dask-geomodeling

Feb 19, 2020

Contents:

1 About

2 Contents
2.1 Installation
2.2 Quickstart
23 Views
24 Blocks
2.5 RasterBlocks.

2.6 Geometry and Series Blocks
3 Indices and tables
Python Module Index

Index

39
41

43

dask-geomodeling

Dask-geomodeling is a collection of classes that are to be stacked together to create configurations for on-the-fly
operations on geographical maps. By generating Dask compute graphs, these operation may be parallelized and
(intermediate) results may be cached.

Multiple Block instances together make a view. Each Block has the get_data method that fetches the data in one
g0, as well as a get__compute_graph method that creates a graph to compute the data later.

Blocks are used for the on-the-fly modification of raster- and vectordata, respectively through the baseclasses
RasterBlock () and GeometryBlock (). Derived classes support operations such has grouping basic math,
shifting time, smoothing, reclassification, geometry operations, zonal statistics, and property field operations.

Contents: 1

https://dask.pydata.org/

dask-geomodeling

2 Contents:

CHAPTER 1

About

This package was developed by Nelen & Schuurmans and is used commercially under the name Geoblocks. Please
consult the Lizard website for more information about this product.

https://www.lizard.net/

dask-geomodeling

4 Chapter 1. About

CHAPTER 2

Contents

2.1 Installation

2.1.1 Requirements

e python >=3.5

* GDAL 2.* (with BigTIFF support)
* numpy

* scipy

* dask[delayed]

e pandas

* geopandas

* ipyleaflet, matplotlib, pillow (for the ipyleaflet plugin)

2.1.2 Anaconda (all platforms)

1. Install anaconda / miniconda
Start the Anaconda Prompt via the start menu
conda config —--add channels conda-forge

conda update conda

A

conda install python=3.6 gdal=2.4.1 scipy=1.3.1 dask-geomodeling
ipyleaflet matplotlib pillow

Note: The version pins of python, gdal and scipy are related to issues specific to Windows. On other platforms you
may leave them out, although we do not recommend using Python 3.8 yet. If you need other python or GDAL versions

https://docs.anaconda.com/anaconda/install/

dask-geomodeling

on windows: while dask-geomodeling itself is compatible with all current versions, you may may have a hard time
getting it to work via Anaconda and it will probably be easier using the pip route listed below.

2.1.3 Windows (pip)

The following recipe is still a work in progress:
1. Install Python 3.* (stable)
. Install GDAL 2.* (MSVC 2015)
. Add the GDAL installation path to your PATH variable

2

3

4. Start the command prompt

5. pip install gdal==2.* dask-geomodeling ipyleaflet matplotlib pillow
6

. (optionally) pip install ipyleaflet matplotlib pillow

Note: You might need to setup your C++ compiler according to this

2.1.4 On the ipyleaflet plugin

dask-geomodeling comes with a ipyleaflet plugin for Jupyter so that you can show your generated views on a
mapviewer. If you want to use it, install some additional dependencies:

$ conda [or pip] install Jupyter ipyleaflet matplotlib pillow

And start your notebook server with the plugin:

$ jupyter notebook —--NotebookApp.nbserver_extensions="{'dask_geomodeling.ipyleaflet_
—plugin':True}"

Alternatively, you can add this extension to your Jupyter configuration

2.1.5 Advanced: local setup with system Python (Ubuntu)

These instructions make use of the system-wide Python 3 interpreter:

’$ sudo apt install python3-pip python3-gdal

Install dask-geomodeling:

’$ pip install --user dask-geomodeling[test,cityhash]

Run the tests:

’$ pytest

6 Chapter 2. Contents

https://www.python.org/downloads/windows/
http://www.gisinternals.com/release.php
https://wiki.python.org/moin/WindowsCompilers
https://jupyter.org/
https://jupyter-notebook.readthedocs.io/en/stable/config_overview.html

dask-geomodeling

2.1.6 Advanced: local setup for development (Ubuntu)

These instructions assume that git, python3, pip, and virtualenv are installed on your host machine.

Clone the dask-geomodeling repository:

’$ git clone https://github.com/nens/dask—geomodeling

Make sure you have the GDAL libraries installed. On Ubuntu:

’$ sudo apt install libgdal-dev

Take note of the GDAL version:

’$ apt show libgdal-dev

Create and activate a virtualenv:

$ cd dask-geomodeling
$ virtualenv —--python=python3 .venv
$ source .venv/bin/activate

Install PyGDAL with the correct version (example assumes GDAL 2.2.3):

’(.venv) $ pip install pygdal==2.2.3.%*

Install dask-geomodeling:

’(.venv) $ pip install -e .[test,cityhash]

Run the tests:

’(.venv) S pytest

2.2 Quickstart

2.2.1 Constructing a view

A dask-geomodeling view can be constructed by creating a Block instance:

from dask_geomodeling.raster import RasterFileSource
source = RasterFileSource('/path/to/geotiff!")

The view can now be used to obtain data from the specified file. More complex views can be created by nesting block
instances:

from dask_geomodeling.raster import Smooth
smoothed = Smooth (source, 5)
smoothed_plus_two = smoothed + 2

2.2.2 Obtaining data from a view

To obtain data from a view directly, use the get_data method:

2.2. Quickstart 7

dask-geomodeling

request = {
"mode": "vals",
"bbox": (138000, 480000, 139000, 481000),
"projection": "epsg:28992",

"width": 256,
"height": 256
}
data = add.get_data (»*xrequest)

Which field to include in the request and what data to expect depends on the type of the block used. In this example,
we used a RasterBlock. The request and response specifications are listed in the documentation of the specific block

type.

2.2.3 Showing data on the map

If you a are using Jupyter and our ipyleaflet plugin, you can inspect your dask-geomodeling View on an interactive
map widget.

from ipyleaflet import Map, basemaps, basemap_to_tiles
from dask_geomodeling.ipyleaflet_plugin import GeomodelingLayer

create the geomodeling layer and the background layer
the 'styles' parameter refers to a matplotlib colormap;
the 'vmin' and 'vmax' parameters determine the range of the colormap
geomodeling_layer = GeomodelingLayer (
add, styles="viridis", vmin=0, vmax=10, opacity=0.5
)

osm_layer = basemap_to_tiles (basemaps.OpenStreetMap.Mapnik)

center the map on the middle of the View's extent

extent = add.extent

Map (
center=((extent[1l] + extent[3]) / 2, (extent[0] + extent[2]) / 2),
zoom=14,
layers=[osm_layer, geoomdeling_layer]

Please consult the ipyleaflet docs for examples in how to add different basemaps, other layers, or add controls.

2.2.4 Delayed evaluation

Dask-geomodeling revolves around lazy data evaluation. Each Block first evaluates what needs to be done for certain
request, storing that in a compute graph. This graph can then be evaluated to obtain the data. The data is evaluated
with dask, and the specification of the compute graph also comes from dask. For more information about how a graph
works, consult the dask documentation:

We use the previous example to demonstrate how this works:

import dask

request = {
"mode": "vals",
"bbox": (138000, 480000, 139000, 481000),
"projection": "epsg:28992",

"width": 256,

(continues on next page)

8 Chapter 2. Contents

https://ipyleaflet.readthedocs.io
http://docs.dask.org/en/latest/custom-graphs.html

dask-geomodeling

(continued from previous page)

"height": 256
}
graph, name = add.get_compute_graph (xxrequest)
data = dask.get (graph, [name])

Here, we first generate a compute graph using dask-geomodeling, then evaluate the graph using dask. The power of
this two-step procedure is twofold:

1. Dask supports threaded, multiprocessing, and distributed schedulers. Consult the dask documentation to try
these out.

2. The name is a unique identifier of this computation: this can easily be used in caching methods.

2.3 Views

A View is a combination of one or more Blocks. For instance:

from dask_geomodeling.raster import RasterFileSource, Group

source_1 = RasterFileSource ("path/to/some/tiff")
source_2 = RasterFileSource ("path/to/another/tiff")
view = Group (source_1, source_1)

2.3.1 View serialization

A View consists of several Block instances that reference each other. To serialize this we use Dask’s graph format.
This graph format replaces the nested structure by a flat dictionary with internal references

Warning: A serialized view looks much alike a compute graph. Don’t get confused!

An example using the above view definition:

serialized_view = view.serialize ()

"version": 2,
"graph": {

"RasterFileSource_ 300b56b278d49beal3eff68£8cf52£90": [
"dask_geomodeling.raster.sources.RasterFileSource",
"file:///path/to/some/tiff"

1,

"RasterFileSource 9dc43c9bd98e2£9069e2b0c879d76cbl": |
"dask_geomodeling.raster.sources.RasterFileSource",
"file:///path/to/another/tiff"

]I

"Group_0d0a99fe65bffe87dd045627c27bcbbb" : [
"dask_geomodeling.raster.combine.Group",
"RasterFileSource_300b56b278d49%beal3eff68f8cf52£f90",
"RasterFileSource_9dc43c90d98e2£9069e2b0c879d76cbl"

by

(continues on next page)

2.3. Views 9

http://docs.dask.org/en/latest/custom-graphs.html
http://docs.dask.org/en/latest/custom-graphs.html

dask-geomodeling

(continued from previous page)

"name": "Group_0d0a9%99fe65bffe87dd045627c27bcbbb"

The above “view graph” contains all three operations that we defined together with their arguments. The names are
automatically generated and contain a hash which is useful to uniquely determine the block. Also, we see the “name”,
that points to the endpoint block.

