
datatable Documentation
Release 0.8.0

Pasha Stetsenko

Mar 10, 2019

Getting started

1 Getting started 3
1.1 Install datatable . 3
1.2 Loading data . 3
1.3 Data manipulation . 4
1.4 What the f.? . 4
1.5 Groupbys / joins . 5
1.6 Offloading data . 6

2 Using datatable 7
2.1 Create Frame . 7
2.2 Convert a Frame . 7
2.3 Parse Text (csv) Files . 8
2.4 Write the Frame . 8
2.5 Save a Frame . 8
2.6 Basic Frame Properties . 8
2.7 Compute Per-Column Summary Stats . 8
2.8 Select Subsets of Rows/Columns . 9
2.9 Delete Rows/Columns . 9
2.10 Filter Rows . 9
2.11 Compute Columnar Expressions . 9
2.12 Sort Columns . 9
2.13 Perform Groupby Calculations . 10
2.14 Append Rows/Columns . 10

3 Installation 11
3.1 Requirements . 11
3.2 Install on Mac OS X . 11
3.3 Install on Linux . 11
3.4 Build from Source . 12
3.5 Troubleshooting . 13

4 Contributing 15

5 Have Questions? 17

6 Frame 19

i

7 Ftrl 27

8 FTRL 29
8.1 FTRL Model Information . 29
8.2 Create an FTRL Model . 29
8.3 FTRL Model Parameters . 29
8.4 Training a Model . 30
8.5 Resetting a Model . 30
8.6 Making Predictions . 30
8.7 Feature Importances . 31
8.8 Further Reading . 31

ii

datatable Documentation, Release 0.8.0

Data is everywhere. From the smallest photon interactions to galaxy collisions, from mouse movements on a screen
to economic developments of countries, we are surrounded by the sea of information. The human mind cannot com-
prehend this data in all its complexity; since ancient times people found it much easier to reduce the dimensionality,
to impose a strict order, to arrange the data points neatly on a rectangular grid: to make a data table.

But once the data has been collected into a table, it has been tamed. It may still need some grooming and exercise,
essentially so it is no longer scary. Even if it is really Big Data, with the right tools you can approach it, play with it,
bend it to your will, master it.

Python datatable module is the right tool for the task. It is a library that implements a wide (and growing) range
of operators for manipulating two-dimensional data frames. It focuses on: big data support, high performance, both
in-memory and out-of-memory datasets, and multi-threaded algorithms. In addition, datatable strives to achieve
good user experience, helpful error messages, and powerful API similar to R data.table’s.

Getting started 1

https://pypi.org/project/datatable/
https://github.com/h2oai/datatable/blob/master/LICENSE
https://travis-ci.org/h2oai/datatable

datatable Documentation, Release 0.8.0

2 Getting started

CHAPTER 1

Getting started

1.1 Install datatable

Let’s begin by installing the latest stable version of datatable from PyPI:

$ pip install datatable

If this didn’t work for you, or if you want to install the bleeding edge version of the library, please check the Installation
page.

Assuming the installation was successful, you can now import the library in a JupyterLab notebook or in a Python
console:

import datatable as dt
print(dt.__version__)

1.2 Loading data

The fundamental unit of analysis in datatable is a data Frame. It is the same notion as a pandas DataFrame or SQL
table: data arranged in a two-dimensional array with rows and columns.

You can create a Frame object from a variety of data sources: from a python list or dictionary, from a numpy array,
or from a pandas DataFrame.

DT1 = dt.Frame(A=range(5), B=[1.7, 3.4, 0, None, -math.inf],
stypes={"A": dt.int64})

DT2 = dt.Frame(pandas_dataframe)
DT3 = dt.Frame(numpy_array)

You can also load a CSV/text/Excel file, or open a previously saved binary .jay file:

3

datatable Documentation, Release 0.8.0

DT4 = dt.fread("~/Downloads/dataset_01.csv")
DT5 = dt.open("data.jay")

The fread() function shown above is both powerful and extremely fast. It can automatically detect parse parameters
for the majority of text files, load data from .zip archives or URLs, read Excel files, and much more.

1.3 Data manipulation

Once the data is loaded into a Frame, you may want to do certain operations with it: extract/remove/modify subsets
of the data, perform calculations, reshape, group, join with other datasets, etc. In datatable, the primary vehicle for
all these operations is the square-bracket notation inspired by traditional matrix indexing but overcharged with power
(this notation was pioneered in R data.table and is the main axis of intersection between these two libraries).

In short, almost all operations with a Frame can be expressed as

where is the row selector, is the column selector, and ... indicates that additional modifiers might be added. If this
looks familiar to you, that’s because it is. Exactly the same DT[i, j] notation is used in mathematics when indexing
matrices, in C/C++, in R, in pandas, in numpy, etc. The only difference that datatable introduces is that it allows to be
anything that can conceivably be interpreted as a row selector: an integer to select just one row, a slice, a range, a list
of integers, a list of slices, an expression, a boolean-valued Frame, an integer-valued Frame, an integer numpy array, a
generator, and so on.

