

HEROES Academy: Data Structures, Winter 2017

Course Description

Computer Science is about computing data and solving problems.
In the “Introduction to Python” course, students learned how the syntax of Python worked.
In this course, we cover the basic and fundamental tools used to solve computational problems.
Students learn how to turn that syntax into a finely honed tool.

The course will start with looking at the computational concerns Computer Scientists
have about algorithms: space and time complexity.
We will use this as the basis for discussing recursion, linked lists, stacks,
queues, trees, search strategies, and sorting techniques.
The course will conclude with a practical tour of Python’s data structures,
grounding them in the theoretical underpinnings covered in the first 8 weeks.

How to Browse This Document

This document is intended to be a companion to the Data Structures course taught at Heroes Academy.
For more information about HEROES Academy, please visit it here [http://www.njgifted.org/course-view?course=data-structures].

Below and to the left you will find the sections of this document.
Each week there will be exercises to complete at home, as well as supplementary materials for further understanding and learning.
Data Strutures is a well-studied topic that consists of abstract data structures and their various implementations.
We will cover the broad range of abstract data structures without delving too deeply into any specific implementation.

Getting Started

	Course Information
	What is HEROES Academy?

	When does this course meet?

	How do I register for this course?

	What are the expectations of this course?

	How do I contact you?

	Installing Python
	Python Distribution

	An Editor

	General Resources
	Awesome stuff

	Online Books

	Debugging Help

	Interactive Coding Websites

	Online Code Environments

Course Contents

	[Week 1] Initialization
	Summary

	Terms

	Homework

	Lecture Slides

	[Week 2] Complexity
	Summary

	Exercises

	Lecture Slides

	[Week 3] Recursion
	Exercises

	Bonus

	Extra Resources

	Lecture Slides

	[Week 4] Linked Lists
	Exercises

	Lecture Slides

	[Week 5] More Linked Lists!

	[Week 6]: Stacks and Queues
	Summary

	Lecture Slides

	[Week 7] Binary Trees
	Summary

	Important terms

	Extra Resources

	Lecture Slides

	[Week 8] Problem Solving and Searching
	Summary

	Project Work

	[Week 9]: Projects
	Summary

	Project Prototype

	Presentation Template

Indices and tables

	Index

	Module Index

	Search Page

Course Information

What is HEROES Academy?

HEROES Academy is an intellectually stimulating environment where students’ personal growth is maximized by accelerated learning and critical thinking. Our students enjoy the opportunity to study advanced topics in classrooms that move at an accelerated pace.

When does this course meet?

Data Structures will meet from 11:30 to 1:30 pm on the following Sundays: January 10, 17, 24, 31; February 7, 21, 28; March 6, 13, 20.

How do I register for this course?

This course has already begun, but new courses are started at regular intervals!
The list of courses are listed on the HEROES website [http://www.njgifted.org/course-list-view].
If you have any questions about the process, you
can check out the HEROES Frequently Asked Questions [http://www.njgifted.org/page?name=faqs].

What are the expectations of this course?

I expect that...

	You will ask questions when you do not get something.

	You will keep up with the work.

	You will fail fast:

	Failing is good

	We learn when we fail

	We only find bugs when code fails; we rarely hunt for bugs when code is working

	You will not copy and paste code from the internet

	You are only cheating yourself.

	It won’t bother me if you do it, but you will not learn the material.

	You will try the homework at least once and email me with solutions or questions by Wednesday

How do I contact you?

You can contact me through the following email: bmcmahan@njgifted.org

Installing Python

Python Distribution

There are several ways to get Python.
You should have a flash drive with an installer.
In case you don’t, I recommend the Anaconda [https://www.continuum.io/downloads] distribution.
It has a bunch of things packaged with it above and beyond Python that make it useful.

An Editor

There are many good editors and IDEs (Integrated Development Environments).
I personally prefer editors, which are more minimalistic.
However, for beginners, I would highly recommend PyCharm [https://www.jetbrains.com/pycharm/download/].
If you download PyCharm, make sure you download the Community Edition.

Other than PyCharm, Sublime Text [https://sublimetext.com/] is very good and what I use.
Then, Github has their own editor that is very comparable to Sublime. It is called Atom [https://atom.io/].

General Resources

Awesome stuff

	Project Euler [https://projecteuler.net/archives]

Online Books

	Problem Solving with Algorithms and Data Structures [http://interactivepython.org/runestone/static/pythonds/index.html]

	How to think like a Computer Scientist [http://www.openbookproject.net/thinkcs/python/english3e/index.html]

	How to think like a Computer Scientist: Interactive Edition [http://interactivepython.org/runestone/static/thinkcspy/toc.html]

	A collection of links to Python guides [https://wiki.python.org/moin/BeginnersGuide/Programmers]

Debugging Help

	16 common Python runtime errors for Beginners [http://inventwithpython.com/blog/2012/07/09/16-common-python-runtime-errors/]

Interactive Coding Websites

I really enjoy websites that let you code and compete. My favorites are:

	Hackerrank [https://www.hackerrank.com/]

	Codewars [http://www.codewars.com/]

	CodinGame [https://www.codingame.com/start]

Online Code Environments

There are several places to run code online.
I really like Trinkets [https://trinket.io/] and will use them a lot in the curriculum.

I also like C9 as a more advanced environment.

[Week 1] Initialization

Summary

The general idea of data structures are to represent information in ways that make
certain operations easier or faster.
We briefly talked about why this matters: the complexity of algorithms.
Complexity is a very important concept to computer scientists and should always
be thought about while programming.

The important terms to remember are listed below.
Part of your homework is to write down what these mean in your own words.

In addition to introducing these topics, we also looked at hackerrank.com.
This is a website that provides a variety of programming problems.
You should complete at least 2 before next week.
For the 2 that you complete, you should think about why complexity is important to those problems.

Terms

	Algorithm

	Data Structure

	Search

	Sort

	Complexity

Homework

	Define the terms above in your own words

	Complete 2 programming problems on hackerrank.com, taking note of why complexity is important

Bonus: Get at least rank 5000 in the Python section.

Lecture Slides

 [Week 2] Complexity

[Week 2] Complexity

Summary

Today, we are going through the ideas underlying complexity.
We will look at some python code and how to time it to test for speed.

For fun, we will also be looking at this in the context of finding prime numbers!

Exercises

	How to time things

	Prime Numbers

	Bonus: Python structure basics

Lecture Slides

 [Week 3] Recursion

[Week 3] Recursion

Today we cover recursion!

Exercises

	Recursion exercises

Bonus

Solve some of the problems at Project Euler [https://projecteuler.net/archives].

Extra Resources

You will have the best luck if you run the following trinket full screen.

 [Week 4] Linked Lists

[Week 4] Linked Lists

Today we are covering linked lists! We will look at what they are, how they
function conceptually, and how a simple one can be implemented.

Exercises

We will go over things on the slide and in the exercises together.

	Test-Driven Code, Introductions, and Refreshers

	Linked Lists, Part 1

	Linked Lists, Part 2

Take home exercise to come either before, during, or after class.

Linked Lists

	Think CS chapter [http://www.openbookproject.net/thinkcs/python/english3e/linked_lists.html]

	Harvard CS50 [https://www.youtube.com/watch?v=5nsKtQuT6E8]

Recursion

	Think CS chapter [http://www.openbookproject.net/thinkcs/python/english3e/recursion.html]

	MIT Intro to CS [https://www.youtube.com/watch?v=WbWb0u8bJrU]

	Harvard CS50 [https://www.youtube.com/watch?v=t4MSwiqfLaY]

Lecture Slides

 [Week 5] More Linked Lists!

[Week 5] More Linked Lists!

Today we are practicing linked lists! There are no slides (see yesterday if you want to see the material again)

	Start here for the Week 5 Linked List Tutorial!

 [Week 6]: Stacks and Queues

[Week 6]: Stacks and Queues

Summary

Today, we are going through the slides first.

Then, when we are done with the lecture, there is a series of practice examples to go through:

	Week 6 Stack and Queue examples!

Lecture Slides

 [Week 7] Binary Trees

[Week 7] Binary Trees

Summary

Today we covered the basics of binary trees.

