

 Navigation

 	
 index

 	
 next |

 	Dantalian 0.6 documentation

Dantalian Documentation

“I ask of thee, art thou mankind?”

“Nay, I am the world, the world inside the gourd.”

— The Mystic Archives of Dantalian

	Website

	http://darkfeline.github.io/dantalian/

This is the documentation for Dantalian 0.6, built on March 17, 2015.

	User Guide

	Developer Guide

	Command Reference (Man Pages)

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

User Guide

This guide is for end users. People looking to contribute, or
otherwise modify or hack on Dantalian, and packagers should refer to
the Developer Guide, although this guide will probably be useful as
well.

The guide is split into several sections, listed below.

	Installation

	File tagging with hard links

	Basic Usage

	Advanced Usage

	Performance and Scalability

	Libraries

	Names and Paths

	FUSE Usage

	External Utilities

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	User Guide

Installation

Dependencies

	Python 3 [http://www.python.org/]

	GNU findutils [http://www.gnu.org/software/findutils/]

	FUSE [http://fuse.sourceforge.net/] (Optional, for FUSE features)

Build dependencies:

	setuptools [https://pypi.python.org/pypi/setuptools]

	Sphinx [http://sphinx-doc.org/index.html]

Using packages

The easiest method of installation is via packages. However, Dantalian
currently only has packages for Arch Linux.

If there are no packages available for your distribution, you will need
to install Dantalian manually. If you are able, please consider making
a package yourself (Refer to the Developer Guide for information on
packaging Dantalian).

	Arch Linux (AUR) [https://aur.archlinux.org/packages/dantalian/]

	Arch Linux (AUR) (git) [https://aur.archlinux.org/packages/dantalian-git/]

Manual Installation

Make sure you have satisfied all of the dependencies above. Dantalian
is installed just like any Python package:

$ python setup.py install

This will most likely require root, and will install Dantalian globally
on the system. Otherwise, you can use virtualenv, or install it for the
user:

$ python setup.py install --user

It is recommended to install the man pages as well. The man pages can
be built like so:

$ cd doc
$ make man

The man pages can be found in doc/_build/man. How they are
installed depends on your system. On Arch Linux, man pages are
installed in /usr/share/man as gzipped archives, so you would do
the following:

$ cd doc/_build/man
$ gzip ./*
install ./* /usr/share/man/man1

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	User Guide

File tagging with hard links

This section has nothing to do with Dantalian, surprisingly. Instead,
it will be about organizing your files with hard links. Dantalian is
merely a tool to assist in doing the former, so you need to first
understand tagging with hard links before using Dantalian, and
inversely, this will probably be useful to you even if you do not use
Dantalian.

You must understand what hard links are. Here are some relevant
external resources:

	In Unix, what is a hard link? [https://kb.iu.edu/d/aibc]

	Hard link (Wikipedia) [https://en.wikipedia.org/wiki/Hard_link]

	What is the difference between a hard link and a symbolic link? [http://askubuntu.com/questions/108771/]

Some terminology to avoid ambiguity or confusion:

	pathname

	A string which describes a location in the file system, either
relative or absolute.

	filename

	A directory entry, or the parts of a pathname that are separated
by slashes. For the pathname /foo/bar/baz, foo,
bar, baz are all filenames. When referring to
the filename of a link, the filename is the last
component in the pathname. For example, the filename of the
link pictures/pic1.jpg is pic1.jpg. Each link
has exactly one filename.

	link

	A directory entry pointing to a file.

	file

	A file in the file system, comprising of its inode and
corresponding data blocks. Each file has at least one link
pointing to it; when no more links exist, the file is considered
deleted, and its space is marked for recycling.

	directory

	Informally known as folders. A special case of files, above, in that they have inodes, and links pointing to
them, but creating more than one link to a directory is
generally forbidden, so the link to a directory can be thought
of as the directory itself.

Organizing files with hard links

What does it mean to organize files with hard links? It means you
create links to files in directories that they belong in. If you
organize your “files” (links to files, strictly speaking) in
directories, congratulations, you are already doing it. However,
there’s a lot more organizational power in file systems that lay
untapped by regular users.

For example, you have a report for project A, so you put the “file”
(again, the link to the file using the above definition) in the
directory project-A. But the report was also presented in a
meeting, and you like to keep all the meeting materials in a specific
directory for easy reference. What do you do?

You could make a copy of the report in the meeting notes directory, but
this has disadvantages (or potentially advantages). First, there would
be two files on disk, resulting in twice the space usage. Second, if
you change one of the files, the other file won’t be changed. You have
to remember to change the other file as well if you want them to be the
same. It may be that you want the copy in the meeting notes directory
to stay static, to preserve the file as it was at a certain point in
time, in which case making a copy is advantageous. Conversely, you may
want the two copies to be the same. If you also want the file in four
other directories, suddenly you are using up six times the disk space,
and you’ll need to remember to edit six different files when you want to
change something.

Alternatively, you can make a new link to the report file in the meeting
notes directory. Since there is still only one file, you do not use
significantly more disk space (each link requires a piddling amount of
extra space), and any changes to the file are, well, reflected in the
file. You can access the file using either link, but it’s still the
same file.

That’s organizing files with hard links in a nutshell. Put “files” in
the directory they belong in, using any organization scheme you like,
and if you want to use a different organization scheme at the same time,
or you simply want the file to be in more than one place at once, make a
new link to it. Simple, yet powerful and flexible.

Creating, removing, and breaking links

Links can be created using ln. ln foo bar creates the
link bar pointing at the same file as foo. The
corresponding system call is link() (see link(2)).

Links can be renamed (or moved, the two actions are synonymous) using
mv. mv foo bar moves the link foo to
bar. The link will still be pointing at the same file. The
corresponding system call is rename() (see rename(2)).

