
dclab Documentation
Release 0.7.0

Paul Müller

Oct 11, 2018

Contents:

1 Getting started 3

2 Command line interface 7

3 Examples 9

4 Advanced Usage 11

5 Code reference 25

6 Changelog 45

7 Bilbliography 53

8 Imprint/Impressum 55

9 Indices and tables 57

Bibliography 59

Python Module Index 61

i

ii

dclab Documentation, Release 0.7.0

Dclab is a Python library for the post-measurement analysis of real-time deformability cytometry (RT-DC) datasets.
This is the documentation of dclab version 0.7.0.

Contents: 1

dclab Documentation, Release 0.7.0

2 Contents:

CHAPTER 1

Getting started

1.1 Installation

Dclab depends on several other Python packages:

• fcswrite (.fcs file export),

• h5py (.rtdc file support).

• imageio (.tdms file support, .avi file export),

• nptdms (.tdms file support),

• numpy,

• scipy,

• statsmodels.

In addition, dclab contains code from OpenCV (computation of moments) and scikit-image (computation of contours)
to reduce the list of dependencies (these libraries are not required by dclab).

To install dclab, use one of the following methods (the above package dependencies will be installed automatically):

• from PyPI: pip install dclab

• from sources: pip install . or python setup.py install

Note that if you are installing from source or if no binary wheel is available for your platform and Python version,
Cython will be installed to build the required dclab extensions. If this process fails, please request a binary wheel for
your platform (e.g. Windows 64bit) and Python version (e.g. 3.6) by creating a new issue.

1.2 Use cases

If you are a frequent user of RT-DC, you might run into problems that cannot (yet) be addressed with the graphical
user interface ShapeOut. Here is a list of use cases that would motivate an installation of dclab.

3

https://github.com/ZELLMECHANIK-DRESDEN/fcswrite
http://www.h5py.org/
https://imageio.github.io/
http://nptdms.readthedocs.io/en/latest/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/scipy/reference/
http://www.statsmodels.org/stable/index.html
https://opencv.org/
http://scikit-image.org/
https://pypi.python.org/pypi/dclab
https://github.com/ZellMechanik-Dresden/dclab
http://cython.org/
https://github.com/ZellMechanik-Dresden/dclab/issues
https://github.com/ZellMechanik-Dresden/ShapeOut

dclab Documentation, Release 0.7.0

• You would like to convert old .tdms-based datasets to the new .rtdc file format, because of enhanced speed in
ShapeOut and reduced disk usage. What you are looking for is the command line program tdms2rtdc that comes
with dclab. It allows to batch-convert multiple measurements at a time. Note that you should keep the original
.tdms files backed-up somewhere, because there might be future improvements or bug fixes from which you
would like to benefit.

• You would like to apply a simple set of filters (e.g. polygon filters that you exported from within ShapeOut)
to every new measurement you take and apply a custom data analysis pipeline to the filtered data. This is a
straight-forward Python coding problem with dclab. After reading the basic usage section below, please have a
look at the polygon filter reference.

• You would like to do advanced statistics or combine your RT-DC analysis with other fancy approaches such as
machine-learning. It would be too laborious to do the analysis in ShapeOut, export the data as text files, and
then open them in your custom Python script. If your initial analysis step with ShapeOut only involves tasks
that can be automated, why not use dclab from the beginning?

• You simulated RT-DC data and plan to import them in ShapeOut for testing. Once you have loaded your data as
a numpy array, you can instantiate an RTDC_Dict class and then use the Export class to create an .rtdc data
file.

If you are still unsure about whether to use dclab or not, you might want to look at the example section. If you need
advice, do not hesitate to create an issue.

1.3 Basic usage

Experimental RT-DC datasets are always loaded with the new_dataset method:

import numpy as np
import dclab

.tdms file format
ds = dclab.new_dataset("/path/to/measurement/Online/M1.tdms")
.rtdc file format
ds = dclab.new_dataset("/path/to/measurement/M2.rtdc")

The object returned by new_dataset is always an instance of RTDCBase. To show all available features, use:

print(ds.features)

This will list all scalar features (e.g. “area_um” and “deform”) and all non-scalar features (e.g. “contour” and “im-
age”). Scalar features can be filtered by editing the configuration of ds and calling ds.apply_filter():

register filtering operations
amin, amax = ds["area_um"].min(), ds["area_um"].max()
ds.config["filtering"]["area_um min"] = (amax + amin) / 2
ds.config["filtering"]["area_um max"] = amax
ds.apply_filter() # this step is important!

This will update the binary array ds.filter.all which can be used to extract the filtered data:

area_um_filtered = ds["area_um"][ds.filter.all]

It is also possible to create a hierarchy child of this dataset that only contains the filtered data.

ds_child = dclab.new_dataset(ds)

4 Chapter 1. Getting started

https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues

dclab Documentation, Release 0.7.0

The hierarchy child ds_child is dynamic, i.e. when the filters in ds change, then ds_child also changes after
calling ds_child.apply_filter().

Non-scalar features do not support fancy indexing (i.e. ds["image"][ds.filter.all] will not work. Use a
for-loop to extract them.

for ii in range(len(ds)):
image = ds["image"][ii]
mask = ds["mask"][ii]
this is equivalent to ds["bright_avg"][ii]
bright_avg = np.mean(image[mask])
print("average brightness of event {}: {:.1f}".format(ii, bright_avg))

If you need more information to get started on your particular problem, you might want to check out the examples
section and the advanced scripting section.

1.3. Basic usage 5

dclab Documentation, Release 0.7.0

6 Chapter 1. Getting started

CHAPTER 2

Command line interface

2.1 tdms2rtdc

Convert RT-DC .tdms files to the hdf5-based .rtdc file format. Note: Do not delete original .tdms files after conversion.
The conversion might be incomplete.

usage: dclab-tdms2rtdc [-h] [--compute-ancillary-features] tdms-path rtdc-path

2.1.1 Positional Arguments

tdms-path Input path (tdms file or folder containing tdms files)

rtdc-path Output path (file or folder), existing data will be overridden

2.1.2 Named Arguments

--compute-ancillary-features Compute features, such as volume or emodulus, that are otherwise com-
puted on-the-fly. Use this if you want to minimize analysis time in e.g. ShapeOut.
CAUTION: ancillary feature recipes might be subject to change (e.g. if an error
is found in the recipe). Disabling this option maximizes compatibility with future
versions and allows to isolate the original data.

Default: False

2.2 verify-dataset

Check experimental datasets for completeness. Note that old measurements will most likely fail this verification
step. This program is used to enforce data integrity with future implementations of RT-DC recording software (e.g.
ShapeIn).

7

dclab Documentation, Release 0.7.0

usage: dclab-verify-dataset [-h] path

2.2.1 Positional Arguments

path Path to experimental dataset

8 Chapter 2. Command line interface

CHAPTER 3

Examples

3.1 Plotting isoelastics

This example illustrates how to plot dclab isoelastics by reproducing figure 3 (lower left) of [MMM+17].

isoelastics.py

1 import matplotlib.pylab as plt
2 import matplotlib.lines as mlines
3 from matplotlib import cm
4 import numpy as np
5

(continues on next page)

9

dclab Documentation, Release 0.7.0

(continued from previous page)

6 import dclab
7

8 # parameters for isoelastics
9 kwargs = {"col1": "area_um", # x-axis

10 "col2": "deform", # y-axis
11 "channel_width": 20, # [um]
12 "flow_rate": 0.04, # [ul/s]
13 "viscosity": 15, # [Pa s]
14 "add_px_err": False # no pixelation error
15 }
16

17 isos = dclab.isoelastics.get_default()
18 analy = isos.get(method="analytical", **kwargs)
19 numer = isos.get(method="numerical", **kwargs)
20

21 plt.figure(figsize=(8, 4))
22 ax = plt.subplot(111, title="elastic sphere isoelasticity lines")
23 colors = [cm.get_cmap("jet")(x) for x in np.linspace(0, 1, len(analy))]
24 for aa, nn, cc in zip(analy, numer, colors):
25 ax.plot(aa[:, 0], aa[:, 1], color=cc)
26 ax.plot(nn[:, 0], nn[:, 1], color=cc, ls=":")
27

28 line = mlines.Line2D([], [], color='k', label='analytical')
29 dotted = mlines.Line2D([], [], color='k', ls=":", label='numerical')
30 ax.legend(handles=[line, dotted])
31

32 ax.set_xlim(50, 240)
33 ax.set_ylim(0, 0.02)
34 ax.set_xlabel(dclab.dfn.feature_name2label["area_um"])
35 ax.set_ylabel(dclab.dfn.feature_name2label["deform"])
36

37 plt.tight_layout()
38 plt.show()

10 Chapter 3. Examples

CHAPTER 4

Advanced Usage

This section motivates the design of dclab and highlights useful built-in functionalities.

4.1 Notation

When coding with dclab, you should be aware of the following definitions and design principles.

4.1.1 Events

An event comprises all data recorded for the detection of one object (e.g. cell or bead) in an RT-DC measurement.

4.1.2 Features

A feature is a measurement parameter of an RT-DC measurement. For instance, the feature “index” enumerates
all recorded events, the feature “deform” contains the deformation values of all events. There are scalar features,
i.e. features that assign a single number to an event, and non-scalar features, such as “image” and “contour”. The
following features are supported by dclab:

scalar features description [units]
area_cvx Convex area [px]
area_msd Measured area [px]
area_ratio Porosity (convex to measured area ratio)
area_um Area [µm2]
aspect Aspect ratio of bounding box
bright_avg Brightness average within contour [a.u.]
bright_sd Brightness SD within contour [a.u.]
circ Circularity
deform Deformation

Continued on next page

11

dclab Documentation, Release 0.7.0

Table 1 – continued from previous page
scalar features description [units]
emodulus Young’s Modulus [kPa]
fl1_area FL-1 area of peak [a.u.]
fl1_dist FL-1 distance between two first peaks [µs]
fl1_max FL-1 maximum [a.u.]
fl1_max_ctc FL-1 maximum, crosstalk-corrected [a.u.]
fl1_npeaks FL-1 number of peaks
fl1_pos FL-1 position of peak [µs]
fl1_width FL-1 width [µs]
fl2_area FL-2 area of peak [a.u.]
fl2_dist FL-2 distance between two first peaks [µs]
fl2_max FL-2 maximum [a.u.]
fl2_max_ctc FL-2 maximum, crosstalk-corrected [a.u.]
fl2_npeaks FL-2 number of peaks
fl2_pos FL-2 position of peak [µs]
fl2_width FL-2 width [µs]
fl3_area FL-3 area of peak [a.u.]
fl3_dist FL-3 distance between two first peaks [µs]
fl3_max FL-3 maximum [a.u.]
fl3_max_ctc FL-3 maximum, crosstalk-corrected [a.u.]
fl3_npeaks FL-3 number of peaks
fl3_pos FL-3 position of peak [µs]
fl3_width FL-3 width [µs]
frame Video frame number
index Event index
inert_ratio_cvx Inertia ratio of convex contour
inert_ratio_prnc Principal inertia ratio of raw contour
inert_ratio_raw Inertia ratio of raw contour
nevents Total number of events in the same image
pc1 Principal component 1
pc2 Principal component 2
pos_x Position along channel axis [µm]
pos_y Position lateral in channel [µm]
size_x Bounding box size x [µm]
size_y Bounding box size y [µm]
tilt Absolute tilt of raw contour
time Event time [s]
userdef0 User defined 0
userdef1 User defined 1
userdef2 User defined 2
userdef3 User defined 3
userdef4 User defined 4
userdef5 User defined 5
userdef6 User defined 6
userdef7 User defined 7
userdef8 User defined 8
userdef9 User defined 9
volume Volume [µm3]