Important terms

	
	Graph: a data structure made out of nodes and edges

	
	you can think of the edges like roads

	the edges could have a direct (like one way streets)

	
	Node: In a graph, this is like a variable, it represents a piece of information

	
	you can also think of it as cities

	
	Edge: In a graph, edges connect two nodes

	
	you can also think of edges as roads

	
	Tree: a data structure with the following properties:

	
	there are no cycles (you can’t follow edges in a cirlce)

	there is a root node (the top most part of the tree)

	edges are called branches

	each node can have children

	the node with children is the children’s parent

	Root node: the topmost part of the tree

	Binary Trees: Each node can have at most 2 children

	Leaves: A leaf is the nodes in a tree with no children

	Binary Search Trees: each parent is larger than its left child and smaller than its right

Extra Resources

Online Books

	Think like a Computer Scientist [https://www.cs.swarthmore.edu/courses/cs21book/build/ch21.html]

Videos

	Harvard CS50 [https://www.youtube.com/watch?v=mFptHjTT3l8]

Lecture Slides

 [Week 8] Problem Solving and Searching

[Week 8] Problem Solving and Searching

Summary

Today we talked about how trees can be used to solve problems! As you click
through the tutorials below, you will see how you can think about each node
in a tree as being a setting of variables and each child is 1-step beyond the state.

For the take home work, you should work on the project work below. You don’t have
to have a working system by next week, but you should have a class which
can represent the problem (in the same way we represented Missionaries and Cannibals in the tutorial).
It should also have the set of possible moves, and a function which can generate
the next legal states.

Also, don’t forget, that there is a Binary Search Tree exercise on repl.it.
It’s ok if you don’t get it done, but please look at it and ask me questions
if there’s anything you don’t know.

Tutorial Pages

	Part 1: Introduction

	Part 2: State

	Part 3: Transitions

	Part 4: Searching

Project Work

During the next week, you should be thinking about what kinds of problems
you could solve with these techniques. The properties the problem should have
will be:

	Can be represented by a couple of variables

	Involves a series of steps to get to a solution

Here are some options to get you thinking about it:

	
	Towers of Hanoi

	
	There are pegs and a certain number of disks

	The goal is to have the tree be the sequences of moves that you can do

to solve the game

	
	Tic-Tac-Toe

	
	The blank game board has 9 open spaces

	Each move is a selection of a square and a mark

	The top root has 9 children, the second layer each has 8, and so on

	
	Nim or Chomp [https://en.wikipedia.org/wiki/Chomp]

	
	These are games where you have a set amount of things—in Nim, it’s stones or sticks,

and in Chomp it is pieces of candy.
+ You and another person are playing the game
+ Each person takes turns taking 1, 2, or 3 things
+ Whoever is forced to take the last thing loses
+ So, the problem solving programming for this problem would be to find
the series of selections you can use to win!

You can also look through these links and see if there is something you’d
like to try:

	River Crossing Puzzles [https://en.wikipedia.org/wiki/River_crossing_puzzle]

	Mathematical Games [https://en.wikipedia.org/wiki/Mathematical_game]

 [Week 9]: Projects

[Week 9]: Projects

Summary

We will start class by reviewing what we’ve covered these last 9 weeks.
Then, you will work on your projects! If you didn’t get a working
prototype over the week, the goal is to get one by the end of the class time.
See below for the project prototype requirements.

Project Prototype

The project is to implement a search for a problem of your choosing.
Last week we did Missionaries and Cannibals in class and I provided links
to some other options. These included tic-tac-toe, nim, and some others.

The important parts of the search are:

	
	The search state representation

	
	this should be some set of variables which represent the state of the game

	You should define both your start and your goal states.

	
	In the missionaries and cannibals, it was a tuple with three things:

	
	“how many missionaries on the right side”

	“how many cannibals on the right side”

	“how many boats on the right side”

	The start state was (3, 3, 1)

	The goal state was (0,0,0)

	In general, representing with tuples is a good easy first solution.

	
	The set of possible actions

	
	Given the way you represented the state, what are all the ways the state can change?

	This is usually determined by the rules of the game

	For example, in Missionaries and Cannibals, the rules were the you can only

have two people in a boat at one time.
- So, we could do the following actions in one boat trip:

	2 Missionaries, 0 Cannibals

	1 Missiionary, 0 Cannibals

	1 Missionary, 1 Cannibal

	0 Missionaries, 1 Cannibal

	0 Missionaries, 2 Cannibals

	We don’t mention the boat because it just changes sides to whichever side it wasn’t on

	
	To represent this as changes to our state, we can say each of these three moves is a tuple:

	
	(2,0)

	(1,0)

	(1,1)

	(0,1)

	(0,2)

	
	A rule for applying the actions to the state that results in a new state

	
	Given that you have your state and set of actions, there should be a rule

that you can turn into a function that determines the new state.
- For example, in missionaries and cannibals:

	If the boat is on the left side, then the action is to bring the specified people to the right

	If the boat is on the right side, then the action is to bring the specified people to the left

	So if the state is (3,3,1), the boat is on the right, and any actions will bring people to the left

	To bring people to the left, we subtract our move numbers

	So, the move (1,1), which is 1 missionary and 1 cannibal, will result in the state (2,2,0)

	If the boat were on the left side, we add our move numbers to the state because we are bringing people to the right

and the state represents the number of people on the right

	
	A test for illegal actions

	
	When are actions illegal?

	You might have to apply the actions to your state a couple of time to notice the possible illegal states

	It usually comes from possibilities that are outside of realistic situations

	
	For example, in Missionaries and Cannibals:

	
	if we were in the state (2,2,0), we still have the full set of actions available

	So we could pick the action (2,0) which means “2 missionaries use the boat”

	Since the boat is on the left side, we would add the number to our state

	This results in state (4,2,1).

	This state is clearly impossible!

	Given this example, you should just have a rule that tells you when things are impossible

	
	A test for losing states

	
	when is the state a losing state?

	
	In Missionaries and Cannibals, the state is a losing state when:

	
	there are more cannibals than missionaries on either side.

	
	A test for the winning state

	
	when is the state a winning state?

	In missionaries and cannibals, the winning state is (0,0,0)

So, to sum that up, you need:

	State Representation

	Action Representation

	Rule for applying actions to states

	Test for illegal actions

	Test for losing states

	Test for winning states

Given these things, the search is fairly simple.
Below is the example code from Missionaries and Cannibals.
When you implement your state code, this search code should also work for you.
It is the following steps:

	Create the initial root state

	Create the python data structures that are useful (to_search, seen-states, solutions)

	Loop until the to_search stack/queue is empty

	Get the next state

	Check to see if it’s a solution

	If it’s not a solution, look at the states that can follow it

	
	Add in any states we haven’t seen yet

	
	an example of a state that could repeat is just bringing 1 person back

and forth forever.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

	### this is the stack/queue that we used before
from collections import deque

create the root state
root = MCState.root()

we use the stack/queue for keeping track of where to search next
to_search = deque()

use a set to keep track fo where we've been
seen_states = set()

use a list to keep track of the solutions that have been seen
solutions = list()

start the search with the root
to_search.append(root)

while the stack/queue still has items
while len(to_search) > 0:

 ### get the next item
 current_state = to_search.pop()

 ### Test for Winning State
 if current_state.is_solution():
 ## this is a successful state!
 ## the state vars should be (0,0,0)

 ## Save it into our solutions list
 solutions.append(current_state)

 ## we don't really want to go through the rest of this loop
 ## continue will skip the rest of the loop and start at the top again
 continue

 ## look at the current state's children
 ## this uses the rule for actions and moves to create next states
 ## it is also removing all illegal states
 next_states = current_state.get_next_states()

 ## next_states is a list, so iterate through it
 for possible_next_state in next_states:

 ## to see if we've been here before, we look at the state variables
 possible_state_vars = possible_next_state.state_vars

 ## we use the set and the "not in" boolean comparison
 if possible_state_vars not in seen_states:

 # the state variables haven't been seen yet
 # so we add the state itself into the searching stack/queue

 #### IMPORTANT
 ## which side we append on changes how the search works
 ## why is this?
 to_search.append(possible_next_state)

 # now that we have "seen" the state, we add the state vars to the set.
 # this means next time when we do the "not in", that will return False
 # because it IS in
 seen_states.add(possible_state_vars)

finally, we reach this line when the stack/queue is empty (len(to_searching==))
print("Found {} solutions".format(len(solutions)))

Examples of Missionaries and Cannibals in iPython Notebooks

Presentation Template

You will give a presentation to your parents when we meet next week.
You will have time at the beginning of class to finish things up, but your presentation
is due to me that Friday.

