

dataclass-builder

User Guide

Work in progress.

API Documentation

If you are looking for information on a specific function, class, or method, this part of the documentation is for you, in particular the Public API.

	Public API

Contributor Guide

	Private API
	dataclass_builder package

Indices and Tables

	Index

	Module Index

	Search Page

Public API

Work in progress, see the README [https://github.com/mrshannon/dataclass-builder/blob/master/README.rst] for now.

Private API

The documentation for the private API is automatically generated by sphinx-apidoc and is only to be used for debug and development purposes. None of the features documented here are intended for the end user. Only features documented in the Public API are considered stable and suitable for use outside of dataclass-builder.

	dataclass_builder package
	Submodules
	dataclass_builder.__version__ module

	dataclass_builder._common module

	dataclass_builder.exceptions module

	dataclass_builder.factory module
	Examples

	dataclass_builder.utility module

	dataclass_builder.wrapper module
	Examples

	Module contents

dataclass_builder package

Submodules

	dataclass_builder.__version__ module

	dataclass_builder._common module

	dataclass_builder.exceptions module

	dataclass_builder.factory module
	Examples

	dataclass_builder.utility module

	dataclass_builder.wrapper module
	Examples

Module contents

Create instances of dataclasses with the builder pattern.

	
exception dataclass_builder.DataclassBuilderError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base class of errors raised by DataclassBuilder.

	
exception dataclass_builder.MissingFieldError(message: str, dataclass: Any, field: Field[Any])

	Bases: dataclass_builder.exceptions.DataclassBuilderError

Thrown when fields are missing when building a dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass].

	Parameters

	
	message – Human readable error message

	dataclass – dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] the DataclassBuilder was made for.

	field – The dataclasses.Field [https://docs.python.org/3/library/dataclasses.html#dataclasses.Field] representing the missing field that
needs to be assigned.

	
dataclass

	dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] the DataclassBuilder was made for.

	
field

	The dataclasses.Field [https://docs.python.org/3/library/dataclasses.html#dataclasses.Field] representing the missing field that
needs to be assigned.

	
exception dataclass_builder.UndefinedFieldError(message: str, dataclass: Any, field: str)

	Bases: dataclass_builder.exceptions.DataclassBuilderError

Exception thrown when attempting to assign to an invalid field.

	Parameters

	
	message – Human readable error message

	dataclass – dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] the DataclassBuilder was made
for.

	field – Name of the invalid field that the calling code tried to assign to.

	
dataclass

	dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] the DataclassBuilder was made for.

	
field

	Name of the invalid field that the calling code tried to assign to.

	
dataclass_builder.dataclass_builder(dataclass: Type[Any], *, name: Optional[str] = None) → Type[Any]

	Create a new builder class specialized to a given dataclass.

	Parameters

	
	dataclass – The dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] to create the builder for.

	name – Override the name of the builder, by default it will be
‘<dataclass>Builder’ where <dataclass> is replaced by the name of the
dataclass.

	Return object

	A new dataclass builder class that is specialized to the given
dataclass. If the given dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] does not
contain the fields build or fields these will be exposed as public
methods with the same signature as the
dataclass_builder.utility.build() and
dataclass_builder.utility.fields() functions respectively.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If dataclass is not a dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass]. This is decided
via dataclasses.is_dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.is_dataclass].

	
dataclass_builder.build(builder: dataclass_builder.wrapper.DataclassBuilder) → Any

	Use the given DataclassBuilder to initialize a dataclass.

This will use the values assigned to the given builder to construct a
dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] of the type the builder was created for.

Note

This is not a method of DataclassBuilder in order to not
interfere with possible field names. This function will use special
private methods of DataclassBuilder which are excepted from
field assignment.

	Parameters

	builder – The dataclass builder to build from.

	Raises

	dataclass_builder.exceptions.MissingFieldError – If not all of the required fields have been assigned to this
builder.

	
dataclass_builder.fields(builder: dataclass_builder.wrapper.DataclassBuilder, *, required: bool = True, optional: bool = True) → Mapping[str, Field[Any]]

	Get a dictionary of the given DataclassBuilder’s fields.

Note

This is not a method of DataclassBuilder in order to not
interfere with possible field names. This function will use special
private methods of DataclassBuilder which are excepted from
field assignment.

	Parameters

	
	builder – The dataclass builder to get the fields for.

	required – Set to False to not report required fields.

	optional – Set to False to not report optional fields.