Links can be removed (unlinked) using rm. Note that this
removes links, not files. When a file no longer has any links, there is
no longer any way to access it, but programs using the file can continue
doing so. If there are no programs using it either, the disk space will
be open for reuse, and the file can be considered deleted (barring
recovery attempts using special software). The corresponding system
call is unlink() (see unlink(2)).

Take care not to accidentally break links. Consider two links
foo and bar pointing to the same file. If I make a copy
of the file (cp foo baz), the new link baz is not pointing
at the same file as foo or bar; it is pointing at a new
file with the same contents (a copy of the original file). Likewise, if
you remove foo and create a new file (not link), foo
will no longer be pointing at the same file as bar. This last
point may seem obvious, but be careful when editing files, since many
programs actually do this when saving files (remove the existing link
and create a new file) instead of writing to the original file. For
example, Emacs will by default move the link for the file you are
editing as a backup and save the buffer as a new file, breaking your
links. Most text editors will not break links (vim, vi, nano, gedit,
etc.), but large, graphical editors of all sorts (office suites, photo
editors, etc.) behave less reliably (this is an unfortunate consequence
of laypeople conflating files and links, and questionable programming).
You should test programs to see if they break links before taking
advantage of hard link organization.

Tagging with hard links

Tagging with hard links is just a slight perspective shift from
organizing with links. All the material in the previous section is
sufficient for organization, but instead of thinking of a file as having
links in directories A, B, and C, it may be
helpful to instead think of the file as being tagged A, B, and
C. This way, to find all of the files with a given tag, you just
open the corresponding directory.

It’s also helpful to conceptually set a root for organization, so that
you aren’t thinking of directories /home/foo/projects/working
and /home/foo/projects/completed, but the tags working and
completed, with /home/foo/projects as the root.

If you’re feeling adventurous, you can even include the filename in your
mental model (think of a file tagged project-foo/specs.doc,
project-specs/foo.doc, and document/12345.doc).

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	User Guide

Basic Usage

Dantalian is essentially a group of scripts to help manage hard link
tagging as described previously.

Libraries

Libraries are used to designate root directories as an anchor point for
tags and file organization. They can be identified by the special
.dantalian directory that they contain.

For more information about libraries, see Libraries.

Creating libraries

Libraries can be initialized with the command dantalian
init. This will create the library in the working directory.
Alternatively, pass the path where you want to create the library:

$ dantalian init path/to/directory

Tags

In Dantalian, tags are directories. A file has a tag if it has a hard
link in the directory corresponding to that tag.

For example, in the following library:

.
├── even
│ └── 1.txt
└── odd
 └── 1.txt

There are two tags, //even and //odd, and one file (assuming
both 1.txt are hard links to the same file) which is tagged
(perhaps incorrectly) with both //even and //odd tags.

Tags can be referred to in two ways, by the path to its directory,
whether relative or absolute, or by its tag qualifier. A tag qualifier
is simply the path of its directory, relative to the library root,
prepended by //.

For example, given the following:

library
└── tag1
 └── tag2

if the current working directory is tag1, we can refer to tag2 as
tag2 (relative path) or //tag1/tag2 (tag qualifier).

See also dantalian-concepts(1).

Basic Commands

Check the man pages for the command reference.

Tagging and Untagging

Tags can be created and removed using the commands dantalian
mktag and dantalian rmtag. This can be done manually using
the standard utility mkdir.

$ dantalian mktag //kitties
$ dantalian rmtag //kitties
$ mkdir kitties
$ rmdir kitties

Note that mktag and rmtag only take tag
qualifiers, and mkdir and rmdir only take
pathnames.

Tags can be applied to and removed from files using dantalian
tag and dantalian untag (see dantalian-tag(1)
and dantalian-untag(1)). This can also be done manually by
manipulating the links with ln and rm.

$ dantalian tag file1 tag1
$ dantalian tag file1 -t tag1 tag2 tag3
$ dantalian tag tag1 -f file1 file2 file3
$ dantalian tag -f file1 file2 -t tag1 tag2

$ dantalian untag file1 tag1
$ dantalian untag file1 -t tag1 tag2 tag3
$ dantalian untag tag1 -f file1 file2 file3
$ dantalian untag -f file1 file2 -t tag1 tag2

Basic Queries

You can list the tags of a file with dantalian tags:

$ dantalian tags file1
//spam
//eggs

You can perform an AND search on tags with dantalian find:

$ dantalian find //spam //eggs
/home/foo/library/spam/file1

You can list the files of a single tag simply using ls in
the respective directory. You can do this with AND tag queries using
Dantalian FUSE features.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	User Guide

Advanced Usage

If you want to integrate Dantalian into other scripts, frameworks, or
programs, you should use Dantalian’s Python library instead of calling
the dantalian command line script.

Comprehensive documentation of Dantalian’s Python library can be found
in (and is) the source code.

What follows is a quick rundown of basic usage.

Generally, you will use open_library in dantalian.library to
load the library as a Python object, then call the methods on the
library object that correspond to Dantalian commands. More advanced
scripting and/or optimization will require digging deeper into the
source code (and, likely, having to write a bit of stuff yourself).

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	User Guide

Performance and Scalability

Note that these are rough numbers and predictions based on theory.
These assume a Linux kernel compiled with common flags and an ext4 file
system.

Space cost

Each tag for each file costs about 20-200B (completely unverified, but
should be about right). This is the cost for each link, or each entry
in a directory.

Each directory (or new tag) costs an upfront 2kB or so, but that space
is used up by each link in it, covering for the costs mentioned above
for each link, so the net cost of each tag is minimal.

This space cost can be thought of as caching the results of single tag
file lookup queries.

Time cost

File access is constant. In fact it is no different than just opening a
file regularly. Looking up all files with a given tag is linear to the
number of files with that tag; this is the minimum theoretically
possible. Looking up all of the tags of the file is much uglier,
requiring a full traversal of the directory tree. However, in practice
this runs fairly quickly due to how file systems are designed. I also
find that querying files based on tags is done much more commonly than
looking up the tags any given file has.