To deserialize the view:

from dask _geomodeling.core import Block
view = Block.deserialize(serialized_view)

The methods Block.to_Jjson and Block.from_json,or Block.get_graph and dask_geomodeling.
construct serve the same purpose, but they in/output different object types.

2.4 Blocks

2.4.1 The Block class

To write a new Block subclass, we need to write the following:
1. the __init___that validates the arguments when constructing the block
2. the get_sources_and_requests that processes the request
3. the process that processes the data

4. a number of attributes such as extent and period

About the 2-step data processing

The get_sources_and_requests method of any block is called recursively from get_compute_graph and
feeds the request from the block to its sources. It does so by returning a list of (source, request) tuples. During the data
evaluation each of these 2-tuples will be converted to a single data object which is supplied to the process function.

First, an example in words. We construct a View add = RasterFileSource ('path/to/geotiff') +
2.4 and ask it the following:

* give me a 256x256 raster at location (138000, 480000)

We do that by calling get_data, which calls get_compute_graph, which calls
get_sources_and_requests on each block instance recursively.

First add.get_sources_and_requests would respond with the following:

e I will need a 256x256 raster at location (138000, 480000) from RasterFileSource ('/path/to/
geotiff')

e [will need 2.4
Then, on recursion, the RasterFileSource.get_sources_and_requests would respond:
» [will give you the 256x256 raster at location (138000, 480000)

These small subtasks get summarized in a compute graph, which is returned by get_compute_graph. Then
get_data feeds that compute graph to dask.

Dask will evaluate this graph by calling the process methods on each block:

10 Chapter 2. Contents

dask-geomodeling

1. A raster is loaded using RasterFileSource.process
2. This, together with the number 2.4, is given to Add.process
3. The resulting raster is presented to the user.

Implementation example

As an example, we use a simplified Dilate block, which adds a buffer of 1 pixel around all pixels of given value:

class Dilate (RasterBlock) :

def _ init_ (self, source, value):
assert isinstance (source, RasterBlock):
value = float (value)
super () .__init__ (source, value)
@property

def source (self):
return self.args[0]

@property
def value(self):
return self.args([1]

def get_sources_and_requests(self, **request):
new_request = expand_request_pixels (request, radius=1)
return [(self.store, new_request), (self.value, None)]

@staticmethod
def process (data, values=None) :
handle empty data cases
if data is None or values is None or 'values' not in data:
return data
perform the dilation

original = datal['values']

dilated = original.copy ()

dilated[ndimage.binary_dilation(original == wvalue)] = value

dilated = dilated[:, 1:-1, 1:-1]

return {'values': dilated, 'no_data_value': data['no_data_value']}
@property

def extent (self):
return self.source.extent

@property
def period(self):
return self.source.period

In this example, we see all the essentials of a Block implementation.

e The __init___ checks the types of the provided arguments and calls the super () .__init___ that further
initializes the block.

* The get_sources_and_requests expands the request with 1 pixel, so that dilation will have no edge
effects. It returns two (source, request) tuples.

* The process (staticymethod takes the amount arguments equal to the length of the list that
get_sources_and_requests produces. It does the actual work and returns a data response.

* Some attributes like extent and period need manual specification, as they might change through the block.

2.4. Blocks 11

dask-geomodeling

* The class derives from RasterBlock, which sets the type of block, and through that its request/response

schema and its required attributes.

2.4.2 Block types specification

A block type sets three things:

1.
2.

3.

the response schema: e.g. “RasterBlock.process returns a dictionary with a numpy array and a no data value”

the request schema: e.g. “RasterBlock.get_sources_and_requests expects a dictionary with the fields ‘mode’,
‘bbox’, ‘projection’, ‘height’, ‘width’”

the attributes to be implemented on each block

This is not enforced at the code level, it is up to the developer to stick to this specification. The specification is written
down in the type baseclass RasterBlock () or GeometryBlock ().

2.4.3 API specification

Module containing the core graphs.

class dask_geomodeling.core.graphs.Block (*args)

A class that generates dask-like compute graphs for given requests.

Arguments (args) are always stored in self.args. If a request is passed into the Block using the get_data
or (the lazy version) get_compute_graph method, the Block figures out what args are actually neces-
sary to evaluate the request, and what requests need to be sent to those args. This happens in the method
get_sources_and_requests.

After the requests have been evaluated, the data comes back and is passed into the process method.

classmethod deserialize (val, validate=False)
Deserialize this block from a dict containing version, graph and name

static from_import_path (path)
Deserialize the Block by importing it from given path.

classmethod from_json (val, **kwargs)
Construct a graph from a json stream.

get_compute_graph (cached_compute_graph=None, **request)
Lazy version of get_data, returns a compute graph dict, that can be evaluated with compute (or dask’s get
function).

The dictionary has keys in the form name_ t oken and values in the form tuple (process, =*args),
where args are the precise arguments that need to be passed to process, with the exception that args
may reference to other keys in the dictionary.

get_data (**request)
Directly evaluate the request and return the data.

get_graph (serialize=False)
Generate a graph that defines this Block and its dependencies in a dictionary.

The dictionary has keys in the form name_token and values in the form tuple (Block class,
xargs), where args are the precise arguments that were used to construct the Block, with the exception
that args may also reference other keys in the dictionary.

If serialize == True, the Block classes will be replaced by their corresponding import paths.

12

Chapter 2. Contents

dask-geomodeling

classmethod get_import_path ()
Serialize the Block by returning its import path.

get_sources_and_requests (**request)
Adapt the request and/or select the sources to be computed. The request is allowed to differ per source.

This function should return an iterable of (source, request). For sources that are no Block instance, the
request is ignored.

Exceptions raised here will be raised before actual computation starts. (at .get_compute_graph(request)).

static process (data)
Overridden to modify data from sources in unlimited ways.

Default implementation passes single-source unaltered data.

serialize ()
Serialize this block into a dict containing version, graph and name

to_json (**kwargs)
Dump the graph to a json stream.

token
Generates a unique and deterministic representation of this object

dask_geomodeling.core.graphs.construct (graph, name, validate=True)
Construct a Block with dependent Blocks from a graph and endpoint name.

dask_geomodeling.core.graphs.compute (graph, name, *args, **kwargs)
Compute a graph ({name: [func, argl, arg2, ...]}) using dask.get_sync

2.5 Raster Blocks

RasterBlocks are the main component of raster operations. Most raster operations take one or more RasterBlocks as
input and produce a single RasterBlock as output.

Raster-type blocks contain rasters with data in three dimensions. Besides the x- and y-axes they also have a temporal
axis.

Internally, dask-geomodeling stores the raster data as NumPy arrays.

2.5.1 API Specification

Module containing the RasterBlock base classes.

class dask_geomodeling.raster.base.RasterBlock (*args)
The base block for temporal rasters.

All RasterBlocks must be derived from this base class and must implement the following attributes:
* period: atuple of datetimes
* timedelta: a datetime.timedelta (or None if nonequidistant)
e extent:atuple (x1, yl, x2, y2)
e dtype: a numpy dtype object
e fillvalue: a number

¢ geometry: OGR Geometry

2.5. Raster Blocks 13

https://numpy.org/

dask-geomodeling

e projection: WKT string
* geo_transform: atuple of 6 numbers
These attributes are None if the raster is empty.
A raster data request contains the following fields:
e mode: values ('vals'), time ('time ') or metadata ('meta')
e bbox: bounding box (x1, yl, x2, y2)
* projection: wkt spatial reference
* width: data width
* height: data height
e start: start date as naive UTC datetime
* stop: stop date as naive UTC datetime
The data response is None or a dictionary with the following fields:

e (if mode was "vals") "values": a three dimensional numpy ndarray of shape (bands, height,
width)

e (if mode was "vals") "no_data_value": a number that represents ‘no data’. If the ndarray is a
boolean, there is no ‘no data’ value.

e (if mode was "time"'") "time": a list of naive UTC datetimes corresponding to the time axis

* (if mode was "meta") "meta": alist of metadata values corresponding to the time axis

dask_geomodeling.raster.combine

Module containing raster blocks that combine rasters.

class dask_geomodeling.raster.combine.Group (*args)
Combine multiple rasters into a single one.

Operation to combine multiple rasters into one along all three axes (x, y and temporal). To only fill ‘no data’
values of input rasters that have the same temporal resolution dask_geomodeling.raster.elemwise.
FillNoData is preferred.

Values at equal timesteps in the contributing rasters are considered starting with the leftmost input raster. There-
fore, values from rasters that are more ‘to the right’ are shown in the result. ‘no data’ values are transparent and
will show data of rasters more ‘to the left’.

Parameters xargs (1ist of RasterBlocks) - list of rasters to be combined.

Returns RasterBlock that combines all input rasters

dask_geomodeling.raster.elemwise

Module containing elementwise raster blocks.

class dask_geomodeling.raster.elemwise.Add (a, b)
Add two rasters together or add a constant value to a raster.

Either one or both of the inputs should be a RasterBlock. In case of two raster inputs the temporal properties of
the rasters should be equal, however spatial properties can be different.

Parameters

14 Chapter 2. Contents

dask-geomodeling

e a(RasterBlock, number)— Addition term a
e b(RasterBlock, number)— Additionterm b
Returns RasterBlock containing the result of the addition.

class dask_geomodeling.raster.elemwise.Subtract (a,b)
Subtract two rasters or subtract a constant value from a raster

Either one or both of the inputs should be a RasterBlock. In case of two raster inputs the temporal properties of
the rasters should be equal, however spatial properties can be different.

