primitive An extended data type is a user-defined definition of a primitive data type. The following prim-
itive data types can be extended: boolean, integer, real, string, date and container (see http://www.axaptapedia.
com/Extended_Data_Types).

Extension Extension is the inheritance of one object’s properties and relationships from another object. It also has a
semantic relationship – an extending object provides a specialized use of the extended object. Extensions are
used within the DDI-published packages to provide relationships between objects as they increase in complexity
to meet increasingly complex functionality. Thus, a “simple” version of a questionnaire object might be extended
into a more complex object, describing a more complex questionnaire.

Framework The basic structure of something; a set of ideas or facts that provide support for something; a supporting
structure; a structural frame (see http://www.merriam-webster.com/dictionary/framework).

Functional View In DDI 4, a functional view identifies a set of objects that are needed to perform a specific task. It
primarily consists of a set of references to specific versions of objects. Views are the method used to restrict the
portions of the model that are used, and as such they function very much like DDI profiles in DDI 3.*.

Identification In the DDI specifications, each object is uniquely identified.

Instantiate To create an object of a specific class (see http://en.wiktionary.org/wiki/instantiate).

Library The Object Library for DDI 4 encompasses the entire DDI 4.0 model, but without any specific schemas
or vocabularies for Functional Views. Objects contain primitives and extended primitives and are the building
blocks used to construct the Functional Views. Objects are organized into packages in the Library.

Lifecycle The research data lifecycle is a set of processes that begins at study inception and progresses through data
collection, data publication, data archiving, and beyond. DDI created a lifecycle model in 2004 to describe this
flow (see http://www.ddialliance.org/system/files/Concept-Model-WD.pdf).

Management package DDI 4 packages containing library constructs – primitives, extended primitives, objects, and
functional views – which are organized thematically.

Metadata Data about data.

Modeling The representation, often mathematical, of a process, concept, or operation of a system, often implemented
by a computer program. For DDI 4 development, we are using the Universal Modeling Language or UML to
model the specification.

Namespace A grouping of objects that allows for objects with the same name to be differentiated. The full name of
an object is a combination of its namespace and its name within the namespace.

Ontology A formal representation of knowledge (see http://en.wikipedia.org/wiki/Ontology_%28information_
science%29).

OWL Web Ontology Language is a semantic markup language for publishing and sharing ontologies on the World
Wide Web (see http://www.w3.org/TR/owl-ref/).

Platform A pre-existing environment in which to represent data and metadata (see http://en.wikipedia.org/wiki/
Computing_platform).

252 Chapter 6. Glossary

http://en.wikipedia.org/wiki/Drupal
http://en.wikipedia.org/wiki/Drupal
http://en.wikipedia.org/wiki/Enterprise_Architect_(Visual_Modeling_Platform
http://www.axaptapedia.com/Extended_Data_Types
http://www.axaptapedia.com/Extended_Data_Types
http://www.merriam-webster.com/dictionary/framework
http://en.wiktionary.org/wiki/instantiate
http://www.ddialliance.org/system/files/Concept-Model-WD.pdf
http://en.wikipedia.org/wiki/Ontology_%28information_science%29
http://en.wikipedia.org/wiki/Ontology_%28information_science%29
http://www.w3.org/TR/owl-ref/
http://en.wikipedia.org/wiki/Computing_platform
http://en.wikipedia.org/wiki/Computing_platform

DDI Documentation, Release 4.0 dev

Primitive A basic type is a data type provided by a programming language as a basic building block. Most pro-
gramming languages allow more complicated composite types to be recursively constructed starting from basic
types.

RDF The Resource Description Framework (RDF) is a family of World Wide Web Consortium (W3C) specifi-
cations[1] originally designed as a metadata data model. It has come to be used as a general method for
conceptual description or modeling of information that is implemented in web resources, using a variety of
syntax notations and data serialization formats. It is also used in knowledge management applications (see
http://www.w3.org/RDF/).

Serialization Transformation of some structure into a specific representation (see http://en.wikipedia.org/wiki/
Serialization).

Sprint An activity where a group of people comes together to work exclusively on some project.

Study An activity producing data.

UML The Unified Modeling Language (see http://www.uml.org/).

UML Class Model A model describing objects and their relationships in the Unified Modeling Language (see http:
//www.uml.org/).

UML Package A grouping of classes in the Library (see namespace).

URI Uniform Resource Identifier, a unique string of characters used to identify an object (see http://en.wikipedia.org/
wiki/Uniform_resource_identifier).

Versioning The assignment of some ordered attribute to objects, In the DDI model whenever a change is made to
an approved object it must be given a new version. Objects with the same name and different versions are
considered to be separate objects.

Workflow A formalized set of processes carried out in a defined sequence (for more detail see http://en.wikipedia.
org/wiki/Workflow).