Hard limits

ext4 has a hard 65000 limit on links to inodes. This means that each
file can have at most 65000 tags and each tag can have at most 64998
subtags (each directory can have at most 64998 subdirectories, as each
subdirectory has a link to the parent (..), and each directory
has a link to itself (.)).

Linux has a limit on how many levels of symbolic links there can be in a
single lookup. I think this is 40, but can be different depending on
how the kernel was compiled. This means that Dantalian only supports 40
(or however many your kernel supports) levels deep of converted
directories.

Practical considerations

The first obstacle that you will likely encounter when scaling Dantalian
up is size constraints, since everything must reside on one file system.
This obstacle is encountered once the amount of data you are trying to
organize exceeds the amount of space of one storage device (say, a 1 TB
hard disk drive). This can be circumvented by using LVM and creating a
virtual file system that spans multiple physical storage devices.

Any time constraints can be ameliorated with additional caching if
required, but otherwise probably cannot be improved further due to
mathematical limits.

The only other tricky problem is the hard limits mentioned above.
Unless you are trying to organize truly vast amounts of data (where the
metadata exceeds the data [1]), they probably won’t be an issue. If
they are, however (either more than 64998 subtags under a single tag, or
more than 40 levels of converted directories that you need to access),
then the workaround would be to use customized file systems or kernels
to bypass these hard limits.

	[1]	You should probably clarify in your head what exactly your needs
are. If you are storing vast amounts of metadata, so much so that
the metadata itself can be considered data, you should definitely be
using some sort of database instead.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	User Guide

Libraries

A library is an abstract tag-based file organization system layered
transparently on top of the underlying file system using hard links.
Libraries are created on directories, which become the root for its
library. A special .dantalian directory is created in the
root directory of a library.

Note

Dantalian uses hard links heavily. Make sure you are familiar
with how hard links work! They are very powerful, but can be
messy and/or dangerous if you are not familiar with them.
Especially take care not to accidently break hard links, e.g., by
copying and removing files. Dantalian leverages the advantages
hard links provide, but won’t protect you from yourself!

Tags are directories, and all directories are potential tags
(including .dantalian, however you shouldn’t use it as such).
Files are “tagged” by creating a hard link in the respective
directory. Files can have any number and combination of tags. File
names and tag names are restricted only by the underlying file system
(on ext4, for example, up to 255 bytes and all characters except
/ are allowed, so knock yourself out). All files of all types can
be tagged, including symlinks. Dantalian provides functionality such
that even directories can be tagged, perfect for hardcore file
organizers.

Usage

While it is possible to manage the library solely using standard
utilities such as ln, mv, etc., Dantalian
provides useful scripts for performing operations, such as tagging,
untagging, and deleting.

Check the man pages for the command reference.

Specific Requirements

There are some requirements for libraries:

	The root directory must be located on a POSIX filesystem that
supports hard links (e.g., ext4).

	Everything under the root directory must be on one contiguous file
system.

	Do funky things with block device mounts at your own risk. This
includes mounting another device inside a library, mounting a
different library FUSE (more on this in FUSE Usage) in a library,
and mounting the same library FUSE in itself.

While the above may seem complicated, for most users, it should not be
a problem. If you run into the above situations, chances are, you’re
an advanced enough user to figure out why and how to fix them.

Name Conflicts

Files are hard linked under the tags that it possesses. The file may
have different names in each of the directories, e.g., to avoid name
conflicts. Dantalian works fine in this case, although it may be
confusing for you, the human user, because Dantalian finds files by the
path to one of its hard links and manages them internally by hard link
references and inodes.

Dantalian will resolve name conflicts if it needs to, e.g., to create a
hard link to tag a file. See Names and Paths for more information on
name conflict resolution.

Tagging Directories

Directories generally are not allowed to be hard linked in most file
systems, for various reasons. However, symbolic links are regular
files and thus can be hard linked, even if they point to a directory.
Dantalian uses this to implement tagging of directories.

Dantalian can convert directories. Converting a directory moves it to
a special location under .dantalian and replaces it with an
absolute symbolic link to its new location. This allows directories
to be tagged just like other files. In other words, Dantalian will
manage the actual directory, and a symbolic link will be used in place
of it for tagging.

This feature imposes an extra requirement on the library root
directory. Namely, when the root directory path is changed, the
symbolic links of all converted directories must be fixed by running
dantalian fix. Also, unlike regular files, which can be freely
hard linked to directories outside of the library (and tagged in other
libraries), if you hard link the symbolic link of a
dantalian-converted directory outside of it, move the library, and run
dantalian fix, it will break the external hard links. If this is
one of your use cases, place the directories in a fixed location
outside of the library, create a symbolic link manually, and then tag
it with Dantalian instead of using dantalian convert.

Because converted directories are all kept in one location, no two
converted directories may have the same name. However, the name of
the directory Dantalian keeps track of and the name of the symbolic
link that the user interacts with are independent of each other.
Thus, if there’s a naming conflict, the actual directory can be
renamed, and the symbolic links follow the naming rules as above.

Moving Libraries

Since libraries are simply directories, moving and/or backing up
libraries is very simple. There are two thing to keep in mind: use
rsync -H to preserve hard links, and don’t forget to run
dantalian fix to fix absolute symbolic links for converted
directories. The latter is important as Dantalian currently will
not check if it needs fixing.

Nested Libraries

Only one library can exist in any given directory, but libraries can
be nested. Behavior is well-defined, but I wouldn’t recommend it
unless you have a clear use case and know what you are doing.
Dantalian works with a single library for its operations. Usually, it
will search up through the directories and use the first library it
finds, so take care where you run it. You can also specify a specific
library by using the --root option. In fact, if you are nesting
libraries, it is recommended to always use --root.

Scalability

Dantalian’s scalability ultimately depends on the host file system,
but it is generally pretty lenient. On ext4, for example, the
main limiting factor is number of files per directory, i.e., the
number of files that have a given tag. Dantalian remains usable no
matter the number, but if you have, say, more than 10,000 files with a
given tag, ls (specifically readdir() on the kernel level) may
begin to see performance issues. However, file access will not be
affected.

