

Welcome to Datmo’s documentation!

Datmo is an open source model tracking and reproducibility tool for developers.

Features

	One command environment setup (languages, frameworks, packages, etc)

	Tracking and logging for model config and results

	Project versioning (model state tracking)

	Experiment reproducibility (re-run tasks)

	Visualize + export experiment history

Table of contents

	Quickstart
	Hello World

	Spinning up a TensorFlow Jupyter Notebook

	Workflows
	Setting up your environment

	Running an experiment

	Creating a Snapshot

	Tutorials

	Datmo Concepts
	Environments

	Workspaces

	Runs

	Tasks

	Snapshots

	Setting Up Your Environment
	Using a Default Environment

	Adding to a Default Environment

	Bringing Your Own Environment

	Visualizing Snapshots
	View all Snapshots within a project

	Inspect a single Snapshot

	Compare two Snapshots

	Command Line Utility
	commands

	Sub-commands:
	init

	version

	status

	cleanup

	dashboard

	configure

	notebook

	jupyterlab

	terminal

	rstudio

	run

	ls

	stop

	delete

	rerun

	environment

	snapshot

	Python SDK
	datmo.snapshot module

	Frequently Asked Questions
	Environment Questions

Indices and tables

	Index

	Module Index

	Search Page

[image: _images/datmo.svg]
 [https://badge.fury.io/py/datmo][image: _images/datmo1.svg]
 [https://travis-ci.org/datmo/datmo][image: _images/badge.svg]
 [https://coveralls.io/github/datmo/datmo]

Quickstart

Hello World

Setup:

	
	docker (installed and running before starting)

	Instructions for Ubuntu [https://docs.docker.com/install/linux/docker-ce/ubuntu/#uninstall-old-versions], MacOS [https://docs.docker.com/docker-for-mac/install/#install-and-run-docker-for-mac], Windows [https://docs.docker.com/docker-for-windows/install/]

	
	datmo

	install with $ pip install datmo

Steps:

	Clone this github project [https://github.com/datmo/hello-world.git].

$ git clone https://github.com/datmo/hello-world.git

2. Move into the project, initialize it, and setup the environment using the datmo CLI,

$ cd hello-world
$ # Initialize the project using datmo
$ datmo init
$ # Set the name and description for the project
$ # Enter `y` to setup the environment
$ # Select `cpu`, `data-analytics`, `py27` based on the questions being asked

3. Now, run and view your first experiment using the following commands,

$ datmo run 'python script.py'
$ # check for your first run using ls command
$ datmo ls

	Now let’s change the environment and script for a new run,

To edit the environment,

$ vi datmo_environment/Dockerfile

Add the following line into this Dockerfile

RUN pip install catboost

To edit the script,

$ vi script.py

Uncomment the following lines in the script,

import catboost
print catboost.__version__

5. Now that we have updated the environment and script, let’s run another experiment,

$ datmo run 'python script.py'
$ # check for your first run using ls command
$ datmo ls

6. With two test being tracked, we can now rerun any of the previous run with reprocibility,

$ # Select the earlier run-id to rerun the first experiment
$ datmo rerun < run-id >

Now, in this hello-world example, you have run two experiments, both which are tracked, and have
rerun one of these tracked experiments.

Spinning up a TensorFlow Jupyter Notebook

	Install Docker on your system

Find the proper version for your operating system and install Docker from this page [https://docs.docker.com/install/#supported-platforms]. Check that Docker is installed and running before moving forward.

	Install datmo using pip:

$ pip install datmo

	Navigate to a new folder for your project and run:

$ datmo init

	
	Create a name and description. When prompted to setup an environment, respond with the following answers:

	
	Would you like to set up an environment? : y

	Please select one of the above enviornment type (e.g. 1 or gpu): cpu

	Please select one of the above environments (e.g. 1 or data-analytics): keras-tensorflow

	Please select one of the above environment language (e.g. py27): py27

	Open a jupyter notebook automatically with:

$ datmo notebook

Congrats, you now have a functional jupyter notebook with TensorFlow!

Testing it out:

	Navigate to the notebook by typing the following into your browser:

localhost:8888/?token=UNIQUE_TOKEN_FROM_TERMINAL

	Click

New --> Notebook: Python2

	In the first cell, paste in and run:

import tensorflow as tf

	In the second cell paste and run:

Define a constant
hello = tf.constant('Hello, TensorFlow!')

Start tf session
sess = tf.Session()

Run the op
print(sess.run(hello))

If your output is Hello, TensorFlow!, you’re good to go!

Workflows

In order to run the example workflows, make sure that you have datmo properly installed with the latest
stable or development version. You can install the latest stable version with the following command:

$ pip install datmo

Listed below are actions you might want to take with Datmo. For each
we have listed if there are any example for each type of flow. You can
navigate to the specific flow folder to find the exact instructions for
each example.

Setting up your environment

	Environment Setup Examples

	Feature

	Scenario

	Link

	Project Environment Setup

	For fresh repository

	Docs [https://datmo.readthedocs.io/en/latest/cli.html#setup]

	
	For existing datmo project (pre-configured env)

	GitHub [https://github.com/datmo/datmo/blob/master/examples/python]

	
	For existing datmo project (bring your own env)

	GitHub [https://github.com/datmo/datmo/blob/master/examples/python]

	Opening a Workspace

	Opening a Jupyter Notebook

	GitHub [https://github.com/datmo/datmo/blob/master/examples/cli/workspace_setup.sh]

	
	Opening RStudio

	Github [https://github.com/datmo/datmo/blob/master/examples/cli/workspace_setup.sh]

	
	Opening JupyterLab

	Github [https://github.com/datmo/datmo/blob/master/examples/cli/workspace_setup.sh]

	
	Opening a Terminal

	Github [https://github.com/datmo/datmo/blob/master/examples/cli/workspace_setup.sh]

Running an experiment

	Experiment Run Examples

	Method

	Example

	Link

	CLI

	Run a single experiment

	Coming Soon

	CLI + Python

	Run a single experiment

	Coming Soon

	Run two tasks and compare results

	Coming Soon

Creating a Snapshot

Note: All of the following flows involve using the CLI to some extent, even in conjunction with the python SDK. The standalone CLI version, while the most manual method, is compatible with any language and files, even those not listed here.

	Snapshot Create Examples

	Method

	Example

	Link

	CLI

	Iris dataset sk-learn classifier

	GitHub [https://github.com/datmo/datmo/tree/master/examples/cli]

	CLI + Python

	Iris dataset sk-learn classifier

	GitHub [https://github.com/datmo/datmo/tree/master/examples/python]

	CLI + Jupyter Notebook

	Iris dataset sk-learn classifier

	GitHub [https://github.com/datmo/datmo/blob/master/examples/jupyter_notebook]

	CLI + R

	Iris dataset caret decision tree

	GitHub [https://github.com/datmo/datmo/blob/master/examples/R]

You can view the latest examples on the master branch on Github [https://github.com/datmo/datmo/tree/master/examples]

Tutorials

We keep a curated list of formally supported tutorials available on a secondary repository located here [https://github.com/datmo/datmo-tutorails].