The column selector is even more versatile. In the simplest case, you can select just a single column by its index
or name. But also accepted are a list of columns, a slice, a string slice (of the form "A":"Z"), a list of booleans
indicating which columns to pick, an expression, a list of expressions, and a dictionary of expressions. (The keys will
be used as new names for the columns being selected.) The expression can even be a python type (such as int or
dt.float32), selecting all columns matching that type.

In addition to the selector expression shown above, we support the update and delete statements too:

DT[i, j] = r
del DT[i, j]

The first expression will replace values in the subset [i, j] of Frame DT with the values from r, which could be
either a constant, or a suitably-sized Frame, or an expression that operates on frame DT.

The second expression deletes values in the subset [i, j]. This is interpreted as follows: if i selects all rows, then
the columns given by j are removed from the Frame; if j selects all columns, then the rows given by i are removed;
if neither i nor j span all rows/columns of the Frame, then the elements in the subset [i, j] are replaced with NAs.

1.4 What the f.?

You may have noticed already that we mentioned several times the possibility of using expressions in or and in other
places. In the simplest form an expression looks like

f.ColA

which indicates a column ColA in some Frame. Here f is a variable that has to be imported from the datatable module.
This variable provides a convenient way to reference any column in a Frame. In addition to the notation above, the
following is also supported:

f[3]
f["ColB"]

4 Chapter 1. Getting started

datatable Documentation, Release 0.8.0

denoting the fourth column and the column ColB respectively.

These f-expression support arithmetic operations as well as various mathematical and aggregate functions. For exam-
ple, in order to select the values from column A normalized to range [0; 1] we can write the following:

from datatable import f, min, max
DT[:, (f.A - min(f.A))/(max(f.A) - min(f.A))]

This is equivalent to the following SQL query:

SELECT (f.A - MIN(f.A))/(MAX(f.A) - MIN(f.A)) FROM DT AS f

So, what exactly is f? We call it a “frame proxy”, as it becomes a simple way to refer to the Frame that we currently
operate on. More precisely, whenever DT[i, j] is evaluated and we encounter an f-expression there, that f becomes
replaced with the frame DT, and the columns are looked up on that Frame. The same expression can later on be applied
to a different Frame, and it will refer to the columns in that other Frame.

At some point you may notice that that datatable also exports symbol g. This g is also a frame proxy; however it
already refers to the second frame in the evaluated expression. This second frame appears when you are joining two or
more frames together (more on that later). When that happens, symbol g is used to refer to the columns of the joined
frame.

1.5 Groupbys / joins

In the Data Manipulation section we mentioned that the DT[i, j, ...] selector can take zero or more modifiers,
which we denoted as The available modifiers are by(), join() and sort(). Thus, the full form of the
square-bracket selector is:

1.5.1 by(. . .)

This modifier splits the frame into groups by the provided column(s), and then applies and within each group. This
mostly affects aggregator functions such as sum(), min() or sd(), but may also apply in other circumstances. For
example, if is a slice that takes the first 5 rows of a frame, then in the presence of the by() modifier it will take the
first 5 rows of each group.

For example, in order to find the total amount of each product sold, write:

from datatable import f, by, sum
DT = dt.fread("transactions.csv")

DT[:, sum(f.quantity), by(f.product_id)]

1.5.2 sort(. . .)

This modifier controls the order of the rows in the result, much like SQL clause ORDER BY. If used in conjunction
with by(), it will order the rows within each group.

1.5.3 join(. . .)

As the name suggests, this operator allows you to join another frame to the current, equivalent to the SQL JOIN
operator. Currently we support only left outer joins.

1.5. Groupbys / joins 5

datatable Documentation, Release 0.8.0

In order to join frame X, it must be keyed. A keyed frame is conceptually similar to a SQL table with a unique primary
key. This key may be either a single column, or several columns:

X.key = "id"

Once a frame is keyed, it can be joined to another frame DT, provided that DT has the column(s) with the same name(s)
as the key in X:

DT[:, :, join(X)]

This has the semantics of a natural left outer join. The X frame can be considered as a dictionary, where the key
column contains the keys, and all other columns are the corresponding values. Then during the join each row of DT
will be matched against the row of X with the same value of the key column, and if there are no such value in X, with
an all-NA row.

The columns of the joined frame can be used in expressions using the g. prefix, for example:

DT[:, sum(f.quantity * g.price), join(products)]

Note: In the future, we will expand the syntax of the join operator to allow other kinds of joins and also to remove
the limitation that only keyed frames can be joined.

1.6 Offloading data

Just as our work has started with loading some data into datatable, eventually you will want to do the opposite:
store or move the data somewhere else. We support multiple mechanisms for this.

