Datmo Documentation
Release 0.0.7-dev

Anand Sampat

May 22, 2018

Contents

1 Why we built this

2 Table of contents

2.1 Command Line Utility
21,1 commands.,
2.1.2 Sub-commands:
22 PythonSDK

2.2.1 datmo.snapshot module

2.2.2 datmo.taskmodule
2.2.3 datmo.configmodule
23 Examples
23.1 Usingthe Examples
232 Examples oL

3 Indices and tables

Python Module Index

..................... 5

..................... 16

Datmo Documentation, Release 0.0.7-dev

Datmo is an open source model tracking tool for developers

Contents 1

Datmo Documentation, Release 0.0.7-dev

2 Contents

CHAPTER 1

Why we built this

As data scientists, machine learning engineers, and deep learning engineers, we faced a number of issues keeping track
of our work and maintaining versions that could be put into production quicker.

In order to solve this challenge, we found there are a few components that are critical to ensuring this is the case.

1. Source code should be managed with current source control management tools (of which git is the most popular
currently)

2. Dependencies should be encoded in one place for your source code (e.g. requirements.txt in python and pre-built
containers)

3. Large files that cannot be stored in source code like weights files, data files, etc should be stored separately
4. Configurations and hyperparameters that define your experiments (e.g. data split, alpha, beta, etc)
5. Performance metrics that evaluate your model (e.g. validation accuracy)

We’ve encapsulated these concepts in an object called a snapshot. A snapshot is a combination of all 5 of the above
components and is the way that Datmo versions models for reproducibility and deployability. Our open source tool
is an interface for developers to transform their current model projects into trackable models that can be used for
transportability throughout the model building process.

We have used this internally to speed up our own iteration processes and are excited to share it with the community to
continue improving. If you’re interested in contributing check out the guidelines.

https://github.com/datmo/datmo/blob/master/CONTRIBUTING.md

Datmo Documentation, Release 0.0.7-dev

4 Chapter 1. Why we built this

CHAPTER 2

Table of contents

2.1 Command Line Utility

The command line utility for datmo is to be used in tandem with the SDK and will typically be your first contact with
the datmo system. If using Python, see Python SDK.

If you are working within a repository already, you will want to run the datmo init within your repository in order
to create your datmo project.

From there, you can create snapshots or run tasks using either the SDK or the CLI. At any given point you can find
out more about all of your snapshots using the datmo snapshot 1s command and see the status of any of your
tasks with the datmo task 1s command.

Sessions are a way for you to group together tasks and snapshots, but are completely optional. For example, if you
want to run a set of hyperparameter experiments modifying some subset of hyperparameters you might want to do
them in a designated session. Then you might try another set of hyperparameter sweeps which you would like to
group into another session. By default, you will always be in the “default” session unless otherwise specified.

You can delve through more of the commands and each of their parameters below to learn more about each entity and
how you can create different versions of them. You can also look through the Getting Started section in the README.

usage: datmo [-h] {init,version, status,cleanup, session, snapshot,task}

2.1.1 commands

command Possible choices: init, version, status, cleanup, session, snapshot, task

2.1.2 Sub-commands:

init

initialize project

https://github.com/datmo/datmo#getting-started

Datmo Documentation, Release 0.0.7-dev

datmo init [-h] [-—name NAME] [--description DESCRIPTION]

Named Arguments

--name

--description

version

datmo version

datmo version [-h]

status

project status

datmo status [—h]

cleanup

remove project

datmo cleanup [-h]

session

session module

datmo session [-h] {create,delete,ls,select}
subcommands
subcommand Possible choices: create, delete, 1s, select

Sub-commands:

create

create session

datmo session create [~-h] [-—name NAME] [--current]

6 Chapter 2. Table of contents

Datmo Documentation, Release 0.0.7-dev

Named Arguments

--name, -m session name
Default: *”
--current boolean if you want to switch to this session