For ease of access, we’ve included them here in the documentation as well.

	Python Tutorials

	Project

	Tags

	Datmo Features Used

	Kaggle Titanic Survivor Prediction (CLI `_ / `SDK in Jupyter Notebook [https://github.com/datmo/datmo-tutorials/tree/master/kaggle-titanic/sdk])

	AutoML, TPOT, SVM

	notebook, snapshot create, snapshot ls

	Face Recognition (CLI in Jupyter Notebook [https://github.com/datmo/datmo-tutorials/tree/master/face-recognition])

	CV, dlib, face_recognition

	notebook, snapshot create, snapshot ls

	Keras Fashion MNIST (CLI in Jupyter Notebook [https://github.com/datmo/datmo-tutorials/tree/master/keras-fashion-mnist])

	CV, keras, tensorflow

	notebook, snapshot create, snapshot ls

	Kaggle Jigsaw Toxic Comment Identification (CLI in Jupyter Notebook [https://github.com/datmo/datmo-tutorials/tree/master/toxic-comment-identification])

	NLP, capsule net, Keras

	notebook, snapshot create, snapshot ls, environment setup

Datmo Concepts

Environments

Environments contain the hardware and software necessary for running code. These involve everything from programming languages, language-level packages/libraries, operating systems, and GPU drivers. Users can store multiple environments and choose which to use at the time of a task run.

You can setup environments on initialization with $ datmo init or at any point in time using $ datmo environment setup

Workspaces

	Workspaces are interactive programming environments/IDE’s. Depending on which environment is chosen during setup, there are a handful of workspaces that are available out of the box including:

	
	Jupyter Notebook via $ datmo notebook

	RStudio via $ datmo rstudio

	JupyterLab via $ datmo jupyterlab

	Terminal via $ datmo terminal

Runs

A run is comprised of tasks and snapshots. In Datmo’s paradigm, states (snapshots) represent nodes, and tasks represent edges, in this case actions that are applied to states.

[image: Graph showing a run containing an initial snapshot, a task, and the resulting snapshot.]
Each run contains the initial state (snapshot), followed by the action that was performed to it (task), as well as the final state of the repository (another snapshot).

For a typical use case, this would appear as follows:

[image: Diagram explaining recording of state during an experiment run]
You can view all of your past runs at any time with $ datmo run ls

You can replicate a run at any time with the $ datmo rerun command.

Tasks

Tasks are command line actions or commands a user can perform within a project. For example, the commands python train.py or python predict.py would both be examples of tasks. Tasks are declarative entities and are applied to states (snapshots) to form execute runs.

Snapshots

For recording state, we have our own fundamental unit called a Snapshot. This enables the user to have a single point of reference for the model version, rather than having to worry about individually tracking each component. Snapshots contain five components, each of which is logged at the time of Snapshot creation simultaneously. When performing runs, snapshots are autogenerated to help you autosave your work.

	Source code is managed between snapshot versions automagically inside of a hidden .datmo folder that the user never has to interact with. Users can

	Environment (dependencies, packages, libraries, system env) are stored in environment files (typically Dockerfiles) for containerized task running and reproducibility on other systems. Datmo also currently autogenerates a requirements.txt file based on the packages imported by Python scripts in the repository.

	Files include visualizations, model weights files, datasets, and any other files present at the time of snapshot creation. For versioning models, large datasets or weights files are recommended to be stored as pointers to external sources in the _config_ property.

	Configurations are properties which alter your experiments (such as variable hyperparameters). Configurations are user defined, which can include (but are not limited to) algorithm type, framework, hyperparameters, external file locations, database queries, and more.

	Metrics are the values that help you assess your model (e.g. validation accuracy, training time, loss function score). These can be passed in from a memory-level variable/object in the Python SDK, or manually as a file or value via the CLI for all other languages.

Setting Up Your Environment

In Datmo, there are three ways to setup an environment:

	Using a Default Environment

	Adding to a Default Environment

	Bringing Your Own Environment

Using a Default Environment

Default Datmo environments are maintained by the Datmo team and are guaranteed to work out of the box. We’ve provided many of the most popular environments for data science and AI, including:

	data-analytics (general data science/computational programming)

	kaggle

	keras/tensorflow

	mxnet

	pytorch

	caffe2

	base R and Python

You can setup a Datmo default environment either by saying yes when prompted at time of project initialization with $ datmo init,
or at any point in time by selecting a provided environment from $ datmo environment setup.

Adding to a Default Environment

There are instances where you may want to add additional components to your environment. A common example would be installing additional language-level packages that weren’t included in the default environment.

	
	To do this, first setup your default environment in one of two ways:

	
	If you haven’t yet initialized a project, use $ datmo init

	Otherwise, use $ datmo environment setup

	
	Once you’ve followed the prompts and selected the default environment to setup, you can find the environment file at:

	PROJECT-DIR/datmo_environment/Dockerfile

	Open the Dockerfile in a text/code editor

	Add the respective environment setup commands inside the Dockerfile:

Note

Docker has specific rules for writing command line arguments in Dockerfiles. For more details, see the RUN section of the official Docker documentation [https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#run].

Adding individual packages/libraries

to add pandas using the pip package manager, you would add the following line to the Dockerfile:
RUN pip install pandas

Adding packages froma build/package list

If you have a list of python packages you’d like to install, like a requirements.txt file, you can do so by appending the following to the end of your Dockerfile:

COPY requirements.txt /tmp/requirements.txt
RUN pip install -r /tmp/requirements.txt

Bringing Your Own Environment

There are two ways to write your own enviornment: with or without a Datmo base image.

Datmo base images aim to efficiently serve as a foundation for environments, including an operating system, necessary system level drivers, as well as a programming language, package, and workspaces. Datmo base images are tested and reliable, but the user has the option to bring their own as well if they would prefer.

A) With a datmo base image:

	We have created public base images for all permutations of the following:

	
	Languages: Python 2.7, Python 3.5, R

	System Drivers: CPU, GPU (nvidia)

The datmo team maintains these images and ensures they will serve as a stable base for building environments on top of. To use one of them, you’ll need to call one of them using FROM at the top of the Dockerfile.