Parameters
* a(RasterBlock, number)- Term be subtracted from
e b(RasterBlock, number)- Term to be subtracted
Returns RasterBlock containing the result of the function subtract.

class dask_geomodeling.raster.elemwise.Multiply (a, b)
Multiply two rasters or multiply a raster by a constant value.

Either one or both of the inputs should be a RasterBlock. In case of two raster inputs the temporal properties of
the rasters should be equal, however spatial properties can be different.

Parameters
* a(RasterBlock, number)— Multiplication factor a
* b(RasterBlock, number)— Multiplication factor b
Returns RasterBlock containing the result of the multiplication.

class dask_geomodeling.raster.elemwise.Divide (a, b)
Divide two rasters or divide a raster by a constant value.

Either one or both of the inputs should be a RasterBlock. In case of two raster inputs the temporal properties of
the rasters should be equal, however spatial properties can be different.

Parameters

* a(RasterBlock, number)-— Numerator

* b(RasterBlock, number)- Denominator
Returns RasterBlock containing the result of the division.

class dask_geomodeling.raster.elemwise.Power (a,b)
Exponential function with either a raster and a number or two rasters.

Either one or both of the inputs should be a RasterBlock. In case of two raster inputs the temporal properties of
the rasters should be equal, however spatial properties can be different.

Parameters
e a(RasterBlock, number)-— Base
* b(RasterBlock, number)—- Exponent
Returns RasterBlock containing the result of the exponential function.

class dask_geomodeling.raster.elemwise.FillNoData (*args)
Combines multiple rasters filling ‘no data’ values.

Values at equal timesteps in the contributing rasters are considered starting with the leftmost input raster. There-
fore, values from rasters that are more ‘to the right’ are shown in the result. ‘no data’ values are transparent and
will show data of rasters more ‘to the left’.

2.5. Raster Blocks 15

dask-geomodeling

The temporal properties of the rasters should be equal, however spatial properties can be different.
Parameters xargs (1ist of RasterBlocks)— Rasters to be combined.
Returns RasterBlock that combines values from the inputs.

class dask_geomodeling.raster.elemwise.Equal (a,b)
Compares the values of two rasters and returns True for equal elements.

This operation can be used to compare two rasters or to compare a raster with a static value. Note that ‘no data’
is not equal to ‘no data’: False is returned if any of the two terms is ‘no data’.

Either one or both of the inputs should be a RasterBlock. In case of two raster inputs the temporal properties of
the rasters should be equal, however spatial properties can be different.

Parameters
* a(RasterBlock, number)- Comparison term a
* b(RasterBlock, number)-— Comparison term b
Returns RasterBlock containing boolean values

class dask_geomodeling.raster.elemwise.NotEqual (a, b)
Compares the values of two rasters and returns False for equal elements.

This operation can be used to compare two rasters or to compare a raster with a static value. Note that ‘no data’
is not equal to ‘no data’: True is returned if any of the two terms is ‘no data’.

Either one or both of the inputs should be a RasterBlock. In case of two raster inputs the temporal properties of
the rasters should be equal, however spatial properties can be different.

Parameters
* a(RasterBlock, number)— Comparison term a
* b(RasterBlock, number)- Comparison term b
Returns RasterBlock containing boolean values

class dask_geomodeling.raster.elemwise.Greater (a,b)
Compares the values of two rasters and returns True if an element in the first term is greater.

This operation can be used to compare two rasters or to compare a raster with a static value. Note that False is
returned if any of the two terms is ‘no data’.

Either one or both of the inputs should be a RasterBlock. In case of two raster inputs the temporal properties of
the rasters should be equal, however spatial properties can be different.

Parameters
* a(RasterBlock, number)- Comparison term a
* b(RasterBlock, number)-— Comparison term b
Returns RasterBlock containing boolean values

class dask_geomodeling.raster.elemwise.GreaterEqual (q, b)
” Compares the values of two rasters and returns True if an element in the first term is greater or equal.

This operation can be used to compare two rasters or to compare a raster with a static value. Note that False is
returned if any of the two terms is ‘no data’.

Either one or both of the inputs should be a RasterBlock. In case of two raster inputs the temporal properties of
the rasters should be equal, however spatial properties can be different.

Parameters

16 Chapter 2. Contents

dask-geomodeling

* a(RasterBlock, number)— Comparison term a
* b(RasterBlock, number)- Comparison term b
Returns RasterBlock containing boolean values

class dask_geomodeling.raster.elemwise.Less (a,b)
Compares the values of two rasters and returns True if an element in the first term is less.

This operation can be used to compare two rasters or to compare a raster with a static value. Note that False is
returned if any of the two terms is ‘no data’.

Either one or both of the inputs should be a RasterBlock. In case of two raster inputs the temporal properties of
the rasters should be equal, however spatial properties can be different.

Parameters
* a(RasterBlock, number)- Comparison term a
* b(RasterBlock, number)-— Comparison term b
Returns RasterBlock containing boolean values

class dask_geomodeling.raster.elemwise.LessEqual (qa, D)
Compares the values of two rasters and returns True if an element in the first term is less or equal.

This operation can be used to compare two rasters or to compare a raster with a static value. Note that False is
returned if any of the two terms is ‘no data’.

Either one or both of the inputs should be a RasterBlock. In case of two raster inputs the temporal properties of
the rasters should be equal, however spatial properties can be different.

Parameters
* a(RasterBlock, number)— Comparison term a
* b(RasterBlock, number)- Comparison term b
Returns RasterBlock containing boolean values

class dask_geomodeling.raster.elemwise.Invert (x)
Logically invert a raster (swap True and False).

Takes a single input raster containing boolean values and outputs a boolean raster with the same spatial and
temportal properties.

Parameters x (RasterBlock)— Boolean raster with values to invert
Returns RasterBlock with boolean values opposite to the input raster.

class dask_geomodeling.raster.elemwise.And (a, b)
Returns True where both inputs are True.

Either one or both of the inputs should be a boolean RasterBlock. In case of two raster inputs the temporal
properties of the rasters should be equal, however spatial properties can be different.

Parameters
* a(RasterBlock, boolean)-Logical term a
* b(RasterBlock, boolean)- Logical term b
Returns RasterBlock containing boolean values

class dask_geomodeling.raster.elemwise.Or (a, b)
Returns True where any of inputs is True.

2.5. Raster Blocks 17

dask-geomodeling

Either one or both of the inputs should be a boolean RasterBlock. In case of two raster inputs the temporal
properties of the rasters should be equal, however spatial properties can be different.

Parameters
* a(RasterBlock, boolean)- Logical term a
* b(RasterBlock, boolean)- Logical term b
Returns RasterBlock containing boolean values

class dask_geomodeling.raster.elemwise.Xor (a, b)
Exclusive or: returns True where exactly one of the inputs is True.

Where both inputs are True, False is returned.

Either one or both of the inputs should be a boolean RasterBlock. In case of two raster inputs the temporal
properties of the rasters should be equal, however spatial properties can be different.

Parameters
* a(RasterBlock, boolean)-Logical term a
* b(RasterBlock, boolean)-Logical term b
Returns RasterBlock containing boolean values

class dask_geomodeling.raster.elemwise.IsData (store)
Returns True where raster has data.

Takes a single input raster and outputs a boolean raster with the same spatial and temporal properties.
Parameters store (RasterBlock) — Input raster
Returns RasterBlock with boolean values.

class dask_geomodeling.raster.elemwise.IsNoData (store)
Returns True where raster has no data.

Takes a single input raster and outputs a boolean raster with the same spatial and temporal properties.
Parameters store (RasterBlock)— Input raster

Returns RasterBlock with boolean values.

dask_geomodeling.raster.misc

Module containing miscellaneous raster blocks.

class dask_geomodeling.raster.misc.Clip (store, source)
Clip one raster to the extent of another raster.

Takes two raster inputs, one raster (‘store’) whose values are returned in the output and one raster (‘source’)
that is used as the extent. Cells of the ‘store’ raster are replaced with ‘no data’ if there is no data in the ‘source’
raster.

If the ‘source’ raster is a boolean raster, False will result in ‘no data’.
Parameters
* store (RasterBlock)— Raster whose values are clipped
* source (RasterBlock) — Raster that is used as the clipping mask

Returns RasterBlock with clipped values.

18 Chapter 2. Contents

dask-geomodeling

class dask_geomodeling.raster.misc.Classify (store, bins, right=False)
Classify raster data into binned categories

Takes a RasterBlock and classifies its values based on bins. The bins are supplied as a list of increasing bin
edges.

For each raster cell this operation returns the index of the bin to which the raster cell belongs. The lowest
possible output cell value is 0, which means that the input value was lower than the lowest bin edge. The highest
possible output value is equal to the number of supplied bin edges.

Parameters
e store (RasterBlock) — The raster whose cell values are to be classified
* bins (1ist)— An increasing list of bin edges

* right (boolean)— Whether the intervals include the right or the left bin edge, defaults
to False.

Returns RasterBlock with classified values

class dask_geomodeling.raster.misc.Reclassify (store, data, select=False)
Reclassify a raster of integer values.

This operation can be used to reclassify a classified raster into desired values. Reclassification is done by
supplying a list of [from, to] pairs.

Parameters
e store (RasterBlock) — The raster whose cell values are to be reclassified

* bins (11ist)— A list of [from, to] pairs defining the reclassification. The from values can
be of bool or int datatype; the to values can be of int or float datatype

¢ select (boolean) — Whether to set all non-reclassified cells to ‘no data’, defaults to
False.

