

 Navigation

 	
 index

 	DAWG 0.6 documentation

DAWG documentation

This package provides DAWG(DAFSA [https://en.wikipedia.org/wiki/Deterministic_acyclic_finite_state_automaton])-based dictionary-like
read-only objects for Python (2.x and 3.x).

String data in a DAWG may take 200x less memory than in
a standard Python dict and the raw lookup speed is comparable;
it also provides fast advanced methods like prefix search.

Based on dawgdic [https://code.google.com/p/dawgdic/] C++ library.

License

Wrapper code is licensed under MIT License.
Bundled dawgdic [https://code.google.com/p/dawgdic/] C++ library is licensed under BSD license.
Bundled libb64 [http://libb64.sourceforge.net/] is Public Domain.

Installation

From PyPI [https://pypi.python.org/pypi/DAWG]:

pip install DAWG

Usage

There are several DAWG classes in this package:

	dawg.DAWG - basic DAWG wrapper; it can store unicode keys
and do exact lookups;

	dawg.CompletionDAWG - dawg.DAWG subclass that supports
key completion and prefix lookups (but requires more memory);

	dawg.BytesDAWG - dawg.CompletionDAWG subclass that
maps unicode keys to lists of bytes objects.

	dawg.RecordDAWG - dawg.BytesDAWG subclass that
maps unicode keys to lists of data tuples.
All tuples must be of the same format (the data is packed
using python struct module).

	dawg.IntDAWG - dawg.DAWG subclass that maps unicode keys
to integer values.

	dawg.IntCompletionDAWG - dawg.CompletionDAWG subclass
that maps unicode keys to integer values.

DAWG and CompletionDAWG

DAWG and CompletionDAWG are useful when you need
fast & memory efficient simple string storage. These classes
does not support assigning values to keys.

DAWG and CompletionDAWG constructors accept an iterable with keys:

>>> import dawg
>>> words = [u'foo', u'bar', u'foobar', u'foö', u'bör']
>>> base_dawg = dawg.DAWG(words)
>>> completion_dawg = dawg.CompletionDAWG(words)

It is then possible to check if the key is in a DAWG:

>>> u'foo' in base_dawg
True
>>> u'baz' in completion_dawg
False

It is possible to find all keys that starts with a given
prefix in a CompletionDAWG:

>>> completion_dawg.keys(u'foo')
>>> [u'foo', u'foobar']

to test whether some key begins with a given prefix:

>>> completion_dawg.has_keys_with_prefix(u'foo')
>>> True

and to find all prefixes of a given key:

>>> base_dawg.prefixes(u'foobarz')
[u'foo', u'foobar']

Iterator versions are also available:

>>> for key in completion_dawg.iterkeys(u'foo'):
... print(key)
foo
foobar
>>> for prefix in base_dawg.iterprefixes(u'foobarz'):
... print(prefix)
foo
foobar

It is possible to find all keys similar to a given key (using a one-way
char translation table):

>>> replaces = dawg.DAWG.compile_replaces({u'o': u'ö'})
>>> base_dawg.similar_keys(u'foo', replaces)
[u'foo', u'foö']
>>> base_dawg.similar_keys(u'foö', replaces)
[u'foö']
>>> base_dawg.similar_keys(u'bor', replaces)
[u'bör']

BytesDAWG

BytesDAWG is a CompletionDAWG subclass that can store
binary data for each key.

BytesDAWG constructor accepts an iterable with
(unicode_key, bytes_value) tuples:

>>> data = [(u'key1', b'value1'), (u'key2', b'value2'), (u'key1', b'value3')]
>>> bytes_dawg = dawg.BytesDAWG(data)

There can be duplicate keys; all unique values are stored in this case:

>>> bytes_dawg[u'key1']
[b'value1, b'value3']

For unique keys a list with a single value is returned for consistency:

>>> bytes_dawg[u'key2']
[b'value2']

KeyError is raised for missing keys; use get method if you need
a default value instead:

>>> bytes_dawg.get(u'foo', None)
None

BytesDAWG support keys, items, iterkeys and iteritems
methods (they all accept optional key prefix). There is also support for
similar_keys, similar_items and similar_item_values methods.