1. Open a blank text file, and save it with the name Dockerfile in the /datmo_environment directory

2. Designate a base image

At the top of your Dockerfile, you will need a line of the following format:

FROM datmo/python-base:z

Note

The tag z is dependent on the language and system permutation (py27, py35, r and cpu, gpu)

	Examples of valid dockerfile names would be as follows (list is not exhaustive):

	
	datmo/python-base:py35-cpu

	datmo/python-base:py35-gpu

	datmo/python-base:py27-cpu

	datmo/python-base:py27-gpu

To see the full list of officially supported Python environment versions, check out the Dockerhub page here [https://hub.docker.com/r/datmo/python-base/tags/].

3. Designate installation of system level packages

All base datmo environments utilize Ubuntu, so the apt-get package tool will be used to install any necessary system dependencies.

In your Dockerfile, enumerate all system level packages with the following:

RUN apt-get install <package-name>

Note

For installing multiple system packages consecutively, read more about Docker’s suggested syntax here [https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#run].

4. Designate installation of language level packages

Most languages leverage some sort of package management tool. For example, Python utilizes pip, and is included in all python base datmo images.

To utilize your package manager to install packages through the Dockerfile, use the following line:

RUN pip install <python-package-name>

Note

For installing multiple language-level packages, follow the same guidelines listed above in the step 3 note.

B) Without a datmo base image:

1. Open a blank text file, and save it with the name Dockerfile in the /datmo_environment directory

2. Designate a base image

At the top of your Dockerfile, you will need a line of the following format:

FROM x/y:z

	Where each variable represents the following Dockerhub information:

	
	x: user/organization account name

	y: Dockerfile name

	z: Dockerfile version

	An example would be the following:

	FROM kaggle/python:latest

3. Designate installation of system level packages

Based on which operating system the base image utilizes, you will likely have a different package manager for installing system level utilities. Examples include apt-get for Ubuntu, yum for CentOS/Fedora, or apk on Alpine, and more.

In your Dockerfile, enumerate all system level package installations using your respective package manager with the following:

RUN apt-get install <package-name>

Note

For installing multiple system packages consecutively, read more about Docker’s suggested syntax here [https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#run].

4. Designate installation of language level packages

Most languages leverage some sort of package management tool. For example, Python utilizes pip, which may need to be installed as a system level resource first.

To utilize your language-level package manager to install packages through the Dockerfile, use the following line:

RUN pip install <python-package-name>

Note

For installing multiple language-level packages, follow the same guidelines listed above in the step 3 note.

5. Getting datmo workspaces to work with your custom environment

By running a fully custom environment image, you will need to add code snippets to your Dockerfile in order for some of datmo’s aliases to work. Please make sure you have installed pip and apt-get during step 3.

Jupyter Notebook via $ datmo notebook

	Add the following code snippet to your Dockerfile

Jupyter
RUN pip --no-cache-dir install \
 ipykernel \
 jupyter \
 && \
 python -m ipykernel.kernelspec

Set up our notebook config.
COPY jupyter_notebook_config_py2.py /root/.jupyter/
RUN mv /root/.jupyter/jupyter_notebook_config_py2.py /root/.jupyter/jupyter_notebook_config.py

Jupyter has issues with being run directly:
https://github.com/ipython/ipython/issues/7062
We just add a little wrapper script.

COPY run_jupyter.sh /
RUN chmod +x /run_jupyter.sh

IPython
EXPOSE 8888

	Download the 3 patchfiles from here [https://github.com/datmo/docker-files/tree/master/workspace-patches] and move them into your datmo_environment folder along with your Dockerfile.

JupyterLab via $ datmo jupyterlab

	Add the following code snippet to your Dockerfile

Jupyter
 RUN pip --no-cache-dir install \
 ipykernel \
 jupyter \
 && \
 python -m ipykernel.kernelspec

 # Set up our notebook config.
 COPY jupyter_notebook_config_py2.py /root/.jupyter/
 RUN mv /root/.jupyter/jupyter_notebook_config_py2.py /root/.jupyter/jupyter_notebook_config.py

 # Jupyter has issues with being run directly:
 # https://github.com/ipython/ipython/issues/7062
 # We just add a little wrapper script.

 COPY run_jupyter.sh /
 RUN chmod +x /run_jupyter.sh

 # Jupyter lab
 RUN pip install jupyterlab==0.32.1

 # IPython
 EXPOSE 8888

	Download the 3 patchfiles from here [https://github.com/datmo/docker-files/tree/master/workspace-patches] and move them into your datmo_environment folder along with your Dockerfile.

RStudio via $ datmo rstudio

	Add the following code snippet to your Dockerfile

Rstudio
ENV DEBIAN_FRONTEND noninteractive
ENV CRAN_URL https://cloud.r-project.org/

RUN set -e \
 && ln -sf /bin/bash /bin/sh

RUN set -e \
 && apt-get -y update \
 && apt-get -y dist-upgrade \
 && apt-get -y install apt-transport-https gdebi-core libapparmor1 libcurl4-openssl-dev \
 libssl-dev libxml2-dev pandoc r-base \
 && apt-get -y autoremove \
 && apt-get clean

RUN set -e \
 && R -e "\
 update.packages(ask = FALSE, repos = '${CRAN_URL}'); \
 pkgs <- c('dbplyr', 'devtools', 'docopt', 'doParallel', 'foreach', 'gridExtra', 'rmarkdown', 'tidyverse'); \
 install.packages(pkgs = pkgs, dependencies = TRUE, repos = '${CRAN_URL}'); \
 sapply(pkgs, require, character.only = TRUE);"

RUN set -e \
 && curl -sS https://s3.amazonaws.com/rstudio-server/current.ver \
 | xargs -I {} curl -sS http://download2.rstudio.org/rstudio-server-{}-amd64.deb -o /tmp/rstudio.deb \
 && gdebi -n /tmp/rstudio.deb \
 && rm -rf /tmp/rstudio.deb

RUN set -e \
 && useradd -m -d /home rstudio \
 && echo rstudio:rstudio \
 | chpasswd

expose for rstudio
EXPOSE 8787

	Download the 3 patchfiles from here [https://github.com/datmo/docker-files/tree/master/workspace-patches] and move them into your datmo_environment folder along with your Dockerfile.