Here is the presentation template [https://docs.google.com/presentation/d/1BhVcGhiUifG9GgATvY1EfhM-_MC87_2DALh5AysicZw/edit?usp=sharing]:

 Index

Index

 Week 8: Sorting

Week 8: Sorting

Summary

Today we covered the major sorting algorithms. We discussed how each sorting algorithm and how it navigates the list of items. Specifically, we went over how bubble sort will check each item as it moves up the list, while sorts like selection sort will assume the list before it is sorted. We also discussed the divide and conquer sorts like mergesort and quicksort. To finish off, we went over heaps and how heapsort and its operations work.

Homework

There are two options for homeworks:

Option 1

Take two of the sort algorithms from the slides and benchmark them. You should aim for benchmarking with a randomized, a sorted, and a reversely sorted list. The following code will help with this:

import random
test_numbers = list(range(1,10**10)
this shuffles in place; it does not return a copy of test_numbers
random.shuffle(test_numbers)

import time
start_time = time.time()
sort_function(test_numbers)
total_time = time.time() - start_time

print("The algorithm took {} seconds".format(total_time))

Option 2

Implement the heap data structure. There are resources below, and information in the slides. It should be a max-heap. It should turn a new array into a heap. It should then allow for inserts and pops.

Extra Resources

Lecture Slides

 Week 5: Stacks and Queues

Week 5: Stacks and Queues

Summary

We discussed linked lists, stacks, and queues.
We implemented a Linked List class using paired programming.

We also discussed how a linked list could be extended as a queue and stack.
Specifically, that a stack is a last-in-first-out implementation and queue is a first-in-first-out implementation.

Homework

I expect you to complete all of the following by next Sunday.

	Finish your recursive turtle implementation

	Finish the recursive solutions homework problems (the last slide of the week 3 slides)

	Make the LinkedList doubly linked.

	Implement a Stack and a Queue using the LinkedList as a template and base.

Extra Resources

Extra resources will be added here.

Lecture Slides

 Take Home Exercises

Take Home Exercises

Read through the lecture in the slides below. Recursive functions are functions which
have two cases: a base case and the recursive case. Consider the following:

	1
2
3
4
5

	 def recursive_add(x):
 if x == 1:
 return 1
 else:
 return 1 + recursive_add(x-1)

This is a simple and silly example, but it illustrates the point.

	Your homework is to write a function like this for the fibonacci series and for factorials:

	
	Recall that each fibonacci is the sum of the two before it. It starts out as 0, 1, 1, 2, 3, 5, etc. Write a function for recursively computing the nth fibonacci. Fo

	Recall that a factorial (written n!) is n * (n-1) * (n-2) * ... * 1. Write a recursive function that computes this. Hint: it is similar to the adding.

For a bonus, there is a recursion section at hackerrank under the Functional Programming section [https://www.hackerrank.com/domains/fp/recursion].

 Week 6: Trees

Week 6: Trees

Summary

We covered trees. We started with a basic implementation, discussed how they worked.
Specifically, we covered the standard tree terminology, and how they might get programmed. Then, we went through how they can be traversed and the difference in the types of searches through a tree.

Homework

You will be augmenting the code we had in class:

	1
2
3
4
5

	class Tree:
 def __init__(self, root, left=None, right=None):
 self.left = left
 self.right = right
 self.value = root

You should write methods for it to do the following:
1. Insert a number, following the binary search tree property

	Every left child should be smaller than its parent

	Every right child should be larger than its parent

	Search for a number with a tree that is full of the previous property

	Check if the current value is what you are looking for

	If it is not, then move onto the left or right child, depending on whether the number you are looking for is larger or smaller than the parent.

	You can write this as a non-recursive function if you’d like.

Extra Resources

Online Books

	Think like a Computer Scientist [https://www.cs.swarthmore.edu/courses/cs21book/build/ch21.html]

Videos

	Harvard CS50 [https://www.youtube.com/watch?v=mFptHjTT3l8]

Lecture Slides

 Week 10: Presentations

Week 10: Presentations

 [Exercise] Timing

[Exercise] Timing

Knowing the runtime of an algorithm can be analyzed through math. An easy way to
test and verify this math is to simulate a bunch of operations and record the time it takes.

For this, we need the time module.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	import time

def run():
 start = time.time()

 ### do some stuff

 end = time.time()

 total = end - start

 print("Start time: {}".format(start))
 print("End time: {}".format(end))
 print("Total time: {}".format(total))

run()

Fill in the code above and time the following operations

Looping with squaring:

	1
2
3
4
5
6
7

	def run():

 x = 0
 for i in range(1000):
 x += i ** 2

run()

Looping with list appending and lookup

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	def run():

 unique_list = list()
 repeated_list = list()

 for i in range(1000):
 if i in unique_list:
 repeated_list.append(i)
 else:
 unique_list.append(i)
 unique_list.append(i**2+i)
 unique_list.append(i**2+2*i)

run()

Advanced

You can write a function which takes the run and times it.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	import time

def time_it(func):

 start = time.time()

 func()

 end = time.time()

 total = end - start

 print("Start time: {}".format(start))
 print("End time: {}".format(end))
 print("Total time: {}".format(total))

def run0():
 x = 0
 for i in range(1000):
 x += i ** 2

def run1():

 unique_list = list()
 repeated_list = list()

 for i in range(1000):
 if i in unique_list:
 repeated_list.append(i)
 else:
 unique_list.append(i)
 unique_list.append(i**2+i)
 unique_list.append(i**2+2*i)

def run_all():
 print("going to run v0 now")

 time_it(run0)

 print("going to run v1 now")

 time_it(run1)

run_all()

 [Exercise] Card Deck 1.0

[Exercise] Card Deck 1.0

We are going to write a basic class that simulates a deck of cards.
We are going to use this class for several of our lessons.

First Steps

The first step is to get the skeleton of the class written

	1
2
3

	class CardDeck:
 def __init__(self):
 self.all_cards = list()

	Why create a list? Why not a set, tuple, or dict?

 [Exercise] Finding Prime Numbers

[Exercise] Finding Prime Numbers

Finding prime numbers is really important to many things in computer science.
Specifically, cryptography and encryption rely heavily on them to secretly encode messages!

Let’s look at how to find primes and their run times.

Naive Solution

The easiest way is to use a double loop and check for “primeness”

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	def run(max_number):
 # create list for saving the primes
 found_primes = []
 # loop over the numbers
 for first_number in range(2, max_number+1):
 # create a boolean to save the result
 is_prime = True
 # now go over all numbers smaller than it
 for second_number in range(2, first_number):
 if first_number % second_number == 0:
 is_prime = False

 if is_prime:
 found_primes.append(first_number)

 return found_primes

What is slow about this solution? What could be fixed? What can be taken out?

Exercise

Turn the most inner loop into a second function:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	def check_primeness(some_number):
 # write this part; for now just defaulting to false
 return False

def run(max_number):
 # create list for saving the primes
 found_primes = []
 # loop over the numbers
 for first_number in range(2, max_number+1):

 is_prime = check_primeness(first_number)
 if is_prime:
 found_primes.append(first_number)

Sieve of Eratosthenes

The Sieve of Eratosthenes is an ancient way of finding prime numbers.

The description is fairly simple:

	Start with a list of all numbers between 2 and the max number.

	
	Loop through the numbers, starting with 2.

	
	With each number, “mark” all of its multiples (for 2, it’d be 4, 6, 8, etc)

	Continue the loop with the next largest number not marked.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	def run(max_number):
 # create list of all numbers
 numbers = []
 for i in range(max_number):
 numbers.append(i)
 current_number = 2
 while current_number < max_number:

 # go through and mark 2*current_number, 3*current_number, etc
 for multiple in range(2, max_number):

 new_number = current_number * multiple
 if new_number < max_number:
 numbers[new_number] = -1

 # find the next "current_number"
 finding_next = True
 while finding_next and current_number < max_number:
 current_number += 1
 if numbers[current_number] != -1:
 finding_next = False

 for i in range(2, max_number):
 if numbers[i] != -1:
 print("{} is a prime number!".format(i))

What parts of this are slow? What parts are doing extra work that doesn’t need to be done?

Exercise

I have moved the code into separate functions. Use the fact that you can
return early to make the functions faster.

Hint: mark_multiples and get_next_number can both be made faster.