	Returns

	A mapping from field names to actual dataclasses.Field [https://docs.python.org/3/library/dataclasses.html#dataclasses.Field]’s
in the same order as the builder’s underlying
dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass].

	
dataclass_builder.update(dataclass: Any, builder: dataclass_builder.wrapper.DataclassBuilder) → None

	Update a dataclass or dataclass builder from a partial dataclass builder.

	Parameters

	
	dataclass – :func`dataclasses.dataclass` or dataclass builder to update.

Note

Technically this can be any object that supports
__setattr__().

	builder – The datalcass builder to update dataclass with. All fields that are
not missing in the builder will be set (overridden) on the given
dataclass.

	
class dataclass_builder.DataclassBuilder(dataclass: Any, **kwargs: Any)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wrap a dataclass with an object implementing the builder pattern.

This class, via wrapping, allows dataclasses to be constructed with
the builder pattern. Once an instance is constructed simply assign to
it’s attributes, which are identical to the dataclass it was
constructed with. When done use the dataclass_builder.utility.build()
function to attempt to build the underlying dataclass.

Warning

Because this class overrides attribute assignment when extending
it care must be taken to only use private or “dunder” attributes
and methods.

	Parameters

	
	dataclass – The dataclass_that should be built by the
builder instance

	**kwargs – Optionally initialize fields during initialization of the builder.
These can be changed later and will raise UndefinedFieldError if
they are not part of the dataclass’s __init__ method.

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If dataclass is not a dataclass.
This is decided via dataclasses.is_dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.is_dataclass].

	dataclass_builder.exceptions.UndefinedFieldError – If you try to assign to a field that is not part of the
dataclass’s __init__.

	dataclass_builder.exceptions.MissingFieldError – If build() is called on this builder before all non default
fields of the dataclass are assigned.

	
__setattr__(item: str, value: Any) → None

	Set a field value, or an object attribute if it is private.

Note

This will pass through all attributes beginning with an underscore.
If this is a valid field of the dataclass it will still be built
correctly but UndefinedFieldError will not be thrown for attributes
beginning with an underscore.

If you need the exception to be thrown then set the field in the
constructor.

	Parameters

	
	item – Name of the dataclass field or private/”dunder” attribute to set.

	value – Value to assign to the dataclass field or private/”dunder”
attribute.

	Raises

	dataclass_builder.exceptions.UndefinedFieldError – If item is not initialisable in the underlying dataclass. If
item is private (begins with an underscore) or is a “dunder” then
this exception will not be raised.

	
__repr__() → str

	Print a representation of the builder.

from dataclasses import dataclass
from dataclass_builder import DataclassBuilder, build, fields

@dataclass
class Point:
 x: float
 y: float
 w: float = 1.0

>>> DataclassBuilder(Point, x=4.0, w=2.0)
DataclassBuilder(Point, x=4.0, w=2.0)

	Returns

	String representation that can be used to construct this builder
instance.

dataclass_builder.__version__ module

Project information, specifically the version.

dataclass_builder._common module

Common utilities.

dataclass_builder.exceptions module

Exceptions for the package.

	
exception dataclass_builder.exceptions.DataclassBuilderError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base class of errors raised by DataclassBuilder.

	
exception dataclass_builder.exceptions.UndefinedFieldError(message: str, dataclass: Any, field: str)

	Bases: dataclass_builder.exceptions.DataclassBuilderError

Exception thrown when attempting to assign to an invalid field.

	Parameters

	
	message – Human readable error message

	dataclass – dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] the DataclassBuilder was made
for.

	field – Name of the invalid field that the calling code tried to assign to.

	
dataclass

	dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] the DataclassBuilder was made for.

	
field

	Name of the invalid field that the calling code tried to assign to.

	
exception dataclass_builder.exceptions.MissingFieldError(message: str, dataclass: Any, field: Field[Any])

	Bases: dataclass_builder.exceptions.DataclassBuilderError

Thrown when fields are missing when building a dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass].

	Parameters

	
	message – Human readable error message

	dataclass – dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] the DataclassBuilder was made for.

	field – The dataclasses.Field [https://docs.python.org/3/library/dataclasses.html#dataclasses.Field] representing the missing field that
needs to be assigned.

	
dataclass

	dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] the DataclassBuilder was made for.

	
field

	The dataclasses.Field [https://docs.python.org/3/library/dataclasses.html#dataclasses.Field] representing the missing field that
needs to be assigned.

dataclass_builder.factory module

Create dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] builders for specific dataclasses.