Visualizing Snapshots

In Datmo, Snapshots are used as the primary record of state for a project, recording all components of a project state, including files, model weights, environment, configuration, stats, and other metadata. There are three primary ways to assess Snapshots using the CLI:

	View all Snapshots within a project

	Inspect a single Snapshot

	Compare two Snapshots

View all Snapshots within a project

If you’d like to see a broad overview of all snapshots in the current datmo project, the user can do so with:

$ datmo snapshot ls

This will return the metadata for all snapshots in a table that resembles the following format:

+---------+-------------+---+-----------------+---------------+-------+
| id | created at | config | stats | message | label |
+---------+-------------+---+-----------------+---------------+-------+
30f8366b	2018-05-16	{u'selected features': [u'Sex', u'Pclass',	{u'accuracy':	auto-ml-2	None
	03:04:06	u'Age', u'Fare', u'Embarked', u'Title',	0.8295964}		
		u'FarePerPerson', u'FamilySize']}			
adf76fa7	2018-05-16	{u'selected features': [u'Sex', u'Pclass',	{u'accuracy':	auto-ml-1	None
	01:24:53	u'Age', u'Fare', u'Embarked',	0.8206278}		
		u'Fare', u'IsAlone', u'Title']}			
30803662	2018-05-15	{u'features analyzed': [u'Sex',	{}	EDA	None
	23:15:44	u'Pclass', u'FamilySize', u'IsAlone',			
		u'Embarked', u'Fare', u'Age', u'Title']}			
+---------+-------------+---+-----------------+---------------+-------+

Inspect a single Snapshot

If you’d like to see a detailed view of all properties pertaining to a specific snapshot, use:

$ datmo snapshot inspect <SNAPSHOT_ID>

This will return a detailed view of the snapshot that resembles the following:

Date: Tue Jul 17 15:38:04 2018 -0700
Session -> a2084eeaf6a7c66509972ea4f8ca35027721e34e
Visible -> True
Code -> 1dadd5bbc73822ed90d9061c9003fc2556b9d40b
Environment -> 47cc3cee2043f4e9026997e01c53918bad74f28a
Files -> 155cc40f0d762712cd115e8262d1e8033aba727c
Config -> {u'selected features': [u'Sex', u'Pclass', u'Age', u'Fare', u'Embarked', u'FarePerPerson', u'FamilySize', u'Title']}
Stats -> {u'accuracy': 0.8161434977578476}

Compare two Snapshots

There will often be times where you want to see the difference between two snapshots.

This is possible with the following command:

$ datmo snapshot diff <SNAPSHOT_ID_1> <SNAPSHOT_ID_2>

Resulting in an output resembling the following:

Attributes Snapshot 1 Snapshot 2

id 9d8e06ae0c8546465c1b0c200f1e84a33c049067 -> 5e476e78b8b480506e117fdf8478c45d28020165
created_at Tue Jul 17 15:38:04 2018 -0700 -> Tue Jul 17 15:30:08 2018 -0700
message auto-ml-2 -> auto-ml-1
label N/A -> N/A
code_id 1dadd5bbc73822ed90d9061c9003fc2556b9d40b -> c78873227313f64c3362ee9b30432053036eef68
environment_id 47cc3cee2043f4e9026997e01c53918bad74f28a -> 47cc3cee2043f4e9026997e01c53918bad74f28a
file_collection_id 155cc40f0d762712cd115e8262d1e8033aba727c -> 155cc40f0d762712cd115e8262d1e8033aba727c

Command Line Utility

The command line utility for datmo is to be used in tandem with the SDK and will typically be your first
contact with the datmo system. If using Python, see Python SDK.

If you are working within a repository already, you will want to run the datmo init within your
repository in order to create your datmo project.

From there, you can create snapshots or run tasks using either the SDK or the CLI. At any given point you
can find out more about all of your snapshots using the datmo snapshot ls command and see the status
of any of your tasks with the datmo task ls command.

Sessions are a way for you to group together tasks and snapshots, but are completely optional. For example,
if you want to run a set of hyperparameter experiments modifying some subset of hyperparameters you might want to
do them in a designated session. Then you might try another set of hyperparameter sweeps which you would like to
group into another session. By default, you will always be in the “default” session unless otherwise specified.

You can delve through more of the commands and each of their parameters below to learn more about each entity
and how you can create different versions of them. You can also look through the Getting Started section [https://github.com/datmo/datmo#getting-started]
in the README.

usage: datmo [-h]
 {init,version,status,cleanup,dashboard,configure,notebook,jupyterlab,terminal,rstudio,run,ls,stop,delete,rerun,environment,snapshot}
 ...

commands

	command

	Possible choices: init, version, status, cleanup, dashboard, configure, notebook, jupyterlab, terminal, rstudio, run, ls, stop, delete, rerun, environment, snapshot

Sub-commands:

init

initialize project

datmo init [-h] [--name NAME] [--description DESCRIPTION] [--force]

Named Arguments

	--name

	

	--description

	

	--force, -f, --no-prompt

	boolean if you want to run init without prompts

Default: False

version

datmo version

datmo version [-h]

status

project status

datmo status [-h]

cleanup

remove project

datmo cleanup [-h]

dashboard

start dashboard

datmo dashboard [-h]

configure

configure datmo

datmo configure [-h]

notebook

To run jupyter notebook

datmo notebook [-h] [--gpu] [--environment-id ENVIRONMENT_ID]
 [--environment-paths ENVIRONMENT_PATHS] [--mem-limit MEM_LIMIT]
 [--data DATA]

Named Arguments

	--gpu

	boolean if you want to run using GPUs

Default: False

	--environment-id

	environment id from environment object

	--environment-paths

	list of absolute or relative filepaths and/or dirpaths to collect; can specify destination names with ‘>’ (e.g. /path/to/file>hello, /path/to/file2, /path/to/dir>newdir)

	--mem-limit, -m

	maximum amount of memory the notebook environment can use (these options take a positive integer, followed by a suffix of b, k, m, g, to indicate bytes, kilobytes, megabytes, or gigabytes)

	--data

	list of absolute or relative filepath and/or dirpaths for data; can specify destination names with ‘>’ (e.g. /path/to/dir, /path/to/dir>newdir, /path/to/file)

jupyterlab

To run jupyterlab

datmo jupyterlab [-h] [--gpu] [--environment-id ENVIRONMENT_ID]
 [--environment-paths ENVIRONMENT_PATHS]
 [--mem-limit MEM_LIMIT] [--data DATA]

Named Arguments

	--gpu

	boolean if you want to run using GPUs

Default: False

	--environment-id

	environment id from environment object

	--environment-paths

	list of absolute or relative filepaths and/or dirpaths to collect; can specify destination names with ‘>’ (e.g. /path/to/file>hello, /path/to/file2, /path/to/dir>newdir)

	--mem-limit, -m

	maximum amount of memory the jupyterlab environment can use (these options take a positive integer, followed by a suffix of b, k, m, g, to indicate bytes, kilobytes, megabytes, or gigabytes)

	--data

	list of absolute or relative filepath and/or dirpaths for data; can specify destination names with ‘>’ (e.g. /path/to/dir, /path/to/dir>newdir, /path/to/file)

terminal

To run terminal

datmo terminal [-h] [--gpu] [--environment-id ENVIRONMENT_ID]
 [--environment-paths ENVIRONMENT_PATHS] [--mem-limit MEM_LIMIT]
 [--data DATA] [--ports PORTS]