Default: True

delete

delete a session by id

datmo session delete [-h] [-—name NAME]

Named Arguments

--name name of session to delete

Is

list sessions

datmo session 1ls [-h]

select

select a session

datmo session select [~-h] [~-—name NAME]

Named Arguments

--name name of session to select

shapshot

Datmo snapshots allow you to save the state of your model and experiments by keeping track of your source code,

environment, configuration, metrics and large files.

datmo snapshot [-h] {create,delete,ls,checkout,diff, inspect}
subcommands
subcommand Possible choices: create, delete, 1s, checkout, diff, inspect

2.1. Command Line Utility

Datmo Documentation, Release 0.0.7-dev

Sub-commands:

create

Run snapshot create any time you want to save the results of your experiments. You can then view all snapshots with

the snapshot Is command.

datmo snapshot create

[-h] [-—message MESSAGE] [-—-label LABEL]
[-—session-id SESSION_ID] [--task—-id TASK_ID]
[-—code—-i1d CODE_ID] [-—commit—-1d COMMIT_1ID]
[-—environment—-id ENVIRONMENT_ID]
[-—environment-def ENVIRONMENT_DEFINITION_FILEPATH]
[-—file-collection—-id FILE_COLLECTION_ID]
[-—filepaths FILEPATHS]

[-—config-filename CONFIG_FILENAME]
[-—config-filepath CONFIG_FILEPATH]
[--stats—-filename STATS_FILENAME]
[-—stats-filepath STATS_FILEPATH]

Named Arguments

--message, -m
--label, -1
--session-id
--task-id

--code-id
--commit-id
--environment-id
--environment-def
--file-collection-id
--filepaths
--config-filename
--config-filepath
--stats-filename

--stats-filepath

delete

delete a snapshot by id

message to describe snapshot

label snapshots with a category (e.g. best)

user given session id

specify task id to pull information from

code id from code object

commit id from source control

environment id from environment object

absolute filepath to environment definition file (e.g. /path/to/Dockerfile)
file collection id for file collection object

absolute paths to files or folders to include within the files of the snapshot
filename to use to search for configuration JSON

absolute filepath to use to search for configuration JSON

filename to use to search for metrics JSON

absolute filepath to use to search for metrics JSON

datmo snapshot delete

[-h] [--id ID]

Chapter 2. Table of contents

Datmo Documentation, Release 0.0.7-dev

Named Arguments

--id snapshot id to delete

Is

list snapshots

datmo snapshot 1ls [-h] [-—-session-id SESSION_ID] [-—-all]

Named Arguments

--session-id session id to filter
--all, -a show detailed snapshot information

Default: False

checkout

checkout a snapshot by id

datmo snapshot checkout [-h] id

Positional Arguments

id snapshot id

diff

view diff between 2 snapshots

datmo snapshot diff [-h] id_1 id_2

Positional Arguments

id_1 snapshot id 1
id 2 snapshot id 2
inspect

inspect a snapshot by id

datmo snapshot inspect [-h] id

2.1. Command Line Utility 9

Datmo Documentation, Release 0.0.7-dev

Positional Arguments

id snapshot id

task

task module

datmo task [-h] {run,ls,stop}

subcommands

subcommand Possible choices: run, Is, stop

Sub-commands:

run

run task

datmo task run [-h] [-—-gpu] [-—-ports PORTS]
[-—environment-def ENVIRONMENT_ DEFINITION_FILEPATH]
[-—interactive]
[cmd]

Positional Arguments

cmd command to run within environment

Named Arguments

--gpu boolean if you want to run using GPUs
Default: False

--ports, -p network port mapping during task (e.g. 8888:8888). Left is the host
machine port and right is the environment port available during a run.