First, the data can be converted into a pandas DataFrame or into a numpy array. (Obviously, you have to have pandas
or numpy libraries installed.):

DT.to_pandas()
DT.to_numpy()

A frame can also be converted into python native data structures: a dictionary, keyed by the column names; a list of
columns, where each column is itself a list of values; or a list of rows, where each row is a tuple of values:

DT.to_dict()
DT.to_list()
DT.to_tuples()

You can also save a frame into a CSV file, or into a binary .jay file:

DT.to_csv("out.csv")
DT.save("data.jay")

6 Chapter 1. Getting started

CHAPTER 2

Using datatable

This section describes common functionality and commands that you can run in datatable.

2.1 Create Frame

You can create a Frame from a variety of sources, including numpy arrays, pandas DataFrames, raw Python objects,
etc:

import datatable as dt
import numpy as np
np.random.seed(1)
dt.Frame(np.random.randn(1000000))

import pandas as pd
pf = pd.DataFrame({"A": range(1000)})
dt.Frame(pf)

dt.Frame({"n": [1, 3], "s": ["foo", "bar"]})

2.2 Convert a Frame

Convert an existing Frame into a numpy array, a pandas DataFrame, or a pure Python object:

nparr = df1.to_numpy()
pddfr = df1.to_pandas()
pyobj = df1.to_list()

7

datatable Documentation, Release 0.8.0

2.3 Parse Text (csv) Files

datatable provides fast and convenient parsing of text (csv) files:

df = dt.fread("train.csv")

The datatable parser

• Automatically detects separators, headers, column types, quoting rules, etc.

• Reads from file, URL, shell, raw text, archives, glob

• Provides multi-threaded file reading for maximum speed

• Includes a progress indicator when reading large files

• Reads both RFC4180-compliant and non-compliant files

2.4 Write the Frame

Write the Frame’s content into a csv file (also multi-threaded):

df.to_csv("out.csv")

2.5 Save a Frame

Save a Frame into a binary format on disk, then open it later instantly, regardless of the data size:

df.save("out.jay")
df2 = dt.open("out.jay")

2.6 Basic Frame Properties

Basic Frame properties include:

print(df.shape) # (nrows, ncols)
print(df.names) # column names
print(df.stypes) # column types

2.7 Compute Per-Column Summary Stats

Compute per-column summary stats using:

df.sum()
df.max()
df.min()
df.mean()
df.sd()
df.mode()

(continues on next page)

8 Chapter 2. Using datatable

datatable Documentation, Release 0.8.0

(continued from previous page)

df.nmodal()
df.nunique()

2.8 Select Subsets of Rows/Columns

Select subsets of rows and/or columns using:

df[:, "A"] # select 1 column
df[:10, :] # first 10 rows
df[::-1, "A":"D"] # reverse rows order, columns from A to D
df[27, 3] # single element in row 27, column 3 (0-based)

2.9 Delete Rows/Columns

Delete rows and or columns using:

del df[:, "D"] # delete column D
del df[f.A < 0, :] # delete rows where column A has negative values

2.10 Filter Rows

Filter rows via an expression using the following. In this example, mean, sd, f are all symbols imported from
datatable.

df[(f.x > mean(f.y) + 2.5 * sd(f.y)) | (f.x < -mean(f.y) - sd(f.y)), :]

2.11 Compute Columnar Expressions

Compute columnar expressions using:

df[:, {"x": f.x, "y": f.y, "x+y": f.x + f.y, "x-y": f.x - f.y}]

2.12 Sort Columns

Sort columns using:

df.sort("A")
df[:, :, sort(f.A)]

2.8. Select Subsets of Rows/Columns 9

datatable Documentation, Release 0.8.0

2.13 Perform Groupby Calculations

Perform groupby calculations using:

df[:, mean(f.x), by("y")]

2.14 Append Rows/Columns

Append rows / columns to a Frame using:

df1.cbind(df2, df3)
df1.rbind(df4, force=True)

10 Chapter 2. Using datatable

CHAPTER 3

Installation

This section describes how to install H2O’s datatable.

3.1 Requirements

• Python 3.5+

3.2 Install on Mac OS X

Run the following command to install datatable on Mac OS X.

pip install datatable

3.3 Install on Linux

Run one of the following commands to retrieve the datatable whl file for Linux environments.

Python 3.5
pip install https://s3.amazonaws.com/h2o-release/datatable/stable/datatable-0.3.2/
→˓datatable-0.3.2-cp35-cp35m-linux_x86_64.whl

Python 3.6
pip install https://s3.amazonaws.com/h2o-release/datatable/stable/datatable-0.3.2/
→˓datatable-0.3.2-cp36-cp36m-linux_x86_64.whl

11

datatable Documentation, Release 0.8.0

3.4 Build from Source

The key component needed for building the datatable package from source is the Clang/Llvm distribution. The
same distribution is also required for building the llvmlite package, which is a prerequisite for datatable. Note
that the clang compiler which is shipped with MacOS is too old, and in particular it doesn’t have support for the
OpenMP technology.

