
Dalton/LSDalton Installation Guide
Release 2020.1

Dalton/LSDalton developers

Jan 04, 2023

Contents

1 Supported platforms and compilers 1

2 Basic installation 3
2.1 General . 3
2.2 Basics . 3
2.3 Typical examples . 4
2.4 What to do if CMake is not available or too old? . 4

3 Installation instructions for system administrators 5

4 Linking to math libraries 7
4.1 General . 7
4.2 Intel/MKL . 7
4.3 Cray . 8
4.4 Explicitly specifying BLAS and LAPACK libraries . 8
4.5 Builtin BLAS and LAPACK implementation . 8
4.6 LSDalton using ScaLAPACK/Intel/MKL . 8

5 Scratch directory 9

6 Basis set directory 11

7 Testing the installation 13
7.1 Environment variables for testing . 13
7.2 Running the test set . 13

8 Expert options 15
8.1 Compiling in verbose mode . 15
8.2 How can I change optimization flags? . 15

9 How you can contribute to this documentation 17
9.1 How to modify the webpages . 17
9.2 How to locally test changes . 17

i

ii

CHAPTER 1

Supported platforms and compilers

Many tests fail using Intel 2015. Therefore we currently do not recommend compiling Dalton 2020.1 using Intel 2015.

1

Dalton/LSDalton Installation Guide, Release 2020.1

2 Chapter 1. Supported platforms and compilers

CHAPTER 2

Basic installation

2.1 General

Dalton is configured using CMake, typically via the setup script, and subsequently compiled using make or gmake.
The setup script is a useful front-end to CMake. You need Python to run setup.

2.2 Basics

To see all options, run:

$./setup --help

The setup script does nothing else than creating the directory “build” and calling CMake with appropriate environ-
ment variables and flags. In a typical installation we first configure with setup and then compile with make:

$./setup [--flags]
$ cd build
$ make

By default CMake builds out of source. This means that all object files and the final binary are generated outside of
the source directory. Typically the build directory is called “build”, but you can change the name of the build directory
(e.g. “build_gfortran”):

$./setup [--flags] build_gfortran
$ cd build_gfortran
$ make

You can compile the code using all available several cores:

$ make -j

3

Dalton/LSDalton Installation Guide, Release 2020.1

2.3 Typical examples

In order to get familiar with the configuration setup, let us demonstrate some typical configuration scenarios.

Configure for parallel compilation using MPI (make sure to properly export MPI paths):

$./setup --fc=mpif90 --cc=mpicc --cxx=mpicxx

There is a shortcut for it:

$./setup --mpi

Configure for parallel compilation using Intel MPI:

$./setup --fc=mpiifort --cc=mpiicc --cxx=mpiicpc

Configure for sequential compilation using ifort/icc/icpc and link against parallel mkl:

$./setup --fc=ifort --cc=icc --cxx=icpc --mkl=parallel

Configure for sequential compilation using gfortran/gcc/g++:

$./setup --fc=gfortran --cc=gcc --cxx=g++

Parallel compilation on a Cray:

./setup --fc=ftn --cc=cc --cxx=CC --cray --mpi

Parallel compilation on a SGI using Intel compilers and MPT:

./setup --fc=ifort --cc=icc --cxx=icpc --sgi-mpt

You get the idea. The configuration is usually good at detecting math libraries automatically, provided you export the
proper environment variable MATH_ROOT, see Linking to math libraries.

2.4 What to do if CMake is not available or too old?

If it is your machine and you have an Ubuntu or Debian-based distribution:

$ sudo apt-get install cmake

On Fedora:

$ sudo yum install cmake

Similar mechanisms exist for other distributions or operating systems. Please consult Google.

If it is a cluster, please ask the Administrator to install/upgrade CMake.

If it is a cluster, but you prefer to install it yourself (it is easy):

1. Download the latest pre-compiled tarball from http://www.cmake.org/download/

2. Extract the downloaded tarball

3. Set the correct PATH variable

4 Chapter 2. Basic installation

http://www.cmake.org/download/

CHAPTER 3

Installation instructions for system administrators

Please read the other installation sections for details but the installation procedure is basically this:

$./setup [--flags] --prefix=/full/install/path/
$ cd build
$ make [-jN]
$ ctest [-jN]
$ make install

This will install binaries, run scripts, the basis set library, as well as tools into the install path.

