

    
      
          
            
  
Datastream API documentation

Datastream API is one of the projects of wlan slovenija [https://wlan-si.net] open wireless network.
It is a Python API for time-series data which abstracts the database which is used to store the data,
providing a powerful and unified API.
It provides an easy way to insert time-series datapoints and automatically downsample them into multiple
levels of granularity for efficient querying time-series data at various time scales.

Currently supported backends are:


	MongoDB (datastream.backends.mongodb.Backend), which uses MongoDB/TokuMX for data and metadata
storage.

	InfluxDB (datastream.backends.influxdb.Backend), which uses InfluxDB for data storage and
PostgreSQL for metadata storage.




Contents



	Installation

	Usage
	Tags

	Types

	Downsampling

	Derived Streams

	Django HTTP Interface





	Reference
	API

	Backends

	Value Downsamplers

	Time Downsamplers

	Derive Operators

	Exceptions












Source Code, Issue Tracker and Mailing List

For development GitHub [https://github.com/] is used, so source code and issue tracker is found
there [https://github.com/wlanslovenija/datastream]. If you have any questions or if you want to
discuss the project, use development mailing list [https://wlan-si.net/lists/info/development].






Indices and Tables


	Index

	Search Page







          

      

      

    

  

    
      
          
            
  
Installation

Inside a virtualenv [https://pypi.python.org/pypi/virtualenv], using pip [http://pypi.python.org/pypi/pip] simply by doing:

pip install datastream





Or install from source [https://github.com/wlanslovenija/datastream] directly.





          

      

      

    

  

    
      
          
            
  
Usage

Datastream API provides a Python interface which you can initialize with MongoDB backend by:

import datastream
from datastream.backends import mongodb

stream = datastream.Datastream(mongodb.Backend('database_name'))





MongoDB backend accepts some additional connection settings, if this is needed.

After that you can create new streams, insert datapoints into them and query streams. See API reference
for more information.


Tags

Each stream can have arbitrary JSON-serializable metadata associated to it through arbitrary tags. You can then query
streams by using those tags. Some tags are reserved to not conflict with stream settings and some tags are used by
higher-level packages like django-datastream [https://github.com/wlanslovenija/django-datastream]. Although tags can be complex values, simple values like strings or
simple dicts are preferred.




Types

Datastream API supports various types for values stored as datapoints. Types influence how downsampling is done.
Currently supported types are:


	numeric – each datapoint value is a number

	nominal – each datapoint value is a an arbitrary value, but most often a simple label

	graph – each datapoint value is a graph



Numeric values can be integers, floats, decimal.Decimal [http://python.readthedocs.io/en/latest/library/decimal.html#decimal.Decimal], or any other instance of numbers.Number [http://python.readthedocs.io/en/latest/library/numbers.html#numbers.Number].
Alternatively, one can append an already downsampled value in the same format and with all values downsampled values for
a given stream have. This is useful when the source of their values already provides information from multiple
samples. For example, pinging over the Internet sends multiple packets and then returns min, max, mean times.
By storing directly min, max, and mean values, no information is lost and can be reused by Datastream API.

Nominal values [https://en.wikipedia.org/wiki/Level_of_measurement#Nominal_scale] (also known as qualitative) can be any JSON-serializable arbitrary value, but most often they
are a simple label. Values are stored as-is in the database so repeating the same huge value multiple times will
be stored multiple times. If values will be repeating it is better to instead store only some small keys representing
them. Nominal values do not have a defined order between them.

Graph values [https://en.wikipedia.org/wiki/Graph_%28mathematics%29] are stored as dicts in the format:

{
    "v": [
        {"i": "foo"},
        {"i": "bar"}
    ],
    "e": [
        {"f": "foo", "t": "bar"}
    ]
}





It contains a list of vertices v where each vertex element contains its ID i. IDs can be of arbitrary type.
Vertices can contain additional fields which are ignored, but might be used by downsamplers. List of edges e
contains edges from vertex with ID equal to f, to vertex with ID equal to t. Additional fields are ignored,
but might be used by downsamplers as well.




Downsampling

Datastream API automatically downsample datapoints to lower granularity levels. Highest supported resolution for
datapoints is a second, and then Datastream API will downsample them. If you know that you will insert datapoints
at lower granularity levels (for example, only every 5 minutes), you can specify that so that Datastream API can
optimize.

Downsampling happens both for the datapoint value and the datapoint timestamp. It takes a list of datapoints for a
timespan at a higher granularity level and creates a downsampled value and downsampled timestamp for a datapoint
at a lower granularity level. You can configure what exactly this downsampled datapoint contains. You can for
example configure that it contains a mean, minimum and maximum of all values from a timespan. Same for the timestamp,
for example, you can configure that timestamp for the datapoint contains first, last and mean timestamps of all
datapoints from a timespan.