3.4.1 Installing the Clang/Llvm distribution

1. Visit https://releases.llvm.org/download.html and download the most recent version of Clang/Llvm available
for your platform (but no older than version 4.0.0).

2. Extract the downloaded archive into any suitable location on your hard drive.

3. Create one of the environment variables LLVM4 / LLVM5 / LLVM6 (depending on the version of Clang/Llvm
that you installed). The variable should point to the directory where you placed the Clang/Llvm distribution.

For example, on Ubuntu after downloading clang+llvm-4.0.
0-x86_64-linux-gnu-ubuntu-16.10.tar.xz the sequence of steps might look like:

$ mv clang+llvm-4.0.0-x86_64-linux-gnu-ubuntu-16.10.tar.xz /opt
$ cd /opt
$ sudo tar xvf clang+llvm-4.0.0-x86_64-linux-gnu-ubuntu-16.10.tar.xz
$ export LLVM4=/opt/clang+llvm-4.0.0-x86_64-linux-gnu-ubuntu-16.10

You probably also want to put the last export line into your ~/.bash_profile.

3.4.2 Building datatable

1. Verify that you have Python 3.5 or above:

$ python --V

If you don’t have Python 3.5 or later, you may want to download and install the newest version of Python,
and then create and activate a virtual environment for that Python. For example:

$ virtualenv --python=python3.6 ~/py36
$ source ~/py36/bin/activate

2. Build datatable:

$ make build
$ make install
$ make test

3. Additional commands you may find occasionally interesting:

Uninstall previously installed datatable
make uninstall

Build a debug version of datatable (for example suitable for ``gdb``
→˓debugging)
make debug

(continues on next page)

12 Chapter 3. Installation

https://releases.llvm.org/download.html
https://releases.llvm.org/download.html

datatable Documentation, Release 0.8.0

(continued from previous page)

Generate code coverage report
make coverage

3.5 Troubleshooting

• If you get an error like ImportError: This package should not be accessible on
Python 3, then you may have a PYTHONPATH environment variable that causes conflicts. See this SO ques-
tion for details.

• If you see errors such as "implicit declaration of function 'PyUnicode_AsUTF8'
is invalid in C99" or "unknown type name 'PyModuleDef'" or "void function
'PyInit__datatable' should not return a value ", it means your current Python is Python
2. Please revisit step 1 in the build instructions above.

• If you are seeing an error 'Python.h' file not found, then it means you have an incomplete version
of Python installed. This is known to sometimes happen on Ubuntu systems. The solution is to run apt-get
install python-dev or apt-get install python3.6-dev.

• If you run into installation errors with llvmlite dependency, then your best bet is to attempt to install it
manually before trying to build datatable:

$ pip install llvmlite

Consult the llvmlite Installation Guide for additional information.

• On OS X, if you are getting an error fatal error: 'sys/mman.h' file not found or similar,
this can be fixed by installing the Xcode Command Line Tools:

$ xcode-select --install

3.5. Troubleshooting 13

https://stackoverflow.com/questions/42214414/this-package-should-not-be-accessible-on-python-3-when-running-python3
https://stackoverflow.com/questions/42214414/this-package-should-not-be-accessible-on-python-3-when-running-python3
http://llvmlite.pydata.org/en/latest/admin-guide/install.html

datatable Documentation, Release 0.8.0

14 Chapter 3. Installation

CHAPTER 4

Contributing

datatable is an open source project released under the Mozilla Public Licence v2. Open Source projects live by
their user and developer communities. We welcome and encourage your contributions of any kind!

No matter what your skill set or level of engagement is with datatable, you can help others by improving the
ecosystem of documentation, bug report and feature request tickets, and code.

We invite anyone who is interested to contribute, whether through pull requests, or tests, or GitHub issues, API
suggestions, or generic discussion.

15

datatable Documentation, Release 0.8.0

16 Chapter 4. Contributing

CHAPTER 5

Have Questions?

If you have questions about using datatable, post them on Stack Overflow using the [datatable] [python]
tags at http://stackoverflow.com/questions/tagged/datatable+python.

17

http://stackoverflow.com/questions/tagged/datatable+python

datatable Documentation, Release 0.8.0

18 Chapter 5. Have Questions?

CHAPTER 6

Frame

class datatable.Frame
Two-dimensional column-oriented table of data. Each column has its own name and type. Types may vary
across columns (unlike in a Numpy array) but cannot vary within each column (unlike in Pandas DataFrame).

Internally the data is stored as C primitives, and processed using multithreaded native C++ code.

This is a primary data structure for datatable module.

cbind()
Append columns of Frames frames to the current Frame.

This is equivalent to pandas.concat(axis=1): the Frames are combined by columns, i.e. cbinding a Frame
of shape [n x m] to a Frame of shape [n x k] produces a Frame of shape [n x (m + k)].