Note that you can use LVM [https://wiki.archlinux.org/index.php/LVM] to create virtual partitions that span
multiple physical drives, if necessary.

Rough performance numbers

	Space

	Depends, ~20-200B per tag per file

	Time

	Constant for file access, linear for enumerating files of a tag.
(This is pretty straightforward; the only thing is that a
directory lookup in, e.g., a file manager, might lock up while it
is lsing a directory

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	User Guide

Names and Paths

Files

Everything is done internally via inodes, so all operations take
filenames only as a way to indicate a particular file/inode, and
Dantalian works with that. Thus, file naming is for the most part a
concern for the user only.

File Renaming Algorithm

When Dantalian needs to add a file to a directory (e.g., when renaming
or tagging), it will attempt to use the name of the file directly. If
it runs into a filename/path conflict, it will then attempt to generate
a new name using the algorithm described below:

def resolve(dir, name):
 base, extension = split_extension(name)
 for i=1; ; i++:
 new_name = '.'.join([base, i, extension])
 if is_okay(dir, new_name):
 return new_name

For example, Dantalian will try, in order:

file.mp3
file.1.mp3
file.2.mp3
file.3.mp3
...

If between generating the new name and using it the name becomes
unavailable, Dantalian will try to generate a name again from the
beginning.

FUSE Name Collision Resolution

When file names are projected in a FUSE mounted library, there is a high
chance of name collisions, in which case the virtual names of affected
files are changed with the following algorithm:

def fuse_resolve(name, path):
 base, extension = split_extension(name)
 new_name = '.'.join([base, get_inode_number(path), extension])
 return new_name

In practice there will be no further name collisions, but if there are,
then name collision resolution will be propagated outward until there
are no name collisions. This state is guaranteed as file systems cannot
assign the same inode number to two different files.

Basically, File name conflicts will be resolved by adding the inode
number (which is guaranteed to be unique per file system) at the end of
the file name, but before the extension, e.g., if two files are both
named file.mp3, the latter will appear as file.12345.mp3,
assuming its inode number is 12345.

Node names use node instead of an inode number for resolution.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	User Guide

FUSE Usage

Dantalian offers an optional FUSE mount feature, which allows much more
powerful interaction with libraries.

To use it, run dantalian mount /path/to/mount/location on the
command line. You will want to mount it somewhere outside of the
library.

Usage

For the most part, FUSE-mounted libraries behave exactly like regular
libraries, so you can use the regular Dantalian commands as well as
regular file system operations to interact with it. However, certain
Dantalian commands behave differently or are restricted for sanity’s
sake (for example, you cannot mount a FUSE-mounted library, for
obvious reasons). Dantalian distinguishes between a mounted library and
a regular library by the existence of a virtual directory
.dantalian-fuse, which simply points to .dantalian.

To unmount, use fusermount -u path/to/mount.

See Names and Paths for information about name resolution.

Nodes and virtual space

Dantalian manages the virtual space using a node tree.

Node types:

	FSNode
	BorderNode
	TagNode

	RootNode

FSNodes represent virtual directories. BorderNode is an abstract
subclass for nodes that lead back into real space (back to the
underlying file system). There are two types: TagNodes project the
intersection of their tags under themselves, whereas the RootNode (there
will only be one, at the root) projects the library root under itself.

It is useful to divide the virtual space into categories when describing
Dantalian FUSE behavior. Paths which point to nodes are in nodespace.
Paths which point to files directly under TagNodes are in tagspace.
Paths which point more than one directory beyond TagNodes or any files
under RootNodes are in outsidespace.

Socket Operations

You can also interact directly with a FUSE-mounted library using socket
operations. FUSE-mounted libraries open a socket at
.dantalian/fuse.sock. Dantalian provides scripts that allow you to
interact dynamically with a mounted library, but they simply echo
standard commands to the socket, which can be done by hand (like all
other Dantalian operations) from, e.g. a remote client that doesn’t have
Dantalian installed. For example, the socket command:

$ dantalian mknode path/to/node tag1 tag2

can be done by:

$ echo mknode path/to/node tag1 tag2 > library/.dantalian/fuse.sock

The socket processes commands much like a shell, so make sure to quote
anything that contains spaces.

A list of socket commands can be found in the man pages.

FUSE Operations

FUSE intercepts calls to the kernel to perform file system operations,
allowing it to present a file system API in user space. How it behaves
depends on how these operations are implemented. As a rule of thumb,
interaction with nodespace is extremely limited. Calls to outsidespace
will be passed on to the OS/underlying file system. Calls to tagspace
will manipulate the tags on the files according to the library rules.

These operations are only documented in the source code currently.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	User Guide

External Utilities

	ranger [http://ranger.nongnu.org/]

	A curses file manager with vi bindings, written in Python.

	fslint [http://www.pixelbeat.org/fslint/]

	A lint cleaning program that can be used to detect duplicate files
and replace them with hard links, complementing Dantalian (Dantalian
by itself does not handle deduplication of files).

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

Developer Guide

Welcome to dantalian’s Developer Guide! If you’re looking to build an
application using dantalian, contribute, or just tinker with the code,
take this with you. Also, if you’re a user who is just curious about
the design or abstractions behind dantalian, a quick peek won’t hurt.

Note

This section is a little out of date as of 0.6. For packaging,
refer to Installation. For API and such, refer to the
source code.

	Dependencies

	Building

	Library Specification

	Library Implementation

	FUSE/Mounted Library Specification

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Developer Guide

Dependencies

These are the dependencies and the specific version numbers that I am
working on, to aid in debugging and development should version problems
arise.

Build Dependencies

	Python 3.3.2

For the documentation:

	Sphinx==1.1.3

If you want, you can use a custom ctags extension for Sphinx:
ext_ctags [https://github.com/darkfeline/ext_ctags]

Place ext_ctags.py in sphinx/ext wherever Sphinx is installed
for your environment.

