

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	Dashkiosk 2.3.3 documentation

Dashkiosk’s documentation

[image: Dashkiosk logo]

Dashkiosk is a solution to manage dashboards on multiple screens. It
comes in four parts:

	A server will manage the screens by sending them which URL
they should display in realtime. A web interface enables the
administrator to configure groups of dashboards as well as their
associations with available displays.

	A receiver runs in a browser attached to each screen. On
start, it contacts the server and waits for it to tell which URL
to display.

	An Android application provides a simple fullscreen webview to
display the receiver.

	A Chromecast custom receiver which will run the regular receiver
if you want to display dashboards using Google Chromecast devices.

The Android application and the Chromecast receiver are optional
components. Any device able to display a fullscreen web page should
work.

Here is a demonstration video:

 Installation

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Dashkiosk 2.3.3 documentation

Installation

The server is a Node.js [http://nodejs.org/] application providing a rendez-vous point
for all displays to subscribe using a Websocket protocol as well as an
administration page to manage all displays, group them and tell them
which URL to display.

Server and receiver

To install it, you need to execute the following step:

	Grab the latest tarball for Dashkiosk [https://github.com/vincentbernat/dashkiosk/releases] from GitHub.

	Install Node.js [http://nodejs.org/] and optionally npm [https://www.npmjs.org]. Currently, Dashkiosk
only works with Node.js 0.10.x which is the current stable
version. If the version available in your distribution is not
up-to-date, have a look at how to install Node.js via the
package manager [https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager] before trying to build from the sources.

	Install bower and grunt, two package managers for Javascript
with the following command:

$ npm install -g bower grunt-cli

	Unpack Dashkiosk in the directory of your choice and go into
that directory.

	Install the appropriate dependencies with the following commands:

$ npm install

	Build the final version of Dashkiosk with the following command:

$ grunt

	Upon success, you will get a dist directory that you can put on
some server. It includes both the receiver and the server
part. Then, go to dist:

$ npm install --production

	If you want to use the Android application, you still need
to build it and install it. See Android application.

If you get an error while compiling mDNS extension on Linux, ensure
you have the appropriate development package for Avahi. Specifically,
on Debian, you need libavahi-compat-libdnssd-dev.

Branding

You can brand a bit Dashkiosk. To do this, run grunt with
--branding=BRAND. For example, the deezer branding provides
the following perks:

	The spinning vinyl is located in
app/images/loading-deezer.svg. You should be able to use
anything that will give a cool effect while spinning.

	The Deezer logo appearing both in the administration interface
and in the default dashboard is located in
app/images/stamp-deezer.svg.

You can create alternate version of those images and drop them at the
same place with a different suffix. Currently, the available brandings
are:

	default

	deezer

	dailymotion

	exoscale

Database

Dashkiosk stores its data inside some database. By default, it uses
SQLite. If you prefer to use another database, this is quite easy. We
will use PostgreSQL [http://www.postgresql.org] but this should be easy to transpose to another
database supported by Sequelize.js [http://sequelizejs.com], the ORM used in
Dashkiosk. The databases currently supported are:

	MySQL,

	MariaDB,

	SQLite, and

	PostgreSQL.

Here are the steps:

	Create a dedicated user inside your RDBMS. For PostgreSQL, this
is done as the postgres user with the following command:

$ createuser -P dashkiosk
Enter password for new role:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n

	Create an empty database. For PostgreSQL, this is also done as
the postgres user:

$ createuser -O dashkiosk dashkiosk

The database will be populated automatically when running Dashkiosk
for the first time.

Unassigned dashboard

By default, displays are put in a group with a dashboard with cycling
images. You can add more images in app/images/unassigned if you
want. Then, rebuild with grunt.

Upgrade

To upgrade, you can use the exact same instructions that you used for
installation. You can choose to do an in-place upgrade if you want
to:

$ npm install
$ grunt

If you kept the default SQLite database, be sure to save it (it’s in
dist/db/) before upgrading and restore it after upgrade. The
dist/ directory where Dashkiosk is built is wiped out on
upgrade.