Named Arguments

	--gpu

	boolean if you want to run using GPUs

Default: False

	--environment-id

	environment id from environment object

	--environment-paths

	list of absolute or relative filepaths and/or dirpaths to collect; can specify destination names with ‘>’ (e.g. /path/to/file>hello, /path/to/file2, /path/to/dir>newdir)

	--mem-limit, -m

	maximum amount of memory the terminal environment can use (these options take a positive integer, followed by a suffix of b, k, m, g, to indicate bytes, kilobytes, megabytes, or gigabytes)

	--data

	list of absolute or relative filepath and/or dirpaths for data; can specify destination names with ‘>’ (e.g. /path/to/dir, /path/to/dir>newdir, /path/to/file)

	--ports, -p

	
network port mapping during run (e.g. 8888:8888). Left is the host machine port and right
is the environment port available during a run.

rstudio

To run Rstudio workspace

datmo rstudio [-h] [--environment-id ENVIRONMENT_ID]
 [--environment-paths ENVIRONMENT_PATHS] [--mem-limit MEM_LIMIT]
 [--data DATA]

Named Arguments

	--environment-id

	environment id from environment object

	--environment-paths

	list of absolute or relative filepaths and/or dirpaths to collect; can specify destination names with ‘>’ (e.g. /path/to/file>hello, /path/to/file2, /path/to/dir>newdir)

	--mem-limit, -m

	maximum amount of memory the rstudio environment can use (these options take a positive integer, followed by a suffix of b, k, m, g, to indicate bytes, kilobytes, megabytes, or gigabytes)

	--data

	list of absolute or relative filepath and/or dirpaths for data; can specify destination names with ‘>’ (e.g. /path/to/dir, /path/to/dir>newdir, /path/to/file)

run

run module

datmo run [-h] [--gpu] [--ports PORTS] [--environment-id ENVIRONMENT_ID]
 [--environment-paths ENVIRONMENT_PATHS] [--mem-limit MEM_LIMIT]
 [--interactive] [--data DATA]
 [cmd]

Positional Arguments

	cmd

	command to run within environment

Named Arguments

	--gpu

	boolean if you want to run using GPUs

Default: False

	--ports, -p

	
network port mapping during run (e.g. 8888:8888). Left is the host machine port and right
is the environment port available during a run.

	--environment-id

	environment id from environment object

	--environment-paths

	list of absolute or relative filepaths and/or dirpaths to collect; can specify destination names with ‘>’ (e.g. /path/to/file>hello, /path/to/file2, /path/to/dir>newdir)

	--mem-limit, -m

	maximum amount of memory the task environment can use (these options take a positive integer, followed by a suffix of b, k, m, g, to indicate bytes, kilobytes, megabytes, or gigabytes. e.g. 4g)

	--interactive

	run the environment in interactive mode (keeps STDIN open)

Default: False

	--data

	list of absolute or relative filepath and/or dirpaths for data; can specify destination names with ‘>’ (e.g. /path/to/dir, /path/to/dir>newdir, /path/to/file)

ls

list module

datmo ls [-h] [--format FORMAT] [--download] [--download-path DOWNLOAD_PATH]

Named Arguments

	--format

	output format [‘table’, ‘csv’]

Default: “table”

	--download

	boolean is true if user would like to download. use –download-path to specify a path

Default: False

	--download-path

	checked only if download is specified. saves output to location specified

stop

stop runs

datmo stop [-h] [--id ID] [--all]

Named Arguments

	--id

	run id to stop

	--all, -a

	stop all datmo runs

Default: False

delete

delete runs

datmo delete [-h] id

Positional Arguments

	id

	run id to delete

rerun

To rerun an experiment

datmo rerun [-h] id

Positional Arguments

	id

	run id to be rerun

environment

environment module

datmo environment [-h] {setup,create,update,delete,ls} ...

subcommands

	subcommand

	Possible choices: setup, create, update, delete, ls

Sub-commands:

setup

setup environment adds a predefined supported environment into your project environment directory

datmo environment setup [-h] [--name NAME] [--type TYPE]
 [--framework FRAMEWORK] [--language LANGUAGE]

Named Arguments

	--name

	name of environment to be used for environment (e.g. my-new-environment). if none is given, a prompt will present the supported names

	--type

	type of environment to be used for environment (e.g. cpu). if none is given, a prompt will present the supported type

	--framework

	framework (and relevant libraries) to be used for environment (e.g. data-analytics). if none is given, a prompt will present the supported names

	--language

	language of environment to be used for environment (e.g. py27). if none is given, a prompt will present the supported language for the name and type

create

create environment using the definition paths given, if not looks in your project environment directory, or creates a default

datmo environment create [-h] [--paths PATHS] [--name NAME]
 [--description DESCRIPTION]

Named Arguments

	--paths

	list of absolute or relative filepaths and/or dirpaths to collect; can specify destination names with ‘>’ (e.g. /path/to/file>hello, /path/to/file2, /path/to/dir>newdir)

	--name, -n

	name given to the environment

	--description, -d

	description of environment

update

update an environment by id

datmo environment update [-h] [--name NAME] [--description DESCRIPTION] id

Positional Arguments

	id

	environment id to update

Named Arguments

	--name

	new name for the environment

	--description

	new description for the environment

delete

delete a environment by id

datmo environment delete [-h] id

Positional Arguments

	id

	id of environment to delete

ls

list environments

datmo environment ls [-h] [--format FORMAT] [--download]
 [--download-path DOWNLOAD_PATH]

Named Arguments

	--format

	output format [‘table’, ‘csv’]

Default: “table”

	--download

	boolean is true if user would like to download. use –download-path to specify a path

Default: False

	--download-path

	checked only if download is specified. saves output to location specified

snapshot

Datmo snapshots allow you to save the state of your model and experiments
by keeping track of your source code, environment, configuration, metrics
and large files.

datmo snapshot [-h] {create,update,delete,ls,checkout,diff,inspect} ...

subcommands

	subcommand

	Possible choices: create, update, delete, ls, checkout, diff, inspect

Sub-commands:

create

Run snapshot create any time you want to save the results of your
experiments. You can then view all snapshots with the snapshot ls command.

datmo snapshot create [-h] [--message MESSAGE] [--label LABEL]
 [--session-id SESSION_ID] [--run-id RUN_ID]
 [--environment-id ENVIRONMENT_ID]
 [--environment-paths ENVIRONMENT_PATHS] [--paths PATHS]
 [--config-filename CONFIG_FILENAME]
 [--config-filepath CONFIG_FILEPATH] [--config CONFIG]
 [--stats-filename STATS_FILENAME]
 [--stats-filepath STATS_FILEPATH] [--stats STATS]

Named Arguments

	--message, -m

	message to describe snapshot

	--label, -l

	label snapshots with a category (e.g. best)

	--session-id

	user given session id

	--run-id

	specify run id to pull information from

	--environment-id

	environment id from environment object

	--environment-paths

	list of absolute or relative filepaths and/or dirpaths to collect; can specify destination names with ‘>’ (e.g. /path/to/file>hello, /path/to/file2, /path/to/dir>newdir)

	--paths

	list of absolute or relative filepaths and/or dirpaths to collect; can specify destination names with ‘>’ (e.g. /path/to/file>hello, /path/to/file2, /path/to/dir>newdir)

	--config-filename

	filename to use to search for configuration JSON

	--config-filepath

	absolute filepath to use to search for configuration JSON

	--config, -c

	
provide key, value pair for the config such as key:value, (e.g. accuracy:91.1). Left is the key and
right is the value for it.