This module uses a factory to build builder classes that build a specific
dataclass. These builder classes implement the builder pattern and allow
constructing dataclasses over a period of time instead of all at once.

Examples

Using specialized builders allows for better documentation than the
DataclassBuilder wrapper and allows for type checking because
annotations are dynamically generated.

from dataclasses import dataclass
from dataclass_builder import (dataclass_builder, build, fields,
 REQUIRED, OPTIONAL)

@dataclass
class Point:
 x: float
 y: float
 w: float = 1.0

PointBuilder = dataclass_builder(Point)

Now we can build a point.

>>> builder = PointBuilder()
>>> builder.x = 5.8
>>> builder.y = 8.1
>>> builder.w = 2.0
>>> build(builder)
Point(x=5.8, y=8.1, w=2.0)

As long as the dataclass the builder was constructed for does not have a
build field then a build method will be generated as well.

>>> builder.build()
Point(x=5.8, y=8.1, w=2.0)

Field values can also be provided in the constructor.

>>> builder = PointBuilder(x=5.8, w=100)
>>> builder.y = 8.1
>>> builder.build()
Point(x=5.8, y=8.1, w=100)

Note

Positional arguments are not allowed.

Fields with default values in the dataclass are optional in the builder.

>>> builder = PointBuilder()
>>> builder.x = 5.8
>>> builder.y = 8.1
>>> builder.build()
Point(x=5.8, y=8.1, w=1.0)

Fields that don’t have default values in the dataclass are not optional.

>>> builder = PointBuilder()
>>> builder.y = 8.1
>>> builder.build()
Traceback (most recent call last):
...
MissingFieldError: field 'x' of dataclass 'Point' is not optional

Fields not defined in the dataclass cannot be set in the builder.

>>> builder.z = 3.0
Traceback (most recent call last):
...
UndefinedFieldError: dataclass 'Point' does not define field 'z'

Note

No exception will be raised for fields beginning with an underscore as they
are reserved for use by subclasses.

Accessing a field of the builder before it is set gives either the REQUIRED
or OPTIONAL constant

>>> builder = PointBuilder()
>>> builder.x
REQUIRED
>>> builder.w
OPTIONAL

The fields method can be used to retrieve a dictionary of settable fields for
the builder. This is a mapping of field names to dataclasses.Field [https://docs.python.org/3/library/dataclasses.html#dataclasses.Field]
objects from which extra data can be retrieved such as the type of the data
stored in the field.

>>> list(builder.fields().keys())
['x', 'y', 'w']
>>> [f.type.__name__ for f in builder.fields().values()]
['float', 'float', 'float']

A subset of the fields can be also be retrieved, for instance, to only get
required fields:

>>> list(builder.fields(optional=False).keys())
['x', 'y']

or only the optional fields.

>>> list(builder.fields(required=False).keys())
['w']

Note

If the underlying dataclass has a field named fields this method will
not be generated and instead the fields() function should be used
instead.

	
dataclass_builder.factory.dataclass_builder(dataclass: Type[Any], *, name: Optional[str] = None) → Type[Any]

	Create a new builder class specialized to a given dataclass.

	Parameters

	
	dataclass – The dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] to create the builder for.

	name – Override the name of the builder, by default it will be
‘<dataclass>Builder’ where <dataclass> is replaced by the name of the
dataclass.

	Return object

	A new dataclass builder class that is specialized to the given
dataclass. If the given dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] does not
contain the fields build or fields these will be exposed as public
methods with the same signature as the
dataclass_builder.utility.build() and
dataclass_builder.utility.fields() functions respectively.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If dataclass is not a dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass]. This is decided
via dataclasses.is_dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.is_dataclass].

dataclass_builder.utility module

Utility functions for the package.

	
dataclass_builder.utility.build(builder: dataclass_builder.wrapper.DataclassBuilder) → Any

	Use the given DataclassBuilder to initialize a dataclass.

This will use the values assigned to the given builder to construct a
dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] of the type the builder was created for.

Note

This is not a method of DataclassBuilder in order to not
interfere with possible field names. This function will use special
private methods of DataclassBuilder which are excepted from
field assignment.

	Parameters

	builder – The dataclass builder to build from.