12 Chapter 4. Advanced Usage

dclab Documentation, Release 0.7.0

non-scalar features description [units]
contour Binary event contour image
image Gray scale event image
mask Binary region labeling the event in the image
trace Dictionary of fluorescence traces

Example: deformation vs. area plot

import matplotlib.pylab as plt
import dclab
ds = dclab.new_dataset("data/example.rtdc")
ax = plt.subplot(111)
ax.plot(ds["area_um"], ds["deform"], "o", alpha=.2)
ax.set_xlabel(dclab.dfn.feature_name2label["area_um"])
ax.set_ylabel(dclab.dfn.feature_name2label["deform"])
plt.show()

Example: event image plot

import matplotlib.pylab as plt
import dclab
ds = dclab.new_dataset("data/example_video.rtdc")
ax1 = plt.subplot(211, title="image")
ax2 = plt.subplot(212, title="mask")
ax1.imshow(ds["image"][6], cmap="gray")
ax2.imshow(ds["mask"][6])

4.1.3 Ancillary features

Not all features available in dclab are recorded online during the acquisition of the experimental dataset. Some of
the features are computed offline by dclab, such as “volume” or “emodulus”. These ancillary features are computed
on-the-fly and are made available seamlessly through the same interface.

4.1.4 Filters

A filter can be used to gate events using features. There are min/max filters and 2D polygon filters. The following
table defines the main filtering parameters:

filtering parsed description [units]
enable filters fbool Enable filtering
hierarchy parent str Hierarchy parent of the dataset
limit events fint Upper limit for number of filtered events
polygon filters fintlistPolygon filter indices
remove invalid events fbool Remove events with inf/nan values

Min/max filters are also defined in the filters section:

filtering explanation
area_um min Exclude events with area [µm2] below this value
area_um max Exclude events with area [µm2] above this value
aspect max Exclude events with an aspect ratio above this value
.

4.1. Notation 13

https://docs.python.org/3/library/stdtypes.html#str

dclab Documentation, Release 0.7.0

Example: excluding events with large deformation

import matplotlib.pylab as plt
import dclab
ds = dclab.new_dataset("data/example.rtdc")

ds.config["filtering"]["deform max"] = .1
ds.apply_filter()
dif = ds.filter.all

f, axes = plt.subplots(1, 2, sharex=True, sharey=True)
axes[0].plot(ds["area_um"], ds["bright_avg"], "o", alpha=.2)
axes[0].set_title("unfiltered")
axes[1].plot(ds["area_um"][dif], ds["bright_avg"][dif], "o", alpha=.2)
axes[1].set_title("Deformation <= 0.1")

for ax in axes:
ax.set_xlabel(dclab.dfn.feature_name2label["area_um"])
ax.set_ylabel(dclab.dfn.feature_name2label["bright_avg"])

plt.tight_layout()
plt.show()

Example: excluding random events This is useful if you need to have a (sub-)dataset of a specified size. The down-
sampling is reproducible (the same points are excluded).

import matplotlib.pylab as plt
import dclab
ds = dclab.new_dataset("data/example.rtdc")
ds.config["filtering"]["limit events"] = 4000
ds.apply_filter()
fid = ds.filter.all

ax = plt.subplot(111)
ax.plot(ds["area_um"][fid], ds["deform"][fid], "o", alpha=.2)
ax.set_xlabel(dclab.dfn.feature_name2label["area_um"])
ax.set_ylabel(dclab.dfn.feature_name2label["deform"])
plt.show()

4.1.5 Experiment metadata

Every RT-DC measurement has metadata consisting of key-value-pairs. The following are supported:

experiment parsed description [units]
date str Date of measurement (‘YYYY-MM-DD’)
event count fint Number of recorded events
run index fint Index of measurement run
sample str Measured sample or user-defined reference
time str Start time of measurement (‘HH:MM:SS’)

14 Chapter 4. Advanced Usage

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

dclab Documentation, Release 0.7.0

fluorescence parsed description [units]
bit depth fint Trace bit depth
channel 1 name str FL1 description
channel 2 name str FL2 description
channel 3 name str FL3 description
channel count fint Number of active channels
channels installed fint Number of available channels
laser 1 lambda float Laser 1 wavelength [nm]
laser 1 power float Laser 1 output power [%]
laser 2 lambda float Laser 2 wavelength [nm]
laser 2 power float Laser 2 output power [%]
laser 3 lambda float Laser 3 wavelength [nm]
laser 3 power float Laser 3 output power [%]
laser count fint Number of active lasers
lasers installed fint Number of available lasers
sample rate float Trace sample rate [Hz]
samples per event fint Samples per event
signal max float Upper voltage detection limit [V]
signal min float Lower voltage detection limit [V]
trace median fint Rolling median filter size for traces

fmt_tdms parsed description [units]
video frame offset fint Missing events at beginning of video

imaging parsed description [units]
flash device str Light source device type (e.g. green LED)
flash duration float Light source flash duration [µs]
frame rate float Imaging frame rate [Hz]
pixel size float Pixel size [µm]
roi position x float Image x coordinate on sensor [px]
roi position y float Image y coordinate on sensor [px]
roi size x fint Image width [px]
roi size y fint Image height [px]

online_contour parsed description [units]
bin area min fint Minium pixel area of binary image event
bin kernel fint Odd ellipse kernel size, binary image morphing
bin threshold fint Binary threshold for avg-bg-corrected image
image blur fint Odd sigma for Gaussian blur (21x21 kernel)
no absdiff fbool Avoid OpenCV ‘absdiff’ for avg-bg-correction

4.1. Notation 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

dclab Documentation, Release 0.7.0

online_filter parsed description [units]
area_ratio max float Maximum porosity
area_ratio min float Minimum porosity
area_ratio soft limit fbool Soft limit, porosity
area_um max float Maximum area [µm2]
area_um min float Minimum area [µm2]
area_um soft limit fbool Soft limit, area [µm2]
aspect max float Maximum aspect ratio of bounding box
aspect min float Minimum aspect ratio of bounding box
aspect soft limit fbool Soft limit, aspect ratio of bbox
deform max float Maximum deformation
deform min float Minimum deformation
deform soft limit fbool Soft limit, deformation
fl1_max max float Maximum FL-1 maximum [a.u.]
fl1_max min float Minimum FL-1 maximum [a.u.]
fl1_max soft limit fbool Soft limit, FL-1 maximum
fl2_max max float Maximum FL-2 maximum [a.u.]
fl2_max min float Minimum FL-2 maximum [a.u.]
fl2_max soft limit fbool Soft limit, FL-2 maximum
fl3_max max float Maximum FL-3 maximum [a.u.]
fl3_max min float Minimum FL-3 maximum [a.u.]
fl3_max soft limit fbool Soft limit, FL-3 maximum
size_x max fint Maximum bounding box size x [µm]
size_x min fint Minimum bounding box size x [µm]
size_x soft limit fbool Soft limit, bounding box size x
size_y max fint Maximum bounding box size y [µm]
size_y min fint Minimum bounding box size y [µm]
size_y soft limit fbool Soft limit, bounding box size y
target duration float Target measurement duration [min]
target event count fint Target event count for online gating

setup parsed description [units]
channel width float Width of microfluidic channel [µm]
chip region lcstr Imaged chip region (channel or reservoir)
flow rate float Flow rate in channel [µL/s]
flow rate sample float Sample flow rate [µL/s]
flow rate sheath float Sheath flow rate [µL/s]
identifier str Unique setup identifier
medium str Medium used
module composition str Comma-separated list of modules used
software version str Acquisition software with version

Example: date and time of a measurement

In [1]: import dclab

In [2]: ds = dclab.new_dataset("data/example.rtdc")

In [3]: ds.config["experiment"]["date"], ds.config["experiment"]["time"]
Out[3]: ('2017-07-16', '19:01:36')

16 Chapter 4. Advanced Usage

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

dclab Documentation, Release 0.7.0

4.1.6 Analysis metadata

In addition to metadata, dclab also supports a user-defined analysis configuration which is usually part of a specific
analysis pipeline and thus not considered to be experimental metadata.

calculation parsed description [units]
crosstalk fl12 float Fluorescence crosstalk, channel 1 to 2
crosstalk fl21 float Fluorescence crosstalk, channel 2 to 1
crosstalk fl31 float Fluorescence crosstalk, channel 1 to 3
crosstalk fl31 float Fluorescence crosstalk, channel 3 to 1
crosstalk fl32 float Fluorescence crosstalk, channel 2 to 3
crosstalk fl32 float Fluorescence crosstalk, channel 3 to 1
emodulus medium str Medium used (e.g. CellCarrierB, water)
emodulus model lcstr Model for computing elastic moduli
emodulus temperature float Chip temperature [°C]
emodulus viscosity float Viscosity [Pa*s] if ‘medium’ unknown

4.2 RT-DC datasets

Knowing and understanding the RT-DC dataset classes is an important prerequisite when working with dclab. They
are all derived from RTDCBase which gives access to feature with a dictionary-like interface, facilitates data export
and filtering, and comes with several convenience methods that are useful for data visualization. RT-DC datasets can be
based on a data file format (RTDC_TDMS and RTDC_HDF5), created from user-defined dictionaries (RTDC_Dict),
or derived from other RT-DC datasets (RTDC_Hierarchy).

4.2.1 Loading data from disk

The convenience function dclab.new_dataset() takes care of determining the data file format (tdms or hdf5)
and returns the corresponding derived class.

In [1]: import dclab

In [2]: ds = dclab.new_dataset("data/example.rtdc")

In [3]: ds.__class__.__name__
Out[3]: 'RTDC_HDF5'

Working with other data

It is also possible to load other data into dclab from a dictionary.

In [4]: data = dict(deform=np.random.rand(100),
...: area_um=np.random.rand(100))
...:

In [5]: ds_dict = dclab.new_dataset(data)

In [6]: ds_dict.__class__.__name__
Out[6]: 'RTDC_Dict'

4.2. RT-DC datasets 17

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

dclab Documentation, Release 0.7.0

Creating hierarchies

When applying filtering operations, it is sometimes helpful to use hierarchies for keeping track of the individual
filtering steps.

In [7]: child = dclab.new_dataset(ds)

In [8]: grandchild = dclab.new_dataset(child)

In [9]: ds.config["filtering"]["deform max"] = .15

In [10]: child.config["filtering"]["area_um max"] = 80

In [11]: grandchild.apply_filter()

In [12]: len(ds), len(child), len(grandchild)
Out[12]: (5000, 4937, 4782)

In [13]: ds.filter.all.sum(), child.filter.all.sum(), grandchild.filter.all.sum()
\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[13]: (4937, 4782, 4782)

Note that calling ds1_b.apply_filter() automatically calls ds1_a.apply_filter() and ds1.
apply_filter(). Also note that, as expected, the size of each hierarchy child is identical to the sum of the
boolean filtering array from its hierarchy parent.