Usage Dependencies

	Python 3.3.2

	findutils 4.4.2

	fuse 2.9.2

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Developer Guide

Building

Source Package

Refer to Dependencies for the build dependencies.

I recommend that you use a Python virtualenv for building dantalian.

Get a copy of the code from the repository of the version or commit you
are building:

$ git clone https://github.com/darkfeline/dantalian.git

stable branch
$ git checkout master

development branch
$ git checkout develop

Build the documentation:

$ cd doc
$ make html
$ make man

Make the source package:

$ cd ..
$ python setup.py sdist

Packages will be in the dist directory.

Built Package

Built packages can also be made for distribution, e.g., for a package
repository. Likely, this will entail configuration specific to the
distribution, repository, and/or package manager that you are using.

A simple vanilla package can be built by creating a setup.cfg with
the following text:

[install]
prefix=/usr

and running:

$ python setup.py bdist

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Developer Guide

Library Specification

dantalian is an implementation of the dantalian library, an abstract
interface. Much like how POSIX system calls define an interface
providing a standard file system interface abstraction, the dantalian
library defines a standard interface for a multidimensionally
hierarchical tagging system.

dantalian provides a transparent implementation of the library that lies
closely on top of the underlying file system. Details pertaining to
dantalian’s library implementation will be listed separately below in
the notes.

Library Sublayer

Libraries require a single POSIX filesystem underneath them to manage
the files. Libraries only manage the tag metadata.

Note

dantalian’s implementation anchors the library on a root directory
given by an absolute path on the file system, but the general library
specification has no such requirement.

Library objects

Libraries interact with files (including directories) and tags. Both
are described with strings.

Tags start with //, similar to absolute paths, but doubled to
distinguish them. Like POSIX paths, parent and child tags are separated
with /. / is not allowed in tag names, but all other characters
are legal.

Files are identified by their path, in standard POSIX format. However,
paths starting with // are not legal, since that is reserved for
tags. Libraries handle files by their inode. Thus, if a file is moved,
it maintains its status in the library, but must be referred to with its
new path.

Note

Tags are directories in dantalian’s library implementation. Thus,
tags and directories (as files) may be referenced interchangeably as
a file or a tag, respectively.

Directories are considered tags relative to the library root. Thus,
a directory albums in the root directory is synonymous with tag
//albums, and a directory artists in albums with tag
//albums/artists.

Due to dantalian’s implementation, the special root tag // exists
as an implementation detail. The only documented appearance of the
root tag is when calling
dantalian.library.BaseLibrary.listtag(), which will include
the root tag if the file is hard linked under the library root
directory. The root tag will work everywhere a tag will, but again,
is an implementation detail specific to dantalian’s implementation.

Tagging

Libraries allow objects to be associated with tags and track these
associations.

Both files and tags may be tagged. Each object can have any number and
any combination of tags. Each object can only be tagged with a given
tag once; the relationship is binary, either tagged or untagged. Tags
can be tagged with themselves.

Note

Directories can only be tagged once by virtue of common file system
limitations. Symbolic links act identically to files. In order to
tag a directory multiple times in dantalian’s library implementation,
the directory must be converted (stored in a designated location and
replaced with a corresponding symbolic link). If a file system
were to support directory hard links, then the library specification
applies normally.

Library class and methods

The library interface is defined in the
dantalian.library.BaseLibrary class. Library implementation
must implement the following methods:

	
tag(file, tag)

	file should be tagged with tag after call, regardless of whether
it was before.

	
untag(file, tag)

	file should not be tagged with tag after call, regardless of
whether it was before.

	
mktag(tag)

	tag is created. Do nothing if it exists.

	
rmtag(tag)

	tag is removed. Do nothing if it doesn’t exist.

	
listtags(file)

	Return a list of all of the tags of file.

	
find(tags)

	Return a list of files that have all of the given tags in tags.

	
mount(path, tree)

	Mount a virtual representation of the library representation tree
at path.

Implementation specifics

This section contains additional information about dantalian’s library
implementation.

Directories are tags, and vice versa. Objects tagged with a given tag
are hard linked under the respective directory. A file can appear
within a directory multiple times; such a file will be considered as
tagged once with the corresponding tag.

Due to practical reasons, there is a directory .dantalian in the
library root directory reserved for internal use. It is treated
normally, i.e., as a directory and as a tag, but in almost all cases it
should not be used as a tag and should be considered an implementation
detail.

Everywhere a tag is needed in a library’s method calls, a path to a directory
can be substituted.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Developer Guide

Library Implementation

This section documents dantalian’s library implementation. See
Library Specification for a reference to the library specification.

Library

Library is the actual implementation that dantalian provides. It
implements the following public methods and invariants in addition to
those described in Library class and methods (Filename/path conflicts will be
resolved according to File Renaming Algorithm.):

Note

dantalian respects symbolic links to directories outside of the
library (Symbolic links to directories inside of the library, on
the other hand, should always be converted by dantalian. Handmade
symbolic links to library-internal paths subject to breakage and
Armageddon.).

For simple operations, dantalian will act as though external
symlinked directories are a part of the library. For complex
operations, these external directories will be ignored (This is
because dantalian is not really descending symbolic links, but only
acting on the directories stored internally. This simulates only
descending into internal symbolic links.). The latter case will be
noted below if applicable.

	
tag(file, tag)

	If file does not have a hard link under the tag directory, make
one. file has at least one hard link under the tag directory
after call.

	
untag(file, tag)

	file should not be tagged with tag after call, regardless of
whether it was before.

	
mktag(tag)

	The directory corresponding to tag is created. Do nothing if it exists.

	
rmtag(tag)

	The directory corresponding to tag is removed. Do nothing if it doesn’t
exist.

	
listtags(file)

	Return a list of all of the tags of file.

	
find(tags)

	Return a list of files that have all of the given tags in tags.

	
mount(path, tree)

	Mount a virtual representation of the library representation tree
at path.