 Copyright 2014, Vincent Bernat.
 Created using Sphinx 1.2.2.

 Configuration

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Dashkiosk 2.3.3 documentation

Configuration

Before running the server, there are some options you may want to
tune. Those options can be specified either on the command-line or in
a configuration file (that should be specified on the command-line).

Available options

Here are the three more important options:

	configuration

	This option allows to specify a configuration file in JSON format.

	environment

	This option sets the environment to use. By default, the
development environment is used. Unless you want to debug
Dashkiosk, this is not what you want. You can use any other
keyword. Use production if you don’t know.

	port

	The port to listen to. Quite important.

If you want to be able to use Chromecast devices, you also need to set:

	chromecast.enabled

	Enable Chromecast support. Disabled by default.

	chromecast.receiver

	The URL to the receiver. This is used to tell Chromecast devices
where to find the receiver. The default value is unlikely to
work. You should put the URL to access Dashkiosk and ends it with
/receiver. For example, put something like
http://dashkiosk.example.com/receiver.

The Chromecast custom receiver is hosted on GitHub [https://vincentbernat.github.io/dashkiosk/chromecast.html]. If you want to
modify it or to host it yourself, you need to register a new
application in the Google Cast SDK Developer Console [https://cast.google.com/publish/#/overview] and report the
provided application ID as chromecast.app.

The remaining options can usually be left untouched unless you decided
to not use the integrated SQLite database.

	path.static

	Path where the static files to be served for the receiver and the
integrated dashboards are located. Unless you moved them to some
other location, there is no need to change this.

	db.database

	Database name. This is not needed if you kept the default SQLite database.

	db.username

	Username to access the database. This is not needed if you kept
the default SQLite database.

	db.password

	Password to authenticate with the above username. This is not needed if
you kept the default SQLite database.

	db.options.dialect

	Dialect to use for the database. This can be sqlite,
mysql, mariadb or postgres.

	db.options.storage

	Location of the SQLite database. Not used for other databases.

	db.options.hostname

	Hostname (or IP) where the database is located. This is not needed for SQLite.

	log.level

	Log level to use for logging messages. Use either info or debug.

	log.file

	Location of a log file where to write logs in JSON format. By
default, no such file is generated.

Command-line or configuration file

On the command-line, the options are specified using the classic GNU
long option style by prepending them with --. For example:

--port 8087 --environment production

JSON configuration file

Alternatively, you can specify a JSON configuration file with
--configuration. In this case, the options with a dot should be
understood as being a sub-object. For example, to configure a
PostgreSQL database:

{
 "environment": "production",
 "db": {
 "username": "dashkiosk",
 "password": "dashkiosk",
 "database": "dashkiosk",
 "options": {
 "host": "172.17.42.1",
 "dialect": "postgres"
 }
 },
 "log": {
 "file": "/var/log/dashkiosk.log"
 }
}

Reverse proxy

You may want to put a reverse proxy in front of Dashkiosk. You
should know that it uses Socket.IO [http://socket.io/] whose preferred backend is
WebSocket. Some reverse proxy may not like it.

Here is a configuration for nginx:

upstream dashkiosk {
 server localhost:9450;
 server localhost:9451;
}

server {
 listen 80;
 listen [::]:80;
 server_name dashkiosk.example.com;

 location / {
 proxy_pass http://dashkiosk;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_set_header X-Forwarded-For $remote_addr;
 }
}

Setting X-Forwarded-For header allows Dashkiosk to display the
IP address of each display in case you want to log on it to debug it.

 Copyright 2014, Vincent Bernat.
 Created using Sphinx 1.2.2.

 Usage

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Dashkiosk 2.3.3 documentation

Usage

Running the server

Once installed and configured, running Dashkiosk should be
straightforward. While in the dist directory:

$ node server.js --environment production

Don’t forget to specify the environment! See Configuration for
available options. They can also be specified in a configuration file.

Testing

The server has three browser endpoints:

	/unassigned which is the default dashboard for unassigned displays,

	/admin which is the administration interface,

	/receiver which is the receiver part that a display should load.