Scripting goodies

Here are a few useful functionalities for scripting with dclab.

unique identifier of the RTDCBase instance (not reproducible)
In [14]: ds.identifier
Out[14]: 'mm-hdf5_ce6af29'

reproducible hash of the dataset
In [15]: ds.hash
\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[15]: '8ff19f702a236cbf91e13667e144e722'

dataset format
In [16]: ds.format
\\\Out[16]: 'hdf5'

available features
In [17]: ds.features
\\\Out[17]:
→˓

['area_cvx',
'area_msd',
'area_ratio',
'area_um',
'aspect',
'bright_avg',
'bright_sd',
'circ',
'deform',
'frame',
'index',

(continues on next page)

18 Chapter 4. Advanced Usage

dclab Documentation, Release 0.7.0

(continued from previous page)

'inert_ratio_cvx',
'inert_ratio_raw',
'nevents',
'pos_x',
'pos_y',
'size_x',
'size_y',
'time']

test feature availability (success)
In [18]: "area_um" in ds
\\\Out[18]:
→˓True

test feature availability (failure)
In [19]: "image" in ds
\\\Out[19]:
→˓False

accessing a feature and computing its mean
In [20]: ds["area_um"].mean()
\\Out[20]:
→˓49.728645

accessing the measurement configuration
In [21]: ds.config.keys()
\\\Out[21]:
→˓dict_keys(['imaging', 'setup', 'filtering', 'experiment', 'online_contour'])

In [22]: ds.config["experiment"]
\\\Out[22]:
→˓

{'date': '2017-07-16',
'event count': 5000,
'run index': 1,
'sample': 'docs-data',
'time': '19:01:36'}

determine the identifier of the hierarchy parent
In [23]: child.config["filtering"]["hierarchy parent"]
\\Out[23]:
→˓'mm-hdf5_ce6af29'

4.3 Data processing

4.3.1 Visualization

For data visualization, dclab comes with predefined kernel density estimators (KDEs) and an event downsampling
module. The functionalities of both modules are made available directly via the RTDCBase class.

4.3. Data processing 19

dclab Documentation, Release 0.7.0

KDE scatter plot

The KDE of the events in a 2D scatter plot can be used to colorize events according to event density using the
RTDCBase.get_kde_scatter function.

import matplotlib.pylab as plt
import dclab
ds = dclab.new_dataset("data/example.rtdc")
kde = ds.get_kde_scatter(xax="area_um", yax="deform")

ax = plt.subplot(111, title="scatter plot with {} events".format(len(kde)))
sc = ax.scatter(ds["area_um"], ds["deform"], c=kde, marker=".")
ax.set_xlabel(dclab.dfn.feature_name2label["area_um"])
ax.set_ylabel(dclab.dfn.feature_name2label["deform"])
ax.set_xlim(0, 150)
ax.set_ylim(0.01, 0.12)
plt.colorbar(sc, label="kernel density estimate [a.u]")
plt.show()

KDE scatter plot with event-density-based downsampling

To reduce the complexity of the plot (e.g. when exporting to scalable vector graphics (.svg)), the plotted events can be
downsampled by removing events from high-event-density regions. The number of events plotted is reduced but the
resulting visualization is almost indistinguishable from the one above.

import matplotlib.pylab as plt
import dclab
ds = dclab.new_dataset("data/example.rtdc")
xsamp, ysamp = ds.get_downsampled_scatter(xax="area_um", yax="deform",
→˓downsample=2000)
kde = ds.get_kde_scatter(xax="area_um", yax="deform", positions=(xsamp, ysamp))

ax = plt.subplot(111, title="downsampled to {} events".format(len(kde)))
sc = ax.scatter(xsamp, ysamp, c=kde, marker=".")
ax.set_xlabel(dclab.dfn.feature_name2label["area_um"])
ax.set_ylabel(dclab.dfn.feature_name2label["deform"])
ax.set_xlim(0, 150)
ax.set_ylim(0.01, 0.12)
plt.colorbar(sc, label="kernel density estimate [a.u]")
plt.show()

Isoelasticity lines

In addition, dclab comes with predefined isoelasticity lines that are commonly used to identify events with similar
elastic moduli. Isoelasticity lines are available via the isoelastics module.

import matplotlib.pylab as plt
import dclab
ds = dclab.new_dataset("data/example.rtdc")
kde = ds.get_kde_scatter(xax="area_um", yax="deform")

isodef = dclab.isoelastics.get_default()
iso = isodef.get_with_rtdcbase(method="numerical",

col1="area_um",

(continues on next page)

20 Chapter 4. Advanced Usage

dclab Documentation, Release 0.7.0

(continued from previous page)

col2="deform",
dataset=ds)

ax = plt.subplot(111, title="isoelastics")
for ss in iso:

ax.plot(ss[:, 0], ss[:, 1], color="gray", zorder=1)
sc = ax.scatter(ds["area_um"], ds["deform"], c=kde, marker=".", zorder=2)
ax.set_xlabel(dclab.dfn.feature_name2label["area_um"])
ax.set_ylabel(dclab.dfn.feature_name2label["deform"])
ax.set_xlim(0, 150)
ax.set_ylim(0.01, 0.12)
plt.colorbar(sc, label="kernel density estimate [a.u]")
plt.show()

Contour plot

Contour plots are commonly used to compare the kernel density between measurements. Kernel density estimates (on
a grid) for contour plots can be computed with the function RTDCBase.get_kde_contour.

import matplotlib.pylab as plt
import dclab
ds = dclab.new_dataset("data/example.rtdc")
X, Y, Z = ds.get_kde_contour(xax="area_um", yax="deform")
Z /= Z.max()

ax = plt.subplot(111, title="contour lines")
sc = ax.scatter(ds["area_um"], ds["deform"], c="lightgray", marker=".", zorder=1)
cn = ax.contour(X, Y, Z,

levels=[.03, .2, .75],
linestyles=["--", "-", "-"],
colors=["blue", "blue", "darkblue"],
linewidths=[2, 2, 3],
zorder=2)

ax.set_xlabel(dclab.dfn.feature_name2label["area_um"])
ax.set_ylabel(dclab.dfn.feature_name2label["deform"])
ax.set_xlim(0, 150)
ax.set_ylim(0.01, 0.12)
plt.clabel(cn, fmt="%.2f")
plt.show()

4.3.2 Statistics

The statistics module comes with a predefined set of methods to compute simple feature statistics.

In [1]: import dclab

In [2]: ds = dclab.new_dataset("data/example.rtdc")

In [3]: stats = dclab.statistics.get_statistics(ds,
...: features=["deform", "aspect"],
...: methods=["Mode", "Mean", "SD"])
...:

(continues on next page)

4.3. Data processing 21

dclab Documentation, Release 0.7.0

(continued from previous page)

In [4]: dict(zip(*stats))
Out[4]:
{'Mean Aspect ratio of bounding box': 1.2719607,
'Mean Deformation': 0.0287258,
'Mode Aspect ratio of bounding box': 1.1091422,
'Mode Deformation': 0.016635261,
'SD Aspect ratio of bounding box': 0.25233853,
'SD Deformation': 0.028740086}

Note that the statistics take into account the applied filters:

In [5]: ds.config["filtering"]["deform max"] = .1

In [6]: ds.apply_filter()

In [7]: stats2 = dclab.statistics.get_statistics(ds,
...: features=["deform", "aspect"],
...: methods=["Mode", "Mean", "SD"])
...:

In [8]: dict(zip(*stats2))
Out[8]:
{'Mean Aspect ratio of bounding box': 1.2407207,
'Mean Deformation': 0.02476519,
'Mode Aspect ratio of bounding box': 1.1232222,
'Mode Deformation': 0.017006295,
'SD Aspect ratio of bounding box': 0.15993708,
'SD Deformation': 0.015638638}

These are the available statistics methods:

In [9]: dclab.statistics.Statistics.available_methods.keys()
Out[9]: dict_keys(['Mean', '%-gated', 'Mode', 'Events', 'Median', 'SD', 'Flow rate'])

4.3.3 Export

The RTDCBase class has the attribute RTDCBase.export which allows to export event data to several data file
formats. See export for more information.

In [10]: ds.export.tsv(path="export_example.tsv",
....: features=["area_um", "deform"],
....: filtered=True,
....: override=True)
....:

In [11]: ds.export.hdf5(path="export_example.rtdc",
....: features=["area_um", "aspect", "deform"],
....: filtered=True,
....: override=True)
....:

Note that data exported as HDF5 files can be loaded with dclab (reproducing the previously computed statistics -
without filters).

22 Chapter 4. Advanced Usage

dclab Documentation, Release 0.7.0

In [12]: ds2 = dclab.new_dataset("export_example.rtdc")

In [13]: ds2["deform"].mean()
Out[13]: 0.02476519

4.3.4 ShapeOut

Keep in mind that you can combine your dclab analysis pipeline with ShapeOut. For instance, you can create and
export polygon filters in ShapeOut and then import them in dclab.

import matplotlib.pylab as plt
import dclab
ds = dclab.new_dataset("data/example.rtdc")
kde = ds.get_kde_scatter(xax="area_um", yax="deform")
load and apply polygon filter from file
pf = dclab.PolygonFilter(filename="data/example.poly")
ds.polygon_filter_add(pf)
ds.apply_filter()
valid events
val = ds.filter.all

ax = plt.subplot(111, title="polygon filtering")
ax.scatter(ds["area_um"][~val], ds["deform"][~val], c="lightgray", marker=".")
sc = ax.scatter(ds["area_um"][val], ds["deform"][val], c=kde[val], marker=".")
ax.set_xlabel(dclab.dfn.feature_name2label["area_um"])
ax.set_ylabel(dclab.dfn.feature_name2label["deform"])
ax.set_xlim(0, 150)
ax.set_ylim(0.01, 0.12)
plt.colorbar(sc, label="kernel density estimate [a.u]")
plt.show()

4.3. Data processing 23

https://shapeout.readthedocs.io/en/stable/index.html#index

dclab Documentation, Release 0.7.0

24 Chapter 4. Advanced Usage

CHAPTER 5

Code reference

5.1 module-level methods

dclab.new_dataset(data, identifier=None)
Initialize a new RT-DC dataset

Parameters

• data – can be one of the following:

– dict

– .tdms file

– .rtdc file

– subclass of RTDCBase (will create a hierarchy child)

• identifier (str) – A unique identifier for this dataset. If set to None an identifier is
generated.

Returns dataset – A new dataset instance

Return type subclass of dclab.rtdc_dataset.RTDCBase

5.2 global definitions

These definitionas are used throughout the dclab/ShapeIn/ShapeOut ecosystem.

5.2.1 configuration

Valid configuration sections and keys are described in: Analysis metadata and Experiment metadata.

dclab.dfn.CFG_ANALYSIS
User-editable configuration for data analysis.