All downsampling timespans for all streams are equal and rounded at reasonable boundaries (for example, hour granularity
starts and ends at full hour).




Derived Streams

Datastream API supports derived streams. Streams which are automatically generated from other streams as new datapoints
are appended to those streams. For example, you can create a stream which computes derivative of another stream. Or sums
multiple streams together.




Django HTTP Interface

We provide a Django HTTP RESTful interface through django-datastream [https://github.com/wlanslovenija/django-datastream] package. You can use it
directly in your Django application, or check its source code to learn more how to integrate
Datastream API into your application.







          

      

      

    

  

    
      
          
            
  
Reference


API


	
class datastream.api.Datastream(backend)

	Initializes the Datastream API.





	Parameters:	backend – Backend instance






	
append(stream_id, value, timestamp=None, check_timestamp=True)

	Appends a datapoint into the datastream.





	Parameters:	
	stream_id – Stream identifier

	value – Datapoint value

	timestamp – Datapoint timestamp, must be equal or larger (newer) than the latest one, monotonically increasing (optional)

	check_timestamp – Check if timestamp is equal or larger (newer) than the latest one (default: true)






	Returns:	A dictionary containing stream_id, granularity, and datapoint












	
append_multiple(datapoints)

	Appends multiple datapoints into the datastream. Each datapoint should be
described by a dictionary with fields stream_id, value and timestamp,
which are the same as in append.





	Parameters:	datapoints – A list of datapoints to append










	
backprocess_streams(query_tags=None)

	Requests the backend to backprocess any derived streams.





	Parameters:	query_tags – Tags that should be matched to streams










	
clear_tags(stream_id)

	Removes (clears) all non-readonly stream tags.

Care should be taken that some tags are set immediately afterwards which uniquely
identify a stream to be able to query the stream, in for example, ensure_stream.





	Parameters:	stream_id – Stream identifier










	
delete_streams(query_tags=None)

	Deletes datapoints for all streams matching the specified
query tags. If no query tags are specified, all datastream-related
data is deleted from the backend.





	Parameters:	query_tags – Tags that should be matched to streams










	
downsample_streams(query_tags=None, until=None, return_datapoints=False, filter_stream=None)

	Requests the backend to downsample all streams matching the specified
query tags. Once a time range has been downsampled, new datapoints
cannot be added to it anymore.





	Parameters:	
	query_tags – Tags that should be matched to streams

	until – Timestamp until which to downsample, not including datapoints
at a timestamp (optional, otherwise all until the current time)

	return_datapoints – Should newly downsampled datapoints be returned, this can
potentially create a huge temporary list and memory consumption
when downsampling many streams and datapoints

	filter_stream – An optional callable which returns false for streams that should be skipped






	Returns:	A list of dictionaries containing stream_id, granularity, and datapoint
for each datapoint created while downsampling, if return_datapoints was set












	
ensure_stream(query_tags, tags, value_downsamplers, highest_granularity, derive_from=None, derive_op=None, derive_args=None, value_type=None, value_type_options=None, derive_backprocess=True)

	Ensures that a specified stream exists.





	Parameters:	
	query_tags – A dictionary of tags which uniquely identify a stream

	tags – A dictionary of tags that should be used (together with query_tags) to create a
stream when it doesn’t yet exist

	value_downsamplers – A set of names of value downsampler functions for this stream

	highest_granularity – Predicted highest granularity of the data the stream
will store, may be used to optimize data storage

	derive_from – Create a derivate stream

	derive_op – Derivation operation

	derive_args – Derivation operation arguments

	value_type – Optional value type (defaults to numeric)

	value_type_options – Options specific to the value type

	derive_backprocess – Should a derived stream be backprocessed






	Returns:	A stream identifier












	
find_streams(query_tags=None)

	Finds all streams matching the specified query tags.





	Parameters:	query_tags – Tags that should be matched to streams


	Returns:	A Streams iterator over matched stream descriptors










	
get_data(stream_id, granularity, start=None, end=None, start_exclusive=None, end_exclusive=None, reverse=False, value_downsamplers=None, time_downsamplers=None)

	Retrieves data from a certain time range and of a certain granularity.





	Parameters:	
	stream_id – Stream identifier

	granularity – Wanted granularity

	start – Time range start, including the start

	end – Time range end, excluding the end (optional)

	start_exclusive – Time range start, excluding the start

	end_exclusive – Time range end, excluding the end (optional)

	reverse – Should datapoints be returned in oldest to newest order (false), or in reverse (true)

	value_downsamplers – The list of downsamplers to limit datapoint values to (optional)

	time_downsamplers – The list of downsamplers to limit timestamp values to (optional)






	Returns:	A Datapoints iterator over datapoints












	
get_tags(stream_id)

	Returns the tags for the specified stream.