To test that everything is setup correctly, point your browser to
/unassigned (for example http://localhost:9400/unassigned if
you kept the default parameters and installed Dashkiosk on your PC).

You should see the default dashboard displayed for unknown
device. These are just a few photos cycling around.

Then, you should go to the administration interface located in
/admin. While in the administration interface, open another tab
and go to /receiver which is the URL displaying the receiver. In
the /admin tab, you should see yourself as a new display in the
“Unassigned” group and in the /receiver tab, you should see the
default dashboard that you got by going in /unassigned.

To customize the default dashboard, see Unassigned dashboard.

Troubleshooting

If something goes wrong, be sure to look at the log. Either you run
the server through something like supervisord [http://supervisord.org/] and you can have a
look at the log in some file or you can use --log.file to get a
log file.

Administration

The administration interface allows to create new dashboards, see
active displays and associate them to a group of dashboards. When
pointing a browser to the /admin URL, you should see an interface
like this:

[image: Administration interface]
The administration interface with a few groups. At the top, the
special “Unassigned” group.

On the figure above, you can see the three main entities in Dashkiosk:

	The monitors with a 5-digit serial numbers are the
displays. For each of them, the serial number is attributed on
their first connection and stored locally in the display
[2]. They come with a green light when they are actually
alive.

	Each display is affected to a group of displays. In the above
figure, we have three groups. It is possible to move a display
from one group to another. Each group can have a name and a
description. It is possible to create or rename any group. The
group named “Unassigned” is special and new displays will be
attached to it on first connection. Other than that, this is a
regular group. The other special group is “Chromecast
devices”. See Chromecast devices.

	Each group of displays contains an ordered list of
dashboards. A dashboard is just an URL to be displayed with a
bunch of parameters. You can reorder the dashboards in a group and
choose how much time they should be displayed.

The first time, you will only have the special “Unassigned” group
[3].

Displays

Clicking on a display will show a dialog box with various information
about the display.

[image: Display details]
The dialog box of the APFI0S display.

First, you get the IP address of the display. This could be useful if
you need to connect to it for some other purpose (like debugging a
problem related to this display). If the display is offline, the IP
displayed is the last known IP.

Then, on the top right corner, there are contextual icons relevant to
the current display. On a display, you can execute two actions:

	force a reload of the receiver (after an update, for example),

	toggle the OSD on the receiver.

The receiver OSD is a neat feature to check if the display you are
inspecting is really the one you are interested in. It will display an
overlay with the display name as well as some technical information
that may be useful when displaying dashboards.

Not shown on the above figure, you can destroy a display by clicking
on the Delete button in the lower left corner.

You can assign a description to the display, like “In the
kitchen”. You can also change the group the display is currently
attached to by choosing another group in the dropdown menu. The
display should immediatly display the current dashboard of the group.

The viewport will be explained in a dedicated section. See
Viewport.

On a desktop browser, it is also possible to move the display to
another group by dragging it to the appropriate group.

Groups

By default, you only get the “Unassigned” group. But you can create
any number of groups you need by clicking on the “Add a new group”
button.

The name and the description of a group can be changed by clicking on
them. If you change the name of the “Unassigned” group, a new
“Unassigned” group will be created the next time a new display comes
to live.

As for displays, you can execute contextual actions on a group. There
are three of them:

	for a reload of all the displays in the group,

	toggle the OSD of all the displays in the group,

	destroy the group.

The group can only be destroyed if no display is attached to it.

Each group has a list of dashboards. You can reorder them by using the
up and down arrow icons on the right of each dashboard. You can add a
new dashboard by using the “Add a new dashboard” button.

Dashboards

When creating a dashboard or modifying an existing one (by clicking on
the little pen icon), you will get the following dialog box:

[image: Dashboard details]
The dialog box to modify some random dashboard.

Currently, a dashboard has:

	an URL

	an optional description

	a timer to tell how much time the dashboard should be displayed

	a viewport size (see Viewport).