--environment-def absolute filepath to environment definition file (e.g. /path/to/Dockerfile)
--interactive run the environment in interactive mode (keeps STDIN open)

Default: False

Is

list tasks

datmo task 1ls [-h] [-—session—-1d [SESSION_ID]]

10 Chapter 2. Table of contents

Datmo Documentation, Release 0.0.7-dev

Named Arguments

--session-id pass in the session id to list the tasks in that session
stop
stop tasks
datmo task stop [~-h] [-—-id ID] [--all]

Named Arguments

--id task id to stop
--all, -a stop all datmo tasks

Default: False

2.2 Python SDK

Datmo’s Python SDK is a way to create datmo snapshots and run tasks directly within your code. Although the SDK
is not necessary for using datmo, it helps simplify the process of integrating your current code with current Python
projects. If you aren’t using Python, see Command Line Utility.

2.2.1 datmo.snapshot module

class datmo.snapshot.Snapshot (snapshot_entity, home=None)
Snapshot is an entity object to enable user access to properties

Parameters

* snapshot_entity (datmo.core.entity.snapshot.Snapshot) — core snap-
shot entity to reference

* home (str, optional)-—rootdirectory of the project (default is CWD, if not provided)
id
str — the id of the entity

model_ id
str — the parent model id for the entity

session_id

str —id of session associated with task
id

str — the id of the entity

model_id
str — the parent model id for the entity

session_id
str — session id within which snapshot is created

2.2. Python SDK 11

Datmo Documentation, Release 0.0.7-dev

message
str — long description of snapshot

code_id
str — code reference associated with the snapshot

environment_ id
str — id for environment used to create snapshot

file collection_id
str — file collection associated with the snapshot

config
dict — key, value pairs of configurations

stats
dict — key, value pairs of metrics and statistics

task_id
str — task id associated with snapshot

label
str — short description of snapshot

created_at
datetime.datetime

Raises InvalidArgumentType

files

get_files (mode="r’)
Returns a list of file objects for the snapshot
Parameters mode (str) — file object mode (default is “r”” which signifies read mode)
Returns list of file objects associated with the snapshot
Return type list

datmo.snapshot.create (message, label=None, home=None, task_id=None, commit_id=None, envi-

ronment_id=None, filepaths=None, config=None, stats=None)
Create a snapshot within a project

The project must be created before this is implemented. You can do that by using the following command:

$ datmo init

Parameters
* message (str)— adescription of the snapshot for later reference

* label(str, optional)-ashortdescription of the snapshot for later reference (default
is None, which means a blank label is stored)

* home (str, optional)-—absolute home path of the project (default is None, which will
use the CWD as the project path)

* task_id(str, optional)-task objectid to use to create snapshot if task id is passed
then subsequent parameters would be ignored. when using task id, it will overwrite the
following inputs

commit_id: taken form the source code after the task is run

12 Chapter 2. Table of contents

Datmo Documentation, Release 0.0.7-dev

environment_id: used to run the task,
filepaths: this is the set of all files saved during the task

config: nothing is passed into this variable. the user may add something to the config by
passing in a dict for the config

stats: the task.results are added into the stats variable of the snapshot.

commit_id (str, optional) — provide the exact commit hash associated with the
snapshot (default is None, which means it automatically creates a commit)

environment_id (str, optional) - provide the environment object id to use with
this snapshot (default is None, which means it creates a default environment)

filepaths (1ist, optional)— provides a list of absolute filepaths to files or direc-
tories that are relevant (default is None, which means we have an empty

config (dict, optional)- provide the dictionary of configurations (default is None,
which means it is empty)

stats (dict, optional)— provide the dictionary of relevant statistics or metrics (de-
fault is None, which means it is empty)

Returns returns a Snapshot entity as defined above

Return type Snapshot

Examples

You can use this function within a project repository to save snapshots for later use. Once you have created this,

you will be able to view the snapshot with the datmo snapshot s cli command

>>> import datmo
>>> datmo.snapshot.create (message="my first snapshot", filepaths=["/path/to/a/