RecordDAWG

RecordDAWG is a BytesDAWG subclass that automatically
packs & unpacks the binary data from/to Python objects
using struct module from the standard library.

First, you have to define a format of the data. Consult Python docs
(http://docs.python.org/library/struct.html#format-strings) for the format
string specification.

For example, let’s store 3 short unsigned numbers (in a Big-Endian byte order)
as values:

>>> format = ">HHH"

RecordDAWG constructor accepts an iterable with
(unicode_key, value_tuple). Let’s create such iterable
using zip function:

>>> keys = [u'foo', u'bar', u'foobar', u'foo']
>>> values = [(1, 2, 3), (2, 1, 0), (3, 3, 3), (2, 1, 5)]
>>> data = zip(keys, values)
>>> record_dawg = RecordDAWG(format, data)

As with BytesDAWG, there can be several values for the same key:

>>> record_dawg['foo']
[(1, 2, 3), (2, 1, 5)]
>>> record_dawg['foobar']
[(3, 3, 3)]

BytesDAWG and RecordDAWG implementation details

BytesDAWG and RecordDAWG stores data at the end of the keys:

<utf8-encoded key><separator><base64-encoded data>

Data is encoded to base64 because dawgdic [https://code.google.com/p/dawgdic/] C++ library doesn’t allow
zero bytes in keys (it uses null-terminated strings) and such keys are
very likely in binary data.

In DAWG versions prior to 0.5 <separator> was chr(255) byte.
It was chosen because keys are stored as UTF8-encoded strings and
chr(255) is guaranteed not to appear in valid UTF8, so the end of
text part of the key is not ambiguous.

But chr(255) was proven to be problematic: it changes the order
of the keys. Keys are naturally returned in lexicographical order by DAWG.
But if chr(255) appears at the end of each text part of a key then the
visible order would change. Imagine 'foo' key with some payload
and 'foobar' key with some payload. 'foo' key would be greater
than 'foobar' key: values compared would be 'foo<sep>' and 'foobar<sep>'
and ord(<sep>)==255 is greater than ord(<any other character>).

So now the default <separator> is chr(1). This is the lowest allowed
character and so it preserves the alphabetical order.

It is not strictly correct to use chr(1) as a separator because chr(1)
is a valid UTF8 character. But I think in practice this won’t be an issue:
such control character is very unlikely in text keys, and binary keys
are not supported anyway because dawgdic [https://code.google.com/p/dawgdic/] doesn’t support keys containing
chr(0).

If you can’t guarantee chr(1) is not a part of keys, lexicographical order
is not important to you or there is a need to read
a BytesDAWG/RecordDAWG created by DAWG < 0.5 then pass
payload_separator argument to the constructor:

>>> BytesDAWG(payload_separator=b'\xff').load('old.dawg')

The storage scheme has one more implication: values of BytesDAWG
and RecordDAWG are also sorted lexicographically.

For RecordDAWG there is a gotcha: in order to have meaningful
ordering of numeric values store them in big-endian format:

>>> data = [('foo', (3, 2, 256)), ('foo', (3, 2, 1)), ('foo', (3, 2, 3))]
>>> d = RecordDAWG("3H", data)
>>> d.items()
[(u'foo', (3, 2, 256)), (u'foo', (3, 2, 1)), (u'foo', (3, 2, 3))]

>>> d2 = RecordDAWG(">3H", data)
>>> d2.items()
[(u'foo', (3, 2, 1)), (u'foo', (3, 2, 3)), (u'foo', (3, 2, 256))]

IntDAWG and IntCompletionDAWG

IntDAWG is a {unicode -> int} mapping. It is possible to
use RecordDAWG for this, but IntDAWG is natively
supported by dawgdic [https://code.google.com/p/dawgdic/] C++ library and so __getitem__ is much faster.

Unlike BytesDAWG and RecordDAWG, IntDAWG doesn’t support
having several values for the same key.