The timer is optional but it doesn’t make sense to omit it if you have
several dashboards in a group. Without it, once the dashboard is
displayed, the next one will never be displayed unless you remove or
modify the current one.

You can also modify the timer and the viewport by clicking on them
directly in the list of dashboards in each group.

About the dashboards

The dashboards to be displayed can be any URL accessible by the
displays. When a new dashboard has to be displayed for a group, the
server will broadcast the URL of the dashboard to each member of the
group. They will load the dashboard and display it. This may seem easy
but there are several limitations to the system.

Network access

So, the first important thing about those dashboards is that they are
fetched by the displays, not by the server. You must therefore ensure
that the dashboards are accessible by the displays and not protected
by a password or something like that.

Processing power

Some dashboards may be pretty dynamic and use special effects that
look cool on the average PC. However, when using a US$30 low-end
Android stick to display it, it may become a bit laggy. Also, please
note that the Android application uses a modern webview but some
functionalities may be missing, like WebGL.

Viewport

By default, a dashboard is displayed using the native resolution of
the display. If the display is a 720p screen and your dashboard can
only be rendered correctly on a 1080p screen, you have a
problem. There are several solutions to this problem.

	Use a responsive dashboard that can adapt itself to any resolution.

	Change the viewport of the display. By clicking on the display,
you can specify a viewport. When empty, it means that you use the
viewport matching the native resolution of the screen. By
specifying another resolution, the display will render the
dashboards at the given resolution and zoom in or out to fit it
into its native resolution.

The support of this option depends on the ability of the browser
running the receiver to exploit this information. Android devices
are able to make use of it but other devices may not. If you don’t
see any effect when changing the viewport, use the next option.

	Change the viewport of the dashboard. This is quite similar to the
previous option but it is a per-dashboard option and it will work
on any device. It works in the same way: the rendering will be
done at the given resolution and then resized to fit in the
screen. Both options can be used at the same time, there is no
conflict.

IFrames

Technically, the receiver is a simple app rendering the requested URL
inside an IFrame which is like a browser inside a browser. There are
some limitations to an IFrame:

	The receiver has almost no way to communicate with the IFrame
[1]. It can know when an IFrame is ready but not if there is
an error. The IFrame can therefore be displayed while it is not
fully rendered and on the other hand, we cannot detect any error
and try to reload the IFrame.

	The IFrame can refuse to be display its content if there is a
special X-Frame-Options in the headers forbidding the use of an
IFrame.

	If you are serving Dashkiosk from an HTTPS URL, you cannot
display dashboards using HTTP. The other way is authorized. Hence,
it seems just easier to serve Dashkiosk receiver on HTTP.

The second limitation can be quite annoying. Here are some workarounds:

	Find an embeddable version of the content. Youtube, Google Maps
and many other sites propose a version specifically designed to be
embedded into an iframe.

	Use a web proxy that will strip out the offending header. A good
base for such a proxy is Node Unblocker [http://nodeunblocker.com/proxy]. It should be easy to
modify it to remove the X-Frame-Options header.

	Use a screenshot service. Instead of displaying the real website,
just display a screenshot. There are many solutions to implement
such a service with headless browsers like Phantom.JS. For example
this one [https://github.com/fzaninotto/screenshot-as-a-service].

Footnotes

	[1]	If the iframe is in the same domain, it can communicate
with the iframe. However, most of the time, this is not
the case. The receiver can also communicate with a
cooperating iframe by sending messages. This is currently
not implemented.

	[2]	The serial number is stored either in the local storage
of the browser or in a cookie. If a display comes
without this serial number or with an invalid one, it
will be granted a new one. The appropriate token is also
put in the URL in case neither cookies or local storage
are available. This way, you can point the browser to
the receiver part, then bookmark or turn the web page as
an application.

	[3]	If you don’t have this group, this may be because no display
has ever been registered. In this case, point your browser to
the /receiver URL to register one.

 Copyright 2014, Vincent Bernat.
 Created using Sphinx 1.2.2.