Hint: Determine when the function should be over, exit at that point.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	def mark_multiples(current_number, max_number, numbers):
 # go through and mark 2*current_number, 3*current_number, etc
 for multiple in range(2, max_number):

 new_number = current_number * multiple
 if new_number < max_number:
 numbers[new_number] = -1

def get_next_number(current_number, numbers):
 # find the next "current_number"
 finding_next = True
 while finding_next:
 current_number += 1
 if numbers[current_number] != -1:
 finding_next = False

 return current_number

def print_prime_list(numbers):
 for i in range(2, max_number):
 if numbers[i] != -1:
 print("{} is a prime number!".format(i))

def run(max_number):
 # create list of all numbers
 numbers = list(range(2, max_number))

 while current_number < max_number:

 mark_multiples(current_number, max_number, numbers)

 get_next_number(current_number, numbers)

 print_prime_list(numbers)

 Turtles

Turtles

Recursive turtles are really fun =).

First, though, set up a file and define a function which lets you make turtles really easily:

	1
2
3
4
5
6
7
8

	import turtle

def getbob():
 bob = turtle.Turtle()
 bob.left(90)
 bob.speed('fastest')
 jump(bob, 0,0)
 return bob

Next, I will show you some of the recursive turtles. Run them and play with the code.
Try and make your own!

Tree

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	def tree(t, length, branch_num, depth, width=90.0, ratio=2/3.):

 # make the pen size bigger if near top of the tree
 t.pensize(depth+1)
 # go forward for the trunk
 t.forward(length)
 # if not at the base case
 if depth > 0:
 # turn left half of the width
 t.left(width/2)

 # for each branch, make a subtree
 for x in range(branch_num-1):

 # the subtree!
 # new_length new_depth
 tree(t, length*ratio, branch_num, depth-1, width, ratio)

 # turn right to match the number of branches
 t.right(width/(branch_num-1))

 # do one final tree because the pattern was supposed to be
 # left, subtree, right, subtree, right, subtree, left
 # for 3 branches
 tree(t, length*ratio, branch_num, depth-1, width, ratio)

 t.left(width/2)

 # back up!
 t.backward(length)

def run_tree():
 bob = get_bob()

 length = 200
 branch = 2
 depth = 9
 angle = 140.
 reduc = 0.7

 tree(bob, length, branch, depth, angle, reduc)

Sierpinski

Sierpinksi triangles are really cool mathematical patterns!

	def sierpinski(t, length, depth, first=True):

	
	if first:

	t.setheading(0)

bob.color(‘black’, ‘black’)
bob.begin_fill()
for _ in range(3):

t.forward(length)
t.left(120)

	if depth > 0:

	sierpinski(t, length/2, depth-1, False)

bob.end_fill()

Snowflake

	def snowflakev2(t, n, d):

	
	if d == 0:

	return
t.forward(n)

	else:

	snowflakev2(t, n/3, d-1)
t.right(120)
t.forward(n)
snowflakev2(t, n/3, d-1)
return
for _ in range(3):

t.right(120)
snowflakev2(t, n/3, d-1)
t.forward(n / 3)

	def snowflake(t, n, d, mod=1):

	
	if d == 0:

	t.forward(n*mod)

	else:

	snowflake(t, n/3, d-1)
t.left(60)
snowflake(t, n/3, d-1)
t.right(120)
snowflake(t, n/3, d-1)
t.left(60)
snowflake(t, n/3, d-1)

def neat(bob):

bob.setheading(0)
bob.penup(); bob.setpos(-300,0); bob.pendown()
bob.begin_fill()
snowflake(bob, 700, 4)
bob.setheading(180)
snowflake(bob, 700, 4, -1)
bob.end_fill()

bob.color(‘black’, ‘purple’)
bob.setheading(0)
bob.penup(); bob.setpos(-140,0); bob.pendown()
bob.begin_fill()
snowflake(bob, 375, 4)
bob.setheading(180)
snowflake(bob, 375, 4, -1)
bob.end_fill()

bob.color(‘black’, ‘blue’)
bob.setheading(0)
bob.penup(); bob.setpos(-140*0.4666,0); bob.pendown()
bob.begin_fill()
snowflake(bob, 375*0.5357, 4)
bob.setheading(180)
snowflake(bob, 375*0.5357, 4, -1)
bob.end_fill()

	def carpet(t, l, d):

	
	for _ in range(4):

	t.forward(l/3)
t.left(90)

t.forward(l)

	if d > 0:

	t.penup()
t.forward(l/4)
t.left(90)
t.backward(l/4)
t.pendown()

	for _ in range(4):

	carpet(t, l/6, d-1)
t.penup()
t.forward((l/4 + l)/2)
t.pendown()
carpet(t, l/6, d-1)
t.penup()
t.forward((l/4 + l)/2)
t.pendown()
t.left(90)

 Your First Linked List

 [Week 4 Exercises] Linked Lists, part 1

You should have completed the introduction portion already. If not, go back and do that!

Your First Linked List

We will be writing a linked list class.
The class is going to represent the box you were drawing.
However, we are going to call the boxes “nodes”. This is a common computer science term.

	1
2
3
4
5
6
7

	class Node:
 def __init__(self, content):
 self.content = content
 self.next = None

 def set_next(self, next_node):
 self.next = next_node

Using this code, write a test which will create the linked list you made on paper.

You can test the code by doing the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	if __name__ == "__main__":
 ### create your linked list using nodes here
 ### i'm going to call the first item as "top_node"

 assert top_node.content == "the thing you expect it to be"

 top_node = top_node.next
 assert top_node.content == "the thing you expect the second thing to be"

 ## and so on until the last one, when there is no more, should be None
 ## this is because we set the `next` variable to be None in the __init__ of Node

 top_node = top_node.next
 assert top_node.content == None

 The Linked List Class

 [Week 4 Exercises] Linked Lists, part 2

You should have completed the intro and part 1 portions before this one.

You have now written a linked list using the Node class.
Also, you have written tests to make sure it works.

Now, we will look at how to write the managing class for the linked list.

Break into pairs to do this part.

The Linked List Class

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	class LinkedList:
 def __init__(self):
 self.top_node = None

 def add(self, content):
 new_node = Node(content)
 if self.top_node == None:
 ### place holder
 else:
 ### place holder

groceries = LinkedList()

groceries.add('potatoes')
groceries.add('strawberries')

This linked list class needs to be adding items into it. What should it be doing in the
add function?

	First, solve what happens in the if.

	Then, think about how you would solve the else portion.

We will wait until all groups have come to here.

If you finish it early, though, think about how you would do the following functions:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	class LinkedList:
 def __init__(self):
 self.top_node = None

 def delete(self, content):
 ''' delete any node that has this content '''

 def search(self, content):
 ''' return any node or nodes that match this content
 we can sometimes assume all contents are unique, so if you find it once,
 you can stop searching
 '''

 def max(self):
 ''' return the max item '''

 def min(self):
 ''' return the min item '''

 def insert_sorted(self, content):
 ''' if you wanted to keep the list sorted, how would you add this in? '''

 [Exercise] Python’s Data Structures

[Exercise] Python’s Data Structures

The complexity of an algorithm depends heavily on the data structure that’s being used.

Python has four main data structures. We’re going to go through them in this exercise.
You should take hand-written notes and make a cheat sheet for what they do,
and their speed with respect to different operations.

You should have already completed the timing exercise. You should use the timing
code you learned there to time the operations below.

Four Data Structures

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	# [0, 1, 2]
data0 = list()

(0, 1, 2)
data1 = tuple()

set([0,1,2])
data2 = set()

{"a": 0, "b": 1}
data3 = dict()

Operations

	Add to the data

	Find inside the data

	Iterate through the data

	Test for membership inside the data

I will show the operations below. You have to tell me how fast it is per operation.
In other words, if you add 100 numbers into a list, and it takes 3 seconds, that is 3/100 per operation.
Divide the time by the number of things you did.

You should also be timing for the four data structures separately.

Adding to the data

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	def run0():
 data0 = list()
 for i in range(1000):
 data0.append(i*10)

def run1():
 data1 = tuple()
 for i in range(1000):
 # the comma in the parenthesis makes python think it's a tuple
 temp_tuple = (i,)
 data1 = data1 + temp_tuple

def run2():
 data2 = set()
 for i in range(1000):
 data2.add(i)

def run3():
 data3 = dict()
 for i in range(1000):
 data3[i] = i * 10

Testing for membership

The code for testing for membership is below. After you fill each of the variables
full of numbers, do the same for loop and test for speed. An example for list is below.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	def run0():
 total_number = 1000
 data0 = list()
 for i in range(total_number):
 data0.append(i*10)

 finds = 0
 for i in range(total_number):
 if i in data0:
 finds += 1

 Week 3 Exercises: Recursion

Week 3 Exercises: Recursion

Recursion is super fun!