The following are methods that are not in the abstract library interface:

	
convert(dir)

	Store directory dir internally and replace the original with a
symbolic link with the same name pointing to the absolute path of the
stored directory. Resolve name conflict if necessary (if a file with
the same name is made in between moving the directory and creating
the symbolic link, for example).

	
cleandirs()

	Remove all directories stored internally that no longer have any
symbolic links referring to them in the library.

	
rm(file)

	Remove all hard links to file in the library. Any errors will be
reported and removal will resume for remaining hard links.

Note

rm() does not descend into symbolic links to external
directories.

	
rename(file, new)

	Rename all hard links to file in the library to new. File name
conflicts are resolved and reported. Any errors will be reported and
renaming will resume for remaining hard links.

Note

rename() does not descend into symbolic links to external
directories.

	
fix()

	Fix the absolute paths of symbolic links in the library to internally
stored directories after the library’s path has been changed. Hard
link relationships of the symbolic links are preserved only in the
library. (This is because the Linux kernel/POSIX system calls do
not allow for editing symbolic links in place. They must be unlinked
and remade.) Symbolic links are unlinked and a new symbolic link is
made then relinked. Filename conflicts are resolved and reported (if
a file with the same name is made in between deleting and creating
the symbolic link, for example).

	
maketree()

	Return a tree generated using the library’s configuration files.

ProxyLibrary

ProxyLibrary is a subclass of Library for virtual FUSE mounted
libraries. It overrides the following methods:

	
fix()

	Log a warning and do nothing. (Action not allowed.)

	
mount(path, tree)

	Log a warning and do nothing. (Action not allowed.)

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Developer Guide

FUSE/Mounted Library Specification

The dantalian library API requires a mount() method, which uses
FUSE to mount a virtual file system representation of the library.

The mounted library provides a standard file-system-like interface to
libraries. While the dantalian implementation of the library already
provides such an interface, other implementations may not by default.
Also, mounted libraries provide additional features even for dantalian’s
existing file-system-like interface.

Virtual Spaces

In describing mounted library behavior, it is useful to divide the file
system space into a number of categories.

Directories corresponding to nodes are considered to be in virtual
space. (Nodes are virtual space.)

Directories and files corresponding to real directories and files on the
file system are considered to be in real space.

There is also a subcategory for directories and files in real space:
real space files and directories pulled in by TagNodes are additionally
considered to be in tag space. Note that this is not recursive. Given
the following:

TagNode/
 dir1/
 file1
 dir2/
 file2

TagNode is in virtual space as it is a node. Everything under it is in
real space, but only dir1, dir2, and file2 are in tag space.
file1 is not in tag space.

FUSE Operations

FUSE provides syscall-like operation hooks to emulate a file system.
Their implementations for mounted libraries are found as methods in the
dantalian.operations.TagOperations class.

Note

The behavior of the following operations on tag space is subject to
change, due to planned additions to tag nodes.

	
chmod(path, mode)

	If path is in real or tag space, forward to OS. If path is in
virtual space, the operation is invalid and raises EINVAL.

	
chown(path, uid, gid)

	If path is in real or tag space, forward to OS. If path is in
virtual space, the operation is invalid and raises EINVAL.

	
create(path, mode)

	If path is in real space, forward to OS. If path is also in tag
space, tag the file accordingly. If path is in virtual space, the
operation is invalid and raises EINVAL.

	
getattr(path, fh=None)

	If path is in real or tag space, forward to OS. If path is in
virtual space, get file attributes from the node.

	
getxattr()

	Not implemented.

	
listxattr()

	Not implemented.

	
link(source, target)

	
Note

Note that this is different from standard. Usually link(a, b)
creates a link at b to a, but this link(source, target)
creates a link at source to target. This is a quirk in the
FUSE library used in dantalian.

If source is in real space, link it (forward request to OS). If
source is also in tag space, tag the newly created link
accordingly. If source is in virtual space, raise EINVAL.

	
mkdir(path, mode)

	If path is in real space, forward to OS. If path is also in tag
space, additionally convert the new directory and tag it accordingly.
If path is in virtual space, the operation is invalid and raises
EINVAL.

	
open(path, flags)

	If path is in real space, forward to OS. If path is in virtual
space, the operation is invalid and raises EINVAL.

	
read(path, size, offset, fh)

	If path is in real space, forward to OS. If path is in virtual
space, the operation is invalid and raises EINVAL.

	
readdir(path, fh)

	If path is in real space, forward to OS. If path is in virtual
space, get information from the node.

	
readlink(path)

	If path is in real space, forward to OS. If path is in virtual
space, the operation is invalid and raises EINVAL.

	
removexattr()

	Not implemented.

	
rename(old, new)

	This one is tricky; here’s a handy chart.

	From To ->
	Virtual
	Tag
	Real

	Virtual
	EINVAL
	EINVAL
	EINVAL

	Tag
	EINVAL
	untag, tag
	move, untag

	Real
	EINVAL
	tag, remove
	move

	
rmdir(path)

	If path is in real space, forward to OS. If path is in virtual
space, the operation is invalid and raises EINVAL.

	
setxattr()

	Not implemented.

	
statfs(path)

	Forward the request to the OS (via built-in os module).

	
symlink(source, target)

	
Note

This has the same quirk as link().

If source is in real space, link it (forward request to OS). If
source is also in tag space, tag the newly created symlink. If
source is in virtual space, raise EINVAL.

	
truncate(path, length, fh=None)

	If path is in real or tag space, forward to OS. If path is in
virtual space, the operation is invalid and raises EINVAL.

	
unlink(path)

	If source is in real space, but not tag space, forward to OS. If
source is in tag space, untag the file instead. If source is in
virtual space, raise EINVAL.

	
utimens(path, times=None)

	If path is in real space, forward to OS. If path is in virtual
space, the operation is invalid and raises EINVAL.

	
write(path, data, offset, fh)

	If path is in real space, forward to OS. If path is in virtual
space, the operation is invalid and raises EINVAL.