Returns RasterBlock with reclassified values

class dask_geomodeling.raster.misc.Mask (store, value)
Replace values in a raster with a single constant value. ‘no data’ values are preserved.

Parameters
* store (RasterBlock) — The raster whose values are to be converted.
* value (number) — The constant value to be given to ‘data’ values.
Returns RasterBlock containing a single value

class dask_geomodeling.raster.misc.MaskBelow (store, value)
Converts raster cells below the supplied value to ‘no data’.

Raster cells with values greater than or equal to the supplied value are returned unchanged.
Parameters
* store (RasterBlock) — The raster whose values are to be masked.
e value (number) — The constant value below which values are masked.
Returns RasterBlock with cells below the input value converted to ‘no data’.

class dask_geomodeling.raster.misc.Step (store, left=0, right=1, value=0, at=None)
Apply a step function to a raster.

2.5. Raster Blocks 19

dask-geomodeling

This operation classifies the elements of a raster into three categories: less than, equal to, and greater than a
value.

The step function is defined as follows, with x being the value of a raster cell:
e ‘left’ if x < value
e ‘at’ if x == value

e ‘right’ if x > value

Parameters
* store (RasterBlock) — The input raster
* left (number) — Value given to cells lower than the input value, defaults to O
* right (number) — Value given to cells higher than the input value, defaults to 1
* value (number) — The constant value which raster cells are compared to, defaults to O

* at (number) — Value given to cells equal to the input value, defaults to the average of left
and right

Returns RasterBlock containing three values; left, right and at.
class dask_geomodeling.raster.misc.Rasterize (source, column_name=None, dtype=None,

limit=None)
Converts geometry source to raster

This operation is used to transform GeometryBlocks into RasterBlocks. Here geometries (from for example a
shapefile) are converted to a raster, using the values from one of the columns.

Note that to rasterize floating point values, it is necessary to pass dtype="float".
Parameters
* source (GeometryBlock) — The geometry source to be rasterized

e column_name (string)— The name of the column whose values will be returned in the
raster. If column_name is not provided, a boolean raster will be generated indicating where
there are geometries.

* dtype (string)— A numpy datatype specification to return the array. Defaults to ‘int32’
if column_name is provided, or to ‘bool’ otherwise.

Returns RasterBlock with values from ‘column_name’ or a boolean raster.
See also:

https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html

The global geometry-limit setting can be adapted as follows:

>>> from dask import config
>>> config.set ({"geomodeling.geometry—-limit": 100000})

class dask_geomodeling.raster.misc.RasterizeWKT (wkt, projection)
Converts a single geometry to a raster mask

Parameters
* wkt (string) - the WKT representation of a geometry

* projection (string)— the projection of the geometry

20 Chapter 2. Contents

https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html

dask-geomodeling

Returns RasterBlock with True for cells that are inside the geometry.

dask_geomodeling.raster.sources

Module containing raster sources.

class dask_geomodeling.raster.sources.MemorySource (data, no_data_value, projec-
tion, pixel_size, pixel_origin,
time_first=0, time_delta=None,

) metadata=None)
A raster source that interfaces data from memory.

Nodata values are supported, but when upsampling the data, these are assumed to be 0 biasing data edges

towards 0.
Parameters

* data (number or ndarray) — the pixel values this value will be transformed in a 3D
array (t, y, X)

* no_data_value (number) — the pixel value that designates ‘no data’

* projection (str) - the projection of the given pixel values

* pixel_size (float or length-2 iterable of floats) — the size of one
pixel (in units given by projection) if x and y pixel sizes differ, provide them in (X, y)
order

* pixel_origin (length-2 iterable of floats) — the location (x, y) of pixel
with index (0, 0)

* time_first (integer or naive datetime)— the timestamp of the first frame in
data (in milliseconds since 1-1-1970)

* time_delta (integer or timedelta or NoneType) — the difference between
two consecutive frames (in ms)

* metadata(list or NoneType)—alist of metadata corresponding to the input frames

class dask_geomodeling.raster.sources.RasterFileSource (url, time_first=0,

time_delta=300000)
A raster source that interfaces data from a file path.

Parameters

* url (str) — the path to the file. File paths have to be contained inside the current root
setting. Relative paths are interpreted relative to this setting (but internally stored as absolute
paths).

* time_ first (integer or datetime) - the timestamp of the first frame in data (in
milliseconds since 1-1-1970), defaults to 1-1-1970

* time_delta (integer or timedelta) — the difference between two consecutive
frames (in ms), defaults to 5 minutes

The global root path can be adapted as follows:

>>> from dask import config
>>> config.set ({"geomodeling.root": "/my/data/path"})

Note that this object keeps a file handle open. If you need to close the file handle, call block.close_dataset (or

dereference the whole object).

2.5. Raster Blocks

21

dask-geomodeling

dask_geomodeling.raster.spatial

Module containing raster blocks for spatial operations.

class dask_geomodeling.raster.spatial.Dilate (store, values)
Perform spatial dilation on specific cell values.

Cells with values in the supplied list are spatially dilated by one cell in each direction, including diagonals.
Dilation is performed in the order of the values parameter.
Parameters
* store (RasterBlock)— Raster to perform dilation on.
* values (1ist)— Only cells with these values are dilated.
Returns RasterBlock where cells in values list are dilated.
See also:
https://en.wikipedia.org/wiki/Dilation_%?28morphology %29

class dask_geomodeling.raster.spatial.Smooth (store, size, fill=0)
Smooth the values from a raster spatially using Gaussian smoothing.

Parameters
e store (RasterBlock) — Raster to be smoothed

* size (number) — The extent of the smoothing in meters. The ‘sigma’ value for the Gaus-
sian kernal equals size / 3.

* £ill (number)— ‘no data’ are replaced by this value during smoothing, defaults to 0.
Returns RasterBlock with spatially smoothed values.
See also:
https://en.wikipedia.org/wiki/Gaussian_blur

class dask_geomodeling.raster.spatial.MovingMax (store, size)
Apply a spatial maximum filter to the data using a circular footprint.

This can be used for visualization of sparse data.
Parameters
* store (RasterBlock) — Raster to which the filter is applied

* size (integer) — Diameter of the circular footprint. This should always be an odd
number larger than 1.

Returns RasterBlock with maximum values inside the footprint of each input cell.

class dask_geomodeling.raster.spatial.HillShade (store, altitude=45, azimuth=315,
fill=0)
Calculate a hillshade from the raster values.

Parameters
* store (RasterBlock)— Raster to which the hillshade algorithm is applied.
* size (number) — Size of the effect in projected units.
* altitude (number) — Light source altitude in degrees, defaults to 45.

* azimuth (number) — Light source azimuth in degrees, defaults to 315.

22 Chapter 2. Contents

https://en.wikipedia.org/wiki/Dilation_%28morphology%29
https://en.wikipedia.org/wiki/Gaussian_blur

dask-geomodeling

e £ill (number) — Fill value to be used for ‘no data’ values.
Returns Hillshaded raster

See also:

https://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-hillshade- works.htm

dask_geomodeling.raster.temporal

Module containing raster blocks for temporal operations.

class dask_geomodeling.raster.temporal.Snap (store, index)
Snap the time structure of a raster to that of another raster.

This operations allows to take the cell values from one raster (‘store’) and the temporal properties of another

raster (‘index’).

If the store is not a temporal raster, its cell values are copied to each timestep of the index raster. If the store is
also a temporal raster, this operation looks at each ‘index’ timestamp and takes the closest ‘store’ timestamp as

cell values.
Parameters
e store (RasterBlock)— Return cell values from this raster
* index (RasterBlock)— Snap values to the timestamps from this raster
Returns RasterBlock with temporal properties of the index.

class dask_geomodeling.raster.temporal.Shift (store, time)
Shift a temporal raster by some timedelta.

A positive timedelta shifts into the future and a negative timedelta shifts into the past.
Parameters
* store (RasterBlock)— The store whose timestamps are to be shifted
e time (integer) — The timedelta to shift the store, in milliseconds.
Returns RasterBlock with its timestamps shifted.

class dask_geomodeling.raster.temporal.TemporalAggregate (source, frequency, statis-
tic="sum’, closed=None,
label=None, time-
zone="UTC’)
Resample a raster in time.

This operation performs temporal aggregation of rasters, for example a hourly average of data that has a 5 minute

resolution.. The timedelta of the resulting raster is determined by the ‘frequency’ parameter.
Parameters
* source (RasterBlock)— The input raster whose timesteps are aggregated

* frequency (string or None)-The frequency to resample to, as pandas offset string
(see the references below). If this value is None, this block will return the temporal statistic
over the complete time range, with output timestamp at the end of the source raster period.
Defaults to None.

* statistic (string) — The type of statistic to perform. Can be one of {"sum",
"count", "min", "max", "mean", "median", "p<percentile>"}. De-
faults to "sum™".

2.5. Raster Blocks

23

https://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-hillshade-works.htm

dask-geomodeling

e closed (string or None)— Determines what side of the interval is closed. Can be
"left" or "right". The default depends on the frequency.

* label (string or None) — Determines what side of the interval is closed. Can be
"left" or "right". The default depends on the frequency.

* timezone (string) - Timezone to perform the resampling in, defaults to "UTC".
Returns RasterBlock with temporally aggregated data.
See also:

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.resample.html https://pandas.pydata.
org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects

class dask_geomodeling.raster.temporal.Cumulative (source, statistic="sum’, fre-

quency=None, timezone="UTC")
Compute the cumulative of a raster over time.