25

https://docs.python.org/3/library/stdtypes.html#str

dclab Documentation, Release 0.7.0

dclab.dfn.CFG_METADATA
Measurement-specific metadata.

dclab.dfn.config_funcs
Dictionary of dictionaries containing functions to convert input data to the predefined data type

dclab.dfn.config_keys
Dictionary with sections as keys and configuration parameter names as values

dclab.dfn.config_types
Dictionary of dictionaries containing the data type of each configuration parameter

5.2.2 features

Features are discussed in more detail in: Features.

dclab.dfn.FEATURES_SCALAR
Scalar features

dclab.dfn.FEATURES_NON_SCALAR
Non-scalar features

dclab.dfn.feature_names
List of valid feature names

dclab.dfn.feature_labels
List of human-readable labels for each valid feature

dclab.dfn.feature_name2label
Dictionary that maps feature names to feature labels

dclab.dfn.scalar_feature_names
List of valid scalar feature names

5.2.3 parse functions

dclab.parse_funcs.fbool(value)
boolean

dclab.parse_funcs.fint(value)
integer

dclab.parse_funcs.fintlist(alist)
A list of integers

dclab.parse_funcs.lcstr(astr)
lower-case string

dclab.parse_funcs.func_types = {<function fbool>: <class 'bool'>, <function fint>: <class 'int'>, <function lcstr>: <class 'str'>, <function fintlist>: <class 'list'>}
maps functions to their expected output types

5.3 RT-DC dataset manipulation

5.3.1 Base class

class dclab.rtdc_dataset.RTDCBase(identifier=None)
RT-DC measurement base class

26 Chapter 5. Code reference

dclab Documentation, Release 0.7.0

Notes

Besides the filter arrays for each data feature, there is a manual boolean filter array RTDCBase.filter.
manual that can be edited by the user - a boolean value of False means that the event is excluded from all
computations.

apply_filter(force=[])
Compute the filters for the dataset

get_downsampled_scatter(xax=’area_um’, yax=’deform’, downsample=0)
Downsampling by removing points at dense locations

Parameters

• xax (str) – Identifier for x axis (e.g. “area_um”, “aspect”, “deform”)

• yax (str) – Identifier for y axis

• downsample (int or None) – Number of points to draw in the down-sampled plot.
This number is either

– >=1: exactly downsample to this number by randomly adding or removing points

– 0 : do not perform downsampling

Returns xnew, xnew

Return type filtered x and y

get_kde_contour(xax=’area_um’, yax=’deform’, xacc=None, yacc=None, kde_type=’histogram’,
kde_kwargs={})

Evaluate the kernel density estimate for contour plots

Parameters

• xax (str) – Identifier for X axis (e.g. “area_um”, “aspect”, “deform”)

• yax (str) – Identifier for Y axis

• xacc (float) – Contour accuracy in x direction

• yacc (float) – Contour accuracy in y direction

• kde_type (str) – The KDE method to use

• kde_kwargs (dict) – Additional keyword arguments to the KDE method

Returns X, Y, Z – The kernel density Z evaluated on a rectangular grid (X,Y).

Return type coordinates

get_kde_scatter(xax=’area_um’, yax=’deform’, positions=None, kde_type=’histogram’,
kde_kwargs={})

Evaluate the kernel density estimate for scatter plots

Parameters

• xax (str) – Identifier for X axis (e.g. “area_um”, “aspect”, “deform”)

• yax (str) – Identifier for Y axis

• positions (list of points) – The positions where the KDE will be com-
puted. Note that the KDE estimate is computed from the the points that are set in
self._filter.

• kde_type (str) – The KDE method to use

5.3. RT-DC dataset manipulation 27

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

dclab Documentation, Release 0.7.0

• kde_kwargs (dict) – Additional keyword arguments to the KDE method

Returns density – The kernel density evaluated for the filtered data points.

Return type 1d ndarray

polygon_filter_add(filt)
Associate a Polygon Filter with this instance

Parameters filt (int or instance of PolygonFilter) – The polygon filter to add

polygon_filter_rm(filt)
Remove a polygon filter from this instance

Parameters filt (int or instance of PolygonFilter) – The polygon filter to remove

config = None
Configuration of the measurement

export = None
Export functionalities; instance of dclab.rtdc_dataset.export.Export.

features
All available features

filter = None
Filtering functionalities; instance of dclab.rtdc_dataset.filter.Filter.

format = None
Dataset format (derived from class name)

hash
Reproducible dataset hash (defined by derived classes)

identifier
Unique (unreproducible) identifier

title = None
Title of the measurement

5.3.2 Dictionary format

class dclab.rtdc_dataset.RTDC_Dict(ddict, *args, **kwargs)
Dictionary-based RT-DC dataset

Parameters

• ddict (dict) – Dictionary with keys from dclab.definitions.feature_names (e.g.
“area_cvx”, “deform”, “image”) with which the class will be instantiated. The config-
uration is set to the default configuration of dclab.

• *args – Arguments for RTDCBase

• **kwargs – Keyword arguments for RTDCBase

5.3.3 HDF5 (.rtdc) format

class dclab.rtdc_dataset.RTDC_HDF5(h5path, *args, **kwargs)
HDF5 file format for RT-DC measurements

Parameters

28 Chapter 5. Code reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

dclab Documentation, Release 0.7.0

• h5path (str or pathlib.Path) – Path to a ‘.tdms’ measurement file.

• *args – Arguments for RTDCBase

• **kwargs – Keyword arguments for RTDCBase

path
pathlib.Path – Path to the experimental HDF5 (.rtdc) file

static parse_config(h5path)
Parse the RT-DC configuration of an hdf5 file

dclab.rtdc_dataset.fmt_hdf5.MIN_DCLAB_EXPORT_VERSION = '0.3.3.dev2'
rtdc files exported with dclab prior to this version are not supported

5.3.4 Hierarchy format

class dclab.rtdc_dataset.RTDC_Hierarchy(hparent, *args, **kwargs)
Hierarchy dataset (filtered from RTDCBase)

A few words on hierarchies: The idea is that a subclass of RTDCBase can use the filtered data of another subclass
of RTDCBase and interpret these data as unfiltered events. This comes in handy e.g. when the percentage of
different subpopulations need to be distinguished without the noise in the original data.

Children in hierarchies always update their data according to the filtered event data from their parent when
apply_filter is called. This makes it easier to save and load hierarchy children with e.g. ShapeOut and it makes
the handling of hierarchies more intuitive (when the parent changes, the child changes as well).

Parameters

• hparent (instance of RTDCBase) – The hierarchy parent.

• *args – Arguments for RTDCBase

• **kwargs – Keyword arguments for RTDCBase

hparent
RTDCBase – Hierarchy parent of this instance

5.3.5 TDMS format

class dclab.rtdc_dataset.RTDC_TDMS(tdms_path, *args, **kwargs)
TDMS file format for RT-DC measurements

Parameters

• tdms_path (str or pathlib.Path) – Path to a ‘.tdms’ measurement file.

• *args – Arguments for RTDCBase

• **kwargs – Keyword arguments for RTDCBase

path
pathlib.Path – Path to the experimental dataset (main .tdms file)

dclab.rtdc_dataset.fmt_tdms.get_project_name_from_path(path, append_mx=False)
Get the project name from a path.

For a path “/home/peter/hans/HLC12398/online/M1_13.tdms” or For a path
“/home/peter/hans/HLC12398/online/data/M1_13.tdms” or without the “.tdms” file, this will return always
“HLC12398”.

5.3. RT-DC dataset manipulation 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

dclab Documentation, Release 0.7.0

Parameters

• path (str) – path to tdms file

• append_mx (bool) – append measurement number, e.g. “M1”

dclab.rtdc_dataset.fmt_tdms.get_tdms_files(directory)
Recursively find projects based on ‘.tdms’ file endings

Searches the directory recursively and return a sorted list of all found ‘.tdms’ project files, except fluorescence
data trace files which end with _traces.tdms.

5.3.6 config

class dclab.rtdc_dataset.config.Configuration(files=[], cfg={})
Configuration class for RT-DC datasets

This class has a dictionary-like interface to access and set configuration values, e.g.

cfg = load_from_file("/path/to/config.txt")
access the channel width
cfg["setup"]["channel width"]
modify the channel width
cfg["setup"]["channel width"] = 30

Parameters

• files (list of files) – The config files with which to initialize the configuration

• cfg (dict-like) – The dictionary with which to initialize the configuration

copy()
Return copy of current configuration

keys()
Return the configuration keys (sections)

save(filename)
Save the configuration to a file

update(newcfg)
Update current config with a dictionary

dclab.rtdc_dataset.config.load_from_file(cfg_file)
Load the configuration from a file

Parameters cfg_file (str) – Path to configuration file

Returns cfg – Dictionary with configuration parameters

Return type CaseInsensitiveDict

5.3.7 export

exception dclab.rtdc_dataset.export.NoImageWarning

class dclab.rtdc_dataset.export.Export(rtdc_ds)
Export functionalities for RT-DC datasets

30 Chapter 5. Code reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

dclab Documentation, Release 0.7.0

avi(path, filtered=True, override=False)
Exports filtered event images to an avi file

Parameters

• path (str) – Path to a .tsv file. The ending .tsv is added automatically.

• filtered (bool) – If set to True, only the filtered data (index in ds._filter) are
used.

• override (bool) – If set to True, an existing file path will be overridden. If set
to False, raises OSError if path exists.

Notes

Raises OSError if current dataset does not contain image data

fcs(path, features, filtered=True, override=False)
Export the data of an RT-DC dataset to an .fcs file

Parameters

• mm (instance of dclab.RTDCBase) – The dataset that will be exported.

• path (str) – Path to a .tsv file. The ending .tsv is added automatically.

• features (list of str) – The features in the resulting .tsv file. These are
strings that are defined in dclab.definitions.scalar_feature_names, e.g. “area_cvx”,
“deform”, “frame”, “fl1_max”, “aspect”.

• filtered (bool) – If set to True, only the filtered data (index in ds._filter) are
used.

• override (bool) – If set to True, an existing file path will be overridden. If set
to False, raises OSError if path exists.

Notes

Due to incompatibility with the .fcs file format, all events with NaN-valued features are not exported.

hdf5(path, features, filtered=True, override=False, compression=’gzip’)
Export the data of the current instance to an HDF5 file

Parameters

• path (str) – Path to an .rtdc file. The ending .rtdc is added automatically.

• features (list of str) – The features in the resulting .tsv file. These are
strings that are defined in dclab.definitions.feature_names, e.g. “area_cvx”, “deform”,
“frame”, “fl1_max”, “image”.

• filtered (bool) – If set to True, only the filtered data (index in ds._filter) are
used.

• override (bool) – If set to True, an existing file path will be overridden. If set
to False, raises OSError if path exists.

• compression (str or None) – Compression method for “contour”, “image”,
and “trace” data as well as logs; one of [None, “lzf”, “gzip”, “szip”].

5.3. RT-DC dataset manipulation 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

dclab Documentation, Release 0.7.0

tsv(path, features, filtered=True, override=False)
Export the data of the current instance to a .tsv file

Parameters

• path (str) – Path to a .tsv file. The ending .tsv is added automatically.

