DBoilerplate Documentation
Release 3.0

Havas Digital Team

September 30, 2016

Contents

1 Requirements 3
2 Backend 5
2.1 Howtoinstall e e 5
2.2 SEttingS . . . v o e e e e e e 5
2.3 Requirement filles L e e e e e e e e e e e 6
24 CreatiNZ apps « « v v v v v o e 7
2.5 Abstractmodels L e e e e e e e 7
2.6 LoggIng. e e e e e e e 7
2.7 SHEMAPS .« o e e e e e e e e e e e e e e e 8
3 Frontend 9
3.1 Howtoinstall e 9
32 Settings e e e 9
3.3 HoWtoWOrkK o o e e e e e e e e e e e e e e 9
4 Indices and tables 11

DBoilerplate Documentation, Release 3.0

Welcome to the dboilerplate3 documentation. dboilerplate is a django project template that contains the most com-
monly used tools and configurations that we use at Havas Worldwide London.

You can request us to add new features or change stuff around, if it’s a good idea we’ll do it!. This boilerplate has tons
of tiny changes to help us so please pay attention when you read!.

Contents

DBoilerplate Documentation, Release 3.0

2 Contents

CHAPTER 1

Requirements

This project requires Django 1.7 and Python 3.3 or higher to run. If you’re looking for support for django 1.6 or less
and python 2.7 please take a look to the original dboilerplate project in here

This documentation should be fairly valid fot both versions of the boilderplate.

https://github.com/clione/dboilerplate

DBoilerplate Documentation, Release 3.0

4 Chapter 1. Requirements

CHAPTER 2

Backend

2.1 How to install

Installing the boilerplate is easy, there’s two possible ways to do it.

2.1.1 Clone the repository

You can clone the boilerplate repository to your machine, and use it from your machine, that will guarantee you that
you always have access to the boilerplate even if you don’t have internet connection.

* Clone the repository

’ $ git clone https://github.com/clione/dboilerplate3.git ‘

 After cloning the repository to your machine you can start you project (we assume you already installed django
either globally or in your virtual environment)

’ $ django-admin startproject --template=/path/to/the/template <your_project_name>

2.1.2 Grab it from GitHub

Downloading the boilerplate from GitHub guarantees you that you always have the latest version, and you can do the
installation automatically when you create the project.

’$ django—admin startproject ——template:https://github.com/clione/dboilerplate3/archive/*aster.zip myfy

2.2 Settings

dboilerplate contains a multienvironment set of settings. Each settings file will load depending on the environment
flags.

The settings files are located in src/<project name>/settings and there should be five different files:
e __init__.py
¢ defaults.py
¢ development.example

e production.py

DBoilerplate Documentation, Release 3.0

* staging.py

221 _init__

The init file contains the main login to select the environment settings files.

It contains two variables, called DEBUG and STAGING, and the settings work like this:

Variables | Value | Load settings
DEBUG True
STAGING | False
DEBUG True .
STAGING | True | Staeinepy
DEBUG False
STAGING | False
DEBUG False
STAGING | True

development.py

production.py

production.py

The variables can be set up in the __init__.py file itself, or you can set the environment variables DJANGO_IS_DEBUG
and DJANGO_IS_STAGING if you’re using a user-based deployment.

To add the environment variables to you environment and assuming you’re using bash, just open your .bashrc file and
add:

export DJANGO_IS_DEBUG="True"
export DJANGO_IS_STAGING="True"

Replace the “True” values with the values that you want.

2.2.2 defaults.py

The defaults.py file contains the core of any project, it sets up the main settings for the application, applications to be
loaded, middlewares, etc.

There is nothing special to say in this file, but you will find here the settings for allauth as well as the logging and other
minor global settings.

2.2.3 development, production and staging

These files contain the enviroment specific settings for each one. That includes the database connections, language
settings, django toolbar, email, caching, fixtures, secret_key, allowed hosts, etc.

All of them are prepopulated with dummy data so you know what to modify. You can add as well any other settings
that you need for your environment or rewrite the ones loaded already in defaults.

2.2.4 development

By default we packa a development.example settings file. This is done on purpose, so the project will fail to run until
you set up the development settings and rename the file to development.py.

2.3 Requirement files

There is a multienvironment requirements file located inside the /requirements folder.

6 Chapter 2. Backend

DBoilerplate Documentation, Release 3.0

2.3.1 Populating the requirements

To populate the requirements basically open the file related to the environment that need the package and add it there.
Usually the commons.txt is used for dependencies that are required across all environments like django itself, or core
libraries that the project might use.

2.3.2 Installing requirements

The installation of the requirements is done the same way as with a standard requirements file, but this time, calling
the environment file.

An example of how to install the development requirements would be:

‘$ pip install -r requirements/dev.txt

2.4 Creating apps

By default django contains a startapp command, but in dboilerplate we created an application generator. This comes
in handy to save the first 15 minutes of development of the application. It will ask you for some values and create the
the application skeleton and the code inside it for you.

2.4.1 How to use it

To create application using the generator you just have to run the management command from /src

’$./manage.py addapp

It will ask you the values and create all for you.

2.5 Abstract models

To be written

2.6 Logging

We improved a bit the logging mechanism of django to made our lifes easier.

Apart from the standard django mailer logging we added file logging that will spit out a django.log file inside the
project folder (that is: /src/projectname/django.log)

It will create a rotating file, so you will have available all the logs that you need. This logger also logs absolutely
everything that happens in your code so it can be properly debugged.

2.6.1 Configuring the logger

By default the loger keeps three 2MB files in your installation, you can change that in teh default.py settings file at the
end of it. The parameters are:

* maxBytes

2.4. Creating apps 7

DBoilerplate Documentation, Release 3.0

* backupCount

The first value is the amount of MB that a file can reach, in bytes. The second is the number of files to keep, by default
is three, and it should be enough, but maybe you need more for your project.

2.6.2 How to log to the logfile

Instead of doing prints here and there you can now log to the file doing the following:

Add this to the file where you want to log:

import logging

logger = logging.getlLogger (__name_)

Then to log something you can use the standard python log levels (DEBUG, INFO, ERROR, etc.)

logger.error ("This is a error message")
logger.debug ("This is a debug message™)
logger.info ("Seems that something happened")

2.7 Sitemaps

8 Chapter 2. Backend

CHAPTER 3

Frontend

3.1 How to install
3.2 Settings

3.3 How to work

DBoilerplate Documentation, Release 3.0

10 Chapter 3. Frontend

CHAPTER 4

Indices and tables

¢ genindex
* modindex

e search

11

	Requirements
	Backend
	How to install
	Settings
	Requirement files
	Creating apps
	Abstract models
	Logging
	Sitemaps

	Frontend
	How to install
	Settings
	How to work

	Indices and tables