—large/file"], config={"test": 0.4, "test2": "string"}, stats={"accuracy": 0.94})

You can also use the result of a task run in order to create a snapshot

>>> datmo.snapshot.create (message="my first snapshot from task", task_id=
—"19fkshg049")

datmo.snapshot.ls (session_id=None, filter=None, home=None)
List snapshots within a project

The project must be created before this is implemented. You can do that by using the following command:

$ datmo init

Parameters

* session_id (str, optional) — session to filter output snapshots (default is None,
which means no session filter is given)

e filter (str, optional)— astring to use to filter from message and label (default is
to give all snapshots, unless provided a specific string. eg: best)

* home (str, optional)-— absolute home path of the project (default is None, which will
use the CWD as the project path)

Returns returns a list of Snapshot entities (as defined above)

2.2. Python SDK

13

Datmo Documentation, Release 0.0.7-dev

Return type list

Examples

You can use this function within a project repository to list snapshots.

>>> import datmo
>>> snapshots = datmo.snapshot.ls()

2.2.2 datmo.task module
class datmo.task.Task (task_entity, home=None)
Task is an entity object to enable user access to properties
Parameters
* task_entity (datmo.core.entity.task.Task)— core task entity to reference
* home (str, optional)-rootdirectory of the project (default is CWD, if not provided)
id
str — the id of the entity

model_ id
str — the parent model id for the entity

session_id
str —id of session associated with task

command
str — command that is used by the task

status
str or None — status of the current task

start_time
datetime.datetime or None — timestamp for the beginning time of the task

end_time
datetime.datetime or None — timestamp for the end time of the task

duration
float or None — delta in seconds between start and end times

logs
str or None — string output of logs

results
dict or None — dictionary containing output results from the task

files
list — returns list of file objects for the task in read mode

get_files (mode="r")
Returns a list of file objects for the task

Raises InvalidArgumentType

duration

14 Chapter 2. Table of contents

Datmo Documentation, Release 0.0.7-dev

end_time
files

get_files (mode="r")
Returns a list of file objects for the task

Parameters mode (st r) — file object mode (default is “r”” which signifies read mode)
Returns list of file objects associated with the task
Return type list

logs

results

start_time

status

datmo.task.1ls (session_id=None, filter=None, home=None)
List tasks within a project

The project must be created before this is implemented. You can do that by using the following command:

$ datmo init

Parameters

* session_id (str, optional)- session to filter output tasks (default is None, which
means no session filter is given)

e filter (str, optional) - a string to use to filter from message and label (default is
to give all snapshots, unless provided a specific string. eg: best)

* home (str, optional)- absolute home path of the project (default is None, which will
use the CWD as the project path)

Returns returns a list of Task entities (as defined above)

Return type list

Examples

You can use this function within a project repository to list tasks.

>>> import datmo
>>> tasks = datmo.task.ls ()

datmo.task.run (command, env=None, home=None, gpu=False)
Run the code or script inside

The project must be created before this is implemented. You can do that by using the following command:

$ datmo init

Parameters

e command (str or 1ist)-the command to be run in environment. this can be either a
string or list

2.2. Python SDK

15

Datmo Documentation, Release 0.0.7-dev

* env (str, optional) — the location for the environment definition path (default is
None, which will defer to the environment to find a default environment, or will fail if
not found)

* home (str, optional)- absolute home path of the project (default is None, which will
use the CWD as the project path)

* gpu (boolean) — try to run task on GPU (if available)
Returns returns a Task entity as defined above

Return type 7usk

Examples

You can use this function within a project repository to run tasks in the following way.