	--stats-filename

	filename to use to search for metrics JSON

	--stats-filepath

	absolute filepath to use to search for metrics JSON

	--stats, -s

	
provide key, value pair for the stats such as key:value, (e.g. accuracy:91.1). Left is the key and
right is the value for it.

update

update a snapshot by id

datmo snapshot update [-h] [--config CONFIG] [--stats STATS]
 [--message MESSAGE] [--label LABEL]
 id

Positional Arguments

	id

	snapshot id to update

Named Arguments

	--config, -c

	
provide key, value pair for the config such as key:value, (e.g. accuracy:91.1). Left is the key and
right is the value for it.

	--stats, -s

	
provide key, value pair for the stats such as key:value, (e.g. accuracy:91.1). Left is the key and
right is the value for it.

	--message

	new message for the snapshot

	--label

	new label for the snapshot

delete

delete a snapshot by id

datmo snapshot delete [-h] id

Positional Arguments

	id

	snapshot id to delete

ls

list snapshots

datmo snapshot ls [-h] [--session-id SESSION_ID] [--details] [--all]
 [--format FORMAT] [--download]
 [--download-path DOWNLOAD_PATH]

Named Arguments

	--session-id

	session id to filter

	--details

	show detailed snapshot information

Default: False

	--all

	show all visible and hidden snapshots

Default: False

	--format

	output format [‘table’, ‘csv’]

Default: “table”

	--download

	boolean is true if user would like to download. use –download-path to specify a path

Default: False

	--download-path

	checked only if download is specified. saves output to location specified

checkout

checkout a snapshot by id

datmo snapshot checkout [-h] id

Positional Arguments

	id

	snapshot id to checkout

diff

view diff between 2 snapshots

datmo snapshot diff [-h] id_1 id_2

Positional Arguments

	id_1

	snapshot id 1

	id_2

	snapshot id 2

inspect

inspect a snapshot by id

datmo snapshot inspect [-h] id

Positional Arguments

	id

	snapshot id

Python SDK

Datmo’s Python SDK is a way to create datmo snapshots and run tasks directly within your code.
Although the SDK is not necessary for using datmo, it helps simplify the process of integrating
your current code with current Python projects. If you aren’t using Python, see Command Line Utility.

	datmo.snapshot module

datmo.snapshot module

	
class datmo.snapshot.Snapshot(snapshot_entity)

	Snapshot is an entity object to enable user access to properties

	Parameters

	snapshot_entity (datmo.core.entity.snapshot.Snapshot) – core snapshot entity to reference

	
id

	the id of the entity

	Type

	str

	
model_id

	the parent model id for the entity

	Type

	str

	
message

	long description of snapshot

	Type

	str

	
code_id

	code reference associated with the snapshot

	Type

	str

	
environment_id

	id for environment used to create snapshot

	Type

	str

	
file_collection_id

	file collection associated with the snapshot

	Type

	str

	
config

	key, value pairs of configurations

	Type

	dict

	
stats

	key, value pairs of metrics and statistics

	Type

	dict

	
task_id

	task id associated with snapshot

	Type

	str

	
label

	short description of snapshot

	Type

	str

	
created_at

	
	Type

	datetime.datetime

	Raises

	InvalidArgumentType

	
files

	

	
get_files(mode='r')

	Returns a list of file objects for the snapshot

	Parameters

	mode (str) – file object mode
(default is “r” which signifies read mode)

	Returns

	list of file objects associated with the snapshot

	Return type

	list

	
datmo.snapshot.create(message, label=None, run_id=None, environment_id=None, env=None, paths=None, config=None, stats=None)

	Create a snapshot within a project

The project must be created before this is implemented. You can do that by using
the following command:

$ datmo init

	Parameters

	
	message (str) – a description of the snapshot for later reference

	label (str, optional) – a short description of the snapshot for later reference
(default is None, which means a blank label is stored)

	run_id (str, optional) – run object id to use to create snapshot
if run id is passed then subsequent parameters would be ignored.
when using run id, it will overwrite the following inputs

environment_id: used to run the task,

paths: this is the set of all files saved during the task

config: nothing is passed into this variable. the user may add
something to the config by passing in a dict for the config

stats: the task.results are added into the stats variable of the
snapshot.

	environment_id (str, optional) – provide the environment object id to use with this snapshot
(default is None, which means it creates a default environment)

	env (str or list, optional) – the absolute file path for the environment definition path. env is not used if environment_id is also passed.
this can be either a string or list
(default is None, environment_id is also not passed, which will defer to the environment to find a
default environment or will fail if not found)

	paths (list, optional) – list of absolute or relative filepaths and/or dirpaths to collect with destination names
(e.g. “/path/to/file>hello”, “/path/to/file2”, “/path/to/dir>newdir”)

	config (dict, optional) – provide the dictionary of configurations
(default is None, which means it is empty)

	stats (dict, optional) – provide the dictionary of relevant statistics or metrics
(default is None, which means it is empty)

	Returns

	returns a Snapshot entity as defined above

	Return type

	Snapshot

Examples

You can use this function within a project repository to save snapshots
for later use. Once you have created this, you will be able to view the
snapshot with the datmo snapshot ls cli command

>>> import datmo
>>> datmo.snapshot.create(message="my first snapshot", paths=["/path/to/a/large/file"], config={"test": 0.4, "test2": "string"}, stats={"accuracy": 0.94})

You can also use the result of a task run in order to create a snapshot

>>> datmo.snapshot.create(message="my first snapshot from task", task_id="1jfkshg049")

	
datmo.snapshot.delete(snapshot_id=None)

	Delete a snapshot within a project

The project must be created before this is implemented. You can do that by using
the following command:

$ datmo init

	Parameters

	snapshot_id (str) – snapshot id to be updated

	Returns

	returns a Snapshot entity

	Return type

	snapshot entity

Examples

You can use this function within a project repository to delete a snapshot.