 API

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Dashkiosk 2.3.3 documentation

API

There are three API available in Dashkiosk:

	a REST API to manipulate groups, dashboards and displays,

	the change API which is a Socket.IO based API which broadcasts
changes to subscriber,

	the display API which is a Socket.IO based API which tells displays
which URL they should display.

There is also an internal bus API.

REST API

The REST API is available on the /api endpoint. Only JSON is
currently supported. On error, the HTTP error code is important and
the error message is also encapsulated into a JSON object:

{
 "error": {
 "httpCode": 404,
 "message": "No display named \"CNDS0KD\".",
 "name": "NotFoundError",
 "stack": [
 "NotFoundError: No display named \"CNDS0KD\".",
 " at dashkiosk/lib/models/display.js:154:15",
 " at process._tickDomainCallback (node.js:459:13)",
 " at process._tickFromSpinner (node.js:390:15)",
 "From previous event:",
 " at new Promise (dashkiosk/node_modules/sequelize/node_modules/bluebird/js/main/promise.js:88:37)",
 " at module.exports.CustomEventEmitter.then (dashkiosk/node_modules/sequelize/lib/emitters/custom-event-emitter.js:144:12)",
 " at Function.Display.get (dashkiosk/lib/models/display.js:152:6)",
 " at dashkiosk/lib/api/rest/displays.js:21:20",
 " at callbacks (dashkiosk/node_modules/express/lib/router/index.js:164:37)",
 " at param (dashkiosk/node_modules/express/lib/router/index.js:138:11)"
]
 },
 "message": "No display named \"CNDS0KD\".",
 "token": "1397254337651-5YHK0SFJRC"
}

The error attribute is only present in development mode. It can
also be found in the logs thanks to the token attribute.

Displays

	
GET /api/display

	The list of all known displays.

Example request:

GET /api/display HTTP/1.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "3VZG6Y": {
 "connected": false,
 "description": null,
 "group": 1,
 "id": 2,
 "ip": null,
 "name": "3VZG6Y",
 "viewport": null
 },
 "51VRJ7": {
 "connected": false,
 "description": "Chromium",
 "group": 2,
 "id": 7,
 "ip": "127.0.0.1",
 "name": "51VRJ7",
 "viewport": null
 }
}

	Status Codes:	
	200 – no error

	
PUT /api/display/(name)

	Modify the attributes of the display name.

Example request:

PUT /api/display/CNDS0K HTTP/1.1
Accept: application/json

{ "viewport": "1920x1080" }

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "connected": true,
 "description": "Nexus 5 (localhost:9400)",
 "group": 2,
 "id": 5,
 "ip": null,
 "name": "CNDS0K",
 "viewport": "1920x1080"
}

	Parameters:	
	name – name of the display

	JSON Parameters:

		
	description – new description for the display

	viewport – new viewport for the display

	Status Codes:	
	200 – no error

	404 – display not found

	
PUT /api/display/(name)/group/(int: id)

	Attach the display name to the group id.

Example request:

PUT /api/display/CNDS0K/group/10 HTTP/1.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "connected": false,
 "description": "Nexus 5 (localhost:9400)",
 "group": 10,
 "id": 5,
 "ip": null,
 "name": "CNDS0K",
 "viewport": "1920x1080"
}

	Parameters:	
	name – name of the display

	id – ID of the group

	Status Codes:	
	200 – no error

	404 – display or group not found

	
POST /api/display/(name)/action

	Request an action on a display. Only if connected.

Example request:

POST /api/display/CNDS0K/action HTTP/1.1
Accept: application/json

{ "action": "reload" }

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "connected": true,
 "description": "Nexus 5 (localhost:9400)",
 "group": 10,
 "id": 5,
 "ip": null,
 "name": "CNDS0K",
 "viewport": "1920x1080"
}

	Parameters:	
	name – name of the display

	JSON Parameters:

		
	action – requested action, either reload or osd

	text – for OSD only, text to display or null to remove the OSD

	Status Codes:	
	200 – no error

	400 – unknown action

	404 – display not found or offline

	
DELETE /api/display/(name)

	Delete the display name. Only possible if the display is not
connected anymore.