	Parameters:	stream_id – Stream identifier


	Returns:	A dictionary of tags for the stream










	
remove_tag(stream_id, tag)

	Removes a stream tag.





	Parameters:	
	stream_id – Stream identifier

	tag – Dictionary describing the tag(s) to remove (values are ignored)














	
update_tags(stream_id, tags)

	Updates stream tags with new tags, overriding existing ones.





	Parameters:	
	stream_id – Stream identifier

	tags – A dictionary of new tags




















Backends

API operations are implemented in backends, which are responsible for storing datapoints,
performing downsampling, deriving streams, and executing queries.


Implementation Details

Streams are stored in the streams collection, datapoints are stored in the datapoints.<granularity> collections,
where <granularity> is one of the possible granularity levels.

When performing downsampling, we have to differentiate between two timestamps:


	Datapoint timestamp is the timestamp of the datapoint that has been inserted for a given granularity level.
On the highest granularity level it is always second precision. On lower granularity levels it is a dictionary
of multiple values, depending on time downsamplers settings for a given stream.

	Internal datapoint timestamp (stored in datapoint’s _id) is based on a timespan for the given granularity
level. For example, if a datapoint was inserted at 31-07-2012 12:23:52, then the downsampled internal timestamp for
the timespan this datapoint is in for hour granularity would be 31-07-2012 12:00:00 and for month granularity would
be 01-07-2012 00:00:00.



Based on highest_granularity value, appended datapoints are stored in the collection configured by
highest_granularity and only lower granularity values are downsampled. Requests for granularity
higher than highest_granularity simply return values from highest_granularity collection.
highest_granularity is just an optimization to not store unnecessary datapoints for granularity levels
which would have at most one datapoint for their granularity timespans.






Value Downsamplers


	
mean(key: m)

	Average of all datapoints.






	
sum(key: s)

	Sum of all datapoints.






	
min(key: l, for lower)

	Minimum value of all dataponts.






	
max(key: u, for upper)

	Maximum value of all datapoints.






	
sum_squares(key: q)

	Sum of squares of all datapoints.






	
std_dev(key: d)

	Standard deviation of all datapoints.






	
count(key: c)

	Number of all datapoints.






	
most_often(key: o, for often)

	The most often occurring value of all datapoints.






	
least_often(key: r, for rare)

	The least often occurring value of all datapoints.






	
frequencies(key: f)

	For each value number of occurrences in all datapoints.








Time Downsamplers


	
mean(key: m)

	Average of all timestamps.






	
first(key: a, is the first in the alphabet)

	The first timestamp of all datapoints.






	
last(key: z, is the last in the alphabet)

	The last timestamp of all datapoints.








Derive Operators


	
sum(src_streams, dst_stream)

	Sum of multiple streams.






	
derivative(src_stream, dst_stream)

	Derivative of a stream.






	
counter_reset(src_stream, dst_stream)

	Generates a counter reset stream.






	
counter_derivative([{'name': 'reset', 'stream': reset_stream_id}, {'stream': data_stream_id}, ]dst_stream, max_value=None)

	Derivative of a monotonically increasing counter stream.








Exceptions


	
exception datastream.exceptions.DatastreamException(*args, **kwargs)

	The base class for all datastream API exceptions.






	
exception datastream.exceptions.StreamNotFound(*args, **kwargs)

	Raised when stream queried for is not found.






	
exception datastream.exceptions.MultipleStreamsReturned(*args, **kwargs)

	Raised when multiple streams found when queried for operations which operate on only one stream, like
ensure_stream(). Specify more specific query tags.






	
exception datastream.exceptions.InconsistentStreamConfiguration(*args, **kwargs)

	Raised when stream configuration passed to ensure_stream() is
inconsistent and/or conflicting.






	
exception datastream.exceptions.OutstandingDependenciesError(*args, **kwargs)

	Raised when stream cannot be deleted because it is a dependency for another stream.






	
exception datastream.exceptions.UnsupportedDownsampler(*args, **kwargs)

	Raised when downsampler requested is unsupported.






	
exception datastream.exceptions.UnsupportedGranularity(*args, **kwargs)

	Raised when granularity level requested is unsupported.






	
exception datastream.exceptions.UnsupportedDeriveOperator(*args, **kwargs)

	Raised when derive operator requested is unsupported.






	
exception datastream.exceptions.UnsupportedValueType(*args, **kwargs)

	Raised when value type requested is unsupported.






	
exception datastream.exceptions.ReservedTagNameError(*args, **kwargs)

	Raised when updating tags with a reserved tag name.






	
exception datastream.exceptions.InvalidTimestamp(*args, **kwargs)