	Raises

	dataclass_builder.exceptions.MissingFieldError – If not all of the required fields have been assigned to this
builder.

	
dataclass_builder.utility.fields(builder: dataclass_builder.wrapper.DataclassBuilder, *, required: bool = True, optional: bool = True) → Mapping[str, Field[Any]]

	Get a dictionary of the given DataclassBuilder’s fields.

Note

This is not a method of DataclassBuilder in order to not
interfere with possible field names. This function will use special
private methods of DataclassBuilder which are excepted from
field assignment.

	Parameters

	
	builder – The dataclass builder to get the fields for.

	required – Set to False to not report required fields.

	optional – Set to False to not report optional fields.

	Returns

	A mapping from field names to actual dataclasses.Field [https://docs.python.org/3/library/dataclasses.html#dataclasses.Field]’s
in the same order as the builder’s underlying
dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass].

	
dataclass_builder.utility.update(dataclass: Any, builder: dataclass_builder.wrapper.DataclassBuilder) → None

	Update a dataclass or dataclass builder from a partial dataclass builder.

	Parameters

	
	dataclass – :func`dataclasses.dataclass` or dataclass builder to update.

Note

Technically this can be any object that supports
__setattr__().

	builder – The datalcass builder to update dataclass with. All fields that are
not missing in the builder will be set (overridden) on the given
dataclass.

dataclass_builder.wrapper module

Create instances of dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass] with the builder pattern.

This module uses a generic wrapper that becomes specialized at initialization
into a builder instance that can build a given dataclass.

Examples

Using a builder instance is the fastest way to get started with
the dataclass-builder package.

from dataclasses import dataclass
from dataclass_builder import (DataclassBuilder, build, fields,
 REQUIRED, OPTIONAL)

@dataclass
class Point:
 x: float
 y: float
 w: float = 1.0

Now we can build a point.

>>> builder = DataclassBuilder(Point)
>>> builder.x = 5.8
>>> builder.y = 8.1
>>> builder.w = 2.0
>>> build(builder)
Point(x=5.8, y=8.1, w=2.0)

Field values can also be provided in the constructor.

>>> builder = DataclassBuilder(Point, x=5.8, w=100)
>>> builder.y = 8.1
>>> build(builder)
Point(x=5.8, y=8.1, w=100)

Note

Positional arguments are not allowed, except for the dataclass itself.

Fields with default values in the dataclass are optional in the builder.

>>> builder = DataclassBuilder(Point)
>>> builder.x = 5.8
>>> builder.y = 8.1
>>> build(builder)
Point(x=5.8, y=8.1, w=1.0)

Fields that don’t have default values in the dataclass are not optional.

>>> builder = DataclassBuilder(Point)
>>> builder.y = 8.1
>>> build(builder)
Traceback (most recent call last):
...
MissingFieldError: field 'x' of dataclass 'Point' is not optional

Fields not defined in the dataclass cannot be set in the builder.

>>> builder.z = 3.0
Traceback (most recent call last):
...
UndefinedFieldError: dataclass 'Point' does not define field 'z'

Note

No exception will be raised for fields beginning with an underscore as they
are reserved for use by subclasses.

Accessing a field of the builder before it is set gives either the REQUIRED
or OPTIONAL constant

>>> builder = DataclassBuilder(Point)
>>> builder.x
REQUIRED
>>> builder.w
OPTIONAL

The fields() function can be used to retrieve a dictionary of settable
fields for the builder. This is a mapping of field names to
dataclasses.Field [https://docs.python.org/3/library/dataclasses.html#dataclasses.Field] objects from which extra data can be retrieved such
as the type of the data stored in the field.

>>> list(fields(builder).keys())
['x', 'y', 'w']
>>> [f.type.__name__ for f in fields(builder).values()]
['float', 'float', 'float']

A subset of the fields can be also be retrieved, for instance, to only get
required fields:

>>> list(fields(builder, optional=False).keys())
['x', 'y']

or only the optional fields.

>>> list(fields(builder, required=False).keys())
['w']

	
class dataclass_builder.wrapper.DataclassBuilder(dataclass: Any, **kwargs: Any)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wrap a dataclass with an object implementing the builder pattern.

This class, via wrapping, allows dataclasses to be constructed with
the builder pattern. Once an instance is constructed simply assign to
it’s attributes, which are identical to the dataclass it was
constructed with. When done use the dataclass_builder.utility.build()
function to attempt to build the underlying dataclass.