Example request:

DELETE /api/display/CNDS0K HTTP/1.1
Accept: application/json

Example response:

HTTP/1.1 204 OK
Content-Type: application/json

	Parameters:	
	name – name of the display

	Status Codes:	
	204 – no error

	404 – display not found

	409 – display still connected

Groups

	
GET /api/group

	The list of all known groups.

Example request:

GET /api/group HTTP/1.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "1": {
 "description": "Default group for unassigned displays",
 "id": 1,
 "name": "Unassigned"
 },
 "2": {
 "description": "Dashboards with Game of Thrones stuff",
 "id": 2,
 "name": "Game of Thrones"
 }
}

	Status Codes:	
	200 – no error

	
POST /api/group

	Create a new group

Example request:

POST /api/group HTTP/1.1
Accept: application/json

{
 "name": "New group"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "id": 9,
 "name": "New group"
}

	JSON Parameters:

		
	name – name of the group

	description – description of the group

	Status Codes:	
	200 – no error

	400 – a group should have a name

	409 – a group with the same name already exists

	
PUT /api/group/(int: id)

	Modify a group attributes.

Example request:

PUT /api/group/15 HTTP/1.1
Accept: application/json

{
 "name": "Another name",
 "description": "Fancy"
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "id": 9,
 "name": "Another name",
 "description": "Fancy"
}

	JSON Parameters:

		
	name – name of the group

	description – description of the group

	Status Codes:	
	200 – no error

	409 – a group with the same name already exists

	
DELETE /api/group/(int: id)

	Delete the group. Only possible if no display are attached.

Example request:

DELETE /api/group/15 HTTP/1.1
Accept: application/json

Example response:

HTTP/1.1 204 OK
Content-Type: application/json

	Parameters:	
	id – ID of the group

	Status Codes:	
	204 – no error

	404 – group not found

	409 – group with displays

Dashboards

	
GET /api/group/(int: id)/dashboard

	The list of all dashboards in a group

Example request:

GET /api/group/15/dashboard HTTP/1.1
Accept: application/json

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

[
 {
 "active": false,
 "description": "House Stark",
 "group": 15,
 "id": 2,
 "timeout": 30,
 "url": "http://www.gameofthronescountdown.com/#stark",
 "viewport": null
 },
 {
 "active": true,
 "description": "House Tully",
 "group": 15,
 "id": 3,
 "timeout": 30,
 "url": "http://www.gameofthronescountdown.com/#tully",
 "viewport": null
 }
]

	Parameters:	
	id – group ID

	Status Codes:	
	200 – no error

	404 – the group doesn’t exist

	
POST /api/group/(int: id)/dashboard

	Create a new dashboard

Example request:

POST /api/group/15/dashboard HTTP/1.1
Accept: application/json

{
 "url": "http://www.example.com",
 "timeout": 30
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "active": false,
 "group": 15,
 "id": 6,
 "timeout": 30,
 "url": "http://www.example.com"
}

	Parameters:	
	id – group ID

	JSON Parameters:

		
	url – URL of the dashboard

	description – description of the dashboard

	timeout – timer for this dashboard

	viewport – viewport for this dashboard

	Status Codes:	
	200 – no error

	404 – group not found

	409 – the URL is mandatory

	
PUT /api/group/(int: id)/dashboard/(int: dashid)

	Modify an existing dashboard. The special attribute rank can be
used to modify the position of the dashboard in the group. The
dashboards are numbered from 0 and the rank is the target position
we want.

Example request:

POST /api/group/15/dashboard/6 HTTP/1.1
Accept: application/json

{
 "timeout": 40
}

Example response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "active": false,
 "group": 15,
 "id": 6,
 "timeout": 40,
 "url": "http://www.example.com"
}

	Parameters:	
	id – group ID

	dashid – dashboard ID

	JSON Parameters:

		
	url – URL of the dashboard

	description – description of the dashboard

	timeout – timer for this dashboard

	viewport – viewport for this dashboard

	rank – New position for the dashboard

	Status Codes:	
	200 – no error

	404 – dashboard or group not found

	
DELETE /api/group/(int: id)/dashboard(int: dashid)

	Delete the dashboard.