	Raised when an invalid timestamp was provided.






	
exception datastream.exceptions.IncompatibleGranularities(*args, **kwargs)

	Raised when derived stream’s granularity is incompatible with source stream’s granularity.






	
exception datastream.exceptions.IncompatibleTypes(*args, **kwargs)

	Raised when derived stream’s value type is incompatible with source stream’s value type.






	
exception datastream.exceptions.AppendToDerivedStreamNotAllowed(*args, **kwargs)

	Raised when attempting to append to a derived stream.






	
exception datastream.exceptions.InvalidOperatorArguments(*args, **kwargs)

	Raised when derive operators received invalid arguments.






	
exception datastream.exceptions.LockExpiredMidMaintenance(*args, **kwargs)

	Raised when a maintenance lock expires inside a maintenance operation.






	
exception datastream.exceptions.StreamAppendContended(*args, **kwargs)

	Raised when too many processes are trying to append to the same stream.






	
exception datastream.exceptions.StreamAppendFailed(*args, **kwargs)

	Raised when a backend fails while inserting into a stream.






	
exception datastream.exceptions.DatastreamWarning(*args, **kwargs)

	The base class for all datastream API runtime warnings.






	
exception datastream.exceptions.InvalidValueWarning(*args, **kwargs)

	Warning used when an invalid value is encountered.






	
exception datastream.exceptions.InternalInconsistencyWarning(*args, **kwargs)

	Warning used when an internal inconsistency is detected.






	
exception datastream.exceptions.DownsampleConsistencyNotGuaranteed(*args, **kwargs)

	Warning used when consistency of downsampled values with original datapoints
is no longer guaranteed due to some condition. Reseting downsample state and
redoing downsampling could be necessary.











          

      

      

    

  

    
      
          
            

   Python Module Index


   
   d
   


   
     		 	

     		
       d	

     
       	[image: -]
       	
       datastream	
       

     
       	
       	   
       datastream.exceptions	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | R
 | S
 | U
 


A


  	
      	append() (datastream.api.Datastream method)


  

  	
      	append_multiple() (datastream.api.Datastream method)


      	AppendToDerivedStreamNotAllowed


  





B


  	
      	backprocess_streams() (datastream.api.Datastream method)


  





C


  	
      	clear_tags() (datastream.api.Datastream method)


      	count()


  

  	
      	counter_derivative()


      	counter_reset()


  





D


  	
      	Datastream (class in datastream.api)


      	datastream.exceptions (module)


      	DatastreamException


      	DatastreamWarning


  

  	
      	delete_streams() (datastream.api.Datastream method)


      	derivative()


      	downsample_streams() (datastream.api.Datastream method)


      	DownsampleConsistencyNotGuaranteed


  





E


  	
      	ensure_stream() (datastream.api.Datastream method)


  





F


  	
      	find_streams() (datastream.api.Datastream method)


  

  	
      	first()


      	frequencies()


  





G


  	
      	get_data() (datastream.api.Datastream method)


  

  	
      	get_tags() (datastream.api.Datastream method)


  





I


  	
      	IncompatibleGranularities


      	IncompatibleTypes


      	InconsistentStreamConfiguration


  

  	
      	InternalInconsistencyWarning


      	InvalidOperatorArguments


      	InvalidTimestamp


      	InvalidValueWarning


  





L


  	
      	last()


  

  	
      	least_often()


      	LockExpiredMidMaintenance


  





M


  	
      	max()


      	mean(), [1]


  

  	
      	min()


      	most_often()


      	MultipleStreamsReturned


  





O


  	
      	OutstandingDependenciesError


  





R


  	
      	remove_tag() (datastream.api.Datastream method)


  

  	
      	ReservedTagNameError


  





S


  	
      	std_dev()


      	StreamAppendContended


      	StreamAppendFailed


  

  	
      	StreamNotFound


      	sum(), [1]


      	sum_squares()


  





U


  	
      	UnsupportedDeriveOperator


      	UnsupportedDownsampler


  

  	
      	UnsupportedGranularity


      	UnsupportedValueType


      	update_tags() (datastream.api.Datastream method)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		Datastream API documentation


        		Installation


        		Usage
          
          		Tags


          		Types


          		Downsampling


          		Derived Streams


          		Django HTTP Interface


          


        


        		Reference
          
          		API


          		Backends
            
            		Implementation Details


            


          


          		Value Downsamplers


          		Time Downsamplers


          		Derive Operators


          		Exceptions


          


        


      


    
  

_static/file.png





_static/minus.png





_static/comment.png





_static/down-pressed.png





_static/down.png





_static/plus.png





_static/ajax-loader.gif





_static/up.png





_static/up-pressed.png





_static/comment-close.png





_static/comment-bright.png