Warning

Because this class overrides attribute assignment when extending
it care must be taken to only use private or “dunder” attributes
and methods.

	Parameters

	
	dataclass – The dataclass_that should be built by the
builder instance

	**kwargs – Optionally initialize fields during initialization of the builder.
These can be changed later and will raise UndefinedFieldError if
they are not part of the dataclass’s __init__ method.

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If dataclass is not a dataclass.
This is decided via dataclasses.is_dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.is_dataclass].

	dataclass_builder.exceptions.UndefinedFieldError – If you try to assign to a field that is not part of the
dataclass’s __init__.

	dataclass_builder.exceptions.MissingFieldError – If build() is called on this builder before all non default
fields of the dataclass are assigned.

	
__setattr__(item: str, value: Any) → None

	Set a field value, or an object attribute if it is private.

Note

This will pass through all attributes beginning with an underscore.
If this is a valid field of the dataclass it will still be built
correctly but UndefinedFieldError will not be thrown for attributes
beginning with an underscore.

If you need the exception to be thrown then set the field in the
constructor.

	Parameters

	
	item – Name of the dataclass field or private/”dunder” attribute to set.

	value – Value to assign to the dataclass field or private/”dunder”
attribute.

	Raises

	dataclass_builder.exceptions.UndefinedFieldError – If item is not initialisable in the underlying dataclass. If
item is private (begins with an underscore) or is a “dunder” then
this exception will not be raised.

	
__repr__() → str

	Print a representation of the builder.

from dataclasses import dataclass
from dataclass_builder import DataclassBuilder, build, fields

@dataclass
class Point:
 x: float
 y: float
 w: float = 1.0

>>> DataclassBuilder(Point, x=4.0, w=2.0)
DataclassBuilder(Point, x=4.0, w=2.0)

	Returns

	String representation that can be used to construct this builder
instance.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dataclass_builder	

 	
 	
 dataclass_builder.__version__	

 	
 	
 dataclass_builder._common	

 	
 	
 dataclass_builder.exceptions	

 	
 	
 dataclass_builder.factory	

 	
 	
 dataclass_builder.utility	

 	
 	
 dataclass_builder.wrapper	

Index

 _
 | B
 | D
 | F
 | M
 | U

_

 	
 	__repr__() (dataclass_builder.DataclassBuilder method)

 	(dataclass_builder.wrapper.DataclassBuilder method)

 	
 	__setattr__() (dataclass_builder.DataclassBuilder method)

 	(dataclass_builder.wrapper.DataclassBuilder method)

B

 	
 	build() (in module dataclass_builder)

 	(in module dataclass_builder.utility)

D

 	
 	dataclass (dataclass_builder.exceptions.MissingFieldError attribute)

 	(dataclass_builder.exceptions.UndefinedFieldError attribute)

 	(dataclass_builder.MissingFieldError attribute)

 	(dataclass_builder.UndefinedFieldError attribute)

 	dataclass_builder (module)

 	dataclass_builder() (in module dataclass_builder)

 	(in module dataclass_builder.factory)

 	dataclass_builder.__version__ (module)

 	
 	dataclass_builder._common (module)

 	dataclass_builder.exceptions (module)

 	dataclass_builder.factory (module)

 	dataclass_builder.utility (module)

 	dataclass_builder.wrapper (module)

 	DataclassBuilder (class in dataclass_builder)

 	(class in dataclass_builder.wrapper)

 	DataclassBuilderError, [1]

F

 	
 	field (dataclass_builder.exceptions.MissingFieldError attribute)

 	(dataclass_builder.exceptions.UndefinedFieldError attribute)

 	(dataclass_builder.MissingFieldError attribute)

 	(dataclass_builder.UndefinedFieldError attribute)

 	
 	fields() (in module dataclass_builder)

 	(in module dataclass_builder.utility)

M

 	
 	MissingFieldError, [1]

U

 	
 	UndefinedFieldError, [1]

 	
 	update() (in module dataclass_builder)

 	(in module dataclass_builder.utility)

API Reference

 nav.xhtml

 Table of Contents

 		
 dataclass-builder

 		
 Public API

 		
 Private API

 		
 dataclass_builder package

 		
 Submodules

 		
 Module contents

_static/file.png

_static/minus.png

_static/plus.png