>>> import datmo
>>> datmo.snapshot.delete(snapshot_id="4L24adFfsa")

	
datmo.snapshot.ls(filter=None)

	List snapshots within a project

The project must be created before this is implemented. You can do that by using
the following command:

$ datmo init

	Parameters

	filter (str, optional) – a string to use to filter from message and label
(default is to give all snapshots, unless provided a specific string. eg: best)

	Returns

	returns a list of Snapshot entities (as defined above)

	Return type

	list

Examples

You can use this function within a project repository to list snapshots.

>>> import datmo
>>> snapshots = datmo.snapshot.ls()

	
datmo.snapshot.update(snapshot_id=None, config=None, stats=None, message=None, label=None)

	Update a snapshot within a project

The project must be created before this is implemented. You can do that by using
the following command:

$ datmo init

	Parameters

	
	snapshot_id (str) – snapshot id to be updated

	config (dict, optional) – provide the dictionary of configurations to update
(default is None, which means it is not being updated)

	stats (dict, optional) – provide the dictionary of relevant statistics or metrics to update
(default is None, which means it is not being updated)

	message (str, optional) – a string to use as a new message for the snapshot
(default is the already given message to that snapshot, unless provided a specific string.)

	label (str, optional) – a string to use as a new label for the snapshot
(default is the already given label to that snapshot, unless provided a specific string.)

	Returns

	returns a Snapshot entity

	Return type

	snapshot entity

Examples

You can use this function within a project repository to update a snapshot.

>>> import datmo
>>> snapshots = datmo.snapshot.update(snapshot_id="4L24adFfsa", config={"depth": "10", "learning_rate": "0.91"},
... stats={"acc": "91.34", "f1_score": "0.91"}, message="new message", label="best")

Frequently Asked Questions

Q: What is the role of the datmo open source tool?

A: The open source project acts as a user-controlled project manager (available as both a CLI and Python SDK) that enables users to create, run, manage, and record all aspects of their experiments.

Q: Do I have to know how to use Docker to use Datmo?

A: Not at all! However, knowledge of Docker will be helpful for understanding how the environments are created and setup.

Environment Questions

Q: How can I add my own environments to be used with Datmo?

A: The environment setup command adds in a default environment provided by datmo in the datmo_environment directory. You can add in your own environment by modifying these files, or adding your own files to the datmo_environment directory (ie: Dockerfile, requirements.txt, package.json, etc). You can run a datmo environment create and use the environment ID at the time you run a task or run a workspace. You can also just directly run a task or workspace and Datmo will create a new environment from datmo_environment and will set the most recent environment that was setup as the default for running tasks.

Check out our guide full guide on Bringing Your Own Environment here.

Q: How does Datmo handle all of my different environments?

A: The default environment that will be used for running tasks at any given time is chosen by the Dockerfile that is present in the datmo_environment directory. The other environments locally available for your project, visible with $ datmo environment ls and can be selected by passing the environment ID in as a parameter at the time of a task run or workspace creation.

Q: I’ve made changes to the Dockerfile in my project, but the container environment isn’t changing too. Why is this?

A: When running a task, Datmo always looks first inside the datmo_environment directory. If an environment is not present there, it will then use a Dockerfile from the project’s root directory (if present). However, after the first run, Datmo creates an environment entity and Dockerfile that are replicas of the one used at the time of the initial run. Because of the priority of environment directories, Datmo will utilize the Dockerfile from the datmo_environment for subsequent runs, which means that changes to the original Dockerfile outside of datmo_environment will not appear in the environment Datmo has created/tracked. If you would like to change the environment, you can change it in the datmo_environment folder.

Q: Why does my environment have a different ID on different operating systems?

A: Environment IDs are unique hashes based on the content of the file(s). Due to differences in line separator characters on Windows and Linux/MacOS, this will cause the hashes to be different, despite the visible contents of the environment being the same. Windows utilizes \r\n, while Linux/MacOS use \n.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 datmo	

 	
 	
 datmo.cli	

 	
 	
 datmo.cli.main	

 	
 	
 datmo.cli.parser	

 	
 	
 datmo.cli.tests	

 	
 	
 datmo.cli.tests.test_main	

 	
 	
 datmo.config	

 	
 	
 datmo.dashboard	

 	
 	
 datmo.dashboard.app	

 	
 	
 datmo.logger	

 	
 	
 datmo.snapshot	

Index

 C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | R
 | S
 | T
 | U

C

 	
 	cache_setting() (datmo.config.Config static method)

 	code_id (datmo.snapshot.Snapshot attribute)

 	command_run() (datmo.cli.tests.test_main.TestMain method)

 	Config (class in datmo.config)

 	
 	config (datmo.logger.Logger attribute)

 	(datmo.snapshot.Snapshot attribute)

 	create() (in module datmo.snapshot)

 	create_alias() (in module datmo.dashboard.app)

 	created_at (datmo.snapshot.Snapshot attribute)

D

 	
 	datmo (module)

 	datmo.cli (module)

 	datmo.cli.main (module)

 	datmo.cli.parser (module)

 	datmo.cli.tests (module)

 	datmo.cli.tests.test_main (module)

 	
 	datmo.config (module)

 	datmo.dashboard (module)

 	datmo.dashboard.app (module)

 	datmo.logger (module)

 	datmo.snapshot (module)

 	delete() (in module datmo.snapshot)

E

 	
 	environment_id (datmo.snapshot.Snapshot attribute)

F

 	
 	file_collection_id (datmo.snapshot.Snapshot attribute)

 	
 	files (datmo.snapshot.Snapshot attribute)

G

 	
 	generate_hash() (in module datmo.dashboard.app)

 	
 	get_datmo_parser() (in module datmo.cli.parser)

 	get_files() (datmo.snapshot.Snapshot method)

H

 	
 	home() (in module datmo.dashboard.app)

I

 	
 	id (datmo.snapshot.Snapshot attribute)

 	
 	instance (datmo.config.Config attribute)

L

 	
 	label (datmo.snapshot.Snapshot attribute)

 	log_config() (datmo.logger.Logger method), [1]

 	log_result() (datmo.logger.Logger method)

 	
 	log_results() (datmo.logger.Logger method)

 	Logger (class in datmo.logger)

 	ls() (in module datmo.snapshot)

M

 	
 	main() (in module datmo.cli.main)

 	message (datmo.snapshot.Snapshot attribute)

 	model_deployment_data() (in module datmo.dashboard.app)

 	model_deployment_detail() (in module datmo.dashboard.app)

 	model_deployment_script_create() (in module datmo.dashboard.app)

 	
 	model_deployment_script_run() (in module datmo.dashboard.app)

 	model_deployments() (in module datmo.dashboard.app)

 	model_experiments() (in module datmo.dashboard.app)

 	model_id (datmo.snapshot.Snapshot attribute)

 	model_snapshots() (in module datmo.dashboard.app)

 	model_summary() (in module datmo.dashboard.app)