IntDAWG constructor accepts an iterable with (unicode_key, integer_value)
tuples:

>>> data = [(u'foo', 1), (u'bar', 2)]
>>> int_dawg = dawg.IntDAWG(data)

It is then possible to get a value from the IntDAWG:

>>> int_dawg[u'foo']
1

IntCompletionDAWG supports all IntDAWG and CompletionDAWG methods,
plus .items() and .iteritems().

Persistence

All DAWGs support saving/loading and pickling/unpickling.

Write DAWG to a stream:

>>> with open('words.dawg', 'wb') as f:
... d.write(f)

Save DAWG to a file:

>>> d.save('words.dawg')

Load DAWG from a file:

>>> d = dawg.DAWG()
>>> d.load('words.dawg')

Warning

Reading DAWGs from streams and unpickling are currently using 3x memory
compared to loading DAWGs using load method; please avoid them until
the issue is fixed.

Read DAWG from a stream:

>>> d = dawg.RecordDAWG(format_string)
>>> with open('words.record-dawg', 'rb') as f:
... d.read(f)

DAWG objects are picklable:

>>> import pickle
>>> data = pickle.dumps(d)
>>> d2 = pickle.loads(data)

Benchmarks

For a list of 3000000 (3 million) Russian words memory consumption
with different data structures (under Python 2.7):

	dict(unicode words -> word lenghts): about 600M

	list(unicode words) : about 300M

	marisa_trie.RecordTrie : 11M

	marisa_trie.Trie: 7M

	dawg.DAWG: 2M

	dawg.CompletionDAWG: 3M

	dawg.IntDAWG: 2.7M

	dawg.RecordDAWG: 4M

Note

Lengths of words were not stored as values in dawg.DAWG,
dawg.CompletionDAWG and marisa_trie.Trie because they don’t
support this.

Note

marisa-trie [https://github.com/kmike/marisa-trie] is often more more memory efficient than
DAWG (depending on data); it can also handle larger datasets
and provides memory-mapped IO, so don’t dismiss marisa-trie [https://github.com/kmike/marisa-trie]
based on this README file. It is still several times slower than
DAWG though.

Benchmark results (100k unicode words, integer values (lenghts of the words),
Python 3.3, macbook air i5 1.8 Ghz):

dict __getitem__ (hits) 7.300M ops/sec
DAWG __getitem__ (hits) not supported
BytesDAWG __getitem__ (hits) 1.230M ops/sec
RecordDAWG __getitem__ (hits) 0.792M ops/sec
IntDAWG __getitem__ (hits) 4.217M ops/sec
dict get() (hits) 3.775M ops/sec
DAWG get() (hits) not supported
BytesDAWG get() (hits) 1.027M ops/sec
RecordDAWG get() (hits) 0.733M ops/sec
IntDAWG get() (hits) 3.162M ops/sec
dict get() (misses) 4.533M ops/sec
DAWG get() (misses) not supported
BytesDAWG get() (misses) 3.545M ops/sec
RecordDAWG get() (misses) 3.485M ops/sec
IntDAWG get() (misses) 3.928M ops/sec

dict __contains__ (hits) 7.090M ops/sec
DAWG __contains__ (hits) 4.685M ops/sec
BytesDAWG __contains__ (hits) 3.885M ops/sec
RecordDAWG __contains__ (hits) 3.898M ops/sec
IntDAWG __contains__ (hits) 4.612M ops/sec

dict __contains__ (misses) 5.617M ops/sec
DAWG __contains__ (misses) 6.204M ops/sec
BytesDAWG __contains__ (misses) 6.026M ops/sec
RecordDAWG __contains__ (misses) 6.007M ops/sec
IntDAWG __contains__ (misses) 6.180M ops/sec

DAWG.similar_keys (no replaces) 0.492M ops/sec
DAWG.similar_keys (l33t) 0.413M ops/sec

dict items() 55.032 ops/sec
DAWG items() not supported
BytesDAWG items() 14.826 ops/sec
RecordDAWG items() 9.436 ops/sec
IntDAWG items() not supported

dict keys() 200.788 ops/sec
DAWG keys() not supported
BytesDAWG keys() 20.657 ops/sec
RecordDAWG keys() 20.873 ops/sec
IntDAWG keys() not supported