Contrary to dask_geomodeling.raster.temporal.TemporalAggregate, in this operation the
timedelta of the resulting raster equals the timedelta of the input raster. Cell values are accumulated over the
supplied period. At the end of each period the accumulation is reset.

Parameters
* source (RasterBlock)— The input raster whose timesteps are accumulated.

* statistic (string) — The type of accumulation to perform. Can be "sum" or
"count". Defaults to "sum".

* frequency (string or None) - The period over which accumulation is performed.
Supply a pandas offset string (see the references below). If this value is None, the accumu-
lation will continue indefinitely. Defaults to None.

* timezone (string) — Timezone in which the accumulation is performed, defaults to
"UTC".

Returns RasterBlock with temporally accumulated data.
See also:

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects

2.6 Geometry and Series Blocks

Geometry-type blocks contain sets of geometries, optionally with 'start' and 'end' fields and other properties.
Internally, geometry data is stored in GeoPandas GeoDataframes.

2.6.1 API Specification

Module containing the base geometry block classes.

class dask_geomodeling.geometry.base.GeometryBlock (*args)
The base block for geometries

All geometry blocks must be derived from this base class and must implement the following attribute:
* columns: a set of column names to expect in the dataframe
A geometry request contains the following fields:

e mode: one of {"intersects", "centroid", "extent"}

24 Chapter 2. Contents

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.resample.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects
https://http://geopandas.org//

dask-geomodeling

* geometry: limit returned objects to objects that intersect with this shapely geometry object
 projection: projection to return the geometries in as WKT string
¢ limit: the maximum number of geometries
* min_size: geometries with a bbox that is smaller than this on all sides are left out
* start: start date as UTC datetime
* stop: stop date as UTC datetime
« filters: dict of Django ORM-like filters on properties (e.g. 1d=598)
The data response is a dictionary with the following fields:

¢ (if mode was "intersects" or "centroid") "features": a GeoDataFrame of features with
properties

e (if mode was "extent") "extent": a tuple of 4 numbers (min_x, min_y, max_x, max_y)
that represents the extent of the geometries that would be returned by an "intersects" request.

e (for all modes) "projection": the EPSG or WKT representation of the projection.

To be able to perform operations on properties, there is a helper type called SeriesBlock. This is the
block equivalent of a pandas.Series. You can get a SeriesBlock from a GeometryBlock, perform
operations on it, and set it back into a GeometryBlock.

to_file (*args, **kwargs)
Utility function to export data from this block to a file on disk.

You need to specify the target file path as well as the extent geometry you want to save. Feature properties
can be saved by providing a field mapping to the fields argument.

To stay within memory constraints or to parallelize an operation, the tile_size argument can be pro-
vided.

Parameters

e url (str) — The target file path. The extension determines the format. For supported
formats, consult GeometryFileSink.supported_extensions.

* fields (dict) — a mapping that relates column names to output file field names field
names, {<output file field name>: <column name>, ...}.

* tile_ size (int) — Optionally use this for large exports to stay within memory con-
straints. The export is split in tiles of given size (units are determined by the projection).
Finally the tiles are merged.

* geometry (shapely Geometry)— Limit exported objects to objects whose centroid
intersects with this geometry.

* projection (str) - The projection as a WKT string or EPSG code. Sets the projection
of the geometry argument, the target projection of the data, and the tiling projection.

e start (datetime) — start date as UTC datetime
* stop (datetime) — stop date as UTC datetime

* xxrequest — see GeometryBlock request specification

Relevant settings can be adapted as follows:

2.6. Geometry and Series Blocks 25

https://www.djangoproject.com/

dask-geomodeling

>>> from dask import config

>>> config.set ({"geomodeling.root": '/my/output/data/path'})
>>> config.set ({"geomodeling.geometry—-1limit": 10000})
>>> config.set ({"temporary_directory": '/my/alternative/tmp/dir'})

class dask_geomodeling.geometry.base.SeriesBlock (*args)
A block that represents one column from a GeometryBlock.

Use this helper class to modify (or to use logic on) a specific feature property.

Use :class:dask_geomodeling.geometry.base.GetSeriesBlock to retrieve a SeriesBlock from a
GeometryBlock and :class:dask_geomodeling.geometry.base.SetSeriesBlock to add a Series-
Block to a GeometryBlock.

class dask_geomodeling.geometry.base.GetSeriesBlock (source, name)
Obtain a single feature property column from a GeometryBlock.

Provide a GeometryBlock with one or more columns. One of these columns can be read from this source into a
SeriesBlock. This SeriesBlock can be used to run for example classifications.

Parameters

* source (GeometryBlock)— GeometryBlock with the column you want to load into the
SeriesBlock.

* name (str)— Name of the column to load into the SeriesBlock.
Returns SeriesBlock containing the single property column

class dask_geomodeling.geometry.base.SetSeriesBlock (source, column, value, *args)
Add one or multiple property columns (SeriesBlocks) to a GeometryBlock.

Provide the GeometryBlock that you want to add more properties to. Then provide the SeriesBlock(s) which
you want to add to the GeometryBlock. The values of the SeriesBlock will be added to the features in the
GeometryBlock automatically (if they are derived from the same geometries in previous operations, the features
will have matching indexes so that each property is matched to the correct feature).

The value which is set can also be a single value, in which case each feature will get the same value as a property.
Parameters

* source (GeometryBlock) — The base GeometryBlock to which the SeriesBlock is
added as a new column.

¢ column (str)— The name of the new column (if it exists, it will be overwritten)

* value (SeriesBlock, number, str, bool)-The SeriesBlock or constant value
that has to be inserted in the destination column.

* xargs — It is possible to repeat the "column" and "value" arguments multiple times
to insert more than one column.

Example

Add two columns to an existing view like this: SetSeriesBlock (view, "column_1", series_1,
"column_2", series_2).

Returns The source GeometryBlock with additional property columns

26 Chapter 2. Contents

dask-geomodeling

dask_geomodeling.geometry.aggregate

Module containing raster blocks that aggregate rasters.

class dask_geomodeling.geometry.aggregate.AggregateRaster (source, raster,

statistic="sum’,
projection=None,
pixel_size=None,
max_pixels=None,
column_name="agg’,
auto_pixel_size=False,
*args)

Compute statistics of a raster for each geometry in a geometry source.

A statistic is computed in a specific projection and with a specified cell size. If projectionorpixel size
are not given, these default to the native projection of the provided raster source.

Should the combination of the requested pixel_size and the extent of the source geometry cause the required
raster size to exceed max_pixels, the pixel_size can be adjusted automatically if auto_pixel_size
is set to True, else (the default) a RuntimeError is raised.

Please note that for any field operation on the result of this block a GetSeriesBlock should be used to retrieve
data from the added column. The name of the added column is determined by the column_name parameter.

Parameters

source (GeometryBlock) — The geometry source for which the statistics are deter-
mined.

raster (RasterBlock) — The raster source that is sampled.

statistic (str) — The type of statistical analysis that should be performed.
The options are: {"sum", "count", "min", "max", "mean", "median",
"p<percentile>"}. Percentiles are provided for example as follows: "p50". Default
n sum n .

projection (str, optional)— Projection to perform the aggregation in, for exam-
ple "EPSG:28992". Defaults to the native projection of the supplied raster.

pixel_size (float, optional) - The raster cell size used in the aggregation. De-
faults to the cell size of the supplied raster.

max_pixels (int, optional)- The maximum number of pixels (cells) in the aggre-
gation. Defaults to the geomodeling.raster-1limit setting.

column_name (str, optional)-— The name of the column where the result should
be placed. Defaults to "agg".

auto_pixel_size (boolean) — Determines whether the pixel size is adjusted auto-
matically when "max_pixels" is exceeded. Default False.

Returns GeometryBlock with aggregation results in an added column

The global raster-limit setting can be adapted as follows:

>>> from dask import config
>>> config.set ({"geomodeling.raster—1limit": 10 x* 9})

2.6. Geometry and Series Blocks

27

dask-geomodeling

class dask_geomodeling.geometry.aggregate.AggregateRasterAboveThreshold (source,
raster,
statis-
tic="sum’,
pro-
Jjec-
tion=None,
pixel_size=None,
max_pixels=None,
col-
umn_name="agg’,
auto_pixel_size=False,
thresh-

..) old_name=None)
Compute statistics of a per-feature masked raster for each geometry in a geometry source.

Per feature, a threshold can be supplied to mask the raster with. Only values that exceed the threshold of a
specific feature are included for the statistical value of that feature.

See :class:dask_geomodeling.geometry.aggregate.AggregateRaster for further information.

Parameters
* xargs - See :class:dask_geomodeling.geometry.aggregate.
AggregateRaster

* threshold_ name (str)— The column that holds the thresholds.

Returns GeometryBlock with aggregation results in an added column

dask_geomodeling.geometry.constructive

Module containing geometry block constructive operations

class dask_geomodeling.geometry.constructive.Buffer (source, distance, projection, res-

olution=16)
Buffer (‘expand’) geometries with a given value.

A GeometryBlock and a buffer distance are provided. Each feature in the GeometryBlock is buffered with the
distance provided, resulting in updated geometries.

Parameters

* source (GeometryBlock) — The source GeometryBlock whose geometry will be up-
dated.

* distance (float) — The distance used to buffer all features. The distance is measured
in the unit of the given projection (e.g. m, °).

* projection (str) — The projection used in the operation provided in the format:
"EPSG:28992".

* resolution (integer, optional)— The resolution of the buffer provided as the
number of points used to represent a quarter of a circle. The default value is 16.