Advise users to always set a suitable scratch directory:

$ export DALTON_TMPDIR=/full/path/scratch

5

Dalton/LSDalton Installation Guide, Release 2020.1

6 Chapter 3. Installation instructions for system administrators

CHAPTER 4

Linking to math libraries

4.1 General

Dalton requires BLAS and LAPACK libraries. Typically you will want to link to external math (BLAS and LAPACK)
libraries, for instance provided by MKL or Atlas.

By default the CMake configuration script will automatically detect these libraries:

$./setup --blas=auto --lapack=auto # this is the default

if you define MATH_ROOT, for instance:

$ export MATH_ROOT='/opt/intel/mkl'

Do not use full path MATH_ROOT=’/opt/intel/mkl/lib/ia32’. CMake will append the correct paths depend-
ing on the processor and the default integer type. If the MKL libraries that you want to use reside in
/opt/intel/mkl/10.0.3.020/lib/em64t, then MATH_ROOT is defined as:

$ export MATH_ROOT='/opt/intel/mkl/10.0.3.020'

Then:

$./setup [--flags]
$ cd build
$ make

The math library detection will attempt to locate libraries based on MATH_ROOT, BLAS_ROOT/LAPACK_ROOT,
MKL_ROOT, and MKLROOT.

4.2 Intel/MKL

If you compile with Intel compilers and have the MKL library available, you should use the –mkl flag which will
automatically link to the MKL libraries (in this case you do not have to set MATH_ROOT). You have to specify

7

Dalton/LSDalton Installation Guide, Release 2020.1

whether you want to use the sequential or parallel (threaded) MKL version. For parallel Dalton runs you should
probably link to the sequential MKL:

$./setup --fc=mpif90 --cc=mpicc --cxx=mpicxx --mkl=sequential

For a sequential compilation you may want to link to the parallel MKL:

$./setup --fc=ifort --cc=icc --cxx=icpc --mkl=parallel

The more general solution is to link to the parallel MKL and control the number of threads using MKL environment
variables.

4.3 Cray

Cray typically provides own optimized BLAS/LAPACK wrappers. For this use the option –cray to disable automatic
BLAS/LAPACK detection:

$./setup --fc=ftn --cc=cc --cxx=CC --cray

4.4 Explicitly specifying BLAS and LAPACK libraries

If automatic detection of math libraries fails for whatever reason, you can always call the libraries explicitly like here:

$./setup --blas=/usr/lib/libblas.so --lapack=/usr/lib/liblapack.so

Alternatively, you can use the –explicit-libs option. But in this case, you should disable BLAS/LAPACK detection:

$./setup --blas=none --lapack=none --explicit-libs="-L/usr/lib -lblas -llapack"

4.5 Builtin BLAS and LAPACK implementation

If no external BLAS and LAPACK libraries are available, you can use the builtin implementation. However note that
these are not optimized and you will sacrifice performance. This should be the last resort if nothing else is available:

$./setup --blas=builtin --lapack=builtin

4.6 LSDalton using ScaLAPACK/Intel/MKL

If you compile with Intel compilers and have the MKL library available, you can choose to compile LSDalton using
the ScaLAPACK library provided by Intel. In this case, you should set the MATH_ROOT environment variable and
use the –scalapack flag which will automatically link to the MKL libraries.

You should not use the –mkl flag for this setup:

$./setup --fc=mpif90 --cc=mpicc --cxx=mpicxx --scalapack

8 Chapter 4. Linking to math libraries

CHAPTER 5

Scratch directory

Dalton and LSDalton need a scratch directory to write temporary files. Ideally, this should be a fast-access disk.

You should always specify an explicit scratch directory with:

$ export DALTON_TMPDIR=/full/path/scratch

or by using:

$ dalton -t /full/path/scratch [other flags and options]
$ lsdalton -t /full/path/scratch [other flags and options]

Which overrides DALTON_TMPDIR. If DALTON_TMPDIR is neither set nor passed to the run scripts, Dalton and
LSDalton will search /global/work/$USER /scratch/$USER /work /scratch /scr /temp /tmp as candidates for a scratch
directory. However, you should not let (LS)Dalton default to those.

Do not point DALTON_TMPDIR to your home directory! To prevent loss of data (LS)Dalton always appends a
directory to DALTON_TMPDIR.