As a special case, if you cbind a single-row Frame, then that row will be replicated as many times as there
are rows in the current Frame. This makes it easy to create constant columns, or to append reduction results
(such as min/max/mean/etc) to the current Frame.

If Frame(s) being appended have different number of rows (with the exception of Frames having 1 row),
then the operation will fail by default. You can force cbinding these Frames anyways by providing option
force=True: this will fill all ‘short’ Frames with NAs. Thus there is a difference in how Frames with 1 row
are treated compared to Frames with any other number of rows.

Parameters

• frames (sequence or list of Frames) – One or more Frame to append. They
should have the same number of rows (unless option force is also used).

• force (boolean) – If True, allows Frames to be appended even if they have unequal
number of rows. The resulting Frame will have number of rows equal to the largest among
all Frames. Those Frames which have less than the largest number of rows, will be padded
with NAs (with the exception of Frames having just 1 row, which will be replicated instead
of filling with NAs).

colindex()
Return index of the column name.

19

datatable Documentation, Release 0.8.0

Parameters name – name of the column to find the index for. This can also be an index of a
column, in which case the index is checked that it doesn’t go out-of-bounds, and negative
index is converted into positive.

Raises ValueError – if the requested column does not exist.

copy()
Make a copy of this Frame.

This method creates a shallow copy of the current Frame: only references are copied, not the data itself.
However, due to copy-on-write semantics any changes made to one of the Frames will not propagate to the
other. Thus, for all intents and purposes the copied Frame will behave as if it was deep-copied.

countna()
Get the number of NA values in each column.

Returns

• A new datatable of shape (1, ncols) containing the counted number of NA

• values in each column.

countna1()

head()
Return the first n rows of the Frame, same as self[:n, :].

key
Tuple of column names that serve as a primary key for this Frame.

If the Frame is not keyed, this will return an empty tuple.

Assigning to this property will make the Frame keyed by the specified column(s). The key columns will
be moved to the front, and the Frame will be sorted. The values in the key columns must be unique.

ltypes
The tuple of each column’s ltypes (“logical types”)

materialize()

max()
Get the maximum value of each column.

Returns

• A new datatable of shape (1, ncols) containing the computed maximum

• values for each column (or NA if not applicable).

max1()

mean()
Get the mean of each column.

Returns

• A new datatable of shape (1, ncols) containing the computed mean

• values for each column (or NA if not applicable).

mean1()

min()
Get the minimum value of each column.

Returns

20 Chapter 6. Frame

datatable Documentation, Release 0.8.0

• A new datatable of shape (1, ncols) containing the computed minimum

• values for each column (or NA if not applicable).

min1()

mode()
Get the modal value of each column.

Returns

• A new datatable of shape (1, ncols) containing the computed count of

• most frequent values for each column.

mode1()

names
Tuple of column names.

You can rename the Frame’s columns by assigning a new list/tuple of names to this property. The length
of the new list of names must be the same as the number of columns in the Frame.

It is also possible to rename just a few columns by assigning a dictionary {oldname: newname,
...}. Any column not listed in the dictionary will retain its name.

Examples

>>> d0 = dt.Frame([[1], [2], [3]])
>>> d0.names = ['A', 'B', 'C']
>>> d0.names
('A', 'B', 'C')
>>> d0.names = {'B': 'middle'}
>>> d0.names
('A', 'middle', 'C')
>>> del d0.names
>>> d0.names
('C0', 'C1', 'C2')

ncols
Number of columns in the Frame

nmodal()
Get the number of modal values in each column.

Returns

• A new datatable of shape (1, ncols) containing the counted number of

• most frequent values in each column.

nmodal1()

nrows
Number of rows in the Frame.

Assigning to this property will change the height of the Frame, either by truncating if the new number of
rows is smaller than the current, or filling with NAs if the new number of rows is greater.

Increasing the number of rows of a keyed Frame is not allowed.

nunique()
Get the number of unique values in each column.

21

datatable Documentation, Release 0.8.0

Returns

• A new datatable of shape (1, ncols) containing the counted number of

• unique values in each column.

nunique1()

rbind(*frames, force=False, bynames=True)
Append rows of frames to the current Frame.

This is equivalent to list.extend() in Python: the Frames are combined by rows, i.e. rbinding a Frame of
shape [n x k] to a Frame of shape [m x k] produces a Frame of shape [(m + n) x k].

This method modifies the current Frame in-place. If you do not want the current Frame modified, then
append all Frames to an empty Frame: dt.Frame().rbind(frame1, frame2).

If Frame(s) being appended have columns of types different from the current Frame, then these columns
will be promoted to the largest of two types: bool -> int -> float -> string.

If you need to append multiple Frames, then it is more efficient to collect them into an array first and then
do a single rbind(), than it is to append them one-by-one.

Appending data to a Frame opened from disk will force loading the current Frame into memory, which
may fail with an OutOfMemory exception.

Parameters

• frames (sequence or list of Frames) – One or more Frame to append. These
Frames should have the same columnar structure as the current Frame (unless option force
is used).