• features (list of str) – The features in the resulting .tsv file. These are
strings that are defined in dclab.definitions.scalar_feature_names, e.g. “area_cvx”,
“deform”, “frame”, “fl1_max”, “aspect”.

• filtered (bool) – If set to True, only the filtered data (index in ds._filter) are
used.

• override (bool) – If set to True, an existing file path will be overridden. If set
to False, raises OSError if path exists.

5.3.8 filter

class dclab.rtdc_dataset.filter.Filter(rtdc_ds)
Boolean filter arrays for RT-DC measurements

Parameters rtdc_ds (instance of RTDCBase) – The RT-DC dataset the filter applies to

update(force=[])
Update the filters according to self.rtdc_ds.config[“filtering”]

Parameters force (list) – A list of feature names that must be refiltered with min/max
values.

all = None
All filters combined (see Filter.update())

invalid = None
Invalid (nan/inf) events

manual = None
Reserved for manual filtering

polygon = None
Polygon filters

rtdc_ds = None
Instance of RTDCBase the filter applies to

5.4 low-level functionalities

5.4.1 downsampling

Content-based downsampling of ndarrays

dclab.downsampling.downsample_rand(a, samples, remove_invalid=True, retidx=False)
Downsampling by randomly removing points

Parameters

• a (1d ndarray) – The input array to downsample

• samples (int) – The desired number of samples

32 Chapter 5. Code reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

dclab Documentation, Release 0.7.0

• remove_invalid (bool) – Remove nan and inf values before downsampling

• retidx (bool) – Also return a boolean array that corresponds to the downsampled
indices in a.

Returns

• dsa, dsb (1d ndarrays of shape (samples,)) – The pseudo-randomly downsampled arrays
a and b

• [idx] (1d boolean array with same shape as a) – A boolean array such that a[idx] == dsa
is all true

5.4.2 features

dclab.features.contour.get_contour(mask)
Compute the image contour from a mask

The contour is computed in a very inefficient way using scikit-image and a conversion of float coordinates to
pixel coordinates.

Parameters mask (binary ndarray of shape (M,N) or (K,M,N)) – The mask
outlining the pixel positions of the event. If a 3d array is given, then K indexes the individual
contours.

Returns cont – A 2D array that holds the contour of an event (in pixels) e.g. obtained using
mm.contour where mm is an instance of RTDCBase. The first and second columns of cont
correspond to the x- and y-coordinates of the contour.

Return type ndarray or list of K ndarrays of shape (J,2)

dclab.features.bright.get_bright(mask, image, ret_data=’avg, sd’)
Compute avg and/or std of the event brightness

The event brightness is defined by the gray-scale values of the image data within the event mask area.

Parameters

• mask (ndarray or list of ndarrays of shape (M,N) and dtype
bool) – The mask values, True where the event is located in image.

• image (ndarray or list of ndarrays of shape (M,N)) – A 2D array
that holds the image in form of grayscale values of an event.

• ret_data (str) – A comma-separated list of metrices to compute - “avg”: compute
the average - “sd”: compute the standard deviation Selected metrics are returned in al-
phabetical order.

Returns

• bright_avg (float or ndarray of size N) – Average image data within the contour

• bright_std (float or ndarray of size N) – Standard deviation of image data within the
contour

dclab.features.emodulus.get_emodulus(area_um, deform, medium=’CellCarrier’, chan-
nel_width=20.0, flow_rate=0.16, px_um=0.34, temper-
ature=23.0, copy=True)

Compute apparent Young’s modulus using a look-up table

Parameters

• area_um (float or ndarray) – Apparent (2D image) area [µm2] of the event(s)

5.4. low-level functionalities 33

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

dclab Documentation, Release 0.7.0

• deform (float or ndarray) – The deformation (1-circularity) of the event(s)

• medium (str or float) – The medium to compute the viscosity for. If a string in
[“CellCarrier”, “CellCarrier B”] is given, the viscosity will be computed. If a float is
given, this value will be used as the viscosity in mPa*s.

• channel_width (float) – The channel width [µm]

• flow_rate (float) – Flow rate [µl/s]

• px_um (float) – The detector pixel size [µm] used for pixelation correction. Set to
zero to disable.

• temperature (float or ndarray) – Temperature [°C] of the event(s)

• copy (bool) – Copy input arrays. If set to false, input arrays are overridden.

Returns elasticity – Apparent Young’s modulus in kPa

Return type float or ndarray

Notes

• The look-up table used was computed with finite elements methods according to [MMM+17].

• The computation of the Young’s modulus takes into account corrections for the viscosity (medium, chan-
nel width, flow rate, and temperature) [MOG+15] and corrections for pixelation of the area and the
deformation which are computed from a (pixelated) image [Her17].

See also:

dclab.features.emodulus_viscosity.get_viscosity() compute viscosity for known media

dclab.features.emodulus_viscosity.get_viscosity(medium=’CellCarrier’, chan-
nel_width=20.0, flow_rate=0.16,
temperature=23.0)

Returns the viscosity for RT-DC-specific media

Parameters

• medium (str) – The medium to compute the viscosity for. One of [“CellCarrier”,
“CellCarrier B”, “water”].

• channel_width (float) – The channel width in µm

• flow_rate (float) – Flow rate in µl/s

• temperature (float or ndarray) – Temperature in °C

Returns viscosity – Viscosity in mPa*s

Return type float or ndarray

Notes

• CellCarrier and CellCarrier B media are optimized for RT-DC measurements.

• Values for the viscosity of water are computed using equation (15) from [KSW78].

34 Chapter 5. Code reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

dclab Documentation, Release 0.7.0

dclab.features.fl_crosstalk.correct_crosstalk(fl1, fl2, fl3, fl_channel, ct21=0, ct31=0,
ct12=0, ct32=0, ct13=0, ct23=0)

Perform crosstalk correction

Parameters

• fli (int, float, or np.ndarray) – Measured fluorescence signals

• fl_channel (int (1, 2, or 3)) – The channel number for which the crosstalk-
corrected signal should be computed

• cij (float) – Spill (crosstalk or bleed-through) from channel i to channel j This spill
is computed from the fluorescence signal of e.g. single-stained positive control cells; It
is defined by the ratio of the fluorescence signals of the two channels, i.e cij = flj / fli.

See also:

get_compensation_matrix() compute the inverse crosstalk matrix

Notes

If there are only two channels (e.g. fl1 and fl2), then the crosstalk to and from the other channel (ct31, ct32,
ct13, ct23) should be set to zero.

dclab.features.fl_crosstalk.get_compensation_matrix(ct21, ct31, ct12, ct32, ct13, ct23)
Compute crosstalk inversion matrix

The spillover matrix is

c11 c12 c13 |
c21 c22 c23 |
c31 c32 c33 |

The diagonal elements are set to 1, i.e.

ct11 = c22 = c33 = 1

Parameters cij (float) – Spill from channel i to channel j

Returns inv – Compensation matrix (inverted spillover matrix)

Return type np.matrix

dclab.features.inert_ratio.get_inert_ratio_cvx(cont)
Compute the inertia ratio of the convex hull of a contour

The inertia ratio is computed from the central second order of moments along x (mu20) and y (mu02) via
sqrt(mu20/mu02).

Parameters cont (ndarray or list of ndarrays of shape (N,2)) – A 2D array
that holds the contour of an event (in pixels) e.g. obtained using mm.contour where mm is an
instance of RTDCBase. The first and second columns of cont correspond to the x- and y-
coordinates of the contour.

Returns inert_ratio_cvx – The inertia ratio of the contour’s convex hull

Return type float or ndarray of size N

5.4. low-level functionalities 35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

dclab Documentation, Release 0.7.0

Notes

The contour moments mu20 and mu02 are computed the same way they are computed in OpenCV’s mo-
ments.cpp.

See also:

get_inert_ratio_raw() Compute inertia ratio of a raw contour

dclab.features.inert_ratio.get_inert_ratio_raw(cont)
Compute the inertia ratio of a contour

The inertia ratio is computed from the central second order of moments along x (mu20) and y (mu02) via
sqrt(mu20/mu02).

Parameters cont (ndarray or list of ndarrays of shape (N,2)) – A 2D array
that holds the contour of an event (in pixels) e.g. obtained using mm.contour where mm is an
instance of RTDCBase. The first and second columns of cont correspond to the x- and y-
coordinates of the contour.

Returns inert_ratio_raw – The inertia ratio of the contour

Return type float or ndarray of size N

Notes

The contour moments mu20 and mu02 are computed the same way they are computed in OpenCV’s mo-
ments.cpp.

See also:

get_inert_ratio_cvx() Compute inertia ratio of the convex hull of a contour

dclab.features.volume.get_volume(cont, pos_x, pos_y, pix)
Calculate the volume of a polygon revolved around an axis

The volume estimation assumes rotational symmetry. Green‘s theorem and the Gaussian divergence theorem
allow to formulate the volume as a line integral.

This is a translation from a Matlab script by Geoff Olynyk: http://de.mathworks.com/matlabcentral/
fileexchange/36525-volrevolve

Parameters

• cont (ndarray or list of ndarrays of shape (N,2)) – A 2D array
that holds the contour of an event [px] e.g. obtained using mm.contour where mm is
an instance of RTDCBase. The first and second columns of cont correspond to the x- and
y-coordinates of the contour.

• pos_x (float or ndarray of length N) – The x coordinate(s) of the centroid
of the event(s) [µm] e.g. obtained using mm.pos_x

• pos_y (float or ndarray of length N) – The y coordinate(s) of the centroid
of the event(s) [µm] e.g. obtained using mm.pos_y

• px_um (float) – The detector pixel size in µm. e.g. obtained using:
mm.config[“image”][“pix size”]

Returns volume – volume in um^3

36 Chapter 5. Code reference

https://docs.python.org/3/library/functions.html#float
http://de.mathworks.com/matlabcentral/fileexchange/36525-volrevolve
http://de.mathworks.com/matlabcentral/fileexchange/36525-volrevolve
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

dclab Documentation, Release 0.7.0

Return type float or ndarray

Notes

The computation of the volume is based on a full rotation of the upper half of the contour to obtain the volume.
Similarly, the lower part of the contour is rotated. Both volumes are then averaged.

The volume is computed radially from the the center position given by (pos_x, pos_y). For sufficiently smooth
contours, such as densely sampled ellipses, the center position does not play an important role. For contours
that are given on a coarse grid, as is the case for RT-DC, the center position must be given.

References

Advanced Mathematics and Mechanics Applications with MATLAB 3rd ed. by H.B. Wilson, L.H. Turcotte,
and D. Halpern, Chapman & Hall CRC Press, 2002, e-ISBN 978-1-4200-3544-5. See Chapter 5, Section 5.4,
doi: 10.1201/9781420035445.ch5

5.4.3 isoelastics

Isoelastics management

class dclab.isoelastics.Isoelastics(paths=[])

add(isoel, col1, col2, channel_width, flow_rate, viscosity, method)
Add isoelastics

Parameters

• isoel (list of ndarrays) – Each list item resembles one isoelastic line stored
as an array of shape (N,3). The last column contains the emodulus data.