9

Dalton/LSDalton Installation Guide, Release 2020.1

10 Chapter 5. Scratch directory

CHAPTER 6

Basis set directory

The basis set directory is copied to the build directory (and possibly install directory). The dalton and lsdalton
scripts will automatically find them. You can define or append custom basis set directories by exporting BASDIR:

export BASDIR='/somepath:/otherpath'

11

Dalton/LSDalton Installation Guide, Release 2020.1

12 Chapter 6. Basis set directory

CHAPTER 7

Testing the installation

It is very important that you verify that your Dalton installation correctly reproduces the reference test set before
running any production calculations.

The test set driver is CTest which can be invoked with “make test” after building the code.

7.1 Environment variables for testing

Before testing with “make test” you should export the following environment variables:

$ export DALTON_TMPDIR=/scratch # scratch space for Dalton and LSDalton
→˓(adapt path)
$ export DALTON_LAUNCHER="mpirun -np 4" # launch tests using 4 processes (only
→˓needed for Dalton)
$ export LSDALTON_LAUNCHER="mpirun -np 4" # launch tests using 4 processes (only
→˓needed for LSDalton)

Note that if you set the DALTON_NUM_MPI_PROCS to something different from 1, the dalton script will assume
you have compiled using MPI and run the mpirun command!

7.2 Running the test set

You can run the whole test set either using:

$ make test

or directly through CTest:

$ ctest

Both are equivalent (“make test” runs CTest) but running CTest directly makes it easier to run sequential tests on
several cores:

13

Dalton/LSDalton Installation Guide, Release 2020.1

$ ctest -j4

You can select the subset of tests by matching test names to a regular expression:

$ ctest -R dft

Alternatively you can select the tests with a label matching a regular expression:

$ ctest -L rsp

The following command will give you all available labels:

$ ctest --print-labels

14 Chapter 7. Testing the installation

CHAPTER 8

Expert options

8.1 Compiling in verbose mode

Sometimes you want to see the actual compiler flags and definitions when compiling the code:

$ make VERBOSE=1

8.2 How can I change optimization flags?

You can turn optimization off (debug mode) like this:

$./setup --type=debug [other flags]
$ cd build
$ make

You can edit compiler flags in cmake/compilers/{FortranFlags.cmake, CFlags.cmake, CXXFlags.cmake}.

Alternatively, you can edit compiler flags through ccmake:

$ cd build
$ ccmake ..

15

Dalton/LSDalton Installation Guide, Release 2020.1

16 Chapter 8. Expert options

CHAPTER 9

How you can contribute to this documentation

These pages are rendered using RST/Sphinx and served using Read the Docs. RST is a subset of Sphinx. Sphinx is
RST with some extensions.

9.1 How to modify the webpages

The source code for this documentation is hosted on GitLab. You need a GitLab account to modify the sources.

With a GitLab account you have two possibilities to edit the sources:

• If you are member of the dalton group, you can push directly to https://gitlab.com/dalton/installguide/. Once
you commit and push, a webhook updates the documentation on http://dalton-installation.readthedocs.org/. This
typically takes less than a minute.

• You fork https://gitlab.com/dalton/installguide/ and submit your changes at some point via a merge request. This
means that your changes are not immediately visible but become so after a team member reviews your changes
with a mouse click thus integrating them to https://gitlab.com/dalton/installguide/.

Note that the entire documentation including the entire documentation source code is public. Do not publish
sensitive information and harvestable email addresses.

9.2 How to locally test changes

You do not have to push to see and test your changes. You can test them locally. For this install python-sphinx and
python-matplotlib. Then build the pages with:

$ make html

Then point your browser to _build/html/index.html. The style is not the same but the content is what you would see
after the git push.

17

http://sphinx-doc.org/rest.html
https://readthedocs.org
https://gitlab.com/dalton/installguide/
https://gitlab.com/dalton/installguide/
http://dalton-installation.readthedocs.org/
https://gitlab.com/dalton/installguide/
https://gitlab.com/dalton/installguide/

	Supported platforms and compilers
	Basic installation
	General
	Basics
	Typical examples
	What to do if CMake is not available or too old?

	Installation instructions for system administrators
	Linking to math libraries
	General
	Intel/MKL
	Cray
	Explicitly specifying BLAS and LAPACK libraries
	Builtin BLAS and LAPACK implementation
	LSDalton using ScaLAPACK/Intel/MKL

	Scratch directory
	Basis set directory
	Testing the installation
	Environment variables for testing
	Running the test set

	Expert options
	Compiling in verbose mode
	How can I change optimization flags?

	How you can contribute to this documentation
	How to modify the webpages
	How to locally test changes