DAWG.prefixes (hits) 1.552M ops/sec
DAWG.prefixes (mixed) 4.342M ops/sec
DAWG.prefixes (misses) 4.094M ops/sec
DAWG.iterprefixes (hits) 0.391M ops/sec
DAWG.iterprefixes (mixed) 0.476M ops/sec
DAWG.iterprefixes (misses) 0.498M ops/sec

RecordDAWG.keys(prefix="xxx"), avg_len(res)==415 5.562K ops/sec
RecordDAWG.keys(prefix="xxxxx"), avg_len(res)==17 104.011K ops/sec
RecordDAWG.keys(prefix="xxxxxxxx"), avg_len(res)==3 318.129K ops/sec
RecordDAWG.keys(prefix="xxxxx..xx"), avg_len(res)==1.4 462.238K ops/sec
RecordDAWG.keys(prefix="xxx"), NON_EXISTING 4292.625K ops/sec

Please take this benchmark results with a grain of salt; this
is a very simple benchmark on a single data set.

Current limitations

	IntDAWG is currently a subclass of DAWG and so it doesn’t
support keys() and items() methods;

	read() method reads the whole stream (DAWG must be the last or the
only item in a stream if it is read with read() method) - pickling
doesn’t have this limitation;

	DAWGs loaded with read() and unpickled DAWGs uses 3x-4x memory
compared to DAWGs loaded with load() method;

	there are keys() and items() methods but no values() method;

	iterator versions of methods are not always implemented;

	BytesDAWG and RecordDAWG has a limitation: values
larger than 8KB are unsupported;

	the maximum number of DAWG units is limited: number of DAWG units
(and thus transitions - but not elements) should be less than 2^29;
this mean that it may be impossible to build an especially huge DAWG
(you may split your data into several DAWGs or try marisa-trie [https://github.com/kmike/marisa-trie] in
this case).

Contributions are welcome!

Contributing

Development happens at github: https://github.com/kmike/DAWG

Issue tracker: https://github.com/kmike/DAWG/issues

Feel free to submit ideas, bugs or pull requests.

If you found a bug in a C++ part please report it to the original
bug tracker [https://code.google.com/p/dawgdic/issues/list].

How is source code organized

There are 4 folders in repository:

	bench - benchmarks & benchmark data;

	lib - original unmodified dawgdic [https://code.google.com/p/dawgdic/] C++ library and
a customized version of libb64 [http://libb64.sourceforge.net/] library. They are bundled
for easier distribution; if something is have to be fixed in these
libraries consider fixing it in the original repositories;

	src - wrapper code; src/dawg.pyx is a wrapper implementation;
src/*.pxd files are Cython headers for corresponding C++ headers;
src/*.cpp files are the pre-built extension code and shouldn’t be
modified directly (they should be updated via update_cpp.sh script).

	tests - the test suite.

Running tests and benchmarks

Make sure tox [http://tox.testrun.org] is installed and run

$ tox

from the source checkout. Tests should pass under python 2.6, 2.7, 3.2, 3.3
and 3.4.

In order to run benchmarks, type

$ tox -c bench.ini

Authors & Contributors

	Mikhail Korobov <kmike84@gmail.com>;

	Dan Blanchard;

	Jakub Wilk;

	Alex Moiseenko;

	Matt Hickford [https://github.com/matt-hickford];

	Ikuya Yamada [https://github.com/ikuyamada].

This module uses dawgdic [https://code.google.com/p/dawgdic/] C++ library by
Susumu Yata & contributors.

base64 decoder is a modified version of libb64 [http://libb64.sourceforge.net/] (original author
is Chris Venter).

Changes

0.7.8 (2015-04-18)

	extra type annotations are added to make the code a bit faster;

	mercurial mirror at bitbucket is dropped;

	wrapper is rebuilt with Cython 0.22.