• col1 (str) – Name of the first feature of all isoelastics (e.g. isoel[0][:,0])

• col2 (str) – Name of the second feature of all isoelastics (e.g. isoel[0][:,1])

• channel_width (float) – Channel width in µm

• flow_rate (float) – Flow rate through the channel in µl/s

• viscosity (float) – Viscosity of the medium in mPa*s

• method (str) – The method used to compute the isoelastics (must be one of
VALID_METHODS).

Notes

The following isoelastics are automatically added for user convenience: - isoelastics with col1 and col2
interchanged - isoelastics for circularity if deformation was given

static add_px_err(isoel, col1, col2, px_um, inplace=False)
Undo pixelation correction

Isoelasticity lines are already corrected for pixelation effects as described in

Mapping of Deformation to Apparent Young’s Modulus in Real-Time Deformability Cytometry Christoph
Herold, arXiv:1704.00572 [cond-mat.soft] (2017) https://arxiv.org/abs/1704.00572.

5.4. low-level functionalities 37

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

dclab Documentation, Release 0.7.0

If the isoealsticity lines are displayed with deformation data that are not corrected, then the lines must be
“un”-corrected, i.e. the pixelation error must be added to the lines to match the experimental data.

Parameters

• isoel (list of 2d ndarrays of shape (N, 3)) – Each item in the list
corresponds to one isoelasticity line. The first column is defined by col1, the second
by col2, and the third column is the emodulus.

• col2 (col1,) – Define the fist to columns of each isoelasticity line. One of
[“area_um”, “circ”, “deform”]

• px_um (float) – Pixel size [µm]

static check_col12(col1, col2)

static convert(isoel, col1, col2, channel_width_in, channel_width_out, flow_rate_in,
flow_rate_out, viscosity_in, viscosity_out, inplace=False)

Convert isoelastics in area_um-deform space

Parameters

• isoel (list of 2d ndarrays of shape (N, 3)) – Each item in the list
corresponds to one isoelasticity line. The first column is defined by col1, the second
by col2, and the third column is the emodulus.

• col2 (col1,) – Define the fist to columns of each isoelasticity line. One of
[“area_um”, “circ”, “deform”]

• channel_width_in (float) – Original channel width [µm]

• channel_width_out (float) – Target channel width [µm]

• flow_rate_in (float) – Original flow rate [µl/s]

• flow_rate_in – Target flow rate [µl/s]

• viscosity_in (float) – Original viscosity [mPa*s]

• viscosity_out (float) – Target viscosity [mPa*s]

Notes

If only the positions of the isoelastics are of interest and not the value of the elastic modulus, then it is
sufficient to supply values for the channel width and set the values for flow rate and viscosity to a constant
(e.g. 1).

See also:

dclab.features.emodulus.convert() conversion method used

get(col1, col2, method, channel_width, flow_rate=None, viscosity=None, add_px_err=False,
px_um=None)
Get isoelastics

Parameters

• col1 (str) – Name of the first feature of all isoelastics (e.g. isoel[0][:,0])

• col2 (str) – Name of the second feature of all isoelastics (e.g. isoel[0][:,1])

• method (str) – The method used to compute the isoelastics (must be one of
VALID_METHODS).

38 Chapter 5. Code reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

dclab Documentation, Release 0.7.0

• channel_width (float) – Channel width in µm

• flow_rate (float or None) – Flow rate through the channel in µl/s. If set to None,
the flow rate of the imported data will be used (only do this if you do not need the
correct values for elastic moduli).

• viscosity (float or None) – Viscosity of the medium in mPa*s. If set to None, the
flow rate of the imported data will be used (only do this if you do not need the correct
values for elastic moduli).

• add_px_err (bool) – If True, add pixelation errors according to C. Herold (2017),
https://arxiv.org/abs/1704.00572

• px_um (float) – Pixel size [µm], used for pixelation error computation

See also:

dclab.features.emodulus.convert() conversion in-between channel sizes and viscosities

dclab.features.emodulus.corrpix_deform_delta() pixelation error that is applied to
the deformation data

get_with_rtdcbase(col1, col2, method, dataset, viscosity=None, add_px_err=False)
Convenience method that extracts the metadata from RTDCBase

Parameters

• col1 (str) – Name of the first feature of all isoelastics (e.g. isoel[0][:,0])

• col2 (str) – Name of the second feature of all isoelastics (e.g. isoel[0][:,1])

• method (str) – The method used to compute the isoelastics (must be one of
VALID_METHODS).

• dataset (dclab.rtdc_dataset.RTDCBase) – The dataset from which to ob-
tain the metadata.

• viscosity (float or None) – Viscosity of the medium in mPa*s. If set to None, the
flow rate of the imported data will be used (only do this if you do not need the correct
values for elastic moduli).

• add_px_err (bool) – If True, add pixelation errors according to C. Herold (2017),
https://arxiv.org/abs/1704.00572

load_data(path)
Load isoelastics from a text file

The text file is loaded with numpy.loadtxt and must have three columns, representing the two data columns
and the elastic modulus with units defined in definitions.py. The file header must have a section defining
meta data of the content like so:

[. . .] # # - column 1: area_um # - column 2: deform # - column 3: emodulus # - channel
width [um]: 20 # - flow rate [ul/s]: 0.04 # - viscosity [mPa*s]: 15 # - method: analytical # #
[. . .]

Parameters path (str) – Path to a isoelastics text file

class dclab.isoelastics.IsoelasticsDict

dclab.isoelastics.get_default()
Return default isoelasticity lines

5.4. low-level functionalities 39

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1704.00572
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1704.00572
https://docs.python.org/3/library/stdtypes.html#str

dclab Documentation, Release 0.7.0

5.4.4 kde_methods

Kernel Density Estimation methods

dclab.kde_methods.bin_num_doane(a)
Compute number of bins based on Doane’s formula

dclab.kde_methods.bin_width_doane(a)
Compute accuracy (bin width) based on Doane’s formula

dclab.kde_methods.get_bad_vals(x, y)

dclab.kde_methods.ignore_nan_inf(kde_method)
Ignores nans and infs from the input data

Invalid positions in the resulting density are set to nan.

dclab.kde_methods.kde_gauss(events_x, events_y, xout=None, yout=None, *args, **kwargs)
Gaussian Kernel Density Estimation

Parameters

• events_y (events_x,) – The input points for kernel density estimation. Input is
flattened automatically.

• yout (xout,) – The coordinates at which the KDE should be computed. If set to none,
input coordinates are used.

Returns density – The KDE for the points in (xout, yout)

Return type ndarray, same shape as xout

See also:

scipy.stats.gaussian_kde

Notes

This is a wrapped version that ignores nan and inf values.

dclab.kde_methods.kde_histogram(events_x, events_y, xout=None, yout=None, *args, **kwargs)
Histogram-based Kernel Density Estimation

Parameters

• events_y (events_x,) – The input points for kernel density estimation. Input is
flattened automatically.

• yout (xout,) – The coordinates at which the KDE should be computed. If set to none,
input coordinates are used.

• bins (tuple (binsx, binsy)) – The number of bins to use for the histogram.

Returns density – The KDE for the points in (xout, yout)

Return type ndarray, same shape as xout

See also:

numpy.histogram2d scipy.interpolate.RectBivariateSpline

40 Chapter 5. Code reference

https://docs.python.org/3/library/stdtypes.html#tuple

dclab Documentation, Release 0.7.0

Notes

This is a wrapped version that ignores nan and inf values.

dclab.kde_methods.kde_multivariate(events_x, events_y, xout=None, yout=None, *args,
**kwargs)

Multivariate Kernel Density Estimation

Parameters

• events_y (events_x,) – The input points for kernel density estimation. Input is
flattened automatically.

• bw (tuple (bwx, bwy) or None) – The bandwith for kernel density estimation.

• yout (xout,) – The coordinates at which the KDE should be computed. If set to none,
input coordinates are used.

Returns density – The KDE for the points in (xout, yout)

Return type ndarray, same shape as xout

See also:

statsmodels.nonparametric.kernel_density.KDEMultivariate

Notes

This is a wrapped version that ignores nan and inf values.

dclab.kde_methods.kde_none(events_x, events_y, xout=None, yout=None)
No Kernel Density Estimation

Parameters

• events_y (events_x,) – The input points for kernel density estimation. Input is
flattened automatically.

• yout (xout,) – The coordinates at which the KDE should be computed. If set to none,
input coordinates are used.

Returns density – The KDE for the points in (xout, yout)

Return type ndarray, same shape as xout

Notes

This method is a convenience method that always returns ones in the shape that the other methods in this module
produce.

5.4.5 polygon_filter

exception dclab.polygon_filter.FilterIdExistsWarning

exception dclab.polygon_filter.PolygonFilterError

class dclab.polygon_filter.PolygonFilter(axes=None, points=None, inverted=False,
name=None, filename=None, fileid=0,
unique_id=None)

An object for filtering RTDC data based on a polygonial area

5.4. low-level functionalities 41

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None

dclab Documentation, Release 0.7.0

Parameters

• axes (tuple of str) – The axes/features on which the polygon is defined. The first
axis is the x-axis. Example: (“area_um”, “deform”).

• points (array-like object of shape (N,2)) – The N coordinates (x,y) of
the polygon. The exact order is important.

• inverted (bool) – Invert the polygon filter. This parameter is overridden if filename
is given.

• name (str) – A name for the polygon (optional).

• filename (str) – A path to a .poly file as create by this classes’ save method. If
filename is given, all other parameters are ignored.

• fileid (int) – Which filter to import from the file (starting at 0).

• unique_id (int) – An integer defining the unique id of the new instance.

Notes

The minimal arguments to this class are either filename OR (axes, points). If filename is set, all parameters are
taken from the given .poly file.

static clear_all_filters()
Remove all filters and reset instance counter

copy(invert=False)
Return a copy of the current instance

Parameters invert (bool) – The copy will be inverted w.r.t. the original

filter(datax, datay)
Filter a set of datax and datay according to self.points

static get_instance_from_id(unique_id)
Get an instance of the PolygonFilter using a unique id

static import_all(path)
Import all polygons from a .poly file.

Returns a list of the imported polygon filters

static instace_exists(unique_id)
Determine whether an instance with this unique id exists

static point_in_poly(x, y, poly)
Determine whether a point is within a polygon area

Parameters

• y (x,) – The coordinates of the point

• poly (list-like) – The polygon (PolygonFilter.points)

Returns inside – True, if point is inside.

Return type bool

static remove(unique_id)
Remove a polygon filter from PolygonFilter.instances

42 Chapter 5. Code reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

dclab Documentation, Release 0.7.0

save(polyfile, ret_fobj=False)
Save all data to a text file (appends data if file exists).

Polyfile can be either a path to a file or a file object that was opened with the write “w” parameter. By
using the file object, multiple instances of this class can write their data.

If ret_fobj is True, then the file object will not be closed and returned.

static save_all(polyfile)
Save all polygon filters

instances = []

dclab.polygon_filter.get_polygon_filter_names()
Get the names of all polygon filters in the order of creation

5.4.6 statistics

Statistics computation for RT-DC dataset instances

exception dclab.statistics.BadMethodWarning

class dclab.statistics.Statistics(name, method, req_feature=False)
A helper class for statistics.