>>> import datmo
>>> datmo.task.run (command="python script.py")
>>> datmo.task.run (command="python script.py", env='Dockerfile')

2.2.3 datmo.config module
class datmo.config.Config
Bases: object
Datmo Config properties
Parameters
* home (string) - project home directory
* logging_level (int) - logging level
Returns Config Singleton
Return type Config
static cache_setting (*args, **kwargs)

instance = None

2.3 Examples

In order to run the examples, make sure that you have datmo properly installed with the latest stable or development
version. You can install it with the following command:

’$ pip install datmo

2.3.1 Using the Examples

CLI flow

See CLI flow examples for instructions

16 Chapter 2. Table of contents

Datmo Documentation, Release 0.0.7-dev

CLI + Python flow

See CLI + Python flow examples for instructions

CLI + Jupyter Notebook flow

See CLI + Jupyter Notebook flow examples for instructions

2.3.2 Examples

Listed below are actions you might want to take with Datmo. For each we have listed if there are any example for each
type of flow. You can navigate to the specific flow folder to find the exact instructions for each example.

Creating a Snapshot

e CLI flow

— snapshot_create_iris_sklearn
e CLI + Python flow

— snapshot_create_iris_sklearn
e CLI + Jupyter Notebook flow

— snapshot_create_iris_sklearn

Running a containerized task (with option to create Snapshot)

e CLI + Python flow
— task_run_iris_sklearn_basic

— task_run_iris_sklearn_compare

2.3. Examples 17

Datmo Documentation, Release 0.0.7-dev

18 Chapter 2. Table of contents

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

19

https://badge.fury.io/py/datmo
https://travis-ci.org/datmo/datmo
https://coveralls.io/github/datmo/datmo

Datmo Documentation, Release 0.0.7-dev

20

Chapter 3. Indices and tables

Python Module Index

d

datmo.config, 16
datmo.snapshot, 11
datmo.task, 14

21

Datmo Documentation, Release 0.0.7-dev

22

Python Module Index

Index

C

cache_setting() (datmo.config.Config static method), 16
code_id (datmo.snapshot.Snapshot attribute), 12
command (datmo.task.Task attribute), 14

Config (class in datmo.config), 16

config (datmo.snapshot.Snapshot attribute), 12

create() (in module datmo.snapshot), 12

created_at (datmo.snapshot.Snapshot attribute), 12

D

datmo.config (module), 16
datmo.snapshot (module), 11
datmo.task (module), 14

duration (datmo.task.Task attribute), 14

E

end_time (datmo.task.Task attribute), 14
environment_id (datmo.snapshot.Snapshot attribute), 12

F

file_collection_id (datmo.snapshot.Snapshot attribute), 12
files (datmo.snapshot.Snapshot attribute), 12
files (datmo.task.Task attribute), 14, 15

G

get_files() (datmo.snapshot.Snapshot method), 12
get_files() (datmo.task.Task method), 14, 15

id (datmo.snapshot.Snapshot attribute), 11
id (datmo.task.Task attribute), 14
instance (datmo.config.Config attribute), 16

L

label (datmo.snapshot.Snapshot attribute), 12
logs (datmo.task.Task attribute), 14, 15

Is() (in module datmo.snapshot), 13

Is() (in module datmo.task), 15

M

message (datmo.snapshot.Snapshot attribute), 11
model_id (datmo.snapshot.Snapshot attribute), 11
model_id (datmo.task.Task attribute), 14

R

results (datmo.task.Task attribute), 14, 15
run() (in module datmo.task), 15

S

session_id (datmo.snapshot.Snapshot attribute), 11
session_id (datmo.task.Task attribute), 14
Snapshot (class in datmo.snapshot), 11

start_time (datmo.task.Task attribute), 14, 15

stats (datmo.snapshot.Snapshot attribute), 12
status (datmo.task.Task attribute), 14, 15

T

Task (class in datmo.task), 14
task_id (datmo.snapshot.Snapshot attribute), 12

23

	Why we built this
	Table of contents
	Command Line Utility
	commands
	Sub-commands:

	Python SDK
	datmo.snapshot module
	datmo.task module
	datmo.config module

	Examples
	Using the Examples
	Examples

	Indices and tables
	Python Module Index