Nodes

Nodes are used to construct and maintain the virtual library file
system. Internally, nodes are implemented as mapping type data objects.

Currently, there are three node types and one virtual node class.

dantalian.tree.BaseNode is the fundamental node class,
representing a virtual directory in a mounted library. Its
implementation is dantalian.tree.Node.

dantalian.tree.BorderNode is a virtual class/interface for
nodes that pull the host file system into the virtual space (i.e.,
tagged files)

It has two subclasses, dantalian.tree.BaseRootNode and
dantalian.tree.BaseTagNode, and their implementations
dantalian.tree.RootNode and dantalian.tree.TagNode,
respectively.

RootNodes pull all of the tags in the library under themselves as
virtual directories. They will usually be the root node for the node
trees that describe the mounted library structure, but this is not
necessary.

TagNodes pull the intersection set of files of a given set of tags under
themselves.

Node File Attributes

Nodes implement a basic set of default file attributes.

	atime, ctime, mtime

	Defaults to time of node creation

	uid, gid

	Defaults to process’s uid and gid

	mode

	Set directory bit, and permission bits 0o777 minus umask bits.

	size

	Constant 4096

Currently these are dummy values and do not change, save for nlinks.

Socket Commands

Socket commands allow interaction with the mounted FUSE process, thereby
dynamically modifying parts of the virtual FUSE-mounted library. Socket
commands may be invoked by the relevant commands of the dantalian CLI
script, or by echoing the commands directly into the FUSE library
socket. The dantalian CLI script simply writes the commands to the
socket as well.

Currently, there are the following commands:

	mknode path tag1 [tag2 ...]

	Make a TagNode at the given path with the given tags. Make
intermediary Nodes if needed.

	rmnode path

	Remove the Node at the given path.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

Command Reference (Man Pages)

Reference information for Dantalian are contained in the manual pages,
which are duplicated below.

	dantalian(1) – file tagging using hard links

	dantalian-concepts(1) – Concepts and general information

	dantalian-tag(1) – Tag files

	dantalian-untag(1) – Untag files

	dantalian-mktag(1) – Make tags

	dantalian-rmtag(1) – Remove tags

	dantalian-tags(1) – List tags of files

	dantalian-find(1) – Find files with tags

	dantalian-rm(1) – Remove all tags of files

	dantalian-rename(1) – Rename tagged file

	dantalian-convert(1) – Convert directories into taggable symbolic links

	dantalian-revert(1) – Revert converted directories from symbolic links

	dantalian-fix(1) – Fix symbolic links of converted directories

	dantalian-clean(1) – Clean stored converted directories

	dantalian-mount(1) – Mount library as virtual FUSE library

	dantalian-init(1) – Initialize a library

	dantalian-mknode(1) – Make a tag node

	dantalian-rmnode(1) – Remove nodes

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian(1) – file tagging using hard links

SYNOPSIS

dantalian [options] command [args]

DESCRIPTION

dantalian provides an interface to scripts that automate management
of file tagging using hard links.

OPTIONS

	
-h, --help
	Print help information.

COMMANDS

There are three types of commands. Library commands require a library.
dantalian will search up the directory tree from the working
directory and use the first library it finds, or a library can be
specified explicitly by path.

Global commands do not require a library. Socket commands require a
virtual FUSE library, and simply write commands to the virtual FUSE
library’s command socket.

LIBRARY COMMANDS

	dantalian-tag(1)

	Tag files.

	dantalian-untag(1)

	Untag files.

	dantalian-mktag(1)

	Make tags.

	dantalian-rmtag(1)

	Remove tags.

	dantalian-tags(1)

	List tags of files.

	dantalian-find(1)

	Find files with tags.

	dantalian-rm(1)

	Remove all tags of files.

	dantalian-rename(1)

	Rename tagged file.

	dantalian-convert(1)

	Convert directories into taggable symbolic links.

	dantalian-revert(1)

	Revert converted directories from symbolic links.

	dantalian-fix(1)

	Fix symbolic links of converted directories.

	dantalian-clean(1)

	Clean stored converted directories.

	dantalian-mount(1)

	Mount library as virtual FUSE library.

GLOBAL COMMANDS

	dantalian-init(1)

	Initialize a library.

SOCKET COMMANDS

	dantalian-mknode(1)

	Make a tag node.

	dantalian-rmnode(1)

	Remove nodes.

SEE ALSO

	dantalian-concepts(1)

	Concepts and general information.

	Online documentation

	http://dantalian.readthedocs.org/

	Project website

	http://darkfeline.github.io/dantalian/

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-concepts(1) – Concepts and general information

TAGS AND HARD LINKS

Directories are tags, and tags are directories. A file is considered
tagged with a given tag if it has at least one hard link in the
respective directory. The name of the hard link does not matter, and
there can be more than one hard link for a file in a given directory.

Tags can be referred to interchangeably using the path to their
respective directory, either relative or absolute, or by their tag
qualifier (unless otherwise noted). Tag qualifiers are similar to UNIX
paths, but are relative to their library’s root directory and are
preceded with two slashes.

For example, if the root of the library is /home/user/library, and
the library contains a directory /home/user/library/foo/bar, the tag
qualifier for that directory would be //foo/bar.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-tag(1) – Tag files

SYNOPSIS

dantalian tag [options] file tag

dantalian tag [options] file -t tag...

dantalian tag [options] tag -f file...

dantalian tag [options] -f file... -t tag...

DESCRIPTION

This command tags all of the given files with all of the given tags.
After calling this command, all of the files will have at least one hard
link in each tag’s corresponding directory.