All statistical methods are registered in the dictionary Statistics.available_methods.

get_data(kwargs)

get_feature(rtdc_ds, axis)

available_methods = {'%-gated': <dclab.statistics.Statistics object at 0x7fbe30924828>, 'Events': <dclab.statistics.Statistics object at 0x7fbe309247f0>, 'Flow rate': <dclab.statistics.Statistics object at 0x7fbe30924860>, 'Mean': <dclab.statistics.Statistics object at 0x7fbe1f3faeb8>, 'Median': <dclab.statistics.Statistics object at 0x7fbe30924748>, 'Mode': <dclab.statistics.Statistics object at 0x7fbe30924780>, 'SD': <dclab.statistics.Statistics object at 0x7fbe309247b8>}

dclab.statistics.flow_rate(mm)

dclab.statistics.get_statistics(rtdc_ds, methods=None, features=None)

Parameters

• rtdc_ds (instance of dclab.rtdc_dataset.RTDCBase.) – The dataset for which to com-
pute the statistics.

• methods (list of str or None) – The methods wih which to
compute the statistics. The list of available methods is given with
dclab.statistics.Statistics.available_methods.keys() If set to None, statistics for all
methods are computed.

• features (list of str) – Feature name identifiers are defined in
dclab.definitions.scalar_feature_names. If set to None, statistics for all axes are
computed.

Returns

• header (list of str) – The header (feature + method names) of the computed statistics.

• values (list of float) – The computed statistics.

dclab.statistics.mode(data)
Compute an intelligent value for the mode

The most common value in experimental is not very useful if there are a lot of digits after the comma. This
method approaches this issue by rounding to bin size that is determined by the Freedman–Diaconis rule.

Parameters data (1d ndarray) – The data for which the mode should be computed.

5.4. low-level functionalities 43

https://docs.python.org/3/library/constants.html#None

dclab Documentation, Release 0.7.0

Returns mode – The mode computed with the Freedman-Diaconis rule.

Return type float

44 Chapter 5. Code reference

https://docs.python.org/3/library/functions.html#float

CHAPTER 6

Changelog

List of changes in-between dclab releases.

6.1 version 0.7.0

• feat: add new ancillary feature: principal inertia ratio (#46)

• feat: add new ancillary feature: absolute tilt (#53)

• feat: add computation of viscosity for water (#52)

6.2 version 0.6.3

• fix: channel width not correctly identified for old tdms files

6.3 version 0.6.2

• ci: automate release to PyPI with appveyor and travis-ci

6.4 version 0.6.0

• fix: image export as .avi did not have option to use unfiltered data

• fix: avoid a few unicode gotchas

• feat: use Doane’s formula for kernel density estimator defaults (#42)

• docs: usage examples, advanced scripting, and code reference update (#49)

45

https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/46
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/53
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/52
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/42
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/49

dclab Documentation, Release 0.7.0

6.5 version 0.5.2

• Migrate from os.path to pathlib (#50)

• fmt_hdf5: Add run index to title

6.6 version 0.5.1

• Setup: add dependencies for statsmodels

• Tests: filter known warnings

• fmt_hdf5: import unknown keys such that “dclab-verify-dataset” can complain about them

6.7 version 0.5.0

• BREAKING CHANGES:

– definitions.feature_names now contains non-scalar features (inlcuding “image”, “contour”, “mask”, and
“trace”). To test for scalar features, use definitions.scalar_feature_names.

– features bright_* are computed from mask instead of from contour

• Bugfixes:

– write correct event count in exported hdf5 data files

– improve implementation of video file handling in fmt_tdms

• add new non-scalar feature “mask” (#48)

• removed configuration key [online_contour]: “bin margin” (#47)

• minor improvements for the tdms file format

6.8 version 0.4.0

• Bugfix: CLI “dclab-tdms2rtdc” did not work for single tdms files (#45)

• update configuration keys:

– added new keys for [fluorescence]

– added [setup]: “identifier”

– removed [imaging]: “exposure time”, “flash current”

– removed [setup]: “temperature”, “viscosity”

• renamed feature “ncells” to “nevents”

46 Chapter 6. Changelog

https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/50
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/48
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/47
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/45

dclab Documentation, Release 0.7.0

6.9 version 0.3.3

• ref: do not import missing features as zeros in fmt_tdms

• CLI:

– add tdms-to-rtdc converter “dclab-tdms2rtdc” (#36)

– improve “dclab-verify-dataset” user experience

• Bugfixes:

– “limit events” filtering must be integer not boolean (#41)

– Support opening tdms files with capitalized “userDef” column names

– OSError when trying to open files from repository root

6.10 version 0.3.2

• CLI: add rudimentary dataset checker “dclab-verify-dataset” (#37)

• Add logic to compute parent/root/child event indices of RTDC_Hierarchy

– Hierarchy children now support contour, image, and traces

– Hierarchy children now support and remember manual filters (#22)

• Update emodulus look-up table with larger values for deformation

• Implement pixel size correction for emodulus computation

• Allow to add pixelation error to isoelastics (add_px_err=True) (#28)

• Bugfixes:

– Pixel size not read from tdms-based measurements

– Young’s modulus computation wrong due to faulty FEM simulations (#39)

6.11 version 0.3.1

• Remove all-zero dummy columns from dict format

• Implement hdf5-based RT-DC data reader (#32)

• Implement hdf5-based RT-DC data writer (#33)

• Bugfixes:

– Automatically fix inverted box filters

– RTDC_TDMS trace data contained empty arrays when no trace data was present (trace key should not
have been accessible)

– Not possible to get isoelastics for circularity

6.9. version 0.3.3 47

https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/36
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/41
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/37
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/22
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/28
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/39
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/32
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/33

dclab Documentation, Release 0.7.0

6.12 version 0.3.0

• New fluorescence crosstalk correction feature recipe (#35)

• New ancillary features “fl1_max_ctc”, “fl2_max_ctc”, “fl3_max_ctc” (#35)

• Add priority for multiple ancillary features with same name

• Bugfixes:

– Configuration key values were not hashed for ancillary features

• Code cleanup:

– Refactoring: Put ancillary columns into a new folder module

– Refactoring: Use the term “feature” consistently

– Unify trace handling in dclab (#30)

– Add functions to convert input config data

6.13 version 0.2.9

• Bugfixes:

– Regression when loading configuration strings containing quotes

– Parameters missing when loading ShapeIn 2.0.1 tdms data

6.14 version 0.2.8

• Refactor configuration class to support new format (#26)

6.15 version 0.2.7

• New submodule and classes for managing isoelastics

• New ancillary columns “inert_ratio_raw” and “inert_ratio_cvx”

• Bugfixes:

– Typo when finding contour data files (tdms file format)

• Rrefactoring:

– “features” submodule with basic methods for ancillary columns

6.16 version 0.2.6

• Return event images as gray scale (#17)

• Bugfixes:

– Shrink ancillary column size if it exceeds dataset size

48 Chapter 6. Changelog

https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/35
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/35
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/30
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/26
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/17

dclab Documentation, Release 0.7.0

– Generate random RTDCBase.identifier (do not use RTDCBase.hash) to fix problem with identical identi-
fiers for hierarchy children

– Correctly determine contour data files (tdms file format)

– Allow contour data indices larger than uint8

6.17 version 0.2.5

• Add ancillary columns “bright_avg” and “bright_sd” (#18, #19)

• Standardize attributes of RTDCBase subclasses (#12)

• Refactoring:

– New column names and removal of redundant column identifiers (#16)

– Minor improvements towards PEP8 (e.g. #15)

– New class for handling filters (#13)

• Bugfixes:

– Hierarchy child computed all ancillary columns of parent upon checking availability of a column

6.18 version 0.2.4

• Replace OpenCV with imageio

• Add (ancilliary) computation of volume (#11)

• Add convenience methods for Configuration

• Refactoring (#8):

– Separate classes for .tdms, dict-based, and hierarchy datasets

– Introduce “_events” attribute for stored data

– Data columns (including image, trace, contour) are accessed via keys instead of attributes.

– Make space for new hdf5-based file format

– Introduce ancilliary columns that are computed on-the-fly (new “_ancilliaries” attribute and “ancil-
liary_columns.py”)

6.19 version 0.2.3

• Add look-up table for elastic modulus (#7)

• Add filtering option “remove invalid events” to remove nan/inf

• Support nan and inf in data analysis

• Improve downsampling performance

• Refactor downsampling methods (#6)

6.17. version 0.2.5 49

https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/12
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/16
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/13
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/11
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/8
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/7
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/6

dclab Documentation, Release 0.7.0

6.20 version 0.2.2

• Add new histogram-based kernel density estimator (#2)

• Refactoring:

– Configuration fully handled by RTDC_DataSet module (#5)

– Simplify video export function (#4)

– Removed “Plotting” configuration key

– Removed .cfg configuration files

6.21 version 0.2.1

• Support npTDMS 0.9.0

• Add AVI-Export function

• Add lazy submodule for event trace data and rename RTDC_DataSet.traces to RTDC_DataSet.trace

• Add “Event index” column

6.22 version 0.2.0

• Compute sensible default configuration parameters for KDE estimation and contour plotting

• Speed-up handling of contour text files

• Add support for “User Defined” column in tdms files

6.23 version 0.1.9

• Implement hierarchical instantiation of RTDC_DataSet

• Bugfix: Prevent instances of PolygonFilter that have same id

• Load InertiaRatio and InertiaRatioRaw from tdms files

6.24 version 0.1.8

• Allow to instantiate RTDC_DataSet without a tdms file

• Add statistics submodule

• Bugfixes:

– Faulty hashing strategy in RTDC_DataSet.GetDownSampledScatter

• Code cleanup (renamed methods, cleaned structure)

• Corrections/additions in definitions (fRT-DC)

50 Chapter 6. Changelog

https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/2
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/5
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/4

dclab Documentation, Release 0.7.0

6.25 version 0.1.7

• Added channel: distance between to first fl. peaks

• Added fluorescence channels: peak position, peak area, number of peaks

• Allow to disable KDE computation

• Add filter array for manual (user-defined) filtering

• Add config parameters for log axis scaling

• Add channels: bounding box x- and y-size

• Bugfixes:

– cached.py did not handle None

– Limiting number of events caused integer/bool error

6.26 version 0.1.6

• Added RTDC_DataSet.ExportTSV for data export

• Bugfixes:

– Correct determination of video file in RTDCDataSet

– Fix multivariate KDE computation

– Contour accuracy for Defo overridden by that of Circ

6.27 version 0.1.5

• Fix regressions with filtering. https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut/issues/43

• Ignore empty columns in .tdms files (#1)

• Moved RTDC_DataSet and PolygonFilter classes to separate files

• Introduce more transparent caching - improves speed in some cases

6.28 version 0.1.4

• Added support for 3-channel fluorescence data (FL-1..3 max/width)

6.29 version 0.1.3

• Fixed minor polygon filter problems.