There are two sections: recursive functions to compute things and recursive functions to draw things!

Computing

For each of these problems, define the base case and the recursive case!
I’ve done the first one for you.

Find the Minimum of a List

Use a recursive function to find the mininum of a list.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	def minimum_of_list(some_list):
 # base case
 if len(some_list) == 1:
 # return that item!
 return some_list[0]
 #recursive case
 else:
 # get the length of the list
 n = len(some_list)
 # find the halfway point
 halfway = n // 2
 # use recursion to find the minimum of the left side
 min_left = minimum_of_list(some_list[:halfway])
 # use recursion to find the minimum of the right side
 min_right = minimum_of_list(some_list[halfway:])
 # return the smallest one
 if min_left < min_right:
 return min_left
 else:
 return min_right

def run():
 assert 1 == minimum_of_list([1,2,3])

 assert -10 == minimum_of_list([1,-10,3])

 assert 4 == minimum_of_list([10,20,4])

Test for a Palindrome

A palindrome is the same forwards as it is backwards.
There could be several ways to do this. One way:

	Check to see if the ends are the same
- some_string[0] == some_string[-1]

	Call the function on the string without the ends
- new_string = old_string[1:-1]

	The base case:
+ The string is empty or of length 1

	The recursive case
+ Check to see if the ends are equal
+ Check to see if the interior is a palindrome
+ return the and of the result

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	def is_palindrome(some_string):
 if len(some_string) <= 1:
 return True
 else:
 ### fill in code here

def run():
 assert is_palindrome('bob') == True # do I need to have the == though?

 assert is_palindrome('wow') # no!

 assert not is_palindrome('potato')

 assert is_palindrome('mirror image|egami rorrim')

Hailstone Sequence

A hailstone sequence is a sequence with the following operations:

For each number, if the number is even, the new number is that number divided by 2.
If it is odd, the new number is that number times 3 plus 1.
This is repeated until the new number is 1.

More precisely:

	1
2
3
4

	if n%2 == 0:
 n = n // 2
else:
 n = n*3 + 1

Write a function which computes the length of the hailstone sequence

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	def hailstone_length(n):
 #base case:
 if n == 1:
 return 1

def run():
 assert hailstone_length(1) == 1
 assert hailstone_length(2) == 2
 assert hailstone_length(3) == 8
 assert hailstone_length(4) == 3
 assert hailstone_length(5) == 6
 assert hailstone_length(6) == 9
 assert hailstone_length(7) == 17
 assert hailstone_length(8) == 4
 assert hailstone_length(9) == 20

 Merge Sort

Merge Sort

A top-down merge sort will take a list and do the following procedure:

	Check if the list is larger than length 1

	If it is, split at the best halfway point

	Call itself on each half.

4. Go through the halves, taking the smallest one each time, and add it
to the result.

Bottom-up merge sort:

	assume everything is already list size 1.

	queue everything up.

	merge the top two. add back to queue.

 Linked List Families, 3

Linked List Families, 3

Now that we have an idea about how the person line is going to work,
let’s write class that takes care of the entire line for us!

	1
2
3
4
5
6

	class PersonLine:
 def __init__(self):
 self.first_person = None

 def add_new_person(self, new_person):
 print("How do I add this person to the line?")

Above is the code for a line. We want to have a function which lets us
add new people to the line. To do this, we would have to check and see if there
is anyone in line. If there isn’t, it’s that person’s lucky break! They get to be
first!

If there is someone in line already, though, they have to get behind that person.
So, we should just tell the new person to get behind the first person in line.
If you did the last page correctly, the new person will keep going down
the line until they find a spot where they can stand.

If the function from the last page isn’t working though, then the new person is
just to budge and become the second person in line, no matter who is already there!

So, write the function to add the new person. This should be similar to the function
you wrote on the last page: there is only two possibilities!

You should test with this code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	george = Person("George Jetson")
jane = Person("Jane Jetson")
judy = Person("Judy Jetson")
elroy = Person("Elroy Jetson")

line = PersonLine()

line.add_new_person(george)
line.add_new_person(jane)
line.add_new_person(judy)
line.add_new_person(elroy)

person_after_jane = jane.next
print("{} is behind Jane!".format(person_after_jane.name))

this does the same thing as above
print("{} is behind George!".format(george.next.name))

if elroy.next == None:
 print("Elory is last line... he has no one behind him!")
else:
 print("{} is behind Elroy".format(elroy.next.name))

Once you are done, click here to go to the next page!

 Linked List Families!

Linked List Families!

What is a node again? Let’s see!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	class Node:
 def __init__(self, content):
 self.content = content
 self.next = None

 def set_next(self, next_node):
 self.next = next_node

 def get_next(self):
 return self.next

Your first job is to rewrite this class using different names!

	The class should be renamed to “Person”

2. the internal variable content should be renamed to
name
3. rename set_next to be set_next_person.
4. inside set_next, the variable next_node should be renamed to
next_person

We are going to use this class to represent the Jetsons standing in line!
It should pass the following test:

	1
2
3
4
5
6

	george = Person("George Jetson")
jane = Person("Jane Jetson")
judy = Person("Judy Jetson")

george.set_next_person(jane)
jane.set_next_person(judy)

What would happen if we did the following?

	1
2

	elroy = Person("Elroy Jetson")
jane.set_next_person(elroy)

When you have finished the code above and can answer this question,
click here to go to the next page. The answer is there, so don’t peak!

 Linked List Families, 4

Linked List Families, 4

Now that you have a PersonLine that works, let’s try a new challenge.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	class PersonLine:
 def __init__(self):
 self.first_person = None

 def add_new_person(self, new_person):
 if self.first_person == None:
 self.first_person = new_person
 else:
 self.first_person.set_next_person(new_person)

 def add_to_end_of_line(self, new_person):
 print("How could you add someone to the end of the line directly?")

Take a look at the above code. Let’s say we want to just add people to the back
of the line directly without having to have them go and talk to everyone in the line just to
find the back!

You can do thsi by keeping a second variable. Not just the first person, but
also the last person!

So, create a variable for the last person inside the init function.
Then, whenever a new person comes in, they become the new last person.
Now, instead of telling the first person to handle the new person,
you can just keep telling the LAST person to handle the next person.

 Linked List Families, 2

Linked List Families, 2

So, did you answer that Elroy would cut in front of Jane and that
Jane would no longer be connected?

Let’s look at why:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	class Person:
 def __init__(self, name):
 self.name = name
 self.next = None

 def set_next_person(self, next_person):
 self.next = next_person

george = Person("George Jetson")
jane = Person("Jane Jetson")
judy = Person("Judy Jetson")

george.set_next_person(jane)
jane.set_next_person(judy)

elroy = Person("Elroy Jetson")
jane.set_next_person(elroy)

You can see that self.next is equal to whichever Person
is given to Jane’s function set_next_person. So, that makes Elroy
the next person because he was the last one to do it!

What would we have to do to make it so that Elroy couldn’t cut in line?
The best way is to have Jane’s the set_next_person check to see if there’s a person
behind them yet. If there isn’t, then the new person gets to stand behind Jane!

IF there is a person standing behind Jane (like Judy), then Jane should make the
new person stand behind the person already there!

To say it more like a computer scientist: inside the set_next_person function,
if the self.next variable is empty (equal to None), then you can set self.next
as the new person. But, if it isn’t None, that means you have to have next_person
go to the back of the line. You can do this by calling the set_next_person on
the self.next!

You should code this. Hint: It is an if statement. There are two possibilities, described in the last
paragraph. You should test for these possibilites and do the correct action!

Once you have done that, click here to go to the next page!

 Stacks and Queues, Part 1

Stacks and Queues, Part 1

Today we will be talking about stacks and queues!
They are the two most common data structures.

Since you have looked at linked lists and how to add things to the front
and to the back, you mostly know how this works!

collections.deque

Today, instead of writing our own class to do the basic operations,
we are going to work with python’s stack and queue data structure, deque.

	1

	from collections import deque

deque is just like our PersonLine from last week in that it
lets us add new things at the front or the next of the line.

Historically, there are special names for adding and removing from lines: push
and pop. In Python, they still call it pop, but pushing is called append.

Let’s look at some examples. In these examples, there are two main functions:
append which adds to the right side of the line and
pop which removes the person from the right and returns that value.
There are also versions of these two functions for the left side:
appendleft and popleft

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	from collections import deque

line = deque()

line.append("Bob")
line.append("Sally")
line.append("Larry")
line.append("Julia")

who is at the front of the line?
who will get removed if I call line.pop()?
what if I call line.popleft()?

person1 = line.pop()
print("From line.pop(): {}".format(person1))

person2 = line.popleft()
print("From line.popleft(): {}".format(person2))

Click here for the next page.
Don’t go on until you have guessed the answer!