If the file was already tagged, nothing will happen. If it was not
tagged, this command will create the respective hard link using a name
as similar as possible to the file’s name as provided to the command.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

EXAMPLES

Tagging one file with one tag:

$ dantalian tag file1 tag1
$ dantalian tag file1 -t tag1
$ dantalian tag tag1 -f file1
$ dantalian tag -f file1 -t tag1
$ dantalian tag -t tag1 -f file1

Tagging one file with many tags:

$ dantalian tag file1 -t tag1 tag2 tag3
$ dantalian tag -f file1 -t tag1 tag2 tag3

Tagging many files with many tags:

$ dantalian tag -f file1 file2 file3 -t tag1 tag2 tag3

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-untag(1) – Untag files

SYNOPSIS

dantalian untag [options] file tag

dantalian untag [options] file -t tag...

dantalian untag [options] tag -f file...

dantalian untag [options] -f file... -t tag...

DESCRIPTION

This command removes all of the given tags from all of the given files.
After calling this command, none of the files will have any hard
links in each tag’s corresponding directory.

If the file was not tagged, nothing will happen.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

EXAMPLES

See the examples in dantalian-tag(1), as untag works similarly.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-mktag(1) – Make tags

SYNOPSIS

dantalian mktag [options] tag...

DESCRIPTION

This command makes tags (directories).

This command only works with tag qualifiers. If you want to work
with paths, use mkdir(1) instead.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

EXAMPLES

Make tags:

$ dantalian mktag //tag1 //tag2

Note that you cannot do this:

$ dantalian mktag tag1

Instead do:

$ mkdir tag1

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-rmtag(1) – Remove tags

SYNOPSIS

dantalian rmtag [options] tag...

DESCRIPTION

This command removes tags (directories).

This command only works with tag qualifiers. If you want to work
with paths, use rmdir(1) or rm(1) instead.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

EXAMPLES

See dantalian-mktag(1).

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-tags(1) – List tags of files

SYNOPSIS

dantalian tags [-h] [–print0] file

DESCRIPTION

This command lists the tags of the given file as tag qualifiers.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

	
--print0
	Print the files separated with NULLs instead of newlines.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-find(1) – Find files with tags

SYNOPSIS

dantalian find [options] tag...

DESCRIPTION

This command lists the files that have all of the given tags, using the
path corresponding to the first tag given.

For example, if foo has tag1 and tag2, then

$ dantalian find tag1 tag2

will print /path/to/tag1/foo, while

$ dantalian find tag2 tag1

will print /path/to/tag2/foo.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

	
--print0
	Print the files separated with NULLs instead of
newlines.

	
-t DESTINATION
	Instead of printing the files, hard link them in the
given destination directory, which may be provided as
a path or a tag qualifier. It may be outside of the
library as well, but must be on the same file system.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-rm(1) – Remove all tags of files

SYNOPSIS

dantalian rm [options] file...

DESCRIPTION

This command removes all of the tags of the given files. In most cases,
this is the same as deleting the file entirely, unless there are hard
links to the files outside of the library. Hard links to the files that
reside outside of the library are not affected.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-rename(1) – Rename tagged file

SYNOPSIS

dantalian rename [options] file new

DESCRIPTION

This command attempts to rename all hard links of the given file in the
library to the given name. If this is not possible, it will append an
incrementing index to the end of the name, before the file extension,
until a free name is found, for each hard link.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

EXAMPLES

Rename all hard links to foo.txt, to bar.txt:

$ dantalian rename foo.txt bar.txt

If the directory for one of the hard links already has a bar.txt,
dantalian will try to rename it bar.1.txt, then bar.2.txt, and so
on.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-convert(1) – Convert directories into taggable symbolic links

SYNOPSIS

dantalian convert [options] directory...

DESCRIPTION

This command converts the given directories into symbolic links that can
be tagged. The directories are moved to a special library directory,
and a symbolic link is created at its original path.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-revert(1) – Revert converted directories from symbolic links

SYNOPSIS

dantalian revert [options] file...

DESCRIPTION

This command reverts converted directories back into directories from
symbolic links. The directories must only have one tag (alternatively,
one hard link) in the library.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-fix(1) – Fix symbolic links of converted directories

SYNOPSIS

dantalian fix [options]

DESCRIPTION

This command fixes the symbolic links of converted directories after the
library has been moved or otherwise has its path changed. Hard link
relationships of the symbolic links are preserved only in the library.
(This is because Linux system calls do not allow for editing symbolic
links in place. They must be unlinked and remade.) Symbolic links are
removed and a new symbolic link is made then relinked.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-clean(1) – Clean stored converted directories

SYNOPSIS

dantalian clean [options]

DESCRIPTION

This command removes directories that have been converted, but no longer
have any symbolic links pointing to them in the library.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-mount(1) – Mount library as virtual FUSE library

SYNOPSIS

dantalian mount [options] path

DESCRIPTION

This command mounts the library as a virtual FUSE library at the given
path.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-init(1) – Initialize a library

SYNOPSIS

dantalian init [options] [path]

DESCRIPTION

This command initializes a library at the given path, if a path was
provided. Otherwise, it initializes a library in the working directory.
This command is safe to call on an existing library.

OPTIONS

	
-h, --help
	Print help information.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-mknode(1) – Make a tag node

SYNOPSIS

dantalian mknode [options] path tag...

DESCRIPTION

This command makes a tag node in a virtual FUSE library using the given
tags at the given path.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Dantalian 0.6 documentation

 	Command Reference (Man Pages)

dantalian-rmnode(1) – Remove nodes

SYNOPSIS

dantalian rmnode [options] path...

DESCRIPTION

This command removes virtual nodes in a virtual FUSE library.

OPTIONS

	
-h, --help
	Print help information.

	
--root=PATH
	Specify the root directory of the library to use.

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Dantalian 0.6 documentation

Index

 D
 | F
 | L
 | M
 | P

D

 	

 	directory

F

 	

 	file

 	

 	filename

L

 	

 	link

M

 	

 	maketree()

P

 	

 	pathname

 Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

 _static/up-pressed.png

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		Dantalian 0.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Allen Li.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/file.png

_static/comment-close.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

_static/up.png

_static/ajax-loader.gif