XMI An Object Management Group XML standard for exchanging metadata information (see http://www.omg.org/
spec/XMI/).

xml Extensible Markup Language (XML) is a markup language that defines a set of rules for encoding documents in
a format which is both human-readable and machine-readable.

XSD An XML Schema definition (see http://www.w3.org/XML/Schema.html).

253

http://www.w3.org/RDF/
http://en.wikipedia.org/wiki/Serialization
http://en.wikipedia.org/wiki/Serialization
http://www.uml.org/
http://www.uml.org/
http://www.uml.org/
http://en.wikipedia.org/wiki/Uniform_resource_identifier
http://en.wikipedia.org/wiki/Uniform_resource_identifier
http://en.wikipedia.org/wiki/Workflow
http://en.wikipedia.org/wiki/Workflow
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/XMI/
http://www.w3.org/XML/Schema.html

DDI Documentation, Release 4.0 dev

254 Chapter 6. Glossary

CHAPTER 7

Guide to editing

7.1 Links

to make an external link just type it http://www.ddialliance.org

For a link a text

`Link text <http://example.com/>`_

To reference a section anywhere in the documentation e.g. Question

:ref:`Question`

7.2 Strong

To mark something as bold text

bold text

7.3 Italic

To mark something as italic text

italic text

7.4 Code

To highlight some sourcecode

255

http://www.ddialliance.org

DDI Documentation, Release 4.0 dev

.. code-block:: xml

<some-xml></some-xml>

results in

<some-xml></some-xml>

7.5 Headings

Headings are created by adding by adding underlining characters

This is a section heading
==========================

• # with overline, for parts

• * with overline, for chapters

• =, for sections

• -, for subsections

• ^, for subsubsections

• “, for paragraphs

7.6 Images

To link a image

.. image:: ddi-logo-mini.png

7.7 Lists

To do a list

* This is a bulleted list.

* This is item two

* this is a sub item

1. This is a numbered list.
2. It has two items too.

Results in

256 Chapter 7. Guide to editing

DDI Documentation, Release 4.0 dev

• This is a bulleted list.

• This is item two

– this is a sub item

1. This is a numbered list.

2. It has two items too.

7.8 Table

To do a table

===== ===== =======
Col 1 Col 2 Note
===== ===== =======
1 False cats
2 False dogs
3 True frame
4 True from
===== ===== =======

Col 1 Col 2 Note
1 False cats
2 False dogs
3 True frame
4 True from

7.9 Glossary

To do a simple definition list

.. glossary::

cats
miau is the sound of the cat.

dogs
voff is the sound of the dog.

Results in

cats miau is the sound of the cat.

dogs voff is the sound of the dog.

For the documentation we should have a single glossary se Glossary

The we can make glossary links by writing

:term:`xml`

and get xml

7.8. Table 257

DDI Documentation, Release 4.0 dev

7.10 Notes

To add a note, warning etc.

.. note::

Above is the basics of reStructuredText.
For a complete guide visit
`Sphinx-doc <http://sphinx-doc.org/contents.html>`_ .

To get

Note: Above is the basics of reStructuredText. For a complete guide visit Sphinx-doc .

258 Chapter 7. Guide to editing

http://sphinx-doc.org/contents.html

Index

A
Abstract class, 251

B
Binding, 251

C
Canonical, 251
cats, 257
Class, 251
Codebook, 251
Content Capture, 251
Content Modeler, 251

D
Data Modeler, 251
DDI, 251
dogs, 257
Drupal, 252

E
Enterprise Architect, 252
Extended Primitive, 252
Extension, 252

F
Framework, 252
Functional View, 252

I
Identification, 252
Instantiate, 252

L
Library, 252
Lifecycle, 252

M
Management package, 252

Metadata, 252
Modeling, 252

N
Namespace, 252

O
Ontology, 252
OWL, 252

P
Platform, 252
Primitive, 253

R
RDF, 253

S
Serialization, 253
Sprint, 253
Study, 253

U
UML, 253
UML Class Model, 253
UML Package, 253
URI, 253

V
Versioning, 253

W
Workflow, 253

X
XMI, 253
xml, 253
XSD, 253

259

	About
	DDI Background
	History

	Introduction
	Description of the Model
	Production Framework
	Design Principles
	DDI Base Blocks
	Simple example

	Use Cases
	User Guides
	Using the Collection pattern
	Using the Process pattern
	The Variable Cascade

	Packages
	NewObjectsForSimpleInstruments
	Identification
	Discovery
	Primitives
	Processing
	Utility
	SimpleDiscovery
	Representations
	DDIUtility
	DDIDocument
	Comparison
	Collections
	BaseObjects
	ComplexDataTypes
	Conceptual
	DataCapture
	Correspondences
	CoreProcess
	Agents

	Glossary
	Guide to editing
	Links
	Strong
	Italic
	Code
	Headings
	Images
	Lists
	Table
	Glossary
	Notes