Returns GeometryBlock with buffered geometries.

class dask_geomodeling.geometry.constructive.Simplify (source, tolerance=None, pre-

serve_topology=True)
Simplify geometries, mainly to make them computationally more efficient.

28 Chapter 2. Contents

dask-geomodeling

Provide a GeometryBlock and a tolerance value to simplify the geometries. As a result all features in the
GeometryBlock are simplified.

Parameters
* source (GeometryBlock) — Source of the geometries to be simplified.

* tolerance (float) — The tolerance used in the simplification. If no tolerance is given
the "min_size" request parameter is used.

* preserve_topology (boolean, optional) — Determines whether the topology
should be preserved in the operation. Defaults to True.

Returns GeometryBlock which was provided as input with a simplified geometry.

dask_geomodeling.geometry.field operations

Module containing geometry block operations that act on non-geometry fields

class dask_geomodeling.geometry.field_operations.Classify (source, bins, labels,
right=True)
Classify a value column into different bins

For example: every value below 3 becomes “A”, every value between 3 and 5 becomes “B”, and every value
above 5 becomes “C”.

The provided SeriesBlock will be classified according to the given classification parameters. These parameters
consist of two lists, one with the edges of the classification bins (i.e. [3, 5]) and one with the desired class
output (i.e. ["A", "B", "C"]). The input data is then compared to the classification bins. In this example
a value 1 is below 3 so it gets class "A". A value 4 is between 3 and 5 so it gets label "B".

How values outside of the bins are classified depends on the length of the labels list. If the length of the labels
equals the length of the binedges plus 1 (the above example), then values outside of the bins are classified to the
first and last elements of the labels list. If the length of the labels equals the length of the bins minus 1, then
values outside of the bins are classified to ‘no data’.

Parameters
e source (SeriesBlock) - The (numeric) data which should be classified.
* bins (1ist) - The edges of the classification intervals (i.e. [3, 5]).

* labels (1ist) — The classification returned if a value falls in a specific bin (i.e. ["A",
"B", "C"]). The length of this list is either one larger or one less than the length of the
bins argument.

* right (boolean, optional)- Determines what side of the intervals are closed. De-
faults to True (the right side of the bin is closed so a value assigned to the bin on the left if
it is exactly on a bin edge).

Returns A SeriesBlock with classified values instead of the original numbers.

class dask_geomodeling.geometry.field operations.ClassifyFromColumns (source,
value_column,
bin_columns,
labels,
right=True)
Classify a continuous-valued geometry property based on bins located in other columns.

See :class:dask_geomodeling.geometry.field_operations.Classify for further information.

Parameters

2.6. Geometry and Series Blocks 29

dask-geomodeling

* source (GeometryBlock) — The GeometryBlock which contains the column which
should be clasified as well as columns with the bin edges.

* value_column (str)— The column with (float) data which should be classified.

* bin_columns (1ist)— A list of columns that contain the bins for the classification. The
order of the columns should be from low to high values.

* labels (1ist) — The classification returned if a value falls in a specific bin (i.e. ["A",
"B", "C"]). The length of this list is either one larger or one less than the length of the
bins argument.

e right (boolean, optional)- Determines what side of the intervals are closed. De-
faults to True (the right side of the bin is closed so a value assigned to the bin on the left if
it is exactly on a bin edge).

Returns A SeriesBlock with classified values instead of the original floats.

class dask_geomodeling.geometry.field_operations.Add (source, other)
Element-wise addition of SeriesBlock or number to another SeriesBlock.

Parameters

* source (SeriesBlock) — First addition term

e other (SeriesBlock or number)- Second addition term
Returns SeriesBlock

class dask_geomodeling.geometry.field operations.Subtract (source, other)
Element-wise subtraction of SeriesBlock or number with another SeriesBlock.

Note that if you want to subtract a SeriesBlock from a constant value (like 4 — series, you have to do
Add (Multiply (series, -1), 4).

Parameters

* source (SeriesBlock) — First subtraction term

e other (SeriesBlock or number)- Second subtraction term
Returns SeriesBlock

class dask_geomodeling.geometry.field_operations.Multiply (source, other)
Element-wise multiplication of SeriesBlock or number with another SeriesBlock.

Parameters

* source (SeriesBlock) — First multiplication factor

* other (SeriesBlock or number) - Second multiplication factor
Returns SeriesBlock

class dask_geomodeling.geometry.field_operations.Divide (source, other)
Element-wise division of SeriesBlock or number with another SeriesBlock.

Note that if you want to divide a constant value by a SeriesBlock (like 3 / series, you have to do
Multiply (3, Power (series, -1)).

Parameters
e source (SeriesBlock)— Numerator
* other (SeriesBlock or number) - Denominator

Returns SeriesBlock

30 Chapter 2. Contents

dask-geomodeling

class dask_geomodeling.geometry.field_operations.FloorDivide (source, other)
Element-wise integer division of SeriesBlock or number with another SeriesBlock.

The outcome of the division is converted to the closest integer below (i.e. 3.4 becomes 3, 3.9 becomes 3 and

-3.4 becomes -4)
Parameters
e source (SeriesBlock)— Numerator
* other (SeriesBlock or number)— Denominator
Returns SeriesBlock

class dask_geomodeling.geometry.field_operations.Power (source, other)
Element-wise raise a SeriesBlock to the power of a number or another SeriesBlock.

For example, the inputs [2, 4] and 2 will give output [4, 16].
Parameters
* source (SeriesBlock)— Base
* other (SeriesBlock or number)— Exponent
Returns SeriesBlock

class dask_geomodeling.geometry.field_operations.Modulo (source, other)
Element-wise modulo (remainder after division) of SeriesBlock or number with another SeriesBlock.

Example: if the inputis [31, 5.3, —4] and the modulus is 3, the outcome wouldbe [1, 2.3, 2].The
outcome is always postive and less than the modulus.
Parameters
* source (SeriesBlock)— Number
* other (SeriesBlock or number)-— Modulus
Returns SeriesBlock
class dask_geomodeling.geometry.field_operations.Equal (source, other)
Determine whether a SeriesBlock and a second SeriesBlock or a constant value are equal.
Note that ‘no data’ does not equal ‘no data’.
Parameters
* source (SeriesBlock)— First comparison term
* other (SeriesBlock or number)- Second comparison term
Returns SeriesBlock with boolean values
class dask_geomodeling.geometry.field_operations.NotEqual (source, other)
Determine whether a SeriesBlock and a second SeriesBlock or a constant value are not equal.
Note that ‘no data’ does not equal ‘no data’.
Parameters
* source (SeriesBlock) — First comparison term
* other (SeriesBlock or number)— Second comparison term
Returns SeriesBlock with boolean values
2.6. Geometry and Series Blocks 31

dask-geomodeling

class dask_geomodeling.geometry.field_operations.Greater (source, other)
Determine for each value in a SeriesBlock whether it is greater than a comparison value from a SeriesBlock or
constant.

Parameters

* source (SeriesBlock) — First comparison term

* other (SeriesBlock or number)-— Second comparison term
Returns SeriesBlock with boolean values

class dask_geomodeling.geometry.field_operations.GreaterEqual (source, other)
Determine for each value in a SeriesBlock whether it is greater than or equal to a comparison value from a
SeriesBlock or constant.

Parameters

* source (SeriesBlock) — First comparison term

* other (SeriesBlock or number)— Second comparison term
Returns SeriesBlock with boolean values

class dask_geomodeling.geometry.field_operations.Less (source, other)
Determine for each value in a SeriesBlock whether it is less than a comparison value from a SeriesBlock or
constant.

Parameters

* source (SeriesBlock) — First comparison term

* other (SeriesBlock or number)- Second comparison term
Returns SeriesBlock with boolean values

class dask_geomodeling.geometry.field_operations.LessEqual (source, other)
Determine for each value in a SeriesBlock whether it is less than or equal to a comparison value from a Series-
Block or constant.

Parameters

* source (SeriesBlock)— First comparison term

* other (SeriesBlock or number)— Second comparison term
Returns SeriesBlock with boolean values

class dask_geomodeling.geometry.field_operations.And (source, other)
Perform an elementwise logical AND between two SeriesBlocks.

If a feature has a True value in both SeriesBlocks, True is returned, else False is returned.
Parameters
¢ source (SeriesBlock) — First boolean term
e other (SeriesBlock) - Second boolean term
Returns SeriesBlock with boolean values

class dask_geomodeling.geometry.field_operations.Or (source, other)
Perform an elementwise logical OR between two SeriesBlocks.

If a feature has a True value in any of the input SeriesBlocks, True is returned, else False is returned.

Parameters

32 Chapter 2. Contents

dask-geomodeling

e source (SeriesBlock) — First boolean term
e other (SeriesBlock) - Second boolean term
Returns SeriesBlock with boolean values

class dask_geomodeling.geometry.field_operations.Xor (source, other)
Perform an elementwise logical exclusive OR between two SeriesBlocks.

If a feature has a True value in precisely one of the input SeriesBlocks, True is returned, else False is returned.
Parameters
e source (SeriesBlock) — First boolean term
e other (SeriesBlock)— Second boolean term
Returns SeriesBlock with boolean values

class dask_geomodeling.geometry.field_operations.Invert (source, *args)
Invert a boolean SeriesBlock (swap True and False)

Parameters source (SeriesBlock) — SeriesBlock with boolean values.
Returns SeriesBlock with boolean values

class dask_geomodeling.geometry.field_operations.Where (source, cond, other)
Replace values in a SeriesBlock where values in another SeriesBlock are False.