• force (boolean, default False) – If True, then the Frames are allowed to have
mismatching set of columns. Any gaps in the data will be filled with NAs.

• bynames (boolean, default True) – If True, the columns in Frames are matched
by their names. For example, if one Frame has columns [“colA”, “colB”, “colC”] and the
other [“colB”, “colA”, “colC”] then we will swap the order of the first two columns of
the appended Frame before performing the append. However if bynames is False, then the
column names will be ignored, and the columns will be matched according to their order,
i.e. i-th column in the current Frame to the i-th column in each appended Frame.

replace()
Replace given value(s) replace_what with replace_with in the entire Frame.

For each replace value, this method operates only on columns of types appropriate for that value. For
example, if replace_what is a list [-1, math.inf, None, “??”], then the value -1 will be replaced in integer
columns only, math.inf only in real columns, None in columns of all types, and finally “??” only in string
columns.

The replacement value must match the type of the target being replaced, otherwise an exception will be
thrown. That is, a bool must be replaced with a bool, an int with an int, a float with a float, and a string with
a string. The None value (representing NA) matches any column type, and therefore can be used as either
replacement target, or replace value for any column. In particular, the following is valid: DT.replace(None,
[-1, -1.0, “”]). This will replace NA values in int columns with -1, in real columns with -1.0, and in string
columns with an empty string.

The replace operation never causes a column to change its logical type. Thus, an integer column will
remain integer, string column remain string, etc. However, replacing may cause a column to change its
stype, provided that ltype remains constant. For example, replacing 0 with -999 within an int8 column will
cause that column to be converted into the int32 stype.

Parameters

22 Chapter 6. Frame

datatable Documentation, Release 0.8.0

• replace_what (None, bool, int, float, list, or dict) – Value(s) to
search for and replace.

• replace_with (single value, or list) – The replacement value(s). If re-
place_what is a single value, then this must be a single value too. If replace_what is a list,
then this could be either a single value, or a list of the same length. If replace_what is a
dict, then this value should not be passed.

Returns

Return type Nothing, replacement is performed in-place.

Examples

>>> df = dt.Frame([1, 2, 3] * 3)
>>> df.replace(1, -1)
>>> df.to_list()
[[-1, 2, 3, -1, 2, 3, -1, 2, 3]]

>>> df.replace({-1: 100, 2: 200, "foo": None})
>>> df.to_list()
[[100, 200, 3, 100, 200, 3, 100, 200, 3]]

save(dest=None, format=’jay’, _strategy=’auto’)
Save Frame in binary NFF/Jay format.

Parameters

• dest – destination where the Frame should be saved.

• format – either “nff” or “jay”

• _strategy – one of “mmap”, “write” or “auto”

sd()
Get the standard deviation of each column.

Returns

• A new datatable of shape (1, ncols) containing the computed standard

• deviation values for each column (or NA if not applicable).

sd1()

shape
Tuple with (nrows, ncols) dimensions of the Frame

stypes
The tuple of each column’s stypes (“storage types”)

sum()
Get the sum of each column.

Returns

• A new datatable of shape (1, ncols) containing the computed sums

• for each column (or NA if not applicable).

sum1()

23

datatable Documentation, Release 0.8.0

tail()
Return the last n rows of the Frame, same as self[-n:, :].

to_csv(path=”, nthreads=0, hex=False, verbose=False, **kwargs)
Write the Frame into the provided file in CSV format.

Parameters

• dt (Frame) – Frame object to write into CSV.

• path (str) – Path to the output CSV file that will be created. If the file already exists,
it will be overwritten. If path is not given, then the Frame will be serialized into a string,
and that string will be returned.

• nthreads (int) – How many threads to use for writing. The value of 0 means to use all
available threads. Negative values mean to use that many threads less than the maximum
available.

• hex (bool) – If True, then all floating-point values will be printed in hex format (equiva-
lent to %a format in C printf). This format is around 3 times faster to write/read compared
to usual decimal representation, so its use is recommended if you need maximum speed.

• verbose (bool) – If True, some extra information will be printed to the console, which
may help to debug the inner workings of the algorithm.

to_dict()
Convert the Frame into a dictionary of lists, by columns.

Returns a dictionary with ncols entries, each being the colname: coldata pair, where colname is a string,
and coldata is an array of column’s data.

Examples

>>> DT = dt.Frame(A=[1, 2, 3], B=["aye", "nay", "tain"])
>>> DT.to_dict()
{"A": [1, 2, 3], "B": ["aye", "nay", "tain"]}

to_list()
Convert the Frame into a list of lists, by columns.

Returns a list of ncols lists, each inner list representing one column of the Frame.

Examples

>>> DT = dt.Frame(A=[1, 2, 3], B=["aye", "nay", "tain"])
>>> DT.to_list()
[[1, 2, 3], ["aye", "nay", "tain"]]

to_numpy(stype=None)
Convert Frame into a numpy array, optionally forcing it into a specific stype/dtype.