Example request:

DELETE /api/group/15/dashboard/6 HTTP/1.1
Accept: application/json

Example response:

HTTP/1.1 204 OK
Content-Type: application/json

	Parameters:	
	id – ID of the group

	dashid – ID of the dashboard

	Status Codes:	
	204 – no error

	404 – group or dashboard not found

Changes API

The socket.IO endpoint for this API is changes. Upon connection, a
client will get all the current groups. Each group has a collection of
displays in the displays attribute and an array of dashboards in
the dashboards attribute. Here is an example:

{
 "1": {
 "description": "Default group for unassigned displays",
 "id": 1,
 "name": "Unassigned",
 "displays": {},
 "dashboards": []
 },
 "2": {
 "description": "Dashboards with Game of Thrones stuff",
 "id": 2,
 "name": "Game of Thrones"
 "displays": {
 "CNDS0K": {
 "connected": true,
 "description": "Nexus 5 (localhost:9400)",
 "group": 10,
 "id": 5,
 "ip": null,
 "name": "CNDS0K",
 "viewport": "1920x1080"
 }
 }
 "dashboards": [
 {
 "active": false,
 "description": "House Stark",
 "group": 2,
 "id": 2,
 "timeout": 30,
 "url": "http://www.gameofthronescountdown.com/#stark",
 "viewport": null
 },
 {
 "active": true,
 "description": "House Tully",
 "group": 2,
 "id": 3,
 "timeout": 30,
 "url": "http://www.gameofthronescountdown.com/#tully",
 "viewport": null
 }
]
 }
}

This message will be labeled snapshot.

On changes, only the group or the display affected by the change will
be sent. The label of the message will be one of:

	group.deleted

	group.updated

	group.created

And for displays:

	display.deleted

	display.updated (also for new displays)

If a change affects a dashboard, the whole group will be sent nonetheless.

Display API

This API is used by the display to know what they should do. The
socket.IO endpoint to use for it is displays.

The server attributes to each new display a serial number. The display
is expected to remember it and transmit it back on the next
connection. It is encrypted by the server to avoid the display to
steal another display identity.

Upon connection, a display is expected to send a register message
with an object containing the blob attribute with the encrypted
identity it previously received (if any).

If the server accepts the identity as is, it answers to this message
with the same blob that should be stored by the client. If not, it
will generate a new blob and sends it back to the client. In both
cases, the client just has to store the received blob.

After this handshake, the display can receive the following messages:

	dashboard

	The dashboard that should be displayed right now. It is an
object containing the same attributes as we would have got when
requesting this particular dashboard with the REST API. See
Dashboards.

	reload

	The display should reload itself.

	osd

	The OSD should be shown or hidden. If the message comes with a
text, the OSD is displayed with the provided text. Otherwise, it
is hidden.

	viewport

	Modify the current viewport of the display with the provided value.

Internal bus message

To avoid strong coupling between components, Dashkiosk uses
postal.js [https://github.com/postaljs/postal.js/] as an internal bus message. The messages that are emitted
are listed below:

	display.NAME.connected when a new display is connected

	display.NAME.disconnected when a new display is disconnected

	display.NAME.group when a display should change to a new group

	display.NAME.deleted when a display is deleted

	display.NAME.updated when another change happens on a display

	display.NAME.dashboard when a new dashboard should be displayed by the given display.

	display.NAME.reload when a display should reload itself

	display.NAME.osd when we need to display something on the OSD

	display.NAME.viewport when the display viewport should be updated

	group.ID.created when a new group is created

	group.ID.updated when a group is updated (but not something dashboard related)

	group.ID.deleted when a group is deleted

	group.ID.dashboard when a whole group should switch to a new dashboard

	group.ID.dashboard.ID.added when a new dashboard has been added

	group.ID.dashboard.ID.removed when a dashboard has been removed

	group.ID.dashboard.ID.updated when a dashboard has been updated

Each message comes with the group, the dashboard and/or the display
specified in the message (when this is relevant).