Provide a source SeriesBlock, a conditional SeriesBlock (True/False) and a replacement value which can either
be a SeriesBlock or a constant value. All entries in the source that correspond to a True value in the conditional
are left unchanged. The values in the source that correspond to a False value in the conditional are replaced with
the value from ‘other’.

Parameters
* source (SeriesBlock)— Source SeriesBlock that is going to be updated

* cond (SeriesBlock) — Conditional (boolean) SeriesBlock that determines whether fea-
tures in the source SeriesBlock will be updated.

* other (SeriesBlock or constant) — The value that should be used as a replace-
ment for the source SeriesBlock where the conditional SeriesBlock is False.

Returns SeriesBlock with updated values where condition is False.

class dask_geomodeling.geometry.field_operations.Mask (source, cond, other)
Replace values in a SeriesBlock where values in another SeriesBlock are True.

Provide a source SeriesBlock, a conditional SeriesBlock (True/False) and a replacement value which can either
be a SeriesBlock or a constant value. All entries in the source that correspond to a True value in the conditional
are left unchanged. The values in the source that correspond to a True value in the conditional are replaced with
the value from ‘other’.

Parameters
* source (SeriesBlock)— Source SeriesBlock that is going to be updated

e cond (SeriesBlock)— Conditional (boolean) SeriesBlock that determines whether fea-
tures in the source SeriesBlock will be updated.

* other (SeriesBlock or constant) — The value that should be used as a replace-
ment for the source SeriesBlock where the conditional SeriesBlock is True.

Returns SeriesBlock with updated values where condition is True.

2.6. Geometry and Series Blocks 33

dask-geomodeling

class dask_geomodeling.geometry.field_operations.Round (source, decimals=0)
Round each value in a SeriesBlock to the given number of decimals

Parameters

* source (SeriesBlock) — SeriesBlock with float data that is rounded to the provided
number of decimals.

* decimals (int, optional)— number of decimal places to round to (default: 0). If
decimals is negative, it specifies the number of positions to the left of the decimal point.

Returns SeriesBlock with rounded values.

dask_geomodeling.geometry.geom_operations

Module containing operations that return series from geometry fields

class dask_geomodeling.geometry.geom_operations.Area (source, projection)
Calculate the area of features in a GeometryBlock.

Provide a GeometryBlock and a projection. Returns the area of each individual geometry in the input block, in
that projection.

Parameters
* source (GeometryBlock)— Source GeometryBlock which contains the features.
* projection (str)— Projection in which to compute the area (i.e. "epsg:28992™").

Returns SeriesBlock with only the computed area

dask_geomodeling.geometry.merge

Module containing merge operation that act on geometry blocks

class dask_geomodeling.geometry.merge .MergeGeometryBlocks (left, right, how="inner’,

suffixes=(", ’_right’))
Merge two GeometryBlocks into one by index

Provide two GeometryBlocks with the same original source to make sure they can be matched on index. The
additional SeriesBlocks that have been added to the GeometryBlock will be combined to one GeometryBlock
that contains all the information.

Parameters
* left (GeometryBlock) — The left GeometryBlock to be combined.
* right (GeometryBlock)— The right GeometryBlock to be combined.

* how (str, optional)— The parameter that describes how the merge should be per-
formed. There are four options: 1. "1eft": The resulting GeometryBlock will have all the
features

that are present in the left GeometryBlock, no matter the features in the right Geome-
tryBlock.

2. "right": The resulting GeometryBlock will have all the features that are present in the
right GeometryBlock, no matter the features in the left GeometryBlock.

3. "inner" (default): The outcome will contain all the features that are present in both
input GeometryBlocks. Features that are absent in one of the GeometryBlocks will be
absent in the result.

34 Chapter 2. Contents

dask-geomodeling

4. outer: The result will contain all the features which are present in one of the input
GeometryBlocs.

* suffixes (tuple, optional)-— Textto be added to the column names to distinguish
whether they originate from the left or right GeometryBlock. Default: ("", "_right").

Returns GeometryBlock that contains a combination of features and columns of the two input Ge-
ometryBlocks.

dask_ geomodeling.geometry.parallelize

Module containing blocks that parallelize non-geometry fields

class dask_geomodeling.geometry.parallelize.GeometryTiler (source, size, projec-
tion)
Parallelize operations on a GeometryBlock by tiling the request.

Parameters
* source (GeometryBlock)— The source GeometryBlock
* size (float)— The maximum size of a tile in units of the projection

* projection (str) — The projection as EPSG or WKT string in which to compute tiles
(e.g. "EPSG:28992")

Returns GeometryBlock that only supports "centroid" and "extent" request modes.

dask_geomodeling.geometry.set_operations

Module containing geometry block set operations

class dask_geomodeling.geometry.set_operations.Difference (source, other)
Calculate the geometric difference of two GeometryBlocks.

All geometries in the source GeometryBlock will be adapted by geometries with the same index from the second
GeometryBlock. The difference operation removes any overlap between the geometries from the first geometry.

Parameters
* source (GeometryBlock) — First geometry source.
* other (GeometryBlock)— Second geometry source.
Returns A GeometryBlock with altered geometries. Properties are preserved.

class dask_geomodeling.geometry.set_operations.Intersection (source,
)]) other=None)
Calculate the intersection of a GeometryBlock with the request geometry.

Normally, geometries returned by a GeometryBlock may be partially outside of the requested geometry. This
block ensures that the geometries are strictly inside the requested geometry by taking the intersection of each
geometry with the request geometry.

Parameters source (GeometryBlock) — Input geometry source.

Returns A GeometryBlock with altered geometries. Properties are preserved.

2.6. Geometry and Series Blocks 35

dask-geomodeling

dask_geomodeling.geometry.sources

Module containing geometry sources.

class dask_geomodeling.geometry.sources.GeometryFileSource (url, layer=None,
id_field="id’)
A geometry source that opens a geometry file from disk.

The input of this blocks is by default limited by the global geomodeling.geometry-limit setting.
Parameters

* url (str)—Path (URL) to the file. If relative, it is taken relative to the geomodeling.root
setting.

* layer (str, optional)— The layer name in the source to select. If None, (default)
the first layer is used.

e id field(str, optional)- The field name to use as feature index. Default "id".

Relevant settings can be adapted as follows:

>>> from dask import config
>>> config.set ({"geomodeling.root": '/my/data/path'})
>>> config.set ({"geomodeling.geometry—-limit": 100000})

class dask_geomodeling.geometry.sources.GeometryWKTSource (wkt, projection)
Converts a single geometry to a geometry source

Parameters
* wkt (string)-the WKT representation of a geometry
* projection (string)— the projection of the geometry

Returns GeometryBlock

dask_geomodeling.geometry.sinks

class dask_geomodeling.geometry.sinks.GeometryFileSink (source, url, extension="shp’,
fields=None)
Write geometry data to files in a specified directory

Use GeometryFileSink.merge_files to merge tiles into one large file.
Parameters
* source (GeometryBlock) — The block the data is coming from

* url (str) — The target directory to put the files in. If relative, it is taken relative to the
geomodeling.root setting.

* extension (str) - The file extension (defines the format), one of { "shp", "gpkg",
"geojson", "gml"}.On some platforms, these options might be limited. For an accu-
rate list, see GeometryFileSink.supported_extensions.

» fields (dict) — A mapping that relates column names to output file field names field
names like {<output file field name>: <column name>}.

Relevant settings can be adapted as follows:

36 Chapter 2. Contents

dask-geomodeling

>>> from dask import config
>>> config.set ({"geomodeling.root": '/my/output/data/path'})

static merge_files (path, target, remove_source=False)
Merge files (the output of this Block) into one single file.

Optionally removes the source files.

dask_geomodeling.geometry.sinks.to_£file (source, url, fields=None, tile_size=None,

dry_run=False, **request)
Utility function to export data from a GeometryBlock to a file on disk.

You need to specify the target file path as well as the extent geometry you want to save. Feature properties can
be saved by providing a field mapping to the £ields argument.

To stay within memory constraints or to parallelize an operation, the tile_size argument can be provided.
Parameters
* source (GeometryBlock) — the block the data is coming from

* url (str) — The target file path. The extension determines the format. For supported
formats, consult GeometryFileSink.supported_extensions.

» fields (dict) — a mapping that relates column names to output file field names field
names, {<output file field name>: <column name>, ...}.

* tile_size (int) — Optionally use this for large exports to stay within memory con-
straints. The export is split in tiles of given size (units are determined by the projection).
Finally the tiles are merged.

* dry_run (bool)— Do nothing, only validate the arguments.

* geometry (shapely Geometry) — Limit exported objects to objects whose centroid
intersects with this geometry.

* projection (str)— The projection as a WKT string or EPSG code. Sets the projection
of the geometry argument, the target projection of the data, and the tiling projection.

e mode (str)—oneof {"intersects", "centroid"}, default “centroid”
* start (datet ime) — start date as UTC datetime
* stop (datetime) — stop date as UTC datetime

* xxrequest — see GeometryBlock request specification

Relevant settings can be adapted as follows:

>>> from dask import config
>>> config.set ({"geomodeling.root": '/my/output/data/path'})
>>> config.set ({"temporary_directory": '/my/alternative/tmp/dir'})

dask_geomodeling.geometry.text

Module containing text column operations that act on geometry blocks

class dask_geomodeling.geometry.text .ParseTextColumn (source, source_column,

key_mapping)
Parses a text column into (possibly multiple) value columns.

Key, value pairs need to be separated by an equal (=) sign.