Parameters stype (datatable.stype, numpy.dtype or str) – Cast datatable
into this dtype before converting it into a numpy array.

to_pandas()
Convert Frame to a pandas DataFrame, or raise an error if pandas module is not installed.

24 Chapter 6. Frame

datatable Documentation, Release 0.8.0

to_tuples()
Convert the Frame into a list of tuples, by rows.

Returns a list having nrows tuples, where each tuple has length ncols and contains data from each respective
row of the Frame.

Examples

>>> DT = dt.Frame(A=[1, 2, 3], B=["aye", "nay", "tain"])
>>> DT.to_tuples()
[(1, "aye"), (2, "nay"), (3, "tain")]

25

datatable Documentation, Release 0.8.0

26 Chapter 6. Frame

CHAPTER 7

Ftrl

class datatable.models.Ftrl
Follow the Regularized Leader (FTRL) model with hashing trick.

See this reference for more details: https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf

Parameters

• alpha (float) – alpha in per-coordinate learning rate formula.

• beta (float) – beta in per-coordinate learning rate formula.

• lambda1 (float) – L1 regularization parameter.

• lambda2 (float) – L2 regularization parameter.

• nbins (int) – Number of bins to be used after the hashing trick.

• nepochs (int) – Number of epochs to train for.

• interactions (bool) – Switch to enable second order feature interactions.

alpha
alpha in per-coordinate FTRL-Proximal algorithm

beta
beta in per-coordinate FTRL-Proximal algorithm

colname_hashes
Column name hashes

feature_importances
One-column frame with the overall weight contributions calculated feature-wise during training and pre-
dicting. It can be interpreted as a feature importance information.

fit()
Train an FTRL model on a dataset.

Parameters

• X (Frame) – Frame of shape (nrows, ncols) to be trained on.

27

https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf

datatable Documentation, Release 0.8.0

• y (Frame) – Frame of shape (nrows, 1), i.e. the target column. This column must have a
bool type.

Returns

Return type None

interactions
Switch to enable second order feature interactions

labels
List of labels for multinomial regression.

lambda1
L1 regularization parameter

lambda2
L2 regularization parameter

model
Tuple of model frames. Each frame has two columns, i.e. z and n, and nbins rows, where nbins is a number
of bins for the hashing trick. Both column types are float64.

nbins
Number of bins to be used for the hashing trick

nepochs
Number of epochs to train a model

params
FTRL model parameters

predict()
Make predictions for a dataset.

Parameters X (Frame) – Frame of shape (nrows, ncols) to make predictions for. It must have
the same number of columns as the training frame.

Returns

• A new frame of shape (nrows, 1) with the predicted probability

• for each row of frame X.

reset()
Reset FTRL model and feature importance information, i.e. initialize model and importance frames with
zeros.

Parameters None –

Returns

Return type None

28 Chapter 7. Ftrl

CHAPTER 8

FTRL

This section describes the FTRL (Follow the Regularized Leader) model as implemented in datatable.

8.1 FTRL Model Information

The Follow the Regularized Leader (FTRL) model is a datatable implementation of the FTRL-Proximal online learning
algorithm for binomial logistic regression. It uses a hashing trick for feature vectorization and the Hogwild approach
for parallelization. FTRL for multinomial classification and continuous targets are implemented experimentally.

8.2 Create an FTRL Model

The FTRL model is implemented as the Ftrl Python class, which is a part of datatable.models, so to use the
model you should first do

from datatable.models import Ftrl

and then create a model as

ftrl_model = Ftrl()

8.3 FTRL Model Parameters

The FTRL model requires a list of parameters for training and making predictions, namely:

• alpha – learning rate, defaults to 0.005.

• beta – beta parameter, defaults to 1.0.

• lambda1 – L1 regularization parameter, defaults to 0.0.

29

https://research.google.com/pubs/archive/41159.pdf
https://en.wikipedia.org/wiki/Feature_hashing
https://people.eecs.berkeley.edu/~brecht/papers/hogwildTR.pdf

datatable Documentation, Release 0.8.0

• lambda2 – L2 regularization parameter, defaults to 1.0.

• nbins – the number of bins for the hashing trick, defaults to 1000000.

• nepochs – the number of epochs to train the model for, defaults to 1.

• interactions – whether to enable second order feature interactions, defaults to False.

If some parameters need to be changed, this can be done either when creating the model, as

ftrl_model = Ftrl(alpha = 0.1, nbins = 100, interactions = False)

or, if the model already exists, as

ftrl_model.alpha = 0.1
ftrl_model.nbins = 100
ftrl_model.interactions = False

If some parameters were not set explicitely, they will be assigned the default values.

8.4 Training a Model

Use the fit() method to train a model for a binomial logistic regression problem:

ftrl_model.fit(X, y)

where X is a frame of shape (nrows, ncols) to be trained on, and y is a frame of shape (nrows, 1) having
a bool type of the target column. The following datatable column types are supported for the X frame: bool, int,
real and str.