 Stacks and Queues, Part 5

Stacks and Queues, Part 5

These parts are bonus if you get this far =)

Stacks and Recursion

Stacks are how a computer represents recursion. Everytime the recursive function
is called, it places the current call onto a virtual stack. Then, when that
function is over, the next active call is retrieved by getting the top of the stack.
Let’s look at this with fibonacci.

Example: Fibonacci Stack

For a fibonacci stack, let’s first remember how the recursive version looked.

	1
2
3
4
5
6
7

	def recursive_fibonacci(current_n):
 if current_n == 0 or current_n == 1:
 return current_n
 else:
 n_minus_one = recursive_fibonacci(current_n - 1)
 n_minus_two = recursive_fibonacci(current_n - 2)
 return n_minus_one + n_minus_two

Everytime the code makes a recursive call, the state of the function is saved
and put onto a stack. Then, after it finishes (the return statement), that state
is retrieved by popping the stack.

Let’s look at the implementation with a stack. You will be asked a couple questions
afterward.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	from collections import deque

def stack_fibonacci(starting_n):
 stack = deque()
 total = 0

 stack.append(starting_n)

 while len(stack) > 0:
 next_n = stack.pop()
 if next_n == 0 or next_n == 1:
 total += next_n
 else:
 stack.append(next_n - 1)
 stack.append(next_n - 2)
 return total

As this while loop iterates, the stack and the variables next_n and total
will have different values.

Now you will be doing a write-up. You will trace through the code and write down
the value of the variables at each loop. The write-up details are as follows:

	There are 5 function calls which change the starting_n. These are below.

	At the end of the while loop, the state is the value each of the variables has.

	For each function call, write down the state for each time through the while loop.

	
	A stack can be written like a list, where the first item is the deepest part.

	
	So, [2,3,4] is a stack with 4 at the top, 3 in the middle, and 2 at the bottom

	the next pop would remove 4 from the stack.

	If you were to push 5 onto the stack without popping 4, you would have [2,3,4,5]

	1
2

	for i in range(1, 5):
 print("{}: {}".format(stack_fibonacci(1))

I will do 6 for you:

	1

	stack_fibonacci(6)

	Initially::

	stack = empty
total = 0

	Then, starting_n is pushed onto the stack::

	stack = [6]

When you write yours for 1-5, you can start at that point.

Loop 0:

next_n = 6
remember, add next_n-1 THEN next_n-2
stack = [5, 4]
total = 0

Loop 1:

next_n = 4
remember, add next_n-1 THEN next_n-2
stack = [5, 3, 2]
total = 0

Loop 2:

next_n = 2
remember, add next_n-1 THEN next_n-2
stack = [5, 3, 1, 0]
total = 0

Loop 3:

next_n = 0
now, it is 0, so add it to total. except adding 0 is a waste! oh well..
maybe we could have made it faster and checked for 0 BEFORE adding
stack = [5, 3, 1]
total = 0 + 0

Loop 4:

next_n = 1
now it is a 1! So add it to total
stack = [5, 3]
total = 0 + 1 = 1

Loop 5:

next_n = 3
remember, add next_n-1 THEN next_n-2
stack = [5, 2, 1]
total = 1

Loop 6:

next_n = 1
a 1 adds into total
stack = [5, 2]
total = 2

Loop 7:

next_n = 2
a 1 adds into total
stack = [5, 1, 0]
total = 2

Loop 8:

next_n = 0
a 0 adds into total
stack = [5, 1]
total = 2 + 0

Loop 9:

next_n = 1
a 1 adds into total
stack = [5]
total = 2 + 1

Loop 10:

next_n = 5
5 is removed from the stack and adds 4, 3
stack = [4, 3]
total = 3

Loop 11:

next_n = 3
3 is removed from the stack, adds 2, 1
stack = [4, 2, 1]
total = 3

Loop 12:

next_n = 1
a 1 adds into total
stack = [4, 2]
total = 3 + 1

Loop 13:

next_n = 2
a 2 is removed from the stack, adds 1, 0
stack = [4, 1, 0]
total = 4

Loop 14:

next_n = 0
a 0 adds into total
stack = [4, 1]
total = 4

Loop 15:

next_n = 1
a 1 adds into total
stack = [4]
total = 4 + 1

Loop 16:

next_n = 4
a 4 is removed from the stack, adds 3, 2
stack = [3, 2]
total = 5

Loop 17:

next_n = 2
a 2 is removed from the stack, adds 1, 0
stack = [3, 1, 0]
total = 5

Loop 18:

next_n = 0
a 0 is added into total
stack = [3, 1]
total = 5 + 0

Loop 19:

next_n = 1
a 1 is added into total
stack = [3]
total = 5 + 1

Loop 20:

next_n = 3
a 3 is removed from the stack, adds 2, 1
stack = [2, 1]
total = 6

Loop 21:

next_n = 1
a 1 is added to the total
stack = [2]
total = 6 + 1

Loop 22:

next_n = 2
a 2 is removed from the stack, adds 1, 0
stack = [1,0]
total = 7

Loop 23:

next_n = 0
a 0 is added to the total
stack = [1]
total = 7 + 0

Loop 25:

next_n = 1
a 1 is added to the total
stack = []
total = 7 + 1 = 8

At this point, the while loop ends and total is returned, which is 8!

 Stacks and Queues, Part 3

Stacks and Queues, Part 3

A Queue

The PersonLine that we have been talking about this whole time is a queue.

We should have discussed this in the slides, but to recover the material:

A Queue is a sequence of items (like the PersonLine) where new items
can join the back of the line, and old items are taken off the front of the line.
This makes a Queue as First In, First Out (FIFO) data structure. FIFO is extremely important
to remember! I will ask you about it many times =).

A Stack

A stack is very similar to a queue, but instead of adding to the back of the line,
it adds to the front of the line! This is very useful in many different
features of computers. One you use every day is your browser history! When
you the back-button, you are actually going to the last thing that was pushed onto the stack!

Because Stacks remove from and add to the front, they are called Last In, First Out (LIFO)
data structures. Some other things that are LIFO: when you make edits and hit the
undo-button, when you put cups into a cupboard (you use the front ones first!), or
when you take a plate off of a stack of plates (the bottom one was the first to be
put down!).

Reversing Strings

Let’s look at how we use a stack to reverse a string (or any list in python).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	from collections import deque

def reverse(in_string):
 stack = deque()

 ### let's use integer indexing to get each character

 num_letters = len(in_string)

 for index in range(num_letters):
 current_letter = in_string[index]
 # <here>
 ### remove the previous line and put code there that
 ### puts the current_letter onto the top of the stack

 print("Stack after pushing all letters onto it: {}".format(stack))

 ### create a blank string to collect the reverse letters
 out_string = ""

 ### the while loop will end when there is nothing left to pop
 while len(stack) > 0:
 ### get the top item off the stack
 ### finish this line:
 next_letter =
 out_string += next_letter

 print("Our reversed string: {}".format(out_string))

reverse("supercalifragilisticexpialidocious")

When you have finished with this, go on to Part 4.

 Stacks and Queues, Part 2

Stacks and Queues, Part 2

Example from last page

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from collections import deque

line = deque()

line.append("Bob")
line.append("Sally")
line.append("Larry")
line.append("Julia")

who is at the front of the line?
who will get removed if I call line.pop()?
what if I call line.popleft()?

person1 = line.pop()
print("From line.pop(): {}".format(person1))
This will print "From line.pop(): Julia"

person2 = line.popleft()
print("From line.popleft(): {}".format(person2))
This will print "From line.popleft(): Bob"

Wrappers

What is a wrapper?

A wrapper is a class which provides functions that you want and accomplishes those
functions by using something else. For example, we could rewrite our
PersonLine class which used the deque to manage the line!

In fact, we will!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	from collections import deque

class Person:
 def __init__(self, name):
 self.name = name

class PersonLine:
 def __init__(self):
 self.line = deque()

 def add_new_person(self, new_person):
 self.line.append(new_person)

 def get_first_person(self):
 print("what should go here?")

tests

george = Person("George Jetson")
jane = Person("Jane Jetson")
judy = Person("Judy Jetson")

line = PersonLine()
line.add_new_person(george)
line.add_new_person(jane)
line.add_new_person(judy)

first_in_line = line.get_first_person()

print("{} is first in line!".format(first_in_line.name))

Now we have a PersonLine which lets us add people to the back of the line
and get people from the front of the line!