R

 	
 	results (datmo.logger.Logger attribute)

S

 	
 	setup_class() (datmo.cli.tests.test_main.TestMain method)

 	
 	Snapshot (class in datmo.snapshot)

 	stats (datmo.snapshot.Snapshot attribute)

T

 	
 	task_id (datmo.snapshot.Snapshot attribute)

 	teardown_class() (datmo.cli.tests.test_main.TestMain method)

 	test_init() (datmo.cli.tests.test_main.TestMain method)

 	test_run_ls() (datmo.cli.tests.test_main.TestMain method)

 	
 	test_snapshot_create() (datmo.cli.tests.test_main.TestMain method)

 	test_snapshot_ls() (datmo.cli.tests.test_main.TestMain method)

 	test_version() (datmo.cli.tests.test_main.TestMain method)

 	TestMain (class in datmo.cli.tests.test_main)

 	to_bytes() (in module datmo.cli.tests.test_main)

U

 	
 	update() (in module datmo.snapshot)

datmo.cli.main module

	
datmo.cli.main.main()

	

datmo.cli.parser module

	
datmo.cli.parser.get_datmo_parser()

	

datmo.cli.tests.test_main module

	
class datmo.cli.tests.test_main.TestMain

	
	
command_run(command)

	

	
setup_class()

	

	
teardown_class()

	

	
test_init()

	

	
test_run_ls()

	

	
test_snapshot_create()

	

	
test_snapshot_ls()

	

	
test_version()

	

	
datmo.cli.tests.test_main.to_bytes(val)

	

datmo.cli.tests package

Submodules

	datmo.cli.tests.test_main module

Module contents

datmo.cli package

Subpackages

	datmo.cli.tests package
	Submodules
	datmo.cli.tests.test_main module

	Module contents

Submodules

	datmo.cli.main module

	datmo.cli.parser module

Module contents

datmo.config module

	
class datmo.config.Config

	Bases: object

Datmo Config properties

	Parameters

	
	home (str) – project home directory

	damto_directory_name (str) – datmo directory name

	remote_credentials (tuple) –

	Returns

	Config Singleton

	Return type

	Config

	
static cache_setting(*args, **kwargs)

	

	
instance = <datmo.config.__InternalConfig instance>

	

datmo.dashboard.app module

	
datmo.dashboard.app.create_alias()

	

	
datmo.dashboard.app.generate_hash()

	

	
datmo.dashboard.app.home()

	

	
datmo.dashboard.app.model_deployment_data(model_name, deployment_version_id, model_version_id)

	

	
datmo.dashboard.app.model_deployment_detail(model_name, deployment_version_id, model_version_id)

	

	
datmo.dashboard.app.model_deployment_script_create(model_name, deployment_version_id, model_version_id)

	

	
datmo.dashboard.app.model_deployment_script_run(model_name, deployment_version_id, model_version_id)

	

	
datmo.dashboard.app.model_deployments(model_name)

	

	
datmo.dashboard.app.model_experiments(model_name)

	

	
datmo.dashboard.app.model_snapshots(model_name)

	

	
datmo.dashboard.app.model_summary(model_name)

	

datmo.dashboard package

Submodules

	datmo.dashboard.app module

Module contents

datmo.logger module

	
class datmo.logger.Logger(task_dir='/task')

	Logger is a class to enable user to store properties

	
config

	dictionary containing input or output configs from the run

	Type

	dict

	
results

	dictionary containing output results from the run

	Type

	dict

	
log_config(config)

	Saving the configuration dictionary for the run

	
log_results(results)

	Saving the result dictionary for the run

	Raises

	InvalidArgumentType

	
log_config(config)

	

	
log_result(results)

	

datmo package

Subpackages

	datmo.cli package
	Subpackages
	datmo.cli.tests package
	Submodules
	datmo.cli.tests.test_main module

	Module contents

	Submodules
	datmo.cli.main module

	datmo.cli.parser module

	Module contents

	datmo.dashboard package
	Submodules
	datmo.dashboard.app module

	Module contents

Submodules

	datmo.config module

	datmo.logger module

	datmo.snapshot module

Module contents

Bring in all of Datmo’s public python interfaces

datmo

	datmo package
	Subpackages
	datmo.cli package
	Subpackages

	Submodules

	Module contents

	datmo.dashboard package
	Submodules

	Module contents

	Submodules
	datmo.config module

	datmo.logger module

	datmo.snapshot module

	Module contents

 _static/up.png

_images/run-paradigm.png
Run (experiment)

Task
Snapshot s I Snapshot

(action)

(initial state) (final state)

_static/ajax-loader.gif

_images/run-diagram.png
Developer Interface

o

Data Scientists run their
experiments through datmo with

s

=

Task status is visible during the
duration of the experiment

© [l

Data scientists can compare,
analyze results, and re-run any
previous experiment

Under the Hood

Snapshot before
run [S1]

datmo keeps record of code, configuration,
environment, data files used for the analysis

v

docker container

python + sklearn +

xgboost + keras + R

datmo excutes code, inside isolated
environments using docker containers [R1]

v

Snapshot after

4—'— @ un [S2]

datmo keeps record of results and artifacts
linked to code, configuration, enviornment, and
data files used for the run

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to Datmo’s documentation!

 		
 Quickstart

 		
 Hello World

 		
 Spinning up a TensorFlow Jupyter Notebook

 		
 Workflows

 		
 Setting up your environment

 		
 Running an experiment

 		
 Creating a Snapshot

 		
 Tutorials

 		
 Datmo Concepts

 		
 Environments

 		
 Workspaces

 		
 Runs

 		
 Tasks

 		
 Snapshots

 		
 Setting Up Your Environment

 		
 Using a Default Environment

 		
 Adding to a Default Environment

 		
 Bringing Your Own Environment

 		
 Visualizing Snapshots

 		
 View all Snapshots within a project

 		
 Inspect a single Snapshot

 		
 Compare two Snapshots

 		
 Command Line Utility

 		
 commands

 		
 Sub-commands:

 		
 init

 		
 version

 		
 status

 		
 cleanup

 		
 dashboard

 		
 configure

 		
 notebook

 		
 jupyterlab

 		
 terminal

 		
 rstudio

 		
 run

 		
 ls

 		
 stop

 		
 delete

 		
 rerun

 		
 environment

 		
 snapshot

 		
 Python SDK

 		
 datmo.snapshot module

 		
 Frequently Asked Questions

 		
 Environment Questions

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