2.6. Geometry and Series Blocks 37

dask-geomodeling

Parameters
* source (GeometryBlock) — Data source
* source_column (str)— Existing column in source.

* key_mapping (dict)— Mapping containing pairs {key_name: column_name}:

38 Chapter 2. Contents

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

39

dask-geomodeling

40 Chapter 3. Indices and tables

Python Module Index

d

dask_geomodeling.
dask_geomodeling.
dask_geomodeling.
dask_geomodeling.
28
dask_geomodeling.
29
dask_geomodeling.
34
dask_geomodeling.
dask_geomodeling.
35
dask_geomodeling.
35
dask_geomodeling.
dask_geomodeling.
dask_geomodeling.
dask_geomodeling.
dask_geomodeling.
dask_geomodeling.
dask_geomodeling.
dask_geomodeling.
dask_geomodeling.
dask_geomodeling.

core.graphs, 12
geometry.aggregate, 27
geometry.base, 24
geometry.constructive,

geometry.field_operations,

geometry.geom_operations,

geometry.merge, 34
geometry.parallelize,

geometry.set_operations,

geometry.sinks, 36
geometry.sources, 36
geometry.text, 37

raster.
.combine, 14
raster.
.misc, 18
raster.
raster.
raster.

raster

raster

base, 13
elemwise, 14
sources, 21

spatial, 22
temporal, 23

41

dask-geomodeling

42 Python Module Index

Index

A

Add (class in dask_geomodeling.geometry.field_operations),
dask_geomodeling.

30
Add (class in dask_geomodeling.raster.elemwise), 14

AggregateRaster (class in
dask_geomodeling.geometry.aggregate),
27

AggregateRasterAboveThreshold (class in

dask_geomodeling.geometry.aggregate), 277

And (class in dask_geomodeling.geometry.field_operations),
dask_geomodeling.

32
And (class in dask_geomodeling.raster.elemwise), 17

Area (class in dask_geomodeling.geometry.geom_operatiofs§,Sk—geomodeling.

34

B

Block (class in dask_geomodeling.core.graphs), 12

Buffer (class in dask_geomodeling.geometry.constructive),
dask_geomodeling.

28

C

29

Classify (class in dask_geomodeling.raster.misc), 18

ClassifyFromColumns (class in
dask_geomodeling.geometry.field_operations),
29

Clip (class in dask_geomodeling.raster.misc), 18

compute () (in module
dask_geomodeling.core.graphs), 13

construct () (in module
dask_geomodeling.core.graphs), 13

Cumulative (class in

dask_geomodeling.raster.temporal), 24

D

dask_geomodeling.core.graphs (module), 12
dask_geomodeling.geometry.aggregate
(module), 27

dask_geomodeling.

24

(module), 28

dask_geomodeling.

(module), 29

dask_geomodeling.

(module), 34

dask_geomodeling.

34
(module), 35

(module), 35

dask_geomodeling.

36

dask_geomodeling.

ule), 36

37

dask_geomodeling.

Classify (class in dask_geomodeling.geometry. ﬁeld_oper%%sr]z(ﬁ,g eomodeling.

14

dask_geomodeling.

ule), 14

dask_geomodeling.
dask_geomodeling.

21

dask_geomodeling.

22

dask_geomodeling.

ule), 23

geometry.base (module),

geometry.constructive

geometry.field_operations

geometry.geom_operations

geometry.merge (module),

geometry.parallelize

geometry.set_operations

geometry.sinks (module),

geometry.sources (mod-

geometry.text (module),

raster.base (module), 13
raster.combine (module),
(mod-

raster.elemwise

raster.misc (module), 18
raster.sources (module),

raster.spatial (module),

raster.temporal (mod-

deserialize () (dask_geomodeling.core.graphs.Block
class method), 12

Difference

(class in

dask_geomodeling.geometry.set_operations),

35

Dilate (class in dask_geomodeling.raster.spatial), 22
Divide (class in dask_geomodeling.geometry.field_operations),

30

43

dask-geomodeling

Divide (class in dask_geomodeling.raster.elemwise), 15

E

Equal (class in dask_geomodeling.geometry.field_operatio

31
Equal (class in dask_geomodeling.raster.elemwise), 16

F

FillNoData (class in
dask_geomodeling.raster.elemwise), 15

FloorDivide (class in
dask_geomodeling.geometry.field_operations),
30

from_import_path ()
(dask_geomodeling.core.graphs.Block
method), 12

from_json () (dask_geomodeling.core.graphs.Block
class method), 12

static

G

GeometryBlock (class in
dask_geomodeling.geometry.base), 24
GeometryFileSink (class in

dask_geomodeling.geometry.sinks), 36
GeometryFileSource (class in
dask_geomodeling.geometry.sources), 36

GeometryTiler (class in
dask_geomodeling.geometry.parallelize),
35

GeometryWKTSource (class in

dask_geomodeling.geometry.sources), 36
get_compute_graph ()
(dask_geomodeling.core.graphs.Block

method), 12

get_datal() (dask_geomodeling.core.graphs.Block
method), 12

get_graph () (dask_geomodeling.core.graphs.Block
method), 12

get_import_path ()
(dask_geomodeling.core.graphs.Block class
method), 12

get_sources_and_requests ()
(dask_geomodeling.core.graphs.Block
method), 13

GetSeriesBlock (class in

dask_geomodeling.geometry.base), 26

GreaterEqual (class in
dask_geomodeling.raster.elemwise), 16
Group (class in dask_geomodeling.raster.combine), 14

iﬁ),

HillShade (class in dask_geomodeling.raster.spatial),

22

|

Intersection (class in
dask_geomodeling.geometry.set_operations),
35

Invert (class in dask_geomodeling.geometry.field_operations),
33

Invert (class in dask_geomodeling.raster.elemwise), 17
IsData (class in dask_geomodeling.raster.elemwise), 18
IsNoData (class in dask_geomodeling.raster.elemwise),

18

L

Less (class in dask_geomodeling.geometry.field_operations),

32

Less (class in dask_geomodeling.raster.elemwise), 17

LessEqual (class in
dask_geomodeling.geometry.field_operations),
32

LessEqual (class in

dask_geomodeling.raster.elemwise), 17

M

Mask (class in dask_geomodeling.geometry.field_operations),
33

Mask (class in dask_geomodeling.raster.misc), 19

MaskBelow (class in dask_geomodeling.raster.misc), 19

MemorySource (class in
dask_geomodeling.raster.sources), 21

merge_Tfiles () (dask_geomodeling.geometry.sinks.GeometryFileSink

static method), 37

MergeGeometryBlocks (class in
dask_geomodeling.geometry.merge), 34

Modulo (class in dask_geomodeling.geometry.field_operations),
31

MovingMax (class in dask_geomodeling.raster.spatial),
22

Multiply (class in dask_geomodeling.geometry.field_operations),

30

Greater (class in dask_geomodeling. geometry.field_operadiensH 1Py (class in dask_geomodeling.raster.elemwise),
15

31

Greater (class in dask_geomodeling.raster.elemwise),
16

GreaterEqual (class in
dask_geomodeling.geometry.field_operations),
32

N

NotEqual (class in dask_geomodeling.geometry.field_operations),

31
NotEqual (class in dask_geomodeling.raster.elemwise),
16

44

Index

dask-geomodeling

@) token (dask_geomodeling.core.graphs.Block attribute),

Or (class in dask_geomodeling.geometry.field_operations), 13

32 W

Or (class in dask_geomodeling.raster.elemwise), 17
Where (class in dask_geomodeling.geometry.field_operations),

P 33

ParseTextColumn (class in X
dask_geomodeling.geometry.text), 37 _ _ _
Power (class in dask_geomodeling.geometry.field_operatio9 X (class in dask_geomodeling.geometry.field_operations),

31 33
Power (class in dask_geomodeling.raster.elemwise), 15 ~ XOT (class in dask_geomodeling.raster.elemwise), 18
process () (dask_geomodeling.core.graphs.Block

static method), 13

R

RasterBlock (class in dask_geomodeling.raster.base),
13

RasterFileSource (class in
dask_geomodeling.raster.sources), 21

Rasterize (class in dask_geomodeling.raster.misc), 20

RasterizeWKT (class in
dask_geomodeling.raster.misc), 20

Reclassify (class in dask_geomodeling.raster.misc),
19

Round (class in dask_geomodeling.geometry.field_operations),
33

S

serialize () (dask_geomodeling.core.graphs.Block

method), 13
SeriesBlock (class in
dask_geomodeling.geometry.base), 26
SetSeriesBlock (class in

dask_geomodeling.geometry.base), 26

Shift (class in dask_geomodeling.raster.temporal), 23

Simplify (class in dask_geomodeling.geometry.constructive),
28

Smooth (class in dask_geomodeling.raster.spatial), 22

Snap (class in dask_geomodeling.raster.temporal), 23

Step (class in dask_geomodeling.raster.misc), 19

Subtract (class in dask_geomodeling.geometry.field_operations),
30

Subtract (class in dask_geomodeling.raster.elemwise),
15

T

TemporalAggregate (class in
dask_geomodeling.raster.temporal), 23

to_file () (dask_geomodeling.geometry.base.GeometryBlock
method), 25

to_file () (in module
dask_geomodeling.geometry.sinks), 37

to_json () (dask_geomodeling.core.graphs.Block
method), 13

Index 45

	About
	Contents
	Installation
	Quickstart
	Views
	Blocks
	Raster Blocks
	Geometry and Series Blocks

	Indices and tables
	Python Module Index
	Index