But what code goes in the function get_first_person? Hint: it should
return a value and it should get that value from the self.line!

When you have finished this function, you can go onto Part 3.

 Stacks and Queues, Part 4

Stacks and Queues, Part 4

Checking Validity

We can also use a stack to check the validity of a math expression.
For this, we want to know: are the parenthesis balanced.
For example, is (5+5 balanced? What about 3 / (4 * (2+4))

These are easy to check with a stack. The procedure is as follows:

	Start a for loop over the input string

	Every time you see a left parentheses, ‘(‘, push it onto the stack.

	Every time you see a right parentheses, ‘)’, pop it from the stack.

	If the loop ends and there are items left on the stack, that means it’s not valid! (there are too many left parentheses)

	If you see a right parentheses and the stack is empty, it means it’s not valid! (there are too many right parentheses)

Finish the function below to accomplish this. We will use indexing again.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	from collections import deque

def validity_checking(in_string):

 stack = queue()

 num_characters = len(in_string)

 for index in range(num_characters):
 current_character = in_string[index]

assert validity_checking("(x)") == True
assert validity_checking("((y)") == False
assert validity_checking("(z))") == False

assert validity_checking("((a))") == True
assert validity_checking("((a+b)))") == False
assert validity_checking("(((42)") == False

When you have finished with this, go on to Part 5.

 Stacks and Queues, part 6

Stacks and Queues, part 6

Potential extras:

	
	Undo Turtle:

	
	create a class which has functions that move a turtle by binding them to keyboard or mouse presses.
for each time an action happens, save an undo-stack. then, let the user hit an undo button to reverse the changes.

	
	Simulation Queue:

	
	write a simulator that uses a queue to schedule the events as they happen

	Load data and store in queue or stack

	Prefix/Postfix/Infix notation

	For after trees, but DFS and BFS.

 Trees, Part 1

Trees, Part 1

Today, we are going to be covering trees.

Let’s look at a basic tree:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	class Tree:
 def __init__(self, value, left=None, right=None):
 self.left = left
 self.right = right
 self.value = value

carl = Tree("Carl")
jane = Tree("Jane")
delip = Tree("Delip")

carl.left = jane
carl.right = delip

We can picture this as a family tree. Delip and Jane are Carl’s parents.

We can also picture this as how we think about information:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	class Tree:
 def __init__(self, value, left=None, right=None):
 self.left = left
 self.right = right
 self.value = value

main_task = Tree("get a new computer")
subtask1 = Tree("get a job")
subtask2 = Tree("pick a good computer")
main_task.left = subtask1
main_task.right = subtask2

 Trees, Part 3

Trees, Part 3

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	.. code-block:: python
:linenos:

class Tree:
 def __init__(self, value):
 self.left = None
 self.right = None
 self.value = value

 def add_tree(self, child):
 if self.right == None:
 self.right = child
 else:
 self.right.add_tree(child)

 def add_value(self, value):
 child = Tree(value)
 self.add_tree(child)

 def is_in(self, value):
 if self.value == value:
 return True
 if self.right != None:
 if self.right.is_in(value):
 return True
 if self.left != None:
 if self.left.is_in(value);
 return True

top = Tree("A")
top.add_value("B")
top.add_value("C")
top.add_value("D")
top.add_value("E")

 Trees, Part 4

Trees, Part 4

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	.. code-block:: python
:linenos:

class Tree:
 def __init__(self, value):
 self.left = None
 self.right = None
 self.value = value

 def add_right(self, child):
 if self.right == None:
 self.right = child
 else:
 self.right.add_tree(child)

 def add_left(self, child):
 if self.left == None:
 self.left = child
 else:
 self.left.add_tree(child)

 def add_tree(self, child):
 if child.value < self.value:
 self.add_left(child)
 else:
 self.add_right(child)

 def add_value(self, value):
 child = Tree(value)
 self.add_tree(child)

 def is_in(self, value):
 if self.value == value:
 return True
 if self.right != None:
 if self.right.is_in(value):
 return True
 if self.left != None:
 if self.left.is_in(value);
 return True

top = Tree("A")
top.add_value("B")
top.add_value("C")
top.add_value("D")
top.add_value("E")

 Trees, Part 2

Trees, Part 2

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	.. code-block:: python
:linenos:

class Tree:
 def __init__(self, value, children=None):
 if children == None:
 children = []
 self.children = children
 self.value = value

 def add_tree(self, child):
 self.children.append(child)

 def add_value(self, value):
 child = Tree(value)
 self.children.append(child)

 def is_in(self, value):
 if self.value == value:
 return True
 for child in self.children:
 if child.is_in(value):
 return True
 return False

top = Tree("A")
top.add_value("B")
top.add_value("C")
top.add_value("D")
top.add_value("E")

 State

State

The choices that go into representing a state should cover the possible
the possible variables that change.

Note: we are going to use classes in our representations. It makes things
easier to think about and is easy to read.

Below is a class for representing the state.
It is also going to be a node in a tree, where each child is
the next possible move and each parent is the previous move.

	1
2
3
4
5
6
7
8

	class MCState:
 ### MC is missionaries and cannibals
 def __init__(self, state_vars, num_moves=0, parent=None):
 self.state_vars = state_vars
 self.num_moves = num_moves
 self.parent = parent

root_state = MCState("what should go here")

What is a set of variables that could go there? What do we need to pay attention
to? What is important information?

Using Class Methods

In python’s classes, it’s useful to have functions which produce systematically
expected states. For example, in this case, we want a root state!
Below is functionally the exact same as above, but instead the logic
for constructing the root state now belongs inside the state.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	class MCState:
 ### MC is missionaries and cannibals
 def __init__(self, state_vars, num_moves=0, parent=None):
 self.state_vars = state_vars
 self.num_moves = num_moves
 self.parent = parent

 @classmethod
 def root(cls):
 cls("what should go here")

root_state = MCState.root()

Go to Part 3, Transitions, Next

 Missionaries and Cannibals, partial solution

Missionaries and Cannibals, partial solution

Here is some code for a partial solution to the exercises. There were
two files. They are labeled below.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

	''' mclib.py '''
class MCState:
 ### MC is missionaries and cannibals
 def __init__(self, state_vars, num_moves=0, parent=None):
 self.state_vars = state_vars
 self.num_moves = num_moves
 self.parent = parent

 ### decorator
 @classmethod
 def root(cls):
 return cls((3,3,1))

 def get_possible_moves(self):
 ''' return all possible moves in the game as tuples
 possible moves:
 1 or 2 mis
 1 or 2 cannibals
 1 mis, 1 can
 '''

 moves = [(1, 0), (2, 0), (0, 1), (0, 2), (1, 1)]
 return moves

 def get_next_states(self):
 ## using possible move, get next states

 moves = self.get_possible_moves()
 all_states = list()
 print("inside state with {} state variables".format(self.state_vars))
 mis_right, can_right, raft_right = self.state_vars
 ## if raft is on right, subtract move from these numbers
 ## if raft is on left, add these move numbers to these numbers
 for move in moves:
 change_mis, change_can = move
 if raft_right == 1: ## mis_right = 3; can_right = 3, raft_right = 1
 new_state_vars = (mis_right-change_mis, can_right-change_can, 0)
 else:
 new_state_vars = (mis_right+change_mis, can_right+change_can, 1)
 print("- Applied move: {}".format(move))
 print("- Getting state vars: {}".format(new_state_vars))

 ## notice the number of moves is increasing by 1
 ## also notice we are passing self to our child.
 new_state = MCState(new_state_vars, self.num_moves+1, self)
 all_states.append(new_state)

 return all_states

 def __str__(self):
 return "MCState; {} moves deep".format(self.num_moves)

 def __repr__(self):
 return str(self)

''' second file: mcrun.py '''
from mclib import MCState
number missionaries, number cannibals, raft side
for each, number on right side of river
everything is trying to move left
(3, 3, 1)

root = MCState.root()

print(root.get_possible_moves())

next_states = root.get_next_states()
state = next_states[0]
print(state)
state.get_next_states()

 Solving Problems with Search

Solving Problems with Search

Last week we looked at binary trees, but this week we ware going to look at
n-ary trees! N-ary just means that they can have any numbers of branches.

For every problem in computer science, the tools are mostly the same
(stacks and queues), but the way we represent the data is different.
That is going to be the focus of today: how we represent data and how we
can use that to solve problems.