• Fix a couple of ShapeOut-related issues:

– https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut/issues/17

– https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut/issues/20

6.25. version 0.1.7 51

https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut/issues/43
https://github.com/ZELLMECHANIK-DRESDEN/dclab/issues/1
https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut/issues/17
https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut/issues/20

dclab Documentation, Release 0.7.0

– https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut/issues/37

– https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut/issues/38

6.30 version 0.1.2

• Add support for limiting amount of data points analyzed with the configuration keyword “Limit Events”

• Comments refer to “events” instead of “points” from now on

6.31 version

52 Chapter 6. Changelog

https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut/issues/37
https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut/issues/38

CHAPTER 7

Bilbliography

53

dclab Documentation, Release 0.7.0

54 Chapter 7. Bilbliography

CHAPTER 8

Imprint/Impressum

8.1 Imprint and disclaimer

For more information, please refer to the imprint and disclaimer (Impressum und Haftungsausschluss) at https://www.
zellmechanik.com/Imprint.html.

8.2 Privacy policy

This documentation is hosted on https://readthedocs.org/ whose privacy policy applies.

55

https://www.zellmechanik.com/Imprint.html
https://www.zellmechanik.com/Imprint.html
https://readthedocs.org/
https://docs.readthedocs.io/en/latest/privacy-policy.html

dclab Documentation, Release 0.7.0

56 Chapter 8. Imprint/Impressum

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

57

dclab Documentation, Release 0.7.0

58 Chapter 9. Indices and tables

Bibliography

[Her17] Christoph Herold. Mapping of Deformation to Apparent Young’s Modulus in Real-Time Deformability Cy-
tometry. ArXiv e-prints 1704.00572 [cond-mat.soft], 2017. arXiv:1704.00572v1.

[KSW78] Joseph Kestin, Mordechai Sokolov, and William A. Wakeham. Viscosity of liquid water in the range -
8\hspace 0.167em°C to 150\hspace 0.167em°C. Journal of Physical and Chemical Reference Data, 7(3):941–948,
jul 1978. doi:10.1063/1.555581.

[MOG+15] Alexander Mietke, Oliver Otto, Salvatore Girardo, Philipp Rosendahl, Anna Taubenberger, Stefan Golfier,
Elke Ulbricht, Sebastian Aland, Jochen Guck, and Elisabeth Fischer-Friedrich. Extracting Cell Stiffness from
Real-Time Deformability Cytometry: Theory and Experiment. Biophysical Journal, 109(10):2023–2036, nov
2015. doi:10.1016/j.bpj.2015.09.006.

[MMM+17] M. Mokbel, D. Mokbel, A. Mietke, N. Träber, S. Girardo, O. Otto, J. Guck, and S. Aland. Numeri-
cal Simulation of Real-Time Deformability Cytometry To Extract Cell Mechanical Properties. ACS Biomaterials
Science & Engineering, 3(11):2962–2973, jan 2017. doi:10.1021/acsbiomaterials.6b00558.

59

https://arxiv.org/abs/1704.00572v1
https://doi.org/10.1063/1.555581
https://doi.org/10.1016/j.bpj.2015.09.006
https://doi.org/10.1021/acsbiomaterials.6b00558

dclab Documentation, Release 0.7.0

60 Bibliography

Python Module Index

d
dclab.downsampling, 32
dclab.isoelastics, 37
dclab.kde_methods, 40
dclab.parse_funcs, 26
dclab.polygon_filter, 41
dclab.statistics, 43

61

dclab Documentation, Release 0.7.0

62 Python Module Index

Index

A
add() (dclab.isoelastics.Isoelastics method), 37
add_px_err() (dclab.isoelastics.Isoelastics static method),

37
all (dclab.rtdc_dataset.filter.Filter attribute), 32
apply_filter() (dclab.rtdc_dataset.RTDCBase method), 27
available_methods (dclab.statistics.Statistics attribute), 43
avi() (dclab.rtdc_dataset.export.Export method), 30

B
BadMethodWarning, 43
bin_num_doane() (in module dclab.kde_methods), 40
bin_width_doane() (in module dclab.kde_methods), 40

C
check_col12() (dclab.isoelastics.Isoelastics static

method), 38
clear_all_filters() (dclab.polygon_filter.PolygonFilter

static method), 42
config (dclab.rtdc_dataset.RTDCBase attribute), 28
Configuration (class in dclab.rtdc_dataset.config), 30
convert() (dclab.isoelastics.Isoelastics static method), 38
copy() (dclab.polygon_filter.PolygonFilter method), 42
copy() (dclab.rtdc_dataset.config.Configuration method),

30
correct_crosstalk() (in module

dclab.features.fl_crosstalk), 34

D
dclab.dfn.CFG_ANALYSIS (built-in variable), 25
dclab.dfn.CFG_METADATA (built-in variable), 26
dclab.dfn.config_funcs (built-in variable), 26
dclab.dfn.config_keys (built-in variable), 26
dclab.dfn.config_types (built-in variable), 26
dclab.dfn.feature_labels (built-in variable), 26
dclab.dfn.feature_name2label (built-in variable), 26
dclab.dfn.feature_names (built-in variable), 26
dclab.dfn.FEATURES_NON_SCALAR (built-in vari-

able), 26

dclab.dfn.FEATURES_SCALAR (built-in variable), 26
dclab.dfn.scalar_feature_names (built-in variable), 26
dclab.downsampling (module), 32
dclab.isoelastics (module), 37
dclab.kde_methods (module), 40
dclab.parse_funcs (module), 26
dclab.polygon_filter (module), 41
dclab.statistics (module), 43
downsample_rand() (in module dclab.downsampling), 32

E
Export (class in dclab.rtdc_dataset.export), 30
export (dclab.rtdc_dataset.RTDCBase attribute), 28

F
fbool() (in module dclab.parse_funcs), 26
fcs() (dclab.rtdc_dataset.export.Export method), 31
features (dclab.rtdc_dataset.RTDCBase attribute), 28
Filter (class in dclab.rtdc_dataset.filter), 32
filter (dclab.rtdc_dataset.RTDCBase attribute), 28
filter() (dclab.polygon_filter.PolygonFilter method), 42
FilterIdExistsWarning, 41
fint() (in module dclab.parse_funcs), 26
fintlist() (in module dclab.parse_funcs), 26
flow_rate() (in module dclab.statistics), 43
format (dclab.rtdc_dataset.RTDCBase attribute), 28
func_types (in module dclab.parse_funcs), 26

G
get() (dclab.isoelastics.Isoelastics method), 38
get_bad_vals() (in module dclab.kde_methods), 40
get_bright() (in module dclab.features.bright), 33
get_compensation_matrix() (in module

dclab.features.fl_crosstalk), 35
get_contour() (in module dclab.features.contour), 33
get_data() (dclab.statistics.Statistics method), 43
get_default() (in module dclab.isoelastics), 39
get_downsampled_scatter()

(dclab.rtdc_dataset.RTDCBase method),
27

63

dclab Documentation, Release 0.7.0

get_emodulus() (in module dclab.features.emodulus), 33
get_feature() (dclab.statistics.Statistics method), 43
get_inert_ratio_cvx() (in module

dclab.features.inert_ratio), 35
get_inert_ratio_raw() (in module

dclab.features.inert_ratio), 36
get_instance_from_id() (dclab.polygon_filter.PolygonFilter

static method), 42
get_kde_contour() (dclab.rtdc_dataset.RTDCBase

method), 27
get_kde_scatter() (dclab.rtdc_dataset.RTDCBase

method), 27
get_polygon_filter_names() (in module

dclab.polygon_filter), 43
get_project_name_from_path() (in module

dclab.rtdc_dataset.fmt_tdms), 29
get_statistics() (in module dclab.statistics), 43
get_tdms_files() (in module

dclab.rtdc_dataset.fmt_tdms), 30
get_viscosity() (in module

dclab.features.emodulus_viscosity), 34
get_volume() (in module dclab.features.volume), 36
get_with_rtdcbase() (dclab.isoelastics.Isoelastics

method), 39

H
hash (dclab.rtdc_dataset.RTDCBase attribute), 28
hdf5() (dclab.rtdc_dataset.export.Export method), 31
hparent (dclab.rtdc_dataset.RTDC_Hierarchy attribute),

29

I
identifier (dclab.rtdc_dataset.RTDCBase attribute), 28
ignore_nan_inf() (in module dclab.kde_methods), 40
import_all() (dclab.polygon_filter.PolygonFilter static

method), 42
instace_exists() (dclab.polygon_filter.PolygonFilter static

method), 42
instances (dclab.polygon_filter.PolygonFilter attribute),

43
invalid (dclab.rtdc_dataset.filter.Filter attribute), 32
Isoelastics (class in dclab.isoelastics), 37
IsoelasticsDict (class in dclab.isoelastics), 39

K
kde_gauss() (in module dclab.kde_methods), 40
kde_histogram() (in module dclab.kde_methods), 40
kde_multivariate() (in module dclab.kde_methods), 41
kde_none() (in module dclab.kde_methods), 41
keys() (dclab.rtdc_dataset.config.Configuration method),

30

L
lcstr() (in module dclab.parse_funcs), 26

load_data() (dclab.isoelastics.Isoelastics method), 39
load_from_file() (in module dclab.rtdc_dataset.config),

30

M
manual (dclab.rtdc_dataset.filter.Filter attribute), 32
MIN_DCLAB_EXPORT_VERSION (in module

dclab.rtdc_dataset.fmt_hdf5), 29
mode() (in module dclab.statistics), 43

N
new_dataset() (in module dclab), 25
NoImageWarning, 30

P
parse_config() (dclab.rtdc_dataset.RTDC_HDF5 static

method), 29
path (dclab.rtdc_dataset.RTDC_HDF5 attribute), 29
path (dclab.rtdc_dataset.RTDC_TDMS attribute), 29
point_in_poly() (dclab.polygon_filter.PolygonFilter static

method), 42
polygon (dclab.rtdc_dataset.filter.Filter attribute), 32
polygon_filter_add() (dclab.rtdc_dataset.RTDCBase

method), 28
polygon_filter_rm() (dclab.rtdc_dataset.RTDCBase

method), 28
PolygonFilter (class in dclab.polygon_filter), 41
PolygonFilterError, 41

R
remove() (dclab.polygon_filter.PolygonFilter static

method), 42
RTDC_Dict (class in dclab.rtdc_dataset), 28
rtdc_ds (dclab.rtdc_dataset.filter.Filter attribute), 32
RTDC_HDF5 (class in dclab.rtdc_dataset), 28
RTDC_Hierarchy (class in dclab.rtdc_dataset), 29
RTDC_TDMS (class in dclab.rtdc_dataset), 29
RTDCBase (class in dclab.rtdc_dataset), 26

S
save() (dclab.polygon_filter.PolygonFilter method), 42
save() (dclab.rtdc_dataset.config.Configuration method),

30
save_all() (dclab.polygon_filter.PolygonFilter static

method), 43
Statistics (class in dclab.statistics), 43

T
title (dclab.rtdc_dataset.RTDCBase attribute), 28
tsv() (dclab.rtdc_dataset.export.Export method), 31

U
update() (dclab.rtdc_dataset.config.Configuration

method), 30

64 Index

dclab Documentation, Release 0.7.0

update() (dclab.rtdc_dataset.filter.Filter method), 32

Index 65

	Getting started
	Command line interface
	Examples
	Advanced Usage
	Code reference
	Changelog
	Bilbliography
	Imprint/Impressum
	Indices and tables
	Bibliography
	Python Module Index