0.7.7 (2014-11-19)

	DAWG.b_prefixes method for avoiding utf8 encoding/decoding
(thanks Ikuya Yamada);

	wrapper is rebuilt with Cython 0.21.1.

0.7.6 (2014-08-10)

	Wrapper is rebuilt with Cython 0.20.2 to fix some issues.

0.7.5 (2014-06-05)

	Switched to setuptools;

	some wheels are uploaded to pypi.

0.7.4 (2014-05-29)

	Fixed a bug in DAWG building: input should be sorted according to its
binary representation.

0.7.3 (2014-05-29)

	Wrapper is rebuilt with Cython 0.21dev;

	Python 3.4 compatibility is verified.

0.7.2 (2013-10-03)

	has_keys_with_prefix(prefix) method (thanks
Matt Hickford [https://github.com/matt-hickford])

0.7.1 (2013-05-25)

	Extension is rebuilt with Cython 0.19.1;

	fixed segfault that happened on lookup from incorrectly loaded DAWG
(thanks Alex Moiseenko).

0.7 (2013-04-05)

	IntCompletionDAWG

0.6.1 (2013-03-23)

	Installation issues in environments with LC_ALL=C are fixed;

	PyPy is officially unsupported now (use DAWG-Python [https://github.com/kmike/DAWG-Python] with PyPy).

0.6 (2013-03-22)

	many thread-safety bugs are fixed (at the cost of slowing library down).

0.5.5 (2013-02-19)

	fix installation under PyPy (note: DAWG is slow under PyPy
and may have bugs).

0.5.4 (2013-02-14)

	small tweaks for docstrings;

	the extension is rebuilt using Cython 0.18.

0.5.3 (2013-01-03)

	small improvements to .compile_replaces method;

	benchmarks for .similar_items method;

	the extension is rebuilt with Cython pre-0.18; this made
.prefixes and .iterprefixes methods faster
(up to 6x in some cases).

0.5.2 (2013-01-02)

	tests are included in source distribution;

	benchmark results in README was nonrepresentative because of my
broken (slow) Python 3.2 install;

	installation is fixed under Python 3.x with LC_ALL=C (thanks
Jakub Wilk).

0.5.1 (2012-10-11)

	better error reporting while building DAWGs;

	__contains__ is fixed for keys with zero bytes;

	dawg.Error exception class;

	building of BytesDAWG and RecordDAWG fails instead of
producing incorrect results if some of the keys has unsupported characters.

0.5 (2012-10-08)

The storage scheme of BytesDAWG and RecordDAWG is changed in
this release in order to provide the alphabetical ordering of items.

This is a backwards-incompatible release. In order to read BytesDAWG or
RecordDAWG created with previous versions of DAWG use payload_separator
constructor argument:

>>> BytesDAWG(payload_separator=b'\xff').load('old.dawg')

0.4.1 (2012-10-01)

	Segfaults with empty DAWGs are fixed by updating dawgdic to latest svn.

0.4 (2012-09-26)

	iterkeys, iteritems and iterprefixes methods
(thanks Dan Blanchard).

0.3.2 (2012-09-24)

	prefixes method for finding all prefixes of a given key.

0.3.1 (2012-09-20)

	bundled dawgdic C++ library is updated to the latest version.

0.3 (2012-09-13)

	similar_keys, similar_items and similar_item_values methods
for more permissive lookups (they may be useful e.g. for umlaut handling);

	load method returns self;

	Python 3.3 support.

0.2 (2012-09-08)

Greatly improved memory usage for DAWGs loaded with load method.

There is currently a bug somewhere in a wrapper so DAWGs loaded with
read() method or unpickled DAWGs uses 3x-4x memory compared to DAWGs
loaded with load() method. load() is fixed in this release but
other methods are not.

0.1 (2012-09-08)

Initial release.

 Copyright 2015, Mikhail Korobov.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	DAWG 0.6 documentation

Index

 Copyright 2015, Mikhail Korobov.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		DAWG 0.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Mikhail Korobov.
 Created using Sphinx 1.3.5.

_static/up.png

_static/file.png

_static/down-pressed.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