8.5 Resetting a Model

Use the reset() method to reset a model:

ftrl_model.reset()

This will reset model weights, but it will not affect learning parameters. To reset parameters to default values, you can
do

ftrl_model.params = Ftrl().params

8.6 Making Predictions

Use the predict() method to make predictions:

targets = ftrl_model.predict(X)

where X is a frame of shape (nrows, ncols) to make predictions for. X should have the same number of columns
as the training frame. The predict() method returns a new frame of shape (nrows, 1) with the predicted
probability for each row of frame X.

30 Chapter 8. FTRL

datatable Documentation, Release 0.8.0

8.7 Feature Importances

To estimate feature importances, the overall weight contributions are calculated feature-wise during training and pre-
dicting. Feature importances can be accessed as

fi = ftrl_model.feature_importances

where fi will be a frame of shape (nfeatures, 2) containing feature names and their importances, that are
normalized to [0; 1] range.

8.8 Further Reading

For detailed help, please also refer to help(Ftrl).

8.7. Feature Importances 31

datatable Documentation, Release 0.8.0

32 Chapter 8. FTRL

Index

A
alpha (datatable.models.Ftrl attribute), 27

B
beta (datatable.models.Ftrl attribute), 27

C
cbind() (datatable.Frame method), 19
colindex() (datatable.Frame method), 19
colname_hashes (datatable.models.Ftrl attribute), 27
copy() (datatable.Frame method), 20
countna() (datatable.Frame method), 20
countna1() (datatable.Frame method), 20

F
feature_importances (datatable.models.Ftrl at-

tribute), 27
fit() (datatable.models.Ftrl method), 27
Frame (class in datatable), 19
Ftrl (class in datatable.models), 27

H
head() (datatable.Frame method), 20

I
interactions (datatable.models.Ftrl attribute), 28

K
key (datatable.Frame attribute), 20

L
labels (datatable.models.Ftrl attribute), 28
lambda1 (datatable.models.Ftrl attribute), 28
lambda2 (datatable.models.Ftrl attribute), 28
ltypes (datatable.Frame attribute), 20

M
materialize() (datatable.Frame method), 20

max() (datatable.Frame method), 20
max1() (datatable.Frame method), 20
mean() (datatable.Frame method), 20
mean1() (datatable.Frame method), 20
min() (datatable.Frame method), 20
min1() (datatable.Frame method), 21
mode() (datatable.Frame method), 21
mode1() (datatable.Frame method), 21
model (datatable.models.Ftrl attribute), 28

N
names (datatable.Frame attribute), 21
nbins (datatable.models.Ftrl attribute), 28
ncols (datatable.Frame attribute), 21
nepochs (datatable.models.Ftrl attribute), 28
nmodal() (datatable.Frame method), 21
nmodal1() (datatable.Frame method), 21
nrows (datatable.Frame attribute), 21
nunique() (datatable.Frame method), 21
nunique1() (datatable.Frame method), 22

P
params (datatable.models.Ftrl attribute), 28
predict() (datatable.models.Ftrl method), 28

R
rbind() (datatable.Frame method), 22
replace() (datatable.Frame method), 22
reset() (datatable.models.Ftrl method), 28

S
save() (datatable.Frame method), 23
sd() (datatable.Frame method), 23
sd1() (datatable.Frame method), 23
shape (datatable.Frame attribute), 23
stypes (datatable.Frame attribute), 23
sum() (datatable.Frame method), 23
sum1() (datatable.Frame method), 23

33

datatable Documentation, Release 0.8.0

T
tail() (datatable.Frame method), 23
to_csv() (datatable.Frame method), 24
to_dict() (datatable.Frame method), 24
to_list() (datatable.Frame method), 24
to_numpy() (datatable.Frame method), 24
to_pandas() (datatable.Frame method), 24
to_tuples() (datatable.Frame method), 24

34 Index

	Getting started
	Install datatable
	Loading data
	Data manipulation
	What the f.?
	Groupbys / joins
	Offloading data

	Using datatable
	Create Frame
	Convert a Frame
	Parse Text (csv) Files
	Write the Frame
	Save a Frame
	Basic Frame Properties
	Compute Per-Column Summary Stats
	Select Subsets of Rows/Columns
	Delete Rows/Columns
	Filter Rows
	Compute Columnar Expressions
	Sort Columns
	Perform Groupby Calculations
	Append Rows/Columns

	Installation
	Requirements
	Install on Mac OS X
	Install on Linux
	Build from Source
	Troubleshooting

	Contributing
	Have Questions?
	Frame
	Ftrl
	FTRL
	FTRL Model Information
	Create an FTRL Model
	FTRL Model Parameters
	Training a Model
	Resetting a Model
	Making Predictions
	Feature Importances
	Further Reading