States, Transitions, and Search

Representing how things are and how they can change is the primary goal
for creating programs that can solve problems. The representations are
called states. Each state is a single setting of variable.
When you change between states, it is called a transition.
In addition to representation, there is also a search process. Search is
how the final goal is found.

States and transitions are used for things like:

	machines that beat games (board games like Go or video games like Starcraft)

	finding directions on Google maps

	Alexa choosing what words to say or how to say them

Go to Part 2 Next

 <no title>

 https://en.wikipedia.org/wiki/River_crossing_puzzle
https://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem

https://en.wikipedia.org/wiki/Mathematical_game

https://en.wikipedia.org/wiki/Chomp

https://en.wikipedia.org/wiki/Chomp

 Part 3: Transitions

Part 3: Transitions

Now we have a state (this is what we made in the last part). Given a state,
we want to produce the children. In problem solving settings like this, the set
of children are not known until you apply some rules or algorithms.
In other words, the important question is:
what is the logic to get the possible legal children? Illegal children
would be things like having 3 people in the boat, etc.

We will break this down into a few parts:

	What are and how do we represent the possible moves?

	How can we apply a move to a state to make a new state?

	When are states illegal and how can you tell?

Possible Moves

What are a set of possible moves that can be done at every state?

Fill in the code below to return a list of all possible next moves.
Assuming that we represented the state in Part 2 as a tuple, each move
should also be a tuple which represents the changes in the state.
For example, one move could be to move 1 missionary across the river by themself.
In that case, the representation part for the missionaries would change
and so would the side the boat was on.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	class MCState:
 ### MC is missionaries and cannibals
 ### The init function is going to be whatever we decided from the previous part!

 def get_possible_moves(self):
 ## get all possible moves
 pass

root_state = MCState.root_state()

print(root_state.get_possible_moves())

Possible States

Given a function which gives us the possible moves, write a function which
returns the next states. Don’t wrory about whether or not it’s legal yet.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	class MCState:
 ### MC is missionaries and cannibals

 def __init__(self, state_vars, num_moves=0, parent=None):
 ### The init function is going to be whatever we decided from the previous part!

 def get_possible_moves(self):
 ## get all possible moves. this should be the code from above!
 pass

 def get_next_states(self):
 ## using possible move, get next states

 moves = self.get_possible_moves
 all_states = list()
 for move in moves:
 new_state_vars = "what would this be?"
 print("- Applied move: {}")
 print("- Getting state vars: {}".format(new_state_vars)

 ## notice the number of moves is increasing by 1
 ## also notice we are passing self to our child.
 new_state = MCState(new_state_vars, self.num_moves+1, self)
 all_states.append(new_state)

 return all_states

Legal States

Now that we have a function which can produce all states, we need to be able to tell if it’s
legal!

Fill in the function below. Also, notice I have added a line to the get_next_states.
This line tests to see if the state is legal after it is created but before
it is added to the list of states.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	class MCState:
 ### MC is missionaries and cannibals

 def __init__(self, state_vars, num_moves=0, parent=None):
 ### The init function is going to be whatever we decided from the previous part!

 def get_possible_moves(self):
 ## get all possible moves. this should be the code from above!
 pass

 def is_legal(self):
 ## for this exercise, fill in this code!!
 return True

 def get_next_states(self):
 ## using possible move, get next states
 ## this should be completed from the previous section!

 moves = self.get_possible_moves
 all_states = list()
 for move in moves:
 ### vvvvvvvvvvvvv replace with code from last section
 new_state_vars = "what would this be?"
 print("- Applied move: {}")
 print("- Getting state vars: {}".format(new_state_vars)
 ### ^^^^^^^^^^^^^ replace with code from last section

 ## notice the number of moves is increasing by 1
 ## also notice we are passing self to our child.
 new_state = MCState(new_state_vars, self.num_moves+1, self)

 ### THIS IS THE NEW LINE:
 if new_state.is_legal():
 all_states.append(new_state)

 return all_states

You can now do the extensions to the exercise below, or go on to Part 4

Exercise Extension: Better printing of states

Python lets us specify two functions that should return strings.
These functions are called whenever you print out the variable.
Although there are two functions and they are used in slightly different
situations, we are going to have them return the same thing.

For this extension, add this to your state class so that it makes more sense when you print it out.

For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	class MCState:
 ### MC is missionaries and cannibals

 def __init__(self, state_vars, num_moves=0, parent=None):
 ### The init function is going to be whatever we decided from the previous part!

 def __str__(self):
 return "MCState; {} moves deep".format(self.num_moves)

 def __repr__(self):
 return str(self)

Exercise Extension: Using Properties

Another shortcut in python is the property decorator. It looks like the class method,
but lets you reference functions as variables. These functions can
never take arguments, so you are restricted to functions that just return stuff.

For this extension, convert things that can be properties. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	class MCState:
 ### MC is missionaries and cannibals

 def __init__(self, state_vars, num_moves=0, parent=None):
 ### The init function is going to be whatever we decided from the previous part!

 @property
 def possible_moves(self):
 ## get all possible moves. this should be the code from above!
 ## this is now a property. notice how it is called below
 pass

root = MCState.root()

print(root.possible_moves)

 Part 4: Searching

Part 4: Searching

Given that we have a class which can represent the state of missionaries and
cannibals, and we have a function which can generate the next possible states,
we need a way of organizing those states so that we can search for a solution!

There are 2 primary methods that we will explore:

	Depth First Search

	Breadth First Search

Searching with Queues and Stacks

First, let’s write a function which maintains the search:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	from collections import deque

def search():

 root = MCState.root()

 to_search = deque()

 to_search.append(root)

 while len(to_search) > 0:
 current_state = to_search.pop()

 next_states = current_state.get_next_states()

 to_search.extend(next_states)

Be careful if you run this. Currently, it will run forever! This is because
we are not searching for duplicates, and we are not testing for success!

Testing for existence

We want a uniqueness test that lets us see if something has been visited before.
This is the primary reason why we want to use tuples are our state variable.
By doing this, we can hash them and use them in sets.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	from collections import deque

def search(exit_on_solution=False):

 root = MCState.root()

 to_search = deque()
 seen_states = set()
 solutions = list()

 to_search.append(root)

 while len(to_search) > 0:
 current_state = to_search.pop()
 if current_state.is_solution():
 ## this is a successful state!
 ## the state vars should be (0,0,0)
 if exit_on_solution:
 ## we just return the state
 return current_state
 else:
 ## we are just saving it this time
 solutions.append(current_state)

 next_states = current_state.get_next_states()

 for possible_next_state in next_states:
 possible_state_vars = possible_next_state.state_vars
 if possible_state_vars not in seen_states:
 # the state variables haven't been seen yet
 # so we add the state itself into the to_search deque
 to_search.append(possible_next_state)

 # now that we have "seen" the state, we add the state vars
 # to the set!
 seen_states.add(possible_state_vars)

 print("Found {} solutions".format(len(solutions)))
 return solutions

Testing for Success

The search above uses a function current_state.is_solution(). Write this
function inside the MCState class so that it returns True only if the
state vars are (0,0,0).

Thinking Exercise

Think about how the search is currently moving.

In the current implementation, what is the order of states that will be searched?

The way to answer that is to think about what to_search is doing.
It is taking the right most item (with the pop function) and searching
its children. It is putting the children onto the right as well (with extend).

You should try drawing out a tree on paper where each node is one of the states.
This is really helpful in visualizing this.

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		HEROES Academy: Data Structures, Winter 2017

 		Course Information

 		What is HEROES Academy?

 		When does this course meet?

 		How do I register for this course?

 		What are the expectations of this course?

 		How do I contact you?

 		Installing Python

 		Python Distribution

 		An Editor

 		General Resources

 		Awesome stuff

 		Online Books

 		Debugging Help

 		Interactive Coding Websites

 		Online Code Environments

 		[Week 1] Initialization

 		Summary

 		Terms

 		Homework

 		Lecture Slides

 		[Week 2] Complexity

 		Summary

 		Exercises

 		Lecture Slides

 		[Week 3] Recursion

 		Exercises

 		Bonus

 		Extra Resources

 		Lecture Slides

 		[Week 4] Linked Lists

 		Exercises

 		Linked Lists

 		Recursion

 		Lecture Slides

 		[Week 5] More Linked Lists!

 		[Week 6]: Stacks and Queues

 		Summary

 		Lecture Slides

 		[Week 7] Binary Trees