 Copyright 2014, Vincent Bernat.
 Created using Sphinx 1.2.2.

 Android application

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Dashkiosk 2.3.3 documentation

Android application

This is a simple Android application whose purpose is to display
fullscreen non-interactive dashboards on Android devices. Its main use
is to be run from an Android stick plug on some TV to run the web
application to display dashboards.

Supported devices

Currently, the minimal version of Android is 4.2 (Jelly Bean). It may
work with earlier versions but it has not been tested. Dashkiosk is
using the Crosswalk project [https://crosswalk-project.org/] to provide an up-to-date webview with
support of recent technologies.

There are a lot of Android devices that you can choose to run
Dashkiosk on. When choosing one, prefer the ones which can be upgraded
to Android 4.4.

Features

	It registers as a possible home screen. It is therefore to run the
application on boot.

	It provides a really fullscreen webview. Absolutely no space lost
in bars.

	No possible interactions. If run on a tablet, the user is mostly
locked out. However, there are still some way to interact with the
device while the application is running by invoking the settings
and changing the home application from here.

	Prevent the device going to sleep.

Compilation

If you don’t want to compile the Android app yourself, you can
download a pre-compiled version from GitHub [https://github.com/vincentbernat/dashkiosk/releases/].

You need to download the Android SDK [http://developer.android.com/sdk/index.htm]. Once installed, you should
manage to get the android command in your path. Execute the
remaining steps:

	Get a nightly Crosswalk build like this one [https://download.01.org/crosswalk/releases/crosswalk/android/canary/7.35.136.0/arm/crosswalk-webview-7.35.136.0-arm.zip] (you can pick a
more recent one if needed). Unpack it in some directory and
execute the following command:

android update lib-project -p .

	Grab the latest tarball for Dashkiosk [https://github.com/vincentbernat/dashkiosk/releases] from GitHub.

	Unpack it and go into the android directory.

	Execute the following command to update the project:

android update project -p .

	Update the path to Crosswalk in project.properties. This
must be a relative path.

	Build the application with the following command:

ant debug

At the end of the compilation, you get bin/DashKiosk-debug.apk
that should be installed on the Android device.

Installation

Ensure you have adb available in your path. If not, it is
available in the platform-tools directory. You can then install
the APK on a device attached through USB on your computer with the
following command:

adb install -r bin/DashKiosk-debug.apk

Alternatively, you can just point a browser to the APK and you will
get proposed to install it. You need to ensure that you allowed the
installation of APK from unknown sources.

The next step is to run the configuration panel. This panel can be
accessed by using the back button while the loading screen is
running. It can be accessed later by clicking on the pen icon in the
action bar.

Configuration

The orientation is configured to landscape by default. You can
choose either auto or portrait.

If you want to lock a bit the application, you can lock settings
to prevent any further modifications. You can still revert the changes
by invoking the preferences activity with adb:

adb shell am start -n \
 com.deezer.android.dashkiosk/com.deezer.android.dashkiosk.DashboardPreferences

The important part is to input the receiver URL. You can check
that this is the correct URL with any browser. You should see a
dashboard with some nice images cycling.

The timeout is not really important. Until the application is able
to make contact with the receiver, it will try to reload the receiver
if the timeout is reached.

Alternatively, the configuration can be done at compile-time by
modifying res/xml/preferences.xml.

Usage

Once configured, just run the application as usual. You can also click
on the home button and choose the application from here to make it
starts on boot.

Troubleshooting

Still with adb, you can see the log generated by the application
with the following command:

adb logcat -s DashKiosk AndroidRuntime

The log also includes Javascript errors that can be generated by the
dashboards. Javascript errors from the receiver are prefixed with
[Dashkiosk].

 Copyright 2014, Vincent Bernat.
 Created using Sphinx 1.2.2.

 Chromecast devices

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

